Sample records for ice concentration sea

  1. The EUMETSAT sea ice concentration climate data record

    NASA Astrophysics Data System (ADS)

    Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas; Dybkjær, Gorm; Toudal Pedersen, Leif; Høyer, Jacob L.; Kern, Stefan

    2016-09-01

    An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.

  2. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  3. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  4. Consistent biases in Antarctic sea ice concentration simulated by climate models

    NASA Astrophysics Data System (ADS)

    Roach, Lettie A.; Dean, Samuel M.; Renwick, James A.

    2018-01-01

    The simulation of Antarctic sea ice in global climate models often does not agree with observations. In this study, we examine the compactness of sea ice, as well as the regional distribution of sea ice concentration, in climate models from the latest Coupled Model Intercomparison Project (CMIP5) and in satellite observations. We find substantial differences in concentration values between different sets of satellite observations, particularly at high concentrations, requiring careful treatment when comparing to models. As a fraction of total sea ice extent, models simulate too much loose, low-concentration sea ice cover throughout the year, and too little compact, high-concentration cover in the summer. In spite of the differences in physics between models, these tendencies are broadly consistent across the population of 40 CMIP5 simulations, a result not previously highlighted. Separating models with and without an explicit lateral melt term, we find that inclusion of lateral melt may account for overestimation of low-concentration cover. Targeted model experiments with a coupled ocean-sea ice model show that choice of constant floe diameter in the lateral melt scheme can also impact representation of loose ice. This suggests that current sea ice thermodynamics contribute to the inadequate simulation of the low-concentration regime in many models.

  5. Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.

    2017-12-01

    In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.

  6. Evaluation of the operational SAR based Baltic sea ice concentration products

    NASA Astrophysics Data System (ADS)

    Karvonen, Juha

    Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed, the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction fro both the polarization channels. and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some single-channel and dual-channel features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each Baltic Sea location based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded the Finnish Ice Service ice charts and ice concentration estimates from a radiometer algorithm (AMSR-2 Bootstrap algorithm results). References: J. Karvonen, Baltic Sea Ice Concentration Estimation Based on C-Band Dual-Polarized SAR Data, IEEE Transactions on Geoscience and Remote Sensing, in press, DOI: 10.1109/TGRS.2013.2290331, 2014.

  7. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  8. Assessing concentration uncertainty estimates from passive microwave sea ice products

    NASA Astrophysics Data System (ADS)

    Meier, W.; Brucker, L.; Miller, J. A.

    2017-12-01

    Sea ice concentration is an essential climate variable and passive microwave derived estimates of concentration are one of the longest satellite-derived climate records. However, until recently uncertainty estimates were not provided. Numerous validation studies provided insight into general error characteristics, but the studies have found that concentration error varied greatly depending on sea ice conditions. Thus, an uncertainty estimate from each observation is desired, particularly for initialization, assimilation, and validation of models. Here we investigate three sea ice products that include an uncertainty for each concentration estimate: the NASA Team 2 algorithm product, the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) product, and the NOAA/NSIDC Climate Data Record (CDR) product. Each product estimates uncertainty with a completely different approach. The NASA Team 2 product derives uncertainty internally from the algorithm method itself. The OSI-SAF uses atmospheric reanalysis fields and a radiative transfer model. The CDR uses spatial variability from two algorithms. Each approach has merits and limitations. Here we evaluate the uncertainty estimates by comparing the passive microwave concentration products with fields derived from the NOAA VIIRS sensor. The results show that the relationship between the product uncertainty estimates and the concentration error (relative to VIIRS) is complex. This may be due to the sea ice conditions, the uncertainty methods, as well as the spatial and temporal variability of the passive microwave and VIIRS products.

  9. Sensitivity of the sea ice concentration over the Kara-Barents Sea in autumn to the winter temperature variability over East Asia

    NASA Astrophysics Data System (ADS)

    Cho, K. H.; Chang, E. C.

    2017-12-01

    In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.

  10. Comparison of DMSP SSM/I and Landsat 7 ETM+ Sea Ice Concentrations During Summer Melt

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    As part of NASA's EOS Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E), Landsat 7 Enhanced Thematic Mapper (ETM+) images were acquired to develop a sea ice concentration data set with which to validate AMSR-E sea ice concentration retrievals. The standard AMSR-E Arctic sea ice concentration product will be obtained with the enhanced NASA Team (NT2) algorithm. The goal of this study is to assess the accuracy to which the NT2 algorithm, using DMSP Special Sensor Microwave Imager radiances, retrieves sea ice concentrations under summer melt conditions. Melt ponds are currently the largest source of error in the determination of Arctic sea ice concentrations with satellite passive microwave sensors. To accomplish this goal, Landsat 7 ETM+ images of Baffin Bay were acquired under clear sky conditions on the 26th and 27th of June 2000 and used to generate high-resolution sea ice concentration maps with which to compare the NT2 retrievals. Based on a linear regression analysis of 116 25-km samples, we find that overall the NT2 retrievals agree well with the Landsat concentrations. The regression analysis yields a correlation coefficient of 0.98. In areas of high melt ponding, the NT2 retrievals underestimate the sea ice concentrations by about 12% compared to the Landsat values.

  11. Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya

  12. Investigation of Antarctic Sea Ice Concentration by Means of Selected Algorithms

    DTIC Science & Technology

    1992-05-08

    Changes in areal extent and concentration of sea ice around Antarctica may serve as sensitive indicators of global warming . A comparison study was...occurred from July, 1987 through June, 1990. Antarctic Ocean, Antarctic regions, Global warming , Sea ice-Antarctic regions.

  13. Sea ice concentration temporal variability over the Weddell Sea and its relationship with tropical sea surface temperature

    USGS Publications Warehouse

    Barreira, S.; Compagnucci, R.

    2007-01-01

    Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.

  14. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  15. Operational multisensor sea ice concentration algorithm utilizing Sentinel-1 and AMSR2 data

    NASA Astrophysics Data System (ADS)

    Dinessen, Frode

    2017-04-01

    The Norwegian Ice Service provide ice charts of the European part of the Arctic every weekday. The charts are produced from a manually interpretation of satellite data where SAR (Synthetic Aperture Radar) data plays a central role because of its high spatial resolution and Independence of cloud cover. A new chart is produced every weekday and the charts are distributed through the CMEMS portal. After the launch of Sentinel-1A and B the number of available SAR data have significant increased making it difficult to utilize all the data in a manually process. This in combination with a user demand for a more frequent update of the ice conditions, also during the weekends, have made it important to focus the development on utilizing the high resolution Sentinel-1 data in an automatic sea ice concentration analysis. The algorithm developed here is based on a multi sensor approach using an optimal interpolation to combine sea ice concentration products derived from Sentinel-1 and passive microwave data from AMSR2. The Sentinel-1 data is classified with a Bayesian SAR classification algorithm using data in extra wide mode dual polarization (HH/HV) to separate ice and water in the full 40x40 meter spatial resolution. From the classification of ice/water the sea ice concentration is estimated by calculating amount of ice within an area of 1x1 km. The AMSR2 sea ice concentration are produced as part of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) project and utilize the 89 GHz channel to produce a concentration product with a 3km spatial resolution. Results from the automatic classification will be presented.

  16. Validation and Interpretation of a new sea ice GlobIce dataset using buoys and the CICE sea ice model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2012-04-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  17. Record low sea-ice concentration in the central Arctic during summer 2010

    NASA Astrophysics Data System (ADS)

    Zhao, Jinping; Barber, David; Zhang, Shugang; Yang, Qinghua; Wang, Xiaoyu; Xie, Hongjie

    2018-01-01

    The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements. Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector, which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water, increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.

  18. Concentration gradients and growth/decay characteristics of the seasonal sea ice cover

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Zwally, H. J.

    1984-01-01

    The characteristics of sea ice cover in both hemispheres are analyzed and compared. The areal sea ice cover in the entire polar regions and in various geographical sectors is quantified for various concentration intervals and is analyzed in a consistent manner. Radial profiles of brightness temperatures from the poles across the marginal zone are also evaluated at different transects along regular longitudinal intervals during different times of the year. These radial profiles provide statistical information about the ice concentration gradients and the rates at which the ice edge advances or retreats during a complete annual cycle.

  19. Recent Increases in Snow Accumulation and Decreases in Sea-Ice Concentration Recorded in a Coastal NW Greenland Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.

    2013-12-01

    A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-ice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive

  20. Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2002-01-01

    The Special Sensor Microwave Imager (SSM/I) microwave satellite radiometer and its predecessor SMMR are primary sources of information for global sea ice and climate studies. However, comparisons of SSM/I, Landsat, AVHRR, and ERS-1 synthetic aperture radar (SAR) have shown substantial seasonal and regional differences in their estimates of sea ice concentration. To evaluate these differences, we compared SSM/I estimates of sea ice coverage derived with the NASA Team and Bootstrap algorithms to estimates made using RADARSAT, and OKEAN-01 satellite sensor data. The study area included the Barents Sea, Kara Sea, Laptev Sea, and adjacent parts of the Arctic Ocean, during October 1995 through October 1999. Ice concentration estimates from spatially and temporally near-coincident imagery were calculated using independent algorithms for each sensor type. The OKEAN algorithm implemented the satellite's two-channel active (radar) and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter. The RADARSAT algorithm utilized a segmentation approach of the measured radar backscatter, and the SSM/I ice concentrations were derived at National Snow and Ice Data Center (NSIDC) using the NASA Team and Bootstrap algorithms. Seasonal and monthly differences between SSM/I, OKEAN, and RADARSAT ice concentrations were calculated and compared. Overall, total sea ice concentration estimates derived independently from near-coincident RADARSAT, OKEAN-01, and SSM/I satellite imagery demonstrated mean differences of less than 5.5% (S.D.<9.5%) during the winter period. Differences between the SSM/I NASA Team and the SSM/I Bootstrap concentrations were no more than 3.1% (S.D.<5.4%) during this period. RADARSAT and OKEAN-01 data both yielded higher total ice concentrations than the NASA Team and the Bootstrap algorithms. The Bootstrap algorithm yielded higher total ice concentrations than the NASA Team algorithm. Total ice

  1. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    DTIC Science & Technology

    2016-06-13

    Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product... Global Ocean Fore- cast System (GOFS 3.1). Prior to 2 February 2015, the ice concentration fields from both ACNFS and GOFS 3.1 had been updated with...Scanning Radiometer (AMSR2) on the Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mission – Water (GCOM-W) platform became available

  2. Satellite-derived ice data sets no. 2: Arctic monthly average microwave brightness temperatures and sea ice concentrations, 1973-1976

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.

    1987-01-01

    A summary data set for four years (mid 70's) of Arctic sea ice conditions is available on magnetic tape. The data include monthly and yearly averaged Nimbus 5 electrically scanning microwave radiometer (ESMR) brightness temperatures, an ice concentration parameter derived from the brightness temperatures, monthly climatological surface air temperatures, and monthly climatological sea level pressures. All data matrices are applied to 293 by 293 grids that cover a polar stereographic map enclosing the 50 deg N latitude circle. The grid size varies from about 32 X 32 km at the poles to about 28 X 28 km at 50 deg N. The ice concentration parameter is calculated assuming that the field of view contains only open water and first-year ice with an ice emissivity of 0.92. To account for the presence of multiyear ice, a nomogram is provided relating the ice concentration parameter, the total ice concentration, and the fraction of the ice cover which is multiyear ice.

  3. Statistical Analysis of SSMIS Sea Ice Concentration Threshold at the Arctic Sea Ice Edge during Summer Based on MODIS and Ship-Based Observational Data.

    PubMed

    Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong

    2018-04-05

    The threshold of sea ice concentration (SIC) is the basis for accurately calculating sea ice extent based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea ice edge used in previous studies and released sea ice products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea ice edge during summer in recent years, we extracted sea ice edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea ice product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea ice ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea ice edge based on ice-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea ice edge based on ice-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted ice edge pixels for the same days. The average SIC of 31% at the sea ice edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea ice extent calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea ice under the rapidly changing Arctic.

  4. NASA, Navy, and AES/York sea ice concentration comparison of SSM/I algorithms with SAR derived values

    NASA Technical Reports Server (NTRS)

    Jentz, R. R.; Wackerman, C. C.; Shuchman, R. A.; Onstott, R. G.; Gloersen, Per; Cavalieri, Don; Ramseier, Rene; Rubinstein, Irene; Comiso, Joey; Hollinger, James

    1991-01-01

    Previous research studies have focused on producing algorithms for extracting geophysical information from passive microwave data regarding ice floe size, sea ice concentration, open water lead locations, and sea ice extent. These studies have resulted in four separate algorithms for extracting these geophysical parameters. Sea ice concentration estimates generated from each of these algorithms (i.e., NASA/Team, NASA/Comiso, AES/York, and Navy) are compared to ice concentration estimates produced from coincident high-resolution synthetic aperture radar (SAR) data. The SAR concentration estimates are produced from data collected in both the Beaufort Sea and the Greenland Sea in March 1988 and March 1989, respectively. The SAR data are coincident to the passive microwave data generated by the Special Sensor Microwave/Imager (SSM/I).

  5. Monthly average polar sea-ice concentration

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1995-01-01

    The data contained in this CD-ROM depict monthly averages of sea-ice concentration in the modern polar oceans. These averages were derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) instruments aboard satellites of the U.S. Air Force Defense Meteorological Satellite Program from 1978 through 1992. The data are provided as 8-bit images using the Hierarchical Data Format (HDF) developed by the National Center for Supercomputing Applications.

  6. Statistical Prediction of Sea Ice Concentration over Arctic

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Jeong, Jee-Hoon; Kim, Baek-Min

    2017-04-01

    In this study, a statistical method that predict sea ice concentration (SIC) over the Arctic is developed. We first calculate the Season-reliant Empirical Orthogonal Functions (S-EOFs) of monthly Arctic SIC from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, which contain the seasonal cycles (12 months long) of dominant SIC anomaly patterns. Then, the current SIC state index is determined by projecting observed SIC anomalies for latest 12 months to the S-EOFs. Assuming the current SIC anomalies follow the spatio-temporal evolution in the S-EOFs, we project the future (upto 12 months) SIC anomalies by multiplying the SI and the corresponding S-EOF and then taking summation. The predictive skill is assessed by hindcast experiments initialized at all the months for 1980-2010. When comparing predictive skill of SIC predicted by statistical model and NCEP CFS v2, the statistical model shows a higher skill in predicting sea ice concentration and extent.

  7. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro

    2014-01-01

    Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than

  8. Validation and Interpretation of a New Sea Ice Globice Dataset Using Buoys and the Cice Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2011-12-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  9. Operational Implementation of Sea Ice Concentration Estimates from the AMSR2 Sensor

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Stewart, J. Scott; Liu, Yinghui; Key, Jeffrey; Miller, Jeffrey A.

    2017-01-01

    An operation implementation of a passive microwave sea ice concentration algorithm to support NOAA's operational mission is presented. The NASA team 2 algorithm, previously developed for the NASA advanced microwave scanning radiometer for the Earth observing system (AMSR-E) product suite, is adapted for operational use with the JAXA AMSR2 sensor through several enhancements. First, the algorithm is modified to process individual swaths and provide concentration from the most recent swaths instead of a 24-hour average. A latency (time since observation) field and a 24-hour concentration range (maximum-minimum) are included to provide indications of data timeliness and variability. Concentration from the Bootstrap algorithm is a secondary field to provide complementary sea ice information. A quality flag is implemented to provide information on interpolation, filtering, and other quality control steps. The AMSR2 concentration fields are compared with a different AMSR2 passive microwave product, and then validated via comparison with sea ice concentration from the Suomi visible and infrared imaging radiometer suite. This validation indicates the AMSR2 concentrations have a bias of 3.9% and an RMSE of 11.0% in the Arctic, and a bias of 4.45% and RMSE of 8.8% in the Antarctic. In most cases, the NOAA operational requirements for accuracy are met. However, in low-concentration regimes, such as during melt and near the ice edge, errors are higher because of the limitations of passive microwave sensors and the algorithm retrieval.

  10. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  11. Sea ice algae chlorophyll a concentrations derived from under-ice spectral radiation profiling platforms

    NASA Astrophysics Data System (ADS)

    Lange, Benjamin A.; Katlein, Christian; Nicolaus, Marcel; Peeken, Ilka; Flores, Hauke

    2016-12-01

    Multiscale sea ice algae observations are fundamentally important for projecting changes to sea ice ecosystems, as the physical environment continues to change. In this study, we developed upon previously established methodologies for deriving sea ice-algal chlorophyll a concentrations (chl a) from spectral radiation measurements, and applied these to larger-scale spectral surveys. We conducted four different under-ice spectral measurements: irradiance, radiance, transmittance, and transflectance, and applied three statistical approaches: Empirical Orthogonal Functions (EOF), Normalized Difference Indices (NDI), and multi-NDI. We developed models based on ice core chl a and coincident spectral irradiance/transmittance (N = 49) and radiance/transflectance (N = 50) measurements conducted during two cruises to the central Arctic Ocean in 2011 and 2012. These reference models were ranked based on two criteria: mean robustness R2 and true prediction error estimates. For estimating the biomass of a large-scale data set, the EOF approach performed better than the NDI, due to its ability to account for the high variability of environmental properties experienced over large areas. Based on robustness and true prediction error, the three most reliable models, EOF-transmittance, EOF-transflectance, and NDI-transmittance, were applied to two remotely operated vehicle (ROV) and two Surface and Under-Ice Trawl (SUIT) spectral radiation surveys. In these larger-scale chl a estimates, EOF-transmittance showed the best fit to ice core chl a. Application of our most reliable model, EOF-transmittance, to an 85 m horizontal ROV transect revealed large differences compared to published biomass estimates from the same site with important implications for projections of Arctic-wide ice-algal biomass and primary production.

  12. Sea-ice indicators of polar bear habitat

    NASA Astrophysics Data System (ADS)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  13. [Reflectance of sea ice in Liaodong Bay].

    PubMed

    Xu, Zhan-tang; Yang, Yue-zhong; Wang, Gui-fen; Cao, Wen-xi; Kong, Xiang-peng

    2010-07-01

    In the present study, the relationships between sea ice albedo and the bidirectional reflectance distribution in Liaodong Bay were investigated. The results indicate that: (1) sea ice albedo alpha(lambda) is closely related to the components of sea ice, the higher the particulate concentration in sea ice surface is, the lower the sea ice albedo alpha(lambda) is. On the contrary, the higher the bubble concentration in sea ice is, the higher sea ice albedo alpha(lambda) is. (2) Sea ice albedo alpha(lambda) is similar to the bidirectional reflectance factor R(f) when the probe locates at nadir. The R(f) would increase with the increase in detector zenith theta, and the correlation between R(f) and the detector azimuth would gradually increase. When the theta is located at solar zenith 63 degrees, the R(f) would reach the maximum, and the strongest correlation is also shown between the R(f) and the detector azimuth. (3) Different types of sea ice would have the different anisotropic reflectance factors.

  14. Interactions between Arctic sea ice drift, concentration and thickness modeled by NEMO-LIM3 at different resolutions

    NASA Astrophysics Data System (ADS)

    Docquier, David; Massonnet, François; Raulier, Jonathan; Lecomte, Olivier; Fichefet, Thierry

    2016-04-01

    Sea ice concentration and thickness have substantially decreased in the Arctic since the beginning of the satellite era. As a result, mechanical strength has decreased allowing more fracturing and leading to increased sea ice drift. However, recent studies have highlighted that the interplay between sea ice thermodynamics and dynamics is poorly represented in contemporary global climate model (GCM) simulations. Thus, the considerable inter-model spread in terms of future sea ice extent projections could be reduced by better understanding the interactions between drift, concentration and thickness. This study focuses on the results coming from the global coupled ocean-sea ice model NEMO-LIM3 between 1979 and 2012. Three different simulations are forced by the Drakkar Forcing Set (DFS) 5.2 and run on the global tripolar ORCA grid at spatial resolutions of 0.25, 1° and 2°. The relation between modeled sea ice drift, concentration and thickness is further analyzed, compared to observations and discussed in the framework of the above-mentioned poor representation. It is proposed as a process-based metric for evaluating model performance. This study forms part of the EU Horizon 2020 PRIMAVERA project aiming at developing a new generation of advanced and well-evaluated high-resolution GCMs.

  15. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  16. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica

    NASA Astrophysics Data System (ADS)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-08-01

    Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea ice both supports a rich (under-ice) food resource, access to which depends on local to regional coverage and conditions. Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals (Mirounga leonina) in winter and spatio-temporal variability in sea ice concentration (SIC) and coverage in East Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea ice usage: while females tended to follow the sea ice edge as it extended northward, the males remained on the continental shelf despite increasing sea ice. Seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was longer for females in late autumn in the outer part of the pack ice, ∼150-370 km south of the ice edge. Within persistent regions of compact sea ice, females had a longer foraging activity (i) in the highest sea ice concentration at their position, but (ii) their foraging activity was longer when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km). The high spatio-temporal variability of sea ice around female positions is probably a key factor allowing them to exploit these concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic finfishes and squids that concentrate near the ice-water interface or within the water column (from

  17. Shuttle Imaging Radar B (SIR-B) Weddell Sea ice observations - A comparison of SIR-B and scanning multichannel microwave radiometer ice concentrations

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Holt, Benjamin; Cavalieri, Donald J.; Squire, Vernon

    1987-01-01

    Ice concentrations over the Weddell Sea were studied using SIR-B data obtained during the October 1984 mission, with special attention given to the effect of ocean waves on the radar return at the ice edge. Sea ice concentrations were derived from the SIR-B data using two image processing methods: the classification scheme at JPL and the manual classification method at Scott Polar Research Institute (SPRI), England. The SIR ice concentrations were compared with coincident concentrations from the Nimbus-7 SMMR. For concentrations greater than 40 percent, which was the smallest concentration observed jointly by SIR-B and the SMMR, the mean difference between the two data sets for 12 points was 2 percent. A comparison between the JPL and the SPRI SIR-B algorithms showed that the algorithms agree to within 1 percent in the interior ice pack, but the JPL algorithm gives slightly greater concentrations at the ice edge (due to the fact that the algorithm is affected by the wind waves in these areas).

  18. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  19. Effects of Atmospheric Water and Surface Wind on Passive Microwave Retrievals of Sea Ice Concentration: a Simulation Study

    NASA Astrophysics Data System (ADS)

    Shin, D.; Chiu, L. S.; Clemente-Colon, P.

    2006-05-01

    The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water, water vapor and surface wind on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor's field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric effects from cloud liquid water, water vapor and surface wind tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. This compensating effect reduces the retrieval uncertainties of total (FY and MY) ice concentration. Over marginal ice zones, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations in the normal ranges of these variables.

  20. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community.

    PubMed

    Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis

    2017-10-01

    Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.

  1. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    NASA Technical Reports Server (NTRS)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  2. Temporal dynamics of ikaite in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.

    2014-08-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of <100 μmol kg-1. Snowfall events caused the sea ice to warm and ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.

  3. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  4. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  5. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  6. Arctic sea ice concentration observed with SMOS during summer

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Martinez, Justino; Turiel, Antonio

    2017-04-01

    The Arctic Ocean is under profound transformation. Observations and model predictions show dramatic decline in sea ice extent and volume [1]. A retreating Arctic ice cover has a marked impact on regional and global climate, and vice versa, through a large number of feedback mechanisms and interactions with the climate system [2]. The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution, continuous multi-angle viewing, large wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. A novel radiometric method to determine sea ice concentration (SIC) from SMOS is presented. The method uses the Bayesian-based Maximum Likelihood Estimation (MLE) approach to retrieve SIC. The advantage of this approach with respect to the classical linear inversion is that the former takes into account the uncertainty of the tie-point measured data in addition to the mean value, while the latter only uses a mean value of the tie-point data. When thin ice is present, the SMOS algorithm underestimates the SIC due to the low opacity of the ice at this frequency. However, using a synergistic approach with data from other satellite sensors, it is possible to obtain accurate thin ice thickness estimations with the Bayesian-based method. Despite its lower spatial resolution relative to SSMI or AMSR-E, SMOS-derived SIC products are little affected by the atmosphere and the snow (almost transparent at L-band). Moreover L-band measurements are more robust in front of the

  7. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    NASA Astrophysics Data System (ADS)

    Schmidt, Katrin; Brown, Thomas A.; Belt, Simon T.; Ireland, Louise C.; Taylor, Kyle W. R.; Thorpe, Sally E.; Ward, Peter; Atkinson, Angus

    2018-04-01

    Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ) for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated) for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI) biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba) and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January-February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C = -12.5 ± 3.3 ‰) occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C = -42.2 ± 2.4 ‰) occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass-length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding ground for pelagic grazers. Even though ice

  8. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    NASA Astrophysics Data System (ADS)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  9. Towards Improving Sea Ice Predictabiity: Evaluating Climate Models Against Satellite Sea Ice Observations

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.

    2014-12-01

    The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the

  10. Help, I don’t know which sea ice algorithm to use?!: Developing an authoritative sea ice climate data record

    NASA Astrophysics Data System (ADS)

    Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.

    2009-12-01

    The declining Arctic sea ice is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea ice data is expanding well beyond the sea ice community. The most comprehensive sea ice data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea ice concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise ice edge determination and lack of small-scale detail (e.g., lead detection) within the ice pack; surface melt depresses concentration values during summer; thin ice is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea ice concentration products and outline the future steps needed to complete a sea ice climate data record.

  11. The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Rind, David; Healy, Richard J.; Martinson, Douglas G.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Goddard Institute for Space Studies global climate model (GISS GCM) is used to examine the sensitivity of the simulated climate to sea ice concentration specifications in the type of simulation done in the Atmospheric Modeling Intercomparison Project (AMIP), with specified oceanic boundary conditions. Results show that sea ice concentration uncertainties of +/- 7% can affect simulated regional temperatures by more than 6 C, and biases in sea ice concentrations of +7% and -7% alter simulated annually averaged global surface air temperatures by -0.10 C and +0.17 C, respectively, over those in the control simulation. The resulting 0.27 C difference in simulated annual global surface air temperatures is reduced by a third, to 0.18 C, when considering instead biases of +4% and -4%. More broadly, least-squares fits through the temperature results of 17 simulations with ice concentration input changes ranging from increases of 50% versus the control simulation to decreases of 50% yield a yearly average global impact of 0.0107 C warming for every 1% ice concentration decrease, i.e., 1.07 C warming for the full +50% to -50% range. Regionally and on a monthly average basis, the differences can be far greater, especially in the polar regions, where wintertime contrasts between the +50% and -50% cases can exceed 30 C. However, few statistically significant effects are found outside the polar latitudes, and temperature effects over the non-polar oceans tend to be under 1 C, due in part to the specification of an unvarying annual cycle of sea surface temperatures. The +/- 7% and 14% results provide bounds on the impact (on GISS GCM simulations making use of satellite data) of satellite-derived ice concentration inaccuracies, +/- 7% being the current estimated average accuracy of satellite retrievals and +/- 4% being the anticipated improved average accuracy for upcoming satellite instruments. Results show that the impact on simulated temperatures of imposed ice concentration

  12. New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis

    NASA Astrophysics Data System (ADS)

    Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.

    2017-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.

  13. A multisensor approach to sea ice classification for the validation of DMSP-SSM/I passive microwave derived sea ice products

    NASA Technical Reports Server (NTRS)

    Steffen, K.; Schweiger, A. J.

    1990-01-01

    The validation of sea ice products derived from the Special Sensor Microwave Imager (SSM/I) on board a DMSP platform is examined using data from the Landsat MSS and NOAA-AVHRR sensors. Image processing techniques for retrieving ice concentrations from each type of imagery are developed and results are intercompared to determine the ice parameter retrieval accuracy of the SSM/I NASA-Team algorithm. For case studies in the Beaufort Sea and East Greenland Sea, average retrieval errors of the SSM/I algorithm are between 1.7 percent for spring conditions and 4.3 percent during freeze up in comparison with Landsat derived ice concentrations. For a case study in the East Greenland Sea, SSM/I derived ice concentration in comparison with AVHRR imagery display a mean error of 9.6 percent.

  14. Analysis of sea ice dynamics

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.

  15. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  16. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  17. Antarctic Sea Ice Variability and Trends, 1979-2010

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Cavalieri, D. J.

    2012-01-01

    In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  18. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea

    USGS Publications Warehouse

    Sherwood, C.R.

    2000-01-01

    A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.

  19. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  20. Probabilistic Forecasting of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Slater, A. G.

    2013-12-01

    Sea ice in the Arctic is changing rapidly. Most noticeable has been the series of record, or near-record, annual minimums in sea ice extent in the past six years. The changing regime of sea ice has prompted much interest in seasonal prediction of sea ice extent, particularly as opportunities for Arctic shipping and resource exploration or extraction increase. This study presents a daily sea ice extent probabilistic forecast method with a 50-day lead time. A base projection is made from historical data and near-real-time sea ice concentration is assimilated on the issue date of the forecast. When considering the September mean ice extent for the period 1995-2012, the performance of the 50-day lead time forecast is very good: correlation=0.94, Bias = 0.14 ×106 km^2 and RMSE = 0.36 ×106 km^2. Forecasts for the daily minimum contains equal skill levels. The system is highly competitive with any of the SEARCH Sea Ice Outlook estimates. The primary finding of this study is that large amounts of forecast skill can be gained from knowledge of the initial conditions of concentration (perhaps more than previously thought). Given the simplicity of the forecast model, improved skill should be available from system refinement and with suitable proxies for large scale atmosphere and ocean circulation.

  1. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  2. Satellite Remote Sensing: Passive-Microwave Measurements of Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave measurements of sea ice have provided global or near-global sea ice data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea ice concentrations (percent areal coverages), sea ice extents, the length of the sea ice season, sea ice temperatures, and sea ice velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the ice-type composition of the sea ice cover. In each case, the calculations are based on the microwave emission characteristics of sea ice and the important contrasts between the microwave emissions of sea ice and those of the surrounding liquid-water medium.

  3. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  4. Assimilation of sea ice concentration data in the Arctic via DART/CICE5 in the CESM1

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bitz, C. M.; Anderson, J. L.; Collins, N.; Hendricks, J.; Hoar, T. J.; Raeder, K.

    2016-12-01

    Arctic sea ice cover has been experiencing significant reduction in the past few decades. Climate models predict that the Arctic Ocean may be ice-free in late summer within a few decades. Better sea ice prediction is crucial for regional and global climate prediction that are vital to human activities such as maritime shipping and subsistence hunting, as well as wildlife protection as animals face habitat loss. The physical processes involved with the persistence and re-emergence of sea ice cover are found to extend the predictability of sea ice concentration (SIC) and thickness at the regional scale up to several years. This motivates us to investigate sea ice predictability stemming from initial values of the sea ice cover. Data assimilation is a useful technique to combine observations and model forecasts to reconstruct the states of sea ice in the past and provide more accurate initial conditions for sea ice prediction. This work links the most recent version of the Los Alamos sea ice model (CICE5) within the Community Earth System Model version 1.5 (CESM1.5) and the Data Assimilation Research Testbed (DART). The linked DART/CICE5 is ideal to assimilate multi-scale and multivariate sea ice observations using an ensemble Kalman filter (EnKF). The study is focused on the assimilation of SIC data that impact SIC, sea ice thickness, and snow thickness. The ensemble sea ice model states are constructed by introducing uncertainties in atmospheric forcing and key model parameters. The ensemble atmospheric forcing is a reanalysis product generated with DART and the Community Atmosphere Model (CAM). We also perturb two model parameters that are found to contribute significantly to the model uncertainty in previous studies. This study applies perfect model observing system simulation experiments (OSSEs) to investigate data assimilation algorithms and post-processing methods. One of the ensemble members of a CICE5 free run is chosen as the truth. Daily synthetic

  5. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  6. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  7. Microalgal photophysiology and macronutrient distribution in summer sea ice in the Amundsen and Ross Seas, Antarctica

    PubMed Central

    Fransson, Agneta; Currie, Kim; Wulff, Angela; Chierici, Melissa

    2018-01-01

    Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-ice algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea ice and photophysiology of ice algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the ice and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, ice thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic pack-ice algae. It is likely that the pack ice was in a post-bloom situation during the late sea-ice season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the ice. In order to predict how key biogeochemical processes are affected by future changes in sea ice cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea ice affect the microbial community. Our results support existing hypothesis about sea-ice algal photophysiology, and provide additional observations on high nutrient concentrations in sea ice that could influence the planktonic communities as the ice is retreating. PMID:29634756

  8. Under Sea Ice phytoplankton bloom detection and contamination in Antarctica

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zeng, T.; Xu, H.

    2017-12-01

    Previous researches reported compelling sea ice phytoplankton bloom in Arctic, while seldom reports studied about Antarctic. Here, lab experiment showed sea ice increased the visible light albedo of the water leaving radiance. Even a new formed sea ice of 10cm thickness increased water leaving radiance up to 4 times of its original bare water. Given that phytoplankton preferred growing and accumulating under the sea ice with thickness of 10cm-1m, our results showed that the changing rate of OC4 estimated [Chl-a] varied from 0.01-0.5mg/m3 to 0.2-0.3mg/m3, if the water covered by 10cm sea ice. Going further, varying thickness of sea ice modulated the changing rate of estimating [Chl-a] non-linearly, thus current routine OC4 model cannot estimate under sea ice [Chl-a] appropriately. Besides, marginal sea ice zone has a large amount of mixture regions containing sea ice, water and snow, where is favorable for phytoplankton. We applied 6S model to estimate the sea ice/snow contamination on sub-pixel water leaving radiance of 4.25km spatial resolution ocean color products. Results showed that sea ice/snow scale effectiveness overestimated [Chl-a] concentration based on routine band ratio OC4 model, which contamination increased with the rising fraction of sea ice/snow within one pixel. Finally, we analyzed the under sea ice bloom in Antarctica based on the [Chl-a] concentration trends during 21 days after sea ice retreating. Regardless of those overestimation caused by sea ice/snow sub scale contamination, we still did not see significant under sea ice blooms in Antarctica in 2012-2017 compared with Arctic. This research found that Southern Ocean is not favorable for under sea ice blooms and the phytoplankton bloom preferred to occur in at least 3 weeks after sea ice retreating.

  9. Arctic Sea Ice Predictability and the Sea Ice Prediction Network

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Stroeve, J. C.

    2014-12-01

    Drastic reductions in Arctic sea ice cover have increased the demand for Arctic sea ice predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-ice prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea Ice Outlook (SIO; http://www.arcus.org/sipn/sea-ice-outlook) and the Sea Ice for Walrus Outlook have provided a forum for the international sea-ice prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea Ice Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea ice prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea ice cover in September and the first day each location becomes ice-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea ice from dynamic-thermodynamic sea ice models. Half of the models included fully-coupled (atmosphere, ice, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data

  10. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  11. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Technical Reports Server (NTRS)

    Jacobs, S. S.; Comiso, J. C.

    1989-01-01

    The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.

  12. Walrus areas of use in the Chukchi Sea during sparse sea ice cover

    USGS Publications Warehouse

    Jay, Chadwick V.; Fischbach, Anthony S.; Kochnev, Anatoly A.

    2012-01-01

    The Pacific walrus Odobenus rosmarus divergens feeds on benthic invertebrates on the continental shelf of the Chukchi and Bering Seas and rests on sea ice between foraging trips. With climate warming, ice-free periods in the Chukchi Sea have increased and are projected to increase further in frequency and duration. We radio-tracked walruses to estimate areas of walrus foraging and occupancy in the Chukchi Sea from June to November of 2008 to 2011, years when sea ice was sparse over the continental shelf in comparison to historical records. The earlier and more extensive sea ice retreat in June to September, and delayed freeze-up of sea ice in October to November, created conditions for walruses to arrive earlier and stay later in the Chukchi Sea than in the past. The lack of sea ice over the continental shelf from September to October caused walruses to forage in nearshore areas instead of offshore areas as in the past. Walruses did not frequent the deep waters of the Arctic Basin when sea ice retreated off the shelf. Walruses foraged in most areas they occupied, and areas of concentrated foraging generally corresponded to regions of high benthic biomass, such as in the northeastern (Hanna Shoal) and southwestern Chukchi Sea. A notable exception was the occurrence of concentrated foraging in a nearshore area of northwestern Alaska that is apparently depauperate in walrus prey. With increasing sea ice loss, it is likely that walruses will increase their use of coastal haul-outs and nearshore foraging areas, with consequences to the population that are yet to be understood.

  13. Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang

    2017-01-01

    We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice

  14. Canadian snow and sea ice: historical trends and projections

    NASA Astrophysics Data System (ADS)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  15. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  16. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  17. Predictability of the Arctic sea ice edge

    NASA Astrophysics Data System (ADS)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  18. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  19. Visualizing Glaciers and Sea Ice via Google Earth

    NASA Astrophysics Data System (ADS)

    Ballagh, L. M.; Fetterer, F.; Haran, T. M.; Pharris, K.

    2006-12-01

    The NOAA team at NSIDC manages over 60 distinct cryospheric and related data products. With an emphasis on data rescue and in situ data, these products hold value for both the scientific and non-scientific user communities. The overarching goal of this presentation is to promote products from two components of the cryosphere (glaciers and sea ice). Our Online Glacier Photograph Database contains approximately 3,000 photographs taken over many decades, exemplifying change in the glacier terminus over time. The sea ice product shows sea ice extent and concentration along with anomalies and trends. This Sea Ice Index product, which starts in 1979 and is updated monthly, provides visuals of the current state of sea ice in both hemispheres with trends and anomalies. The long time period covered by the data set means that many of the trends in ice extent and concentration shown in this product are statistically significant despite the large natural variability in sea ice. The minimum arctic sea ice extent has been a record low in September 2002 and 2005, contributing to an accelerated trend in sea ice reduction. With increasing world-wide interest in indicators of global climate change, and the upcoming International Polar Year, these data products are of interest to a broad audience. To further extend the impact of these data, we have made them viewable through Google Earth via the Keyhole Markup Language (KML). This presents an opportunity to branch out to a more diverse audience by using a new and innovative tool that allows spatial representation of data of significant scientific and educational interest.

  20. An Examination of the Sea Ice Rheology for Seasonal Ice Zones Based on Ice Drift and Thickness Observations

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kimura, Noriaki

    2018-02-01

    The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.

  1. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    NASA Astrophysics Data System (ADS)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  2. Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration

    NASA Astrophysics Data System (ADS)

    Yang, Wenchang; Magnusdottir, Gudrun

    2017-05-01

    Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.

  3. Operationally Merged Satellite Visible/IR and Passive Microwave Sea Ice Information for Improved Sea Ice Forecasts and Ship Routing

    DTIC Science & Technology

    2015-09-30

    microwave sea ice information for improved sea ice forecasts and ship routing W. Meier NASA Goddard Space Flight Center, Cryospheric Sciences Laboratory...updating the initial ice concentration analysis fields along the ice edge. In the past year, NASA Goddard and NRL have generated a merged 4 km AMSR-E...collaborations of three groups: NASA Goddard Space Flight Center ( NASA /GSFC) in Greenbelt, MD, NRL/Oceanography Division located at Stennis Space Center (SSC

  4. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea

  5. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    NASA Technical Reports Server (NTRS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  6. Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques

    DTIC Science & Technology

    Koopman Mode Analysis was newly applied to southern hemisphere sea ice concentration data. The resulting Koopman modes from analysis of both the...southern and northern hemisphere sea ice concentration data shows geographical regions where sea ice coverage has decreased over multiyear time scales.

  7. Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan; McDonald, Adrian; Rack, Wolfgang

    2016-04-01

    Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production

  8. Guide to Sea Ice Information and Sea Ice Data Online - the Sea Ice Knowledge and Data Platform www.meereisportal.de and www.seaiceportal.de

    NASA Astrophysics Data System (ADS)

    Treffeisen, R. E.; Nicolaus, M.; Bartsch, A.; Fritzsch, B.; Grosfeld, K.; Haas, C.; Hendricks, S.; Heygster, G.; Hiller, W.; Krumpen, T.; Melsheimer, C.; Ricker, R.; Weigelt, M.

    2016-12-01

    The combination of multi-disciplinary sea ice science and the rising demand of society for up-to-date information and user customized products places emphasis on creating new ways of communication between science and society. The new knowledge platform is a contribution to the cross-linking of scientifically qualified information on climate change, and focuses on the theme: `sea ice' in both Polar Regions. With this platform, the science opens to these changing societal demands. It is the first comprehensive German speaking knowledge platform on sea ice; the platform went online in 2013. The web site delivers popularized information for the general public as well as scientific data meant primarily for the more expert readers and scientists. It also provides various tools allowing for visitor interaction. The demand for the web site indicates a high level of interest from both the general public and experts. It communicates science-based information to improve awareness and understanding of sea ice related research. The principle concept of the new knowledge platform is based on three pillars: (1) sea ice knowledge and background information, (2) data portal with visualizations, and (3) expert knowledge, latest research results and press releases. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archived data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations (e.g., AMSR2, CryoSat-2 and SMOS) of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous ice-tethered platforms (buoys). Additional ship observations, ice station measurements, and

  9. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover.

    PubMed

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A; Zhou, Mingyu; Lenschow, Donald H; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua

    2017-04-05

    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration.

  10. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover

    PubMed Central

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A.; Zhou, Mingyu; Lenschow, Donald H.; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua

    2017-01-01

    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration. PMID:28378830

  11. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  12. Passive Microwave Algorithms for Sea Ice Concentration: A Comparison of Two Techniques

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per

    1997-01-01

    The most comprehensive large-scale characterization of the global sea ice cover so far has been provided by satellite passive microwave data. Accurate retrieval of ice concentrations from these data is important because of the sensitivity of surface flux(e.g. heat, salt, and water) calculations to small change in the amount of open water (leads and polynyas) within the polar ice packs. Two algorithms that have been used for deriving ice concentrations from multichannel data are compared. One is the NASA Team algorithm and the other is the Bootstrap algorithm, both of which were developed at NASA's Goddard Space Flight Center. The two algorithms use different channel combinations, reference brightness temperatures, weather filters, and techniques. Analyses are made to evaluate the sensitivity of algorithm results to variations of emissivity and temperature with space and time. To assess the difference in the performance of the two algorithms, analyses were performed with data from both hemispheres and for all seasons. The results show only small differences in the central Arctic in but larger disagreements in the seasonal regions and in summer. In some ares in the Antarctic, the Bootstrap technique show ice concentrations higher than those of the Team algorithm by as much as 25%; whereas, in other areas, it shows ice concentrations lower by as much as 30%. The The differences in the results are caused by temperature effects, emissivity effects, and tie point differences. The Team and the Bootstrap results were compared with available Landsat, advanced very high resolution radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and SAR data sets all yield higher concentrations than the passive microwave algorithms. Inconsistencies among results suggest the need for further validation studies.

  13. Under the Sea Ice: Exploration of the Relationships Between Sea Ice Patterns and Foraging Movements of a Marine Predator in East Antarctica.

    NASA Astrophysics Data System (ADS)

    Labrousse, S.; Sallee, J. B.; Fraser, A. D.; Massom, R. A.; Reid, P.; Sumner, M.; Guinet, C.; Harcourt, R.; Bailleul, F.; Hindell, M.; Charrassin, J. B.

    2016-02-01

    Investigating ecological relationships between top predators and their environment is essential to understand the response of marine ecosystems to climate variability. Specifically, variability and changes in sea ice, which is known as an important habitat for marine ecosystems, presents complex patterns in East Antarctic. The impact for ecosystems of such changes of their habitat is however still unknown. Acting as an ecological double-edged sword, sea ice can impede access to marine resources while harboring a rich ecosystem during winter. Here, we investigated which type of sea ice habitat is used by male and female southern elephant seals during winter and examine if and how the spatio-temporal variability of sea ice concentration (SIC) influence their foraging strategies. We also examined over a 10 years time-series the impact of SIC and sea ice advance anomaly on foraging activity. To do this, we studied 46 individuals equipped with Satellite linked data recorders between 2004 and 2014, undertaking post-moult trips in winter from Kerguelen to the peri-Antarctic shelf. The general patterns of sea ice use by males and females are clearly distinct; while females tended to follow the sea ice edge as it extended northward, males remained on the continental shelf. Female foraging activity was higher in late autumn in the outer part of the pack ice in concentrated SIC and spatially stable. They remained in areas of variable SIC over time and low persistence. The seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was much higher during earlier advance of sea ice over female time-series. The females were possibly taking advantage of the ice algal autumn bloom sustaining krill and an under ice ecosystem without being trapped in sea ice. Males foraging activity increased when they remained deep inside sea ice over the shelf using variable SIC in time and space, presumably in polynyas or flaw leads between fast and pack ice. This strategy

  14. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  15. High resolution sea ice modeling for the region of Baffin Bay and the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Zakharov, I.; Prasad, S.; McGuire, P.

    2016-12-01

    A multi-category numerical sea ice model (CICE) with a data assimilation module was implemented to derive sea ice parameters in the region of Baffin Bay and the Labrador Sea with resolution higher than 10 km. The model derived ice parameters include concentration, ridge keel measurement, thickness and freeboard. The module for assimilation of ice concentration uses data from the Advance Microwave Scanning Radiometer (AMSR-E) and OSI SAF data. The sea surface temperature (SST) data from AMSRE-AVHRR and Operational SST and Sea Ice Analysis (OSTIA) system were used to correct the SST computed by a mixed layer slab ocean model that is used to determine the growth and melt of sea ice. The ice thickness parameter from the model was compared with the measurements from Soil Moisture Ocean Salinity - Microwave Imaging Radiometer using Aperture Synthesis (SMOS-MIRAS). The freeboard measures where compared with the Cryosat-2 measurements. A spatial root mean square error computed for freeboard measures was found to be within the uncertainty limits of the observation. The model was also used to estimate the correlation parameter between the ridge and the ridge keel measurements in the region of Makkovik Bank. Also, the level ice draft estimated from the model was in good agreement with the ice draft derived from the upward looking sonar (ULS) instrument deployed in the Makkovik bank. The model corrected with ice concentration and SST from remote sensing data demonstrated significant improvements in accuracy of the estimated ice parameters. The model can be used for operational forecast and climate research.

  16. Arctic Sea Ice Classification and Mapping for Surface Albedo Parameterization in Sea Ice Modeling

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Clemente-Colón, P.; Perovich, D. K.; Polashenski, C.; Simpson, W. R.; Rigor, I. G.; Woods, J. E.; Nguyen, D. T.; Neumann, G.

    2016-12-01

    A regime shift of Arctic sea ice from predominantly perennial sea ice (multi-year ice or MYI) to seasonal sea ice (first-year ice or FYI) has occurred in recent decades. This shift has profoundly altered the proportional composition of different sea ice classes and the surface albedo distribution pertaining to each sea ice class. Such changes impacts physical, chemical, and biological processes in the Arctic atmosphere-ice-ocean system. The drastic changes upset the traditional geophysical representation of surface albedo of the Arctic sea ice cover in current models. A critical science issue is that these profound changes must be rigorously and systematically observed and characterized to enable a transformative re-parameterization of key model inputs, such as ice surface albedo, to ice-ocean-atmosphere climate modeling in order to obtain re-analyses that accurately reproduce Arctic changes and also to improve sea ice and weather forecast models. Addressing this challenge is a strategy identified by the National Research Council study on "Seasonal to Decadal Predictions of Arctic Sea Ice - Challenges and Strategies" to replicate the new Arctic reality. We review results of albedo characteristics associated with different sea ice classes such as FYI and MYI. Then we demonstrate the capability for sea ice classification and mapping using algorithms developed by the Jet Propulsion Laboratory and by the U.S. National Ice Center for use with multi-sourced satellite radar data at L, C, and Ku bands. Results obtained with independent algorithms for different radar frequencies consistently identify sea ice classes and thereby cross-verify the sea ice classification methods. Moreover, field observations obtained from buoy webcams and along an extensive trek across Elson Lagoon and a sector of the Beaufort Sea during the BRomine, Ozone, and Mercury EXperiment (BROMEX) in March 2012 are used to validate satellite products of sea ice classes. This research enables the mapping

  17. Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John

    2016-01-01

    ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.

  18. Seasonal Study of Mercury Species in the Antarctic Sea Ice Environment.

    PubMed

    Nerentorp Mastromonaco, Michelle G; Gårdfeldt, Katarina; Langer, Sarka; Dommergue, Aurélien

    2016-12-06

    Limited studies have been conducted on mercury concentrations in the polar cryosphere and the factors affecting the distribution of mercury within sea ice and snow are poorly understood. Here we present the first comprehensive seasonal study of elemental and total mercury concentrations in the Antarctic sea ice environment covering data from measurements in air, sea ice, seawater, snow, frost flowers, and brine. The average concentration of total mercury in sea ice decreased from winter (9.7 ng L -1 ) to spring (4.7 ng L -1 ) while the average elemental mercury concentration increased from winter (0.07 ng L -1 ) to summer (0.105 ng L -1 ). The opposite trends suggest potential photo- or dark oxidation/reduction processes within the ice and an eventual loss of mercury via brine drainage or gas evasion of elemental mercury. Our results indicate a seasonal variation of mercury species in the polar sea ice environment probably due to varying factors such as solar radiation, temperature, brine volume, and atmospheric deposition. This study shows that the sea ice environment is a significant interphase between the polar ocean and the atmosphere and should be accounted for when studying how climate change may affect the mercury cycle in polar regions.

  19. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  20. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the

  1. Laboratory study on coprecipitation of phosphate with ikaite in sea ice

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Bin; Dieckmann, Gerhard S.; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2014-10-01

    Ikaite (CaCO3·6H2O) has recently been discovered in sea ice, providing first direct evidence of CaCO3 precipitation in sea ice. However, the impact of ikaite precipitation on phosphate (PO4) concentration has not been considered so far. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105, temperatures from -4°C to 0°C, and PO4 concentrations from 5 to 50 µmol kg-1 in artificial sea ice brine so as to understand how ikaite precipitation affects the PO4 concentration in sea ice under different conditions. Our results show that PO4 is coprecipitated with ikaite under all experimental conditions. The amount of PO4 removed by ikaite precipitation increases with increasing pH. Changes in salinity (S ≥ 35) as well as temperature have little impact on PO4 removal by ikaite precipitation. The initial PO4 concentration affects the PO4 coprecipitation. These findings may shed some light on the observed variability of PO4 concentration in sea ice.

  2. Predictability of Ice Concentration in the High-Latitude North Atlantic from Statistical Analysis of SST (Sea Surface Temperature) and Ice Concentration Data.

    DTIC Science & Technology

    1987-09-01

    Nautical- Metorological Annuals (Yearbooks), Charlottenlund, Copenhagen. Jokill, 1953-67: Reports of sea ice off the Icelandic coasts (Annual reports...Proceeding of 7th annual climate diagnostic workshop (NOAA) pub. Washington, D.C., 189-195. * Weeks, W. F., 1978: Sea ice conditions in the Arctic. In

  3. Will Arctic sea ice thickness initialization improve seasonal forecast skill?

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Hawkins, E.; Tietsche, S.

    2014-11-01

    Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

  4. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  5. Sea ice and polar climate in the NCAR CSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weatherly, J.W.; Briegleb, B.P.; Large, W.G.

    The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity. The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from themore » European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data. The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2--4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.« less

  6. Interactions Between Ice Thickness, Bottom Ice Algae, and Transmitted Spectral Irradiance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    The amount of light that penetrates the Arctic sea ice cover impacts sea-ice mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea ice in varying time and space may impact new trends in Arctic sea ice extent and the progression of melt.

  7. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  8. MMAB Sea Ice Analysis Page

    Science.gov Websites

    . Consequently we produce two sorts of field. One is suitable for use by models, the global field. And the other color bar gif of the Alaska Region map Previous Alaska Region Maps NCEP MMAB Interactive Sea Ice Image Generation Animation Alaska Region Sea of Okhotsk and Sea of Japan - current figure concentration color bar

  9. Measurements of Turbulent Fluxes over Sea Ice Region in the Sea of Okhotsk.

    NASA Astrophysics Data System (ADS)

    Fujisaki, A.; Yamaguchi, H.; Toyota, T.; Futatsudera, A.; Miyanaga, M.

    2007-12-01

    The measurements of turbulent fluxes over sea ice area were done in the southern part of the Sea of Okhotsk, during the cruises of the ice-breaker P/V 'Soya' in 2000-2005. The air-ice drag coefficients CDN were 3.57×10-3 over small floes \\left(diameter:φ=20- 100m\\right), 3.38×10-3 over medium floes \\left(φ=100-500m\\right), and 2.12×10-3 over big floes \\left( φ=500m-2km\\right), which showed a decrease with the increase of floe size. This is because the smaller floes contribue to the roughness of sea-ice area by their edges more than the larger ones. The average CDN values showed a gradual upslope with ice concentration, which is simply due to the rougher surface of sea ice than that of open water, while they showed a slight decline at ice concentration 100%, which is possibly due to the lack of freeboard effect of lateral side of floes. We also compared the relation between the roughness length zM and the friction velocity u* with the model developed in the previous study. The zM-u* relation well corresponded with the model results, while the range of zM we obtained was larger than those obtained at the Ice Station Weddell and during the Surface Heat Budget of the Arctic Ocean project. The sensible heat transfer coefficients CHN were 1.35×10-3 at 80-90% ice concentration, and 0.95×10-3 at 100% ice concentration, which are comparable with the results of the past reaserches. On the other hand, we obtained a maximum CHN value of 2.39×10-3at 20-50% ice concentration, and 2.35×10-3 over open water, which are more than twice as the typical value of 1.0×10-3 over open water. These large CHN values are due to the significant upward sensible heat flux during the measurements.

  10. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2013-04-01

    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.

  11. Global warming releases microplastic legacy frozen in Arctic Sea ice

    NASA Astrophysics Data System (ADS)

    Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.

    2014-06-01

    When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.

  12. Sea ice in the Greenland Sea

    NASA Image and Video Library

    2017-12-08

    As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Greenland on July 16, 2015. Large chunks of melting sea ice can be seen in the sea ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland Sea. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the sea, as do newly calved icebergs. Frigid air from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and air allows some sea ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer sea ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic sea ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Comparing springtime ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea.

    PubMed

    Lange, Benjamin A; Michel, Christine; Beckers, Justin F; Casey, J Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian

    2015-01-01

    With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.

  14. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  15. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Jacobs, S. S.; Comiso, J. C.

    1989-12-01

    We have investigated the spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf, in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance heat flux to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical heat flux above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the air temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave sea ice data near continental boundaries.

  16. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  17. Sediments in Arctic sea ice: Implications for entrainment, transport and release

    USGS Publications Warehouse

    Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn

    1994-01-01

    Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite

  18. Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities

    NASA Astrophysics Data System (ADS)

    McMinn, Andrew

    2017-09-01

    Sea ice algae, like some coastal and estuarine phytoplankton, are naturally exposed to a wider range of pH and CO2 concentrations than those in open marine seas. While climate change and ocean acidification (OA) will impact pelagic communities, their effects on sea ice microbial communities remain unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface (infiltration) communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies on brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (< 10 days), together with limited genetic diversity (i.e. use of only a single strain), however, has been identified as a limitation to a broader interpretation of the results. While there have been few studies on the effects of OA on the growth of marine bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on bacterial growth or community richness. Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability to continue to make

  19. Impact of wave mixing on the sea ice cover

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel

    2017-04-01

    As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible

  20. CICE, The Los Alamos Sea Ice Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth; Lipscomb, William; Jones, Philip

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of themore » ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.« less

  1. Comparing Springtime Ice-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year Sea Ice from the Lincoln Sea

    PubMed Central

    Lange, Benjamin A.; Michel, Christine; Beckers, Justin F.; Casey, J. Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian

    2015-01-01

    With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice–associated production than generally assumed. PMID:25901605

  2. Atmospheric forcing of sea ice leads in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  3. Rate and state dependent processes in sea ice deformation

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Scourfield, S.; Lishman, B.

    2014-12-01

    Realistic models of sea ice processes and properties are needed to assess sea ice thickness, extent and concentration and, when run within GCMs, provide prediction of climate change. The deformation of sea ice is a key control on the Arctic Ocean dynamics. But the deformation of sea ice is dependent not only on the rate of the processes involved but also the state of the sea ice and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction to block sliding in ice ridges. The shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and sea ice properties such as size distribution of interfacial broken ice, angularity, porosity, salinity, etc. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of sea ice friction made during experiments in the Barents Sea to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.

  4. Variability of Arctic Sea Ice as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1998-01-01

    Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to

  5. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  6. Antarctic Sea ice--a habitat for extremophiles.

    PubMed

    Thomas, D N; Dieckmann, G S

    2002-01-25

    The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice-covered extraterrestrial bodies.

  7. Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.

    NASA Astrophysics Data System (ADS)

    Heorton, Harry; Feltham, Daniel; Tsamados, Michel

    2017-04-01

    The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.

  8. Early Student Support to Investigate the Role of Sea Ice-Albedo Feedback in Sea Ice Predictions

    DTIC Science & Technology

    2014-09-30

    Ice - Albedo Feedback in Sea Ice Predictions Cecilia M. Bitz Atmospheric Sciences MS351640 University of Washington Seattle, WA 98196-1640 phone...TERM GOALS The overarching goals of this project are to understand the role of sea ice - albedo feedback on sea ice predictability, to improve how... sea - ice albedo is modeled and how sea ice predictions are initialized, and then to evaluate how these improvements

  9. Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Abbot, D. S.

    2012-12-01

    The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO2 and a critical sea-ice cover (SI), both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO2, SI)*, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO2, SI)* in the atmosphere-ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma) continents and solar insolation (94% of modern). In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO2, SI)* ≈ (500 ppm, 55%). Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO2, SI)* ≈ (204 ppm, 70%). This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO2: (CO2, SI)* ≈ (2 ppm, 85%). Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO2 for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO2. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true Jormungand state. Overall, our results demonstrate that differences in sea-ice dynamics schemes can be at least as important as differences in sea-ice albedo for

  10. Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5

    NASA Astrophysics Data System (ADS)

    Tietsche, Steffen; Balmaseda, Magdalena A.; Zuo, Hao; Mogensen, Kristian

    2017-08-01

    We discuss the state of Arctic sea ice in the global eddy-permitting ocean reanalysis Ocean ReAnalysis Pilot 5 (ORAP5). Among other innovations, ORAP5 now assimilates observations of sea ice concentration using a univariate 3DVar-FGAT scheme. We focus on the period 1993-2012 and emphasize the evaluation of model performance with respect to recent observations of sea ice thickness. We find that sea ice concentration in ORAP5 is close to assimilated observations, with root mean square analysis residuals of less than 5 % in most regions. However, larger discrepancies exist for the Labrador Sea and east of Greenland during winter owing to biases in the free-running model. Sea ice thickness is evaluated against three different observational data sets that have sufficient spatial and temporal coverage: ICESat, IceBridge and SMOSIce. Large-scale features like the gradient between the thickest ice in the Canadian Arctic and thinner ice in the Siberian Arctic are simulated well by ORAP5. However, some biases remain. Of special note is the model's tendency to accumulate too thick ice in the Beaufort Gyre. The root mean square error of ORAP5 sea ice thickness with respect to ICESat observations is 1.0 m, which is on par with the well-established PIOMAS model sea ice reconstruction. Interannual variability and trend of sea ice volume in ORAP5 also compare well with PIOMAS and ICESat estimates. We conclude that, notwithstanding a relatively simple sea ice data assimilation scheme, the overall state of Arctic sea ice in ORAP5 is in good agreement with observations and will provide useful initial conditions for predictions.

  11. Development of source specific diatom lipids biomarkers as Antarctic Sea Ice proxies

    NASA Astrophysics Data System (ADS)

    Smik, Lukas; Belt, Simon T.; Brown, Thomas A.; Lieser, Jan L.; Armand, Leanne K.; Leventer, Amy; Allen, Claire S.

    2016-04-01

    C25 highly branched isoprenoid (HBI) are lipid biomarkers biosynthesised by a relatively small number of diatom genera, but are, nonetheless, common constituents of global marine sediments. The occurrence and variable abundance of certain C25 highly branched isoprenoid (HBI) biomarkers in Antarctic marine sediments has previously been proposed as a proxy measure of paleo sea-ice extent in the Southern Ocean and a small number of paleo sea-ice reconstructions based on the variable abundances of these HBIs have appeared in recent years. However, the development of HBIs as proxies for Antarctic sea ice is much less advanced than that for IP25 (another HBI) in the Arctic and has been based on relatively small number of analyses in sea ice, water column and sediment samples. To provide further insights into the use of these HBIs as proxies for Antarctic sea ice, we here describe an assessment of their distributions in surface water, surface sediment and sea ice samples collected from a number of Antarctic locations experiencing contrasting sea ice conditions in recent years. Our study shows that distributions of a di-unsaturated HBI (diene II) and tri-unsaturated HBI (triene III) in surface water samples were found to be extremely sensitive to the local sea-ice conditions, with diene II detected for sampling sites that experienced seasonal sea ice and highest concentrations found in coastal locations with longer-lasting ice cover and a recurrent polynya. In contrast, triene III was observed in all of the samples analysed, but with highest concentrations within the region of the retreating sea ice edge, an observation consistent with significant environmental control over the biosynthesis of diene II and triene III by sea ice diatoms and open water phytoplankton, respectively. However, additional local factors, such as those associated with polynya formation, may also exert some control over the distribution of triene III and the relative concentrations of diene II and

  12. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  13. The Formation each Winter of the Circumpolar Wave in the Sea Ice around Antarctica

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; White, Warren B.

    1999-01-01

    Seeking to improve upon the visualization of the Antarctic Circumpolar Wave (ACW) , we compare a 16-year sequence of 6-month winter averages of Antarctic sea ice extents and concentrations with those of adjacent sea surface temperatures (SSTs). Here we follow SSTs around the globe along the maximum sea ice edge rather than in a zonal band equatorward of it. The results are similar to the earlier ones, but the ACWs do not propagate with equal amplitude or speed. Additionally in a sequence of 4 polar stereographic plots of these SSTs and sea ice concentrations, we find a remarkable correlation between SST minima and sea ice concentration maxima, even to the extent of matching contours across the ice-sea boundary, in the sector between 900E and the Palmer Peninsula. Based on these observations, we suggest that the memory of the ACW in the sea ice is carried from one Austral winter to the next by the neighboring SSTS, since the sea ice is nearly absent in the Austral summer.

  14. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice

    PubMed Central

    Underwood, Graham J. C.; Aslam, Shazia N.; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M.; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N.

    2013-01-01

    Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions. PMID:24019487

  15. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice.

    PubMed

    Underwood, Graham J C; Aslam, Shazia N; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N

    2013-09-24

    Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.

  16. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  17. The application of ERTS imagery to monitoring Arctic sea ice. [mapping ice in Bering Sea, Beaufort Sea, Canadian Archipelago, and Greenland Sea

    NASA Technical Reports Server (NTRS)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.

    1974-01-01

    The author has identified the following significant results. Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS-1 imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft. The results of the investigation demonstrate that ERTS-1 imagery has substantial practical application for monitoring arctic sea ice. Ice features as small as 80-100 m in width can be detected, and the combined use of the visible and near-IR imagery is a powerful tool for identifying ice types. Sequential ERTS-1 observations at high latitudes enable ice deformations and movements to be mapped. Ice conditions in the Bering Sea during early March depicted in ERTS-1 images are in close agreement with aerial ice observations and photographs.

  18. The relationship between sea ice concentration and the spatio-temporal distribution of vocalizing bearded seals (Erignathus barbatus) in the Bering, Chukchi, and Beaufort Seas from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    MacIntyre, Kalyn Q.; Stafford, Kathleen M.; Conn, Paul B.; Laidre, Kristin L.; Boveng, Peter L.

    2015-08-01

    Bearded seals (Erignathus barbatus) are widely distributed in the Arctic and sub-Arctic; the Beringia population is found throughout the Bering, Chukchi and Beaufort Seas (BCB). Bearded seals are highly vocal, using underwater calls to advertise their breeding condition and maintain aquatic territories. They are also closely associated with pack ice for reproductive activities, molting, and resting. Sea ice habitat for this species varies spatially and temporally throughout the year due to differences in underlying physical and oceanographic features across its range. To test the hypothesis that the vocal activity of bearded seals is related to variations in sea ice, passive acoustic data were collected from nine locations throughout the BCB from 2008 to 2011. Recording instruments sampled on varying duty cycles ranging from 20% to 100% of each hour, and recorded frequencies up to 8192 Hz. Spectrograms of acoustic data were analyzed manually to calculate the daily proportion of hours with bearded seal calls at each sampling location, and these call activity proportions were correlated with daily satellite-derived estimates of sea ice concentration. Bearded seals were vocally active nearly year-round in the Beaufort and Chukchi Seas with peak activity occurring from mid-March to late June during the mating season. The duration of call activity in the Bering Sea was shorter, lasting typically only five months, and peaked from mid-March to May at the northernmost recorders. In all areas, call activity was significantly correlated with higher sea ice concentrations (p < 0.01). These results suggest that losses in ice cover may negatively impact bearded seals, not just by loss of habitat but also by altering the behavioral ecology of the BCB population.

  19. Links between the Amundsen Sea Low and sea ice in the Ross Sea: seasonal and interannual relationships

    NASA Astrophysics Data System (ADS)

    Raphael, Marilyn N.; Holland, Marika M.; Landrum, Laura; Hobbs, William R.

    2018-05-01

    Previous studies have shown that sea ice extent in the Southern Ocean is influenced by the intensity and location of the Amundsen Sea Low (ASL), through their effect on the meridional winds. However, the inhomogeneous nature of the influence of the ASL on sea ice as well as its influence during critical periods of the sea ice annual cycle is not clear. In this study, we do a spatio-temporal analysis of links between the ASL and the sea ice during the advance and retreat periods of the ice over the period 1979-2013 focusing on the role of the meridional and zonal winds. We use the ERA-Interim monthly-averaged 500 mb geopotential height and 10 m wind data along with monthly Passive Microwave Sea Ice Concentrations (SIC) to examine the seasonal and interannual relationships between the ASL and SIC in the Ross-Amundsen sea ice sector. To characterize the state of the ASL we use indices that describe its location and its intensity. We show that the ASL has preferred locations and intensities during ice advance and retreat seasons. The strength and direction of the influence of the ASL are not spatially homogeneous and can change from advance to retreat season and there are strong significant relationships between the characteristics of the ASL and SIC, within and across seasons and interannually.

  20. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  1. Modeling of Antarctic Sea Ice in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Wu, Xingren; Simmonds, Ian; Budd, W. F.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution.

  2. Modeling of Antarctic sea ice in a general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xingren; Budd, W.F.; Simmonds, I.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. Amore » lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution. 64 refs., 15 figs., 2 tabs.« less

  3. Identification of contrasting seasonal sea ice conditions during the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Cabedo-Sanz, P.; Belt, S. T.; Knies, J.

    2012-12-01

    The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales [e.g. 1, 2]. The current study focuses on high-resolution palaeo sea ice reconstructions for northern Norway during the last ca. 15 cal. kyr BP. Within this study, particular emphasis has been placed on the identification of the sea ice conditions during the Younger Dryas and the application of different biomarker-based proxies to both identify and quantify seasonal sea ice conditions. Firstly, the appearance of the specific sea ice diatom proxy IP25 at ca. 12.9 cal. kyr BP in a marine sediment core (JM99-1200) obtained from Andfjorden has provided an unambiguous but qualitative measure of seasonal sea ice and thus the onset of the Younger Dryas stadial. The near continuous occurrence of IP25 for the next ca. 1400 yr demonstrates seasonal sea ice during this interval, although variable abundances suggest that the recurrent conditions in the early-mid Younger Dryas (ca. 12.9 - 11.9 cal. kyr BP) changed significantly from stable to highly variable sea ice conditions at ca. 11.9 cal. kyr BP and this instability in sea ice prevailed for the subsequent ca. 400 yr. At ca. 11.5 cal. kyr BP, IP25 disappeared from the record indicating ice-free conditions that signified the beginning of the Holocene. Similarly, a high resolution record from the Kveithola Through, western Barents Sea, showed clearly higher IP25 concentrations during the Younger Dryas stadial compared to the Holocene. For both marine records, the IP25 concentrations were also combined with those of the open water phytoplankton biomarker brassicasterol to generate PBIP25 data from which more quantitative measurements of sea ice were determined. The contrasting seasonal sea ice conditions during the Younger Dryas were further verified

  4. Classification methods for monitoring Arctic sea ice using OKEAN passive/active two-channel microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2000-01-01

    This paper presents methods for classifying Arctic sea ice using both passive and active (2-channel) microwave imagery acquired by the Russian OKEAN 01 polar-orbiting satellite series. Methods and results are compared to sea ice classifications derived from nearly coincident Special Sensor Microwave Imager (SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) image data of the Barents, Kara, and Laptev Seas. The Russian OKEAN 01 satellite data were collected over weekly intervals during October 1995 through December 1997. Methods are presented for calibrating, georeferencing and classifying the raw active radar and passive microwave OKEAN 01 data, and for correcting the OKEAN 01 microwave radiometer calibration wedge based on concurrent 37 GHz horizontal polarization SSM/I brightness temperature data. Sea ice type and ice concentration algorithms utilized OKEAN's two-channel radar and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter, together with a priori knowledge about the scattering parameters and natural emissivities of basic sea ice types. OKEAN 01 data and algorithms tended to classify lower concentrations of young or first-year sea ice when concentrations were less than 60%, and to produce higher concentrations of multi-year sea ice when concentrations were greater than 40%, when compared to estimates produced from SSM/I data. Overall, total sea ice concentration maps derived independently from OKEAN 01, SSM/I, and AVHRR satellite imagery were all highly correlated, with uniform biases, and mean differences in total ice concentration of less than four percent (sd<15%).

  5. Arctic Sea ice studies with passive microwave satellite observations

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    The objectives of this research are: (1) to improve sea ice concentration determinations from passive microwave space observations; (2) to study the role of Arctic polynyas in the production of sea ice and the associated salinization of Arctic shelf water; and (3) to study large scale sea ice variability in the polar oceans. The strategy is to analyze existing data sets and data acquired from both the DMSP SSM/I and recently completed aircraft underflights. Special attention will be given the high resolution 85.5 GHz SSM/I channels for application to thin ice algorithms and processes studies. Analysis of aircraft and satellite data sets is expected to provide a basis for determining the potential of the SSM/I high frequency channels for improving sea ice algorithms and for investigating oceanic processes. Improved sea ice algorithms will aid the study of Arctic coastal polynyas which in turn will provide a better understanding of the role of these polynyas in maintaining the Arctic watermass structure. Analysis of satellite and archived meteorological data sets will provide improved estimates of annual, seasonal and shorter-term sea ice variability.

  6. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    USGS Publications Warehouse

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  7. L-band radiometry for sea ice applications

    NASA Astrophysics Data System (ADS)

    Heygster, G.; Hedricks, S.; Mills, P.; Kaleschke, L.; Stammer, D.; Tonboe, R.

    2009-04-01

    Although sea ice remote sensing has reached the level of operational exploitation with well established retrieval methods, several important tasks are still unsolved. In particular during freezing and melting periods with mixed ice and water surfaces, estimates of ice concentration with passive and active microwave sensors remain challenging. Newly formed thin ice is also hard to distinguish from open water with radiometers for frequencies above 8 GHz. The SMOS configuration (planned launch 2009) with a radiometer at 1.4 GHz is a promising technique to complement observations at higher microwave frequencies. ESA has initiated a project to investigate the possibilities for an additional Level-2 sea ice data product based on SMOS. In detail, the project objectives are (1) to model the L band emission of sea ice, and to assess the potential (2) to retrieve sea ice parameters, especially concentration and thickness, and (3) to use cold water regions for an external calibration of SMOS. Modelling of L band emission: Several models have are investigated. All of them work on the same basic principles and have a vertically-layered, plane-parallel geometry. They are comprised of three basic components: (1) effective permittivities are calculated for each layer based on ice bulk and micro-structural properties; (2) these are integrated across the total depth to derive emitted brightness temperature; (3) scattering terms can also be added because of the granular structure of ice and snow. MEMLS (Microwave Emission Model of Layered Snowpacks (Wiesmann and Matzler 1999)) is one such model that contains all three elements in a single Matlab program. In the absence of knowledge about the internal structure of the sea ice, three-layer (air, ice and water) dielectric slab models which take as input a single effective permittivity for the ice layer are appropriate. By ignoring scattering effects one can derive a simple analytic expression for a dielectric slab as shown by Apinis and

  8. Will sea ice thickness initialisation improve Arctic seasonal-to-interannual forecast skill?

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Hawkins, E.; Tietsche, S.

    2014-12-01

    A number of recent studies have suggested that Arctic sea ice thickness is an important predictor of Arctic sea ice extent. However, coupled forecast systems do not currently use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. A set of ensemble potential predictability experiments, with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run to investigate this. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to eight months ahead. Perturbing sea ice thickness also has a significant impact on the forecast error in the 2m temperature and surface pressure fields a few months ahead. These results show that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

  9. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  10. NCEP MMAB Sea Ice Home Page

    Science.gov Websites

    NCEP MMAB Sea Ice Home Page The Polar and Great Lakes Ice group works on sea ice analysis from satellite, sea ice modeling, and ice-atmosphere-ocean coupling. Our work supports the Alaska Region of the @noaa.gov Last Modified 2 July 2012 Pages of Interest Analysis Daily Sea Ice Analyses Animations of the

  11. Sea-ice processes in the Laptev Sea and their importance for sediment export

    USGS Publications Warehouse

    Eicken, H.; Reimnitz, E.; Alexandrov, V.; Martin, T.; Kassens, H.; Viehoff, T.

    1997-01-01

    Based on remote-sensing data and an expedition during August-September 1993, the importance of the Laptev Sea as a source area for sediment-laden sea ice was studied. Ice-core analysis demonstrated the importance of dynamic ice-growth mechanisms as compared to the multi-year cover of the Arctic Basin. Ice-rafted sediment (IRS) was mostly associated with congealed frazil ice, although evidence for other entrainment mechanisms (anchor ice, entrainment into freshwater ice) was also found. Concentrations of suspended particulate matter (SPM) in patches of dirty ice averaged at 156 g m-3 (standard deviation ?? = 140 g m-3), with a background concentration of 5 g m-3. The potential for sediment entrainment over the broad, shallow Laptev Sea shelf during fall freeze-up was studied through analysis of remote-sensing data and weather-station records for the period 1979-1994. Freeze-up commences on 26 September (?? = 7 d) and is completed after 19 days (?? = 6 d). Meteorological conditions as well as ice extent prior to and during freeze-up vary considerably, the open-water area ranging between 107 x 103 and 447 x 103 km2. Ice motion and transport of IRS were derived from satellite imagery and drifting buoys for the period during and after the expedition (mean ice velocities of 0.04 and 0.05 m s-1, respectively). With a best-estimate sediment load of 16 t km-2 (ranging between 9 and 46 t km-2), sediment export from the eastern Laptev Sea amounts to 4 x 10-6 t yr-1, with extremes of 2 x 10-6 and 11 x 106 t yr-1. Implications for the sediment budget of the Laptev shelf, in particular with respect to riverine input of SPM, which may be of the same order of magnitude, are discussed.

  12. Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Massonnet, F.; Goosse, H.; Fichefet, T.; Counillon, F.

    2014-07-01

    The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, "trial-and-error" recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.

  13. Reemergence of sea ice cover anomalies and the role of the sea ice-albedo feedback in CCSM simulations

    NASA Astrophysics Data System (ADS)

    Deweaver, E. T.

    2008-12-01

    The dramatic sea ice decline of 2007 and lack of recovery in 2008 raise the question of a "tipping point" for Arctic sea ice, beyond which the transition to a seasonal sea ice state becomes abrupt and irreversible. The tipping point is essentially a "memory catastrophe", in which a dramatic loss of sea ice in one summer is "remembered" in reduced ice thickness over the winter season and leads to a comparably dramatic loss the following summer. The dominant contributor to this memory is presumably the sea ice - albedo feedback (SIAF), in which excess insolation absorbed due to low summer ice cover leads to a shorter ice growth season and hence thinner ice. While these dynamics are clearly important, they are difficult to quantify given the lack of long-term observations in the Arctic and the suddenness of the recent loss. Alternatively, we attempt to quantify the contribution of the SIAF to the year-to-year memory of sea ice cover anomalies in simulations of the NCAR Community Climate System Model (CCSM) under 20th century conditions. Lagged autocorrelation plots of sea ice area anomalies show that anomalies in one year tend to "reemerge" in the following year. Further experiments using a slab ocean model (SOM) are used to assess the contribution of oceanic processes to the year-to-year reemergence. This contribution is substantial, particularly in the winter season, and includes memory due to the standard mixed layer reemergence mechanism and low-frequency ocean heat transport anomalies. The contribution of the SIAF to persistence in the SOM experiment is determined through additional experiments in which the SIAF is disabled by fixing surface albedo to its climatological value regardless of sea ice concentration anomalies. SIAF causes a 50% increase in the magnitude of the anomalies but a relatively small increase in their persistence. Persistence is not dramatically increased because the enhancement of shortwave flux anomalies by SIAF is compensated by stronger

  14. Results of the Sea Ice Model Intercomparison Project: Evaluation of sea ice rheology schemes for use in climate simulations

    NASA Astrophysics Data System (ADS)

    Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.

    2000-05-01

    A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.

  15. The implementation of sea ice model on a regional high-resolution scale

    NASA Astrophysics Data System (ADS)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  16. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  17. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator

    PubMed Central

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-01-01

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791

  18. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.

    PubMed

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit

    2017-02-24

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.

  19. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm

    NASA Astrophysics Data System (ADS)

    Geilfus, Nicolas-Xavier; Galley, Ryan J.; Else, Brent G. T.; Campbell, Karley; Papakyriakou, Tim; Crabeck, Odile; Lemes, Marcos; Delille, Bruno; Rysgaard, Søren

    2016-09-01

    The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice-seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmol kg-1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64-66 µmol kg-1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmol kg-1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper

  20. Remote sensing as a research tool. [sea ice surveillance from aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Zwally, H. J.

    1986-01-01

    The application of aircraft and spacecraft remote sensing techniques to sea ice surveillance is evaluated. The effects of ice in the air-sea-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of sea ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to sea ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and sea ice interactions. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and air, snow, and ice surface temperatures.

  1. Gypsum and hydrohalite dynamics in sea ice brines

    NASA Astrophysics Data System (ADS)

    Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary

    2017-09-01

    experimental solubility in this system. Incorporation of hydrohalite solubility into a 1D thermodynamic model of the growth of first-year Arctic sea ice showed its precipitation to initiate once the incoming shortwave radiation dropped to 0 W m-2, and that it can reach concentrations of 9.9 g kg-1 within the upper and coldest layers of the ice pack. This suggests a limited effect of hydrohalite on the albedo of sea ice. The insights provided by the solubility measurements into the behaviour of gypsum and hydrohalite in the ice-brine system cannot be gleaned from field investigations at present.

  2. Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obbard, Rachel W.; Lieb-Lappen, Ross M.; Nordick, Katherine V.

    We describe the use of synchrotron-based X-ray fluorescence spectroscopy to examine the microstructural location of specific elements, primarily salts, in sea ice. This work was part of an investigation of the location of bromine in the sea ice-snowpack-blowing snow system, where it plays a part in the heterogeneous chemistry that contributes to tropospheric ozone depletion episodes. We analyzed samples at beamline 13-ID-E of the Advanced Photon Source at Argonne National Laboratory. Using an 18 keV incident energy beam, we produced elemental maps of salts for sea ice samples from the Ross Sea, Antarctica. The distribution of salts in sea icemore » depends on ice type. In our columnar ice samples, Br was located in parallel lines spaced roughly 0.5 mm apart, corresponding to the spacing of lamellae in the skeletal region during initial ice growth. The maps revealed concentrations of Br in linear features in samples from all but the topmost and bottommost depths. For those samples, the maps revealed rounded features. Calibration of the Br elemental maps showed bulk concentrations to be 5–10 g/m 3, with concentrations ten times larger in the linear features. Through comparison with horizontal thin sections, we could verify that these linear features were brine sheets or layers.« less

  3. Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice

    DOE PAGES

    Obbard, Rachel W.; Lieb-Lappen, Ross M.; Nordick, Katherine V.; ...

    2016-10-23

    We describe the use of synchrotron-based X-ray fluorescence spectroscopy to examine the microstructural location of specific elements, primarily salts, in sea ice. This work was part of an investigation of the location of bromine in the sea ice-snowpack-blowing snow system, where it plays a part in the heterogeneous chemistry that contributes to tropospheric ozone depletion episodes. We analyzed samples at beamline 13-ID-E of the Advanced Photon Source at Argonne National Laboratory. Using an 18 keV incident energy beam, we produced elemental maps of salts for sea ice samples from the Ross Sea, Antarctica. The distribution of salts in sea icemore » depends on ice type. In our columnar ice samples, Br was located in parallel lines spaced roughly 0.5 mm apart, corresponding to the spacing of lamellae in the skeletal region during initial ice growth. The maps revealed concentrations of Br in linear features in samples from all but the topmost and bottommost depths. For those samples, the maps revealed rounded features. Calibration of the Br elemental maps showed bulk concentrations to be 5–10 g/m 3, with concentrations ten times larger in the linear features. Through comparison with horizontal thin sections, we could verify that these linear features were brine sheets or layers.« less

  4. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    NASA Astrophysics Data System (ADS)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  5. ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.

    USGS Publications Warehouse

    Ling, Chi-Hai; Parkinson, Claire L.

    1986-01-01

    A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.

  6. Microwave emission characteristics of sea ice

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Poe, G.

    1972-01-01

    A general classification is presented for sea ice brightness temperatures with categories of high and low emission, corresponding to young and weathered sea ice, respectively. A sea ice emission model was developed which allows variations of ice salinity and temperature in directions perpendicular to the ice surface.

  7. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Douglas, David C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  8. Dynamic ikaite production and dissolution in sea ice - control by temperature, salinity and pCO2 conditions

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.

    2013-12-01

    Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an out-door pool of the Sea-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in sea ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of < 100 μmol kg-1. Snowfall events caused the sea ice to warm, dissolving ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in sea ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This will have implications for CO2 exchange with the atmosphere and ocean.

  9. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notz, Dirk; Jahn, Alexandra; Holland, Marika

    A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less

  10. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations

    DOE PAGES

    Notz, Dirk; Jahn, Alexandra; Holland, Marika; ...

    2016-09-23

    A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less

  11. The use of sea ice habitat by female polar bears in the Beaufort Sea

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.; Nielson, Ryan M.; McDonald, Trent

    2003-01-01

    Polar bears (Ursus maritimus) depend on ice-covered seas to satisfy life history requirements. Modern threats to polar bears include oil spills in the marine environment and changes in ice composition resulting from climate change. Managers need practical models that explain the distribution of bears in order to assess the impacts of these threats. We used stepwise procedures to create resource selection models of habitat use for radio-collared female polar bears in the Beaufort Sea. Sea ice characteristics and ocean depths at known polar bear locations were compared to the same features at randomly selected locations. Models generated for each of four seasons confirmed complexities of habitat use by polar bears and their response to numerous factors. Bears preferred shallow water areas where ice concentrations were > 80 % and different ice types intersected. Variation among seasons was reflected mainly in differential selection of ice stages, floe sizes, and their interactions. Water depth, total ice concentration and distance to the nearest interface between different ice types were significant terms in models for most seasons. Variation in ice stage and form also appeared in three models, and several interaction effects were identified. Habitat selection by polar bears is likely related to prey abundance and availability. Use of habitats in shallow water possibly reflects higher productivity in those areas. Habitat use in close proximity to ice edges is probably related to greater access of prey in those habitats.

  12. Arctic landfast sea ice

    NASA Astrophysics Data System (ADS)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  13. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow

    NASA Astrophysics Data System (ADS)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui

    2017-08-01

    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  14. Mechanical sea-ice strength parameterized as a function of ice temperature

    NASA Astrophysics Data System (ADS)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  15. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    PubMed

    Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S

    2018-03-05

    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.

  16. Sea ice off western Alaska

    NASA Image and Video Library

    2015-02-20

    On February 4, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA’s Aqua satellite captured a true-color image of sea ice off of western Alaska. In this true-color image, the snow and ice covered land appears bright white while the floating sea ice appears a duller grayish-white. Snow over the land is drier, and reflects more light back to the instrument, accounting for the very bright color. Ice overlying oceans contains more water, and increasing water decreases reflectivity of ice, resulting in duller colors. Thinner ice is also duller. The ocean waters are tinted with green, likely due to a combination of sediment and phytoplankton. Alaska lies to the east in this image, and Russia to the west. The Bering Strait, covered with ice, lies between to two. South of the Bering Strait, the waters are known as the Bering Sea. To the north lies the Chukchi Sea. The bright white island south of the Bering Strait is St. Lawrence Island. Home to just over 1200 people, the windswept island belongs to the United States, but sits closer to Russia than to Alaska. To the southeast of the island a dark area, loosely covered with floating sea ice, marks a persistent polynya – an area of open water surrounded by more frozen sea ice. Due to the prevailing winds, which blow the sea ice away from the coast in this location, the area rarely completely freezes. The ice-covered areas in this image, as well as the Beaufort Sea, to the north, are critical areas for the survival of the ringed seal, a threatened species. The seals use the sea ice, including ice caves, to rear their young, and use the free-floating sea ice for molting, raising the young and breeding. In December 2014, the National Oceanic and Atmospheric Administration (NOAA) proposed that much of this region be set aside as critical, protected habitat for the ringed seal. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center

  17. Observing Arctic Sea Ice from Bow to Screen: Introducing Ice Watch, the Data Network of Near Real-Time and Historic Observations from the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)

    NASA Astrophysics Data System (ADS)

    Orlich, A.; Hutchings, J. K.; Green, T. M.

    2013-12-01

    The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with

  18. Multi-method Quantification of Sea-ice Production in Weddell Sea Polynyas (Antarctica)

    NASA Astrophysics Data System (ADS)

    Heinemann, G.; Zentek, R.; Stulic, L.; Paul, S.; Preusser, A.; Timmermann, R.

    2017-12-01

    Coastal polynyas occur frequently during winter in the Weddell Sea, which leads to strong sea ice production and to the formation of a highly saline water mass which is considered to be a major source of bottom water and one of the main drivers of the circulation beneath the Filchner-Ronne Ice Shelf. Thus the quantification of sea ice production in Weddell Sea polynyas is of vital interest for understanding water mass modification in this region. We use a multi-method approach to quantify sea ice production. Method 1) is based on the energy balance simulated by the regional climate model COSMO-CLM (CCLM) with 15 / 5 km resolution for the period 2002-2015 (nested in ERA-Interim data). Daily sea ice concentrations were taken from microwave satellite measurements. Method 2) is based on remote sensing using MODIS thermal infrared data at a resolution of 1-2km and a surface energy balance model taking atmospheric data from different reanalyses (ERA-Interim, JRA55, NCEP2) as well as data of CCLM. Method 3) relies on simulations using the Finite Element Sea ice-Ocean Model (FESOM). FESOM is run on a global grid with a resolution of about 5 km along the coast of the Weddell Sea using atmospheric forcing from reanalyses (ERA-Interim (80km) and CFSR (38km)) as well as from CCLM. In addition, an experiment with assimilation of MODIS thin ice retrievals was conducted. Estimates of polynya area (POLA) and sea ice production (IP) from the different methods are presented. The MODIS-based method with ERA-Interim shows the largest POLA as well as the largest IP for the Ronne polynya (RO, POLA / IP = 2800 km² / 29 km³/a) and for the polynya off Brunt Ice Shelf (BR, 3400 km² / 30 km³/a). Sensitivity to the choice of atmosphere data is high. In particular, too low temperatures in JRA55 cause very large ice production events and a strong overestimation of IP rates. Estimates based on CCLM simulations agree generally well with MODIS/ERA-Interim. FESOM yields a generally larger ice

  19. A Quantitative Proxy for Sea-Ice Based on Diatoms: A Cautionary Tale.

    NASA Astrophysics Data System (ADS)

    Nesterovich, A.; Caissie, B.

    2016-12-01

    Sea ice in the Polar Regions supports unique and productive ecosystems, but the current decline in the Arctic sea ice extent prompts questions about previous sea ice declines and the response of ice related ecosystems. Since satellite data only extend back to 1978, the study of sea ice before this time requires a proxy. Being one of the most productive, diatom-dominated regions in the world and having a wide range of sea ice concentrations, the Bering and Chukchi seas are a perfect place to find a relationship between the presence of sea ice and diatom community composition. The aim of this work is to develop a diatom-based proxy for the sea ice extent. A total of 473 species have been identified in 104 sediment samples, most of which were collected on board the US Coast Guard Cutter Healy ice breaker (2006, 2007) and the Norseman II (2008). The study also included some of the archived diatom smear slides made from sediments collected in 1969. The assemblages were compared to satellite-derived sea ice extent data averaged over the 10 years preceding the sampling. Previous studies in the Arctic and Antarctic regions demonstrated that the Generalized Additive Model (GAM) is one of the best choices for proxy construction. It has the advantage of using only several species instead of the whole assemblage, thus including only sea ice-associated species and minimizing the noise created by species responding to other environmental factors. Our GAM on three species (Connia compita, Fragilariopsis reginae-jahniae, and Neodenticula seminae) has low standard deviation, high level of explained variation, and holds under the ten-fold cross-validation; the standard residual analysis is acceptable. However, a spatial residual analysis revealed that the model consistently over predicts in the Chukchi Sea and under predicts in the Bering Sea. Including a spatial model into the GAM didn't improve the situation. This has led us to test other methods, including a non-parametric model

  20. Pilot study and evaluation of a SMMR-derived sea ice data base

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Anderson, M. R.; Crane, R. G.; Troisi, V. J.; Weaver, R. L.

    1984-01-01

    Data derived from the Nimbus 7 scanning multichannel microwave radiometer (SMMR) are discussed and the types of problems users have with satellite data are documented. The development of software for assessing the SMMR data is mentioned. Two case studies were conducted to verify the SMMR-derived sea ice concentrations and multi-year ice fractions. The results of a survey of potential users of SMMR data are presented, along with SMMR-derived sea ice concentration and multiyear ice fraction maps. The interaction of the Arctic atmosphere with the ice was studied using the Nimbus 7 SMMR. In addition, the characteristics of ice in the Arctic ocean were determined from SMMR data.

  1. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.

    Here, large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 Junemore » 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.« less

  2. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    DOE PAGES

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; ...

    2017-06-08

    Here, large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 Junemore » 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.« less

  3. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    NASA Astrophysics Data System (ADS)

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; Kauko, Hanna M.; Assmy, Philipp; Rösel, Anja; Itkin, Polona; Hudson, Stephen R.; Granskog, Mats A.; Gerland, Sebastian; Sundfjord, Arild; Steen, Harald; Hop, Haakon; Cohen, Lana; Peterson, Algot K.; Jeffery, Nicole; Elliott, Scott M.; Hunke, Elizabeth C.; Turner, Adrian K.

    2017-07-01

    Large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 June 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.

  4. Sea Ice in the Bellingshausen Sea

    NASA Image and Video Library

    2017-12-08

    Antarctica—the continent at the southernmost reach of the planet—is fringed by cold, often frozen waters of the Southern Ocean. The extent of sea ice around the continent typically reaches a peak in September and a minimum in February. The photograph above shows Antarctic sea ice on November 5, 2014, during the annual cycle of melt. The image was acquired by the Digital Mapping System (DMS), a digital camera installed in the belly of research aircraft to capture images of terrain below. In this case, the system flew on the DC-8 during a flight as part of NASA’s Operation IceBridge. Most of the view shows first-year sea ice in the Bellingshausen Sea, as it appeared from an altitude of 328 meters (1,076 feet). The block of ice on the right side of the image is older, thicker, and was once attached to the Antarctic Ice Sheet. By the time this image was acquired, however, the ice had broken away to form an iceberg. Given its close proximity to the ice sheet, this could have been a relatively new berg. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=86721 Credit: NASA/Goddard/IceBridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team and the NASA DAAC at the National Snow and Ice Data Center Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  6. Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Comiso, J. C.

    2001-01-01

    The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988

  7. Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.

    2017-07-01

    A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  8. Quantifying model uncertainty in seasonal Arctic sea-ice forecasts

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin

    2017-04-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  9. In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone

    NASA Astrophysics Data System (ADS)

    Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.

    2016-12-01

    Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.

  10. Influences of sea ice on eastern Bering Sea phytoplankton

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Wang, Peng; Chen, Changping; Liang, Junrong; Li, Bingqian; Gao, Yahui

    2015-03-01

    The influence of sea ice on the species composition and cell density of phytoplankton was investigated in the eastern Bering Sea in spring 2008. Diatoms, particularly pennate diatoms, dominated the phytoplankton community. The dominant species were Grammonema islandica (Grunow in Van Heurck) Hasle, Fragilariopsis cylindrus (Grunow) Krieger, F. oceanica (Cleve) Hasle, Navicula vanhoeffenii Gran, Thalassiosira antarctica Comber, T. gravida Cleve, T. nordenskiöeldii Cleve, and T. rotula Meunier. Phytoplankton cell densities varied from 0.08×104 to 428.8×104 cells/L, with an average of 30.3×104 cells/L. Using cluster analysis, phytoplankton were grouped into three assemblages defined by ice-forming conditions: open water, ice edge, and sea ice assemblages. In spring, when the sea ice melts, the phytoplankton dispersed from the sea ice to the ice edge and even into open waters. Thus, these phytoplankton in the sea ice may serve as a "seed bank" for phytoplankton population succession in the subarctic ecosystem. Moreover, historical studies combined with these results suggest that the sizes of diatom species have become smaller, shifting from microplankton to nannoplankton-dominated communities.

  11. Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation.

    NASA Astrophysics Data System (ADS)

    Kwok, R.; Comiso, J. C.

    2002-03-01

    The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice dataset describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are evident. Recent anomalies in the sea ice cover that are clearly associated with the SOI include the following: the record decrease in the sea ice extent in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea ice concentration in the Ross Sea; and the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the ice season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the

  12. Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Löptien, U.; Axell, L.

    2014-12-01

    The Baltic Sea is a seasonally ice-covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several ice properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.

  13. Diminishing sea ice in the western Arctic Ocean

    USGS Publications Warehouse

    Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.

    2004-01-01

    Since the advent of satellite passive microwave radiometry (1978), variations in sea ice extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea ice extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea ice melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea ice (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea ice and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic ice motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear ice into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the ice pack and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and ice in the western Arctic Ocean.

  14. Polar Climate: Arctic sea ice

    USGS Publications Warehouse

    Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.

    2005-01-01

    Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).

  15. First Results from the ASIBIA (Arctic Sea-Ice, snow, Biogeochemistry and Impacts on the Atmosphere) Sea-Ice Chamber

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; France, J.; von Glasow, R.; Thomas, M.

    2015-12-01

    The ocean-ice-atmosphere system is very complex, and there are numerous challenges with conducting fieldwork on sea-ice including costs, safety, experimental controls and access. By creating a new coupled Ocean-Sea-Ice-(Snow)-Atmosphere facility at the University of East Anglia, UK, we are able to perform controlled investigations in areas such as sea-ice physics, physicochemical and biogeochemical processes in sea-ice, and to quantify the bi-directional flux of gases in established, freezing and melting sea-ice. The environmental chamber is capable of controlled programmable temperatures from -55°C to +30°C, allowing a full range of first year sea-ice growing conditions in both the Arctic and Antarctic to be simulated. The sea-ice tank within the chamber measures 2.4 m x 1.4 m x 1 m water depth, with an identically sized Teflon film atmosphere on top of the tank. The tank and atmosphere forms a coupled, isolated mesocosm. Above the atmosphere is a light bank with dimmable solar simulation LEDs, and UVA and UVB broadband fluorescent battens, providing light for a range of experiments such as under ice biogeochemistry and photochemistry. Ice growth in the tank will be ideally suited for studying first-year sea-ice physical properties, with in-situ ice-profile measurements of temperature, salinity, conductivity, pressure and spectral light transmission. Under water and above ice cameras are installed to observe the physical development of the sea-ice. The ASIBIA facility is also well equipped for gas exchange and diffusion studies through sea-ice with a suite of climate relevant gas measuring instruments (CH4, CO2, O3, NOx, NOy permanently installed, further instruments available) able to measure either directly in the atmospheric component, or via a membrane for water side dissolved gases. Here, we present the first results from the ASIBIA sea-ice chamber, focussing on the physical development of first-year sea-ice and show the future plans for the facility over

  16. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter-spring

    NASA Astrophysics Data System (ADS)

    Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide

    2017-07-01

    Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  17. Some Results on Sea Ice Rheology for the Seasonal Ice Zone, Obtained from the Deformation Field of Sea Ice Drift Pattern

    NASA Astrophysics Data System (ADS)

    Toyota, T.; Kimura, N.

    2017-12-01

    Sea ice rheology which relates sea ice stress to the large-scale deformation of the ice cover has been a big issue to numerical sea ice modelling. At present the treatment of internal stress within sea ice area is based mostly on the rheology formulated by Hibler (1979), where the whole sea ice area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea ice area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial ice in the Arctic Ocean. As for its applicability to the seasonal ice zones (SIZ), where various types of sea ice are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk ice, typical of the SIZ, based on the AMSR-derived ice drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. Ice drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the ice areas. Since this result corresponds with the yield criterion by Tresca and

  18. Sea Ice Characteristics and the Open-Linked Data World

    NASA Astrophysics Data System (ADS)

    Khalsa, S. J. S.; McGuinness, D. L.; Duerr, R.; Pulsifer, P. L.; Fox, P. A.; Thompson, C.; Yan, R.

    2014-12-01

    The audience for sea ice data sets has broadened dramatically over the past several decades. Initially the National Snow and Ice Data Center (NSIDC) sea ice products were used primarily by sea ice specialists. However, now they are in demand by researchers in many different domains and some are used by the public. This growth in the number and type of users has presented challenges to content providers aimed particularly at supporting interdisciplinary and multidisciplinary data use. In our experience, it is generally insufficient to simply make the data available as originally formatted. New audiences typically need data in different forms; forms that meet their needs, that work with their specific tools. Moreover, simple data reformatting is rarely enough. The data needs to be aggregated, transformed or otherwise converted into forms that better serve the needs of the new audience. The Semantic Sea Ice Interoperability Initiative (SSIII) is an NSF-funded research project aimed at making sea ice data more useful to more people using semantic technologies. The team includes domain and science data experts as well as knowledge representation and linked data experts. Beginning with a series of workshops involving members of the operations, sea ice research and modeling communities, as well as members of local communities in Alaska, a suite of ontologies describing the physical characteristics of sea ice have been developed and used to provide one of NSIDC's data sets, the operational Arctic sea ice charts obtained from the Canadian Ice Center, as open-linked data. These data extend nearly a decade into the past and can now be queried either directly through a publicly available SPARQL end point (for those who are familiar with open-linked data) or through a simple Open Geospatial Consortium (OGC) standards map-based query tool. Questions like "What were the characteristics (i.e., sea ice concentration, form and stage of development) of the sea ice in the region

  19. Arctic sea ice variability in the context of recent atmospheric circulation trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deser, C.; Walsh, J.E.; Timlin, M.S.

    Sea ice is a sensitive component of the climate system, influenced by conditions in both the atmosphere and ocean. Variations in sea ice may in turn modulate climate by altering the surface albedo; the exchange of heat, moisture, and momentum between the atmosphere and ocean; and the upper ocean stratification in areas of deep water formation. The surface albedo effect is considered to be one of the dominant factors in the poleward amplification of global warming due to increased greenhouse gas concentrations simulated in many climate models. Forty years (1958--97) of reanalysis products and corresponding sea ice concentration data aremore » used to document Arctic sea ice variability and its association with surface air temperature (SAT) and sea level pressure (SLP) throughout the Northern Hemisphere extratropics. The dominant mode of winter (January-March) sea ice variability exhibits out-of-phase fluctuations between the western and eastern North Atlantic, together with a weaker dipole in the North Pacific. The time series of this mode has a high winter-to-winter autocorrelation (0.69) and is dominated by decadal-scale variations and a longer-term trend of diminishing ice cover east of Greenland and increasing ice cover west of Greenland. Associated with the dominant pattern of winter sea ice variability are large-scale changes in SAT and SLP that closely resemble the North Atlantic oscillation. The associated SAT and surface sensible and latent heat flux anomalies are largest over the portions of the marginal sea ice zone in which the trends of ice coverage have been greatest, although the well-documented warming of the northern continental regions is also apparent. the temporal and spatial relationships between the SLP and ice anomaly fields are consistent with the notion that atmospheric circulation anomalies force the sea ice variations. However, there appears to be a local response of the atmospheric circulation to the changing sea ice variations. However

  20. Passive microwave remote sensing for sea ice research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Techniques for gathering data by remote sensors on satellites utilized for sea ice research are summarized. Measurement of brightness temperatures by a passive microwave imager converted to maps of total sea ice concentration and to the areal fractions covered by first year and multiyear ice are described. Several ancillary observations, especially by means of automatic data buoys and submarines equipped with upward looking sonars, are needed to improve the validation and interpretation of satellite data. The design and performance characteristics of the Navy's Special Sensor Microwave Imager, expected to be in orbit in late 1985, are described. It is recommended that data from that instrument be processed to a form suitable for research applications and archived in a readily accessible form. The sea ice data products required for research purposes are described and recommendations for their archival and distribution to the scientific community are presented.

  1. Effects of weather on the retrieval of sea ice concentration and ice type from passive microwave data

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.

    1992-01-01

    Effects of wind, water vapor, and cloud liquid water on ice concentration and ice type calculated from passive microwave data are assessed through radiative transfer calculations and observations. These weather effects can cause overestimates in ice concentration and more substantial underestimates in multi-year ice percentage by decreasing polarization and by decreasing the gradient between frequencies. The effect of surface temperature and air temperature on the magnitudes of weather-related errors is small for ice concentration and substantial for multiyear ice percentage. The existing weather filter in the NASA Team Algorithm addresses only weather effects over open ocean; the additional use of local open-ocean tie points and an alternative weather correction for the marginal ice zone can further reduce errors due to weather. Ice concentrations calculated using 37 versus 18 GHz data show little difference in total ice covered area, but greater differences in intermediate concentration classes. Given the magnitude of weather-related errors in ice classification from passive microwave data, corrections for weather effects may be necessary to detect small trends in ice covered area and ice type for climate studies.

  2. Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels

    NASA Astrophysics Data System (ADS)

    Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.

    2010-12-01

    For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to

  3. Blue Beaufort Sea Ice from Operation IceBridge

    NASA Image and Video Library

    2017-12-08

    Mosaic image of sea ice in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the IceBridge P-3B. The dark area in the middle of the image is open water seen through a lead, or opening, in the ice. Light blue areas are thick sea ice and dark blue areas are thinner ice formed as water in the lead refreezes. Leads are formed when cracks develop in sea ice as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Physical processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.

    2016-01-01

    During the record September 2012 sea ice minimum, the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  5. Physical Processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.

    2016-12-01

    During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  6. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    PubMed

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  7. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seongsuk; Yi, Yu

    2016-12-01

    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  8. The effect of Ocean resolution, and external forcing in the correlation between SLP and Sea Ice Concentration in the Pre-PRIMAVERA GCMs

    NASA Astrophysics Data System (ADS)

    Fuentes-Franco, Ramon; Koenigk, Torben

    2017-04-01

    Recently, an observational study has shown that sea ice variations in Barents Sea seem to be important for the sign of the following winter NAO (Koenigk et al. 2016). It has also been found that amplitude and extension of the Sea Level Pressure (SLP) patterns are modulated by Greenland and Labrador Seas ice areas. Therefore, Earth System Models participating in the PRIMAVERA Project are used to study the impact of resolution in ocean models in reproducing the previously mentioned observed correlation patterns between Sea Ice Concentration (SIC) and the SLP. When using ensembles of high ocean resolution (0.25 degrees) and low ocean resolution (1 degree) simulations, we found that the correlation sign between sea ice concentration over the Central Arctic, the Barents/Kara Seas and the Northern Hemisphere is similar to observations in the higher ocean resolution ensemble, although the amplitude is underestimated. In contrast, the low resolution ensemble shows opposite correlation patterns compared to observations. In general, high ocean resolution simulations show more similar results to observations than the low resolution simulations. Similarly, in order to study the mentioned observed SIC-SLP relationship reported by Koenigk et al (2016), we analyzed the impact of the use of pre-industrial and historical external forcing in the simulations. When using same forcing ensembles, we found that the correlation sign between SIC and SLP does not show a systematic behavior dependent on the use of different external forcing (pre-industrial or present day) as it does when using different ocean resolutions.

  9. Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.

    2015-12-01

    Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.

  10. Trends in Arctic Sea Ice Leads Detection

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Hoffman, J.; Liu, Y.; Key, J. R.

    2016-12-01

    Sea ice leads (fractures) play a critical role in the exchange of mass and energy between the ocean and atmosphere in the polar regions, particularly in the Arctic. Leads result in warming water and accelerated melting because leads absorb more solar energy than the surrounding ice. In the autumn, winter, and spring leads impact the local atmospheric structure and cloud properties because of the large flux of heat and moisture into the atmosphere. Given the rapid thinning and loss of Arctic sea ice over the last few decades, changes in the distribution of leads can be expected in response. Leads are largely wind driven, so their distributions will also be affected by the changes in atmospheric circulation that have occurred. From a climate perspective, identifying trends in lead characteristics (width, orientation, and spatial distribution) will advance our understanding of both thermodynamic and mechanical processes. This study presents the spatial and temporal distributions of Arctic sea ice leads since 2002 using a new method to detect and characterize sea ice leads with optical (visible, infrared) satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Using reflective and emissive channels, ice concentration is derived in cloud-free regions and used to create a mask of potential leads. An algorithm then uses a combination of image processing techniques to identify and characterizes leads. The results show interannual variability of leads positioning as well as parameters such as area, length, orientation and width.

  11. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  12. Influence of Sea Ice Crack Formation on the Spatial Distribution of Nutrients and Microalgae in Flooded Antarctic Multiyear Ice

    NASA Astrophysics Data System (ADS)

    Nomura, Daiki; Aoki, Shigeru; Simizu, Daisuke; Iida, Takahiro

    2018-02-01

    Cracks are common and natural features of sea ice formed in the polar oceans. In this study, a sea ice crack in flooded, multiyear, land-fast Antarctic sea ice was examined to assess its influence on biological productivity and the transport of nutrients and microalgae into the upper layers of neighboring sea ice. The water inside the crack and the surrounding host ice were characterized by a strong discoloration (brown color), an indicator of a massive algal bloom. Salinity and oxygen isotopic ratio measurements indicated that 64-84% of the crack water consisted of snow meltwater supplied during the melt season. Measurements of nutrient and chlorophyll a concentrations within the slush layer pool (the flooded layer at the snow-ice interface) revealed the intrusion of water from the crack, likely forced by mixing with underlying seawater during the tidal cycle. Our results suggest that sea ice crack formation provides conditions favorable for algal blooms by directly exposing the crack water to sunlight and supplying nutrients from the under-ice water. Subsequently, constituents of the crack water modified by biological activity were transported into the upper layer of the flooded sea ice. They were then preserved in the multiyear ice column formed by upward growth of sea ice caused by snow ice formation in areas of significant snow accumulation.

  13. Ice2sea - Estimating the future contribution of continental ice to sea-level rise - project summary

    NASA Astrophysics Data System (ADS)

    Ford, Elaina; Vaughan, David

    2013-04-01

    Ice2sea brings together the EU's scientific and operational expertise from 24 leading institutions across Europe and beyond. Improved projections of the contribution of ice to sea-level rise produced by this major European-funded programme will inform the fifth IPCC report (due in September 2013). In 2007, the fourth Intergovernmental Panel on Climate Change (IPCC) report highlighted ice-sheets as the most significant remaining uncertainty in projections of sea-level rise. Understanding about the crucial ice-sheet effects was "too limited to assess their likelihood or provide a best estimate of an upper bound for sea-level rise". Ice2sea was created to address these issues - the project started in 2009 and is now drawing to a close, with our final symposium in May 2013, and final publicity activities around the IPCC report release in autumn 2013. Here we present a summary of the overall and key outputs of the ice2sea project.

  14. Arctic sea ice is an important temporal sink and means of transport for microplastic.

    PubMed

    Peeken, Ilka; Primpke, Sebastian; Beyer, Birte; Gütermann, Julia; Katlein, Christian; Krumpen, Thomas; Bergmann, Melanie; Hehemann, Laura; Gerdts, Gunnar

    2018-04-24

    Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.

  15. Observations reveal external driver for Arctic sea-ice retreat

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Marotzke, Jochem

    2012-04-01

    The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.

  16. Online sea ice data platform: www.seaiceportal.de

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Asseng, Jölund; Bartsch, Annekathrin; Bräuer, Benny; Fritzsch, Bernadette; Grosfeld, Klaus; Hendricks, Stefan; Hiller, Wolfgang; Heygster, Georg; Krumpen, Thomas; Melsheimer, Christian; Ricker, Robert; Treffeisen, Renate; Weigelt, Marietta; Nicolaus, Anja; Lemke, Peter

    2016-04-01

    There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archive data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback.

  17. Ecological consequences of sea-ice decline.

    PubMed

    Post, Eric; Bhatt, Uma S; Bitz, Cecilia M; Brodie, Jedediah F; Fulton, Tara L; Hebblewhite, Mark; Kerby, Jeffrey; Kutz, Susan J; Stirling, Ian; Walker, Donald A

    2013-08-02

    After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.

  18. The Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  19. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Dinniman, Michael S.; Klinck, John M.; Smith, Walker O.

    2007-11-01

    Satellite imagery shows that there was substantial variability in the sea ice extent in the Ross Sea during 2001-2003. Much of this variability is thought to be due to several large icebergs that moved through the area during that period. The effects of these changes in sea ice on circulation and water mass distributions are investigated with a numerical general circulation model. It would be difficult to simulate the highly variable sea ice from 2001 to 2003 with a dynamic sea ice model since much of the variability was due to the floating icebergs. Here, sea ice concentration is specified from satellite observations. To examine the effects of changes in sea ice due to iceberg C-19, simulations were performed using either climatological ice concentrations or the observed ice for that period. The heat balance around the Ross Sea Polynya (RSP) shows that the dominant term in the surface heat budget is the net exchange with the atmosphere, but advection of oceanic warm water is also important. The area average annual basal melt rate beneath the Ross Ice Shelf is reduced by 12% in the observed sea ice simulation. The observed sea ice simulation also creates more High-Salinity Shelf Water. Another simulation was performed with observed sea ice and a fixed iceberg representing B-15A. There is reduced advection of warm surface water during summer from the RSP into McMurdo Sound due to B-15A, but a much stronger reduction is due to the late opening of the RSP in early 2003 because of C-19.

  20. Sea-ice thickness from field measurements in the northwestern Barents Sea

    NASA Astrophysics Data System (ADS)

    King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin

    2017-02-01

    The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.

  1. Multi-decadal Arctic sea ice roughness.

    NASA Astrophysics Data System (ADS)

    Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.

    2017-12-01

    The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.

  2. Biogeochemical Cycling and Sea Ice Dynamics in the Bering Sea across the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Detlef, H.; Sosdian, S. M.; Belt, S. T.; Smik, L.; Lear, C. H.; Hall, I. R.; Kender, S.; Leng, M. J.; Husum, K.; Cabedo-Sanz, P.

    2017-12-01

    Today the Bering Sea is characterized by high primary productivity (PP) along the eastern shelf, maintained by CO2 and nutrient rich upwelled deep waters and nutrient release during spring sea ice melting. As such, low oxygen concentrations are pervasive in mid-depth waters. Changes in ventilation and export productivity in the past have been shown to impact this oxygen minimum zone. On glacial/interglacial (G/IG) timescales sea ice formation plays a pivotal role on intermediate water ventilation with evidence pointing to the formation of North Pacific Intermediate Water (NPIW) in the Bering Sea during Pleistocene glacial intervals. In addition, sea ice plays a significant role in both long- and short-term climate change via associated feedback mechanisms. Thus, records of sea ice dynamics and biogeochemical cycling in the Bering Sea are necessary to fully understand the interaction between PP, circulation patterns, and past G/IG climates with potential implications for the North Pacific carbon cycle. Here we use a multi-proxy approach to study sea ice dynamics and bottom water oxygenation, across three intervals prior to, across, and after the Mid-Pleistocene Transition (MPT, 1.2-0.7 Ma) from International Ocean Discovery Program Site U1343. The MPT, most likely driven by internal climate mechanisms, is ideal to study changes in sea ice dynamics and sedimentary redox conditions on orbital timescales and to investigate the implications for associated feedback mechanisms. The sea ice record, based on various biomarkers, including IP25, shows substantial increase in sea ice extent across the MPT and the occurrence of a late-glacial/deglacial sea ice spike, with consequences for glacial NPIW formation and land glacier retreat via the temperature-precipitation feedback. U/Mn of foraminiferal authigenic coatings, a novel proxy for bottom water oxygenation, also shows distinct variability on G/IG timescales across the MPT, most likely a result of PP and water mass

  3. Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave Satellite Data Sets: October 1978-September 1995 User's Guide

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per; Zwally, H. Jay

    1997-01-01

    Satellite multichannel passive-microwave sensors have provided global radiance measurements with which to map, monitor, and study the Arctic and Antarctic polar sea ice covers. The data span over 18 years (as of April 1997), starting with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) on NASA's SeaSat A and Nimbus 7 in 1978 and continuing with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI) series beginning in 1987. It is anticipated that the DMSP SSMI series will continue into the 21st century. The SSMI series will be augmented by new, improved sensors to be flown on Japanese and U.S. space platforms. This User's Guide provides a description of a new sea ice concentration data set generated from observations made by three of these multichannel sensors. The data set includes gridded daily ice concentrations (every-other-day for the SMMR data) for both the north and south polar regions from October 26, 1978 through September 30, 1995, with the one exception of a 6-week data gap from December 3, 1987 through January 12, 1988. The data have been placed on two CD-ROMs that include a ReadMeCD file giving the technical details on the file format, file headers, north and south polar grids, ancillary data sets, and directory structure of the CD-ROM. The CD-ROMS will be distributed by the National Snow and Ice Data Center in Boulder, CO.

  4. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows

    NASA Astrophysics Data System (ADS)

    Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.

    2018-02-01

    The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable

  5. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  6. Monitoring Arctic Sea ice using ERTS imagery. [Bering Sea, Beaufort Sea, Canadian Archipelago, and Greenland Sea

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Bowley, C. J.

    1974-01-01

    Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and other minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft.

  7. Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Löptien, U.; Axell, L.

    2014-07-01

    The Baltic Sea is a seasonally ice covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, several ice properties are allocated, but their actual usefulness is difficult to measure and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the Automatic Identification System (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed effect model. This statistical fit is based on a test region in the Bothnian Bay during the severe winter 2011 and employes 15 to 25 min averages of ship speed.

  8. The direct mechanical influence of sea ice state on ice sheet mass loss via iceberg mélange

    NASA Astrophysics Data System (ADS)

    Robel, A.

    2017-12-01

    The interaction between sea ice and land ice has typically been considered as a large-scale exchange of moisture, heat and salinity through the ocean and atmosphere. However, recent observations from marine-terminating glaciers in Greenland indicate that the long-term decline of local sea ice cover has been accompanied by an increase in nearby iceberg calving and associated ice sheet mass loss. Near glacier calving fronts, sea ice binds icebergs together into an aggregate granular material known as iceberg mélange. Studies have hypothesized that mélange may suppress calving by exerting a mechanical buttressing force directly on the glacier terminus. Here, we show explicitly how sea ice thickness and concentration play a critical role in setting the material strength of mélange. To do so, we adapt a discrete element model to simulate mélange as a cohesive granular material. In these simulations, mélange laden with thick, dense, landfast sea ice can produce enough resistance to shut down calving at the terminus. When sea ice thins, mélange weakens, reducing the mechanical force of mélange on the glacier terminus, and increasing the likelihood of calving. We discuss whether longer periods of sea-ice-free conditions in winter may lead to a transition from currently slow calving, predominantly occurring in the summer, to rapid calving, occurring throughout the year. We also discuss the potential role of freshwater discharge in promoting sea ice formation in fjords, potentially strengthening mélange.

  9. SIPEX--Exploring the Antarctic Sea Ice Zone

    ERIC Educational Resources Information Center

    Zicus, Sandra; Dobson, Jane; Worby, Anthony

    2008-01-01

    Sea ice in the polar regions plays a key role in both regulating global climate and maintaining marine ecosystems. The international Sea Ice Physics and Ecosystem eXperiment (SIPEX) explored the sea ice zone around Antarctica in September and October 2007, investigating relationships between the physical sea ice environment and the structure of…

  10. Sea Ice in the NCEP Seasonal Forecast System

    NASA Astrophysics Data System (ADS)

    Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.

    2017-12-01

    Sea ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of sea ice is represented. Sea ice prediction is challenging; sea ice can form or melt, it can move with wind and/or ocean current; sea ice interacts with both the air above and ocean underneath, it influences by, and has impact on the air and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a sea ice model. In this work, we present the NCEP coupled model, the CFSv2 sea ice component that includes a dynamic thermodynamic sea ice model and a simple "assimilation" scheme, how sea ice has been assimilated in CFSR, the characteristics of the sea ice from CFSR and CFSv2, and the improvements of sea ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including sea ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.

  11. Modeling the heating and melting of sea ice through light absorption by microalgae

    NASA Astrophysics Data System (ADS)

    Zeebe, Richard E.; Eicken, Hajo; Robinson, Dale H.; Wolf-Gladrow, Dieter; Dieckmann, Gerhard S.

    1996-01-01

    In sea ice of polar regions, high concentrations of microalgae are observed during the spring. Algal standing stocks may attain peak values of over 300 mg chl a m-2 in the congelation ice habitat. As of yet, the effect of additional heating of sea ice through conversion of solar radiation into heat by algae has not been investigated in detail. Local effects, such as a decrease in albedo, increasing melt rates, and a decrease of the physical strength of ice sheets may occur. To investigate the effects of microalgae on the thermal regime of sea ice, a time-dependent, one-dimensional thermodynamic model of sea ice was coupled to a bio-optical model. A spectral one-stream model was employed to determine spectral attenuation by snow, sea ice, and microalgae. Beer's law was assumed to hold for every wavelength. Energy absorption was obtained by calculating the divergence of irradiance in every layer of the model (Δz = 1 cm). Changes in sea ice temperature profiles were calculated by solving the heat conduction equation with a finite difference scheme. Model results indicate that when algal biomass is concentrated at the bottom of congelation ice, melting of ice resulting from the additional conversion of solar radiation into heat may effectively destroy the algal habitat, thereby releasing algal biomass into the water column. An algal layer located in the top of the ice sheet induced a significant increase in sea ice temperature (ΔT > 0.3 K) for snow depths less than 5 cm and algal standing stocks higher than 150 mg chl a m-2. Furthermore, under these conditions, brine volume increased by 21% from 181 to 219 parts per thousand, which decreased the physical strength of the ice.

  12. Iceberg in sea ice

    NASA Image and Video Library

    2017-12-08

    An iceberg embedded in sea ice as seen from the IceBridge DC-8 over the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / James Yungel NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Sea ice type dynamics in the Arctic based on Sentinel-1 Data

    NASA Astrophysics Data System (ADS)

    Babiker, Mohamed; Korosov, Anton; Park, Jeong-Won

    2017-04-01

    Sea ice observation from satellites has been carried out for more than four decades and is one of the most important applications of EO data in operational monitoring as well as in climate change studies. Several sensors and retrieval methods have been developed and successfully utilized to measure sea ice area, concentration, drift, type, thickness, etc [e.g. Breivik et al., 2009]. Today operational sea ice monitoring and analysis is fully dependent on use of satellite data. However, new and improved satellite systems, such as multi-polarisation Synthetic Apperture Radar (SAR), require further studies to develop more advanced and automated sea ice monitoring methods. In addition, the unprecedented volume of data available from recently launched Sentinel missions provides both challenges and opportunities for studying sea ice dynamics. In this study we investigate sea ice type dynamics in the Fram strait based on Sentinel-1 A, B SAR data. Series of images for the winter season are classified into 4 ice types (young ice, first year ice, multiyear ice and leads) using the new algorithm developed by us for sea ice classification, which is based on segmentation, GLCM calculation, Haralick texture feature extraction, unsupervised and supervised classifications and Support Vector Machine (SVM) [Zakhvatkina et al., 2016; Korosov et al., 2016]. This algorithm is further improved by applying thermal and scalloping noise removal [Park et al. 2016]. Sea ice drift is retrieved from the same series of Sentinel-1 images using the newly developed algorithm based on combination of feature tracking and pattern matching [Mukenhuber et al., 2016]. Time series of these two products (sea ice type and sea ice drift) are combined in order to study sea ice deformation processes at small scales. Zones of sea ice convergence and divergence identified from sea ice drift are compared with ridges and leads identified from texture features. That allows more specific interpretation of SAR

  14. Sea-ice habitat preference of the Pacific walrus (Odobenus rosmarus divergens) in the Bering Sea: A multiscaled approach

    NASA Astrophysics Data System (ADS)

    Sacco, Alexander Edward

    The goal of this thesis is to define specific parameters of mesoscale sea-ice seascapes for which walruses show preference during important periods of their natural history. This research thesis incorporates sea-ice geophysics, marine-mammal ecology, remote sensing, computer vision techniques, and traditional ecological knowledge of indigenous subsistence hunters in order to quantitatively study walrus preference of sea ice during the spring migration in the Bering Sea. Using an approach that applies seascape ecology, or landscape ecology to the marine environment, our goal is to define specific parameters of ice patch descriptors, or mesoscale seascapes in order to evaluate and describe potential walrus preference for such ice and the ecological services it provides during an important period of their life-cycle. The importance of specific sea-ice properties to walrus occupation motivates an investigation into how walruses use sea ice at multiple spatial scales when previous research suggests that walruses do not show preference for particular floes. Analysis of aerial imagery, using image processing techniques and digital geomorphometric measurements (floe size, shape, and arrangement), demonstrated that while a particular floe may not be preferred, at larger scales a collection of floes, specifically an ice patch (< 4 km2), was preferred. This shows that walruses occupy ice patches with distinct ice features such as floe convexity, spatial density, and young ice and open water concentration. Ice patches that are occupied by adult and juvenile walruses show a small number of characteristics that vary from those ice patches that were visually unoccupied. Using synthetic aperture radar imagery, we analyzed co-located walrus observations and statistical texture analysis of radar imagery to quantify seascape preferences of walruses during the spring migration. At a coarse resolution of 100 -- 9,000 km2, seascape analysis shows that, for the years 2006 -- 2008

  15. Rising methane emissions from northern wetlands associated with sea ice decline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less

  16. Rising methane emissions from northern wetlands associated with sea ice decline.

    PubMed

    Parmentier, Frans-Jan W; Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J; Zhuang, Qianlai; Christensen, Torben R; McGuire, A David

    2015-09-16

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH 4  yr -1 higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.

  17. Rising methane emissions from northern wetlands associated with sea ice decline

    DOE PAGES

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao; ...

    2015-09-10

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less

  18. Rising methane emissions from northern wetlands associated with sea ice decline

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David

    2015-01-01

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.

  19. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the

  20. Reconstructing past sea ice cover of the Northern Hemisphere from dinocyst assemblages: status of the approach

    NASA Astrophysics Data System (ADS)

    de Vernal, Anne; Rochon, André; Fréchette, Bianca; Henry, Maryse; Radi, Taoufik; Solignac, Sandrine

    2013-11-01

    Dinocysts occur in a wide range of environmental conditions, including polar areas. We review here their use for the reconstruction of paleo sea ice cover in such environments. In the Arctic Ocean and subarctic seas characterized by dense sea ice cover, Islandinium minutum, Islandinium? cezare, Echinidinium karaense, Polykrikos sp. var. Arctic, Spiniferites elongatus-frigidus and Impagidinium pallidum are common and often occur with more cosmopolitan taxa such as Operculodinium centrocarpum sensu Wall & Dale, cyst of Pentapharsodinium dalei and Brigantedinium spp. Canonical correspondence analyses conducted on dinocyst assemblages illustrate relationships with sea surface parameters such as salinity, temperature, and sea ice cover. The application of the modern analogue technique permits quantitative reconstruction of past sea ice cover, which is expressed in terms of seasonal extent of sea ice cover (months per year with more than 50% of sea ice concentration) or mean annual sea ice concentration (in tenths). The accuracy of reconstructions or root mean square error of prediction (RMSEP) is ±1.1 over 10, which corresponds to perennial sea ice. Such an error is close to the interannual variability (standard deviation) of observed sea ice cover. Mismatch between the time interval of instrumental data used as reference (1953-2000) and the time interval represented by dinocyst populations in surface sediment samples, which may cover decades if not centuries, is another source of error. Despite uncertainties, dinocyst assemblages are useful for making quantitative reconstruction of seasonal sea ice cover.

  1. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    NASA Astrophysics Data System (ADS)

    Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.

    2014-10-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.

  2. Measurements of sea ice mass redistribution during ice deformation event in Arctic winter

    NASA Astrophysics Data System (ADS)

    Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.

    2016-12-01

    Sea-ice growth during high winter is governed by ice dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally ice thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-ice growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-ICE2015 expedition in the area north of Svalbard. Between the two overflights an ice deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-ice area of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea ice plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to ice thickness. The snow depth is estimated from in-situ measurements. Sea ice thickness measurements were made in the same area as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-ice thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a decrease in the thin ice classes and an increase of the thick ice classes. While there was no observable snowfall and a very low sea-ice growth of older level ice during this period, an autonomous buoy array deployed in the surroundings of the area measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea ice deformation with the associated sea-ice thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the area between the buoys and calculate the strain rates and freeboard change for each individual triangle

  3. Physical and Radiative Characteristic and Long-term Variability of the Okhotsk Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Nishio, Fumihiko; Comiso, Josefino C.; Gersten, Robert; Nakayama, Masashige; Ukita, Jinro; Gasiewski, Al; Stanko, Boba; Naoki, Kazuhiro

    2008-01-01

    Much of what we know about the large scale characteristics of the Okhotsk Sea ice cover has been provided by ice concentration maps derived from passive microwave data. To understand what satellite data represent in a highly divergent and rapidly changing environment like the Okhotsk Sea, we take advantage of concurrent satellite, aircraft, and ship data acquired on 7 February and characterized the sea ice cover at different scales from meters to hundreds of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated the general radiative and physical characteristics of the ice cover as well as quantify the distribution of different ice types in the region. Ice concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the ice cover. Analysis of MODIS data reveals that thick ice types represents about 37% of the ice cover indicating that young and new ice types represent a large fraction of the ice cover that averages about 90% ice concentration according to passive microwave data. These results are used to interpret historical data that indicate that the Okhotsk Sea ice extent and area are declining at a rapid rate of about -9% and -12 % per decade, respectively.

  4. Collaborations for Arctic Sea Ice Information and Tools

    NASA Astrophysics Data System (ADS)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.

    2017-12-01

    The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support

  5. Quantification of ikaite in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Thomas, D. N.; Krell, A.; Nehrke, G.; Göttlicher, J.; Norman, L.; Riaux-Gobin, C.; Dieckmann, G. S.

    2012-02-01

    Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.

  6. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  7. Variability and trends in the Arctic Sea ice cover: Results from different techniques

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-08-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover, especially in the summer, has been the center of attention in recent years. Reports on the <span class="hlt">sea</span> <span class="hlt">ice</span> cover have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESD.....5..271L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESD.....5..271L"><span>Projecting Antarctic <span class="hlt">ice</span> discharge using response functions from <span class="hlt">Sea</span>RISE <span class="hlt">ice</span>-sheet models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J. L.; Frieler, K.; Greve, R.; Hellmer, H. H.; Martin, M. A.; Meinshausen, M.; Mengel, M.; Payne, A. J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W. L.; Bindschadler, R. A.</p> <p>2014-08-01</p> <p>The largest uncertainty in projections of future <span class="hlt">sea</span>-level change results from the potentially changing dynamical <span class="hlt">ice</span> discharge from Antarctica. Basal <span class="hlt">ice</span>-shelf melting induced by a warming ocean has been identified as a major cause for additional <span class="hlt">ice</span> flow across the grounding line. Here we attempt to estimate the uncertainty range of future <span class="hlt">ice</span> discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the <span class="hlt">ice</span>-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project <span class="hlt">Ice</span>2<span class="hlt">Sea</span>. The dynamic <span class="hlt">ice</span>-sheet response is derived from linear response functions for basal <span class="hlt">ice</span>-shelf melting for four different Antarctic drainage regions using experiments from the <span class="hlt">Sea</span>-level Response to <span class="hlt">Ice</span> Sheet Evolution (<span class="hlt">Sea</span>RISE) intercomparison project with five different Antarctic <span class="hlt">ice</span>-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global <span class="hlt">sea</span>-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three <span class="hlt">ice</span>-sheet models with an explicit representation of <span class="hlt">ice</span>-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional <span class="hlt">ice</span> loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global <span class="hlt">sea</span>-level equivalent for the low-emission RCP-2.6 (Representative <span class="hlt">Concentration</span> Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN11C1538S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN11C1538S"><span>The Timing of Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Advance and Retreat as an Indicator of <span class="hlt">Ice</span>-Dependent Marine Mammal Habitat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, H. L.; Laidre, K. L.</p> <p>2013-12-01</p> <p>The Arctic is widely recognized as the front line of climate change. Arctic air temperature is rising at twice the global average rate, and the <span class="hlt">sea-ice</span> cover is shrinking and thinning, with total disappearance of summer <span class="hlt">sea</span> <span class="hlt">ice</span> projected to occur in a matter of decades. Arctic marine mammals such as polar bears, seals, walruses, belugas, narwhals, and bowhead whales depend on the <span class="hlt">sea-ice</span> cover as an integral part of their existence. While the downward trend in <span class="hlt">sea-ice</span> extent in a given month is an often-used metric for quantifying physical changes in the <span class="hlt">ice</span> cover, it is not the most relevant measure for characterizing changes in the <span class="hlt">sea-ice</span> habitat of marine mammals. Species that depend on <span class="hlt">sea</span> <span class="hlt">ice</span> are behaviorally tied to the annual retreat of <span class="hlt">sea</span> <span class="hlt">ice</span> in the spring and advance in the fall. Changes in the timing of the spring retreat and the fall advance are more relevant to Arctic marine species than changes in the areal <span class="hlt">sea-ice</span> coverage in a particular month of the year. Many ecologically important regions of the Arctic are essentially <span class="hlt">ice</span>-covered in winter and <span class="hlt">ice</span>-free in summer, and will probably remain so for a long time into the future. But the dates of <span class="hlt">sea-ice</span> retreat in spring and advance in fall are key indicators of climate change for <span class="hlt">ice</span>-dependent marine mammals. We use daily <span class="hlt">sea-ice</span> <span class="hlt">concentration</span> data derived from satellite passive microwave sensors to calculate the dates of <span class="hlt">sea-ice</span> retreat in spring and advance in fall in 12 regions of the Arctic for each year from 1979 through 2013. The regions include the peripheral <span class="hlt">seas</span> around the Arctic Ocean (Beaufort, Chukchi, East Siberian, Laptev, Kara, Barents), the Canadian Arctic Archipelago, and the marginal <span class="hlt">seas</span> (Okhotsk, Bering, East Greenland, Baffin Bay, Hudson Bay). We find that in 11 of the 12 regions (all except the Bering <span class="hlt">Sea</span>), <span class="hlt">sea</span> <span class="hlt">ice</span> is retreating earlier in spring and advancing later in fall. Rates of spring retreat range from -5 to -8 days/decade, and rates of fall advance range from +5 to +9</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21141043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21141043"><span>Loss of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perovich, Donald K; Richter-Menge, Jacqueline A</p> <p>2009-01-01</p> <p>The Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover is in decline. The areal extent of the <span class="hlt">ice</span> cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in <span class="hlt">sea</span> <span class="hlt">ice</span> thickness and a reduction in the amount of thicker perennial <span class="hlt">sea</span> <span class="hlt">ice</span>. A general global warming trend has made the <span class="hlt">ice</span> cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the <span class="hlt">ice</span> cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older <span class="hlt">ice</span> out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the <span class="hlt">ice</span>-albedo feedback. The diminishing Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is creating social, political, economic, and ecological challenges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4734V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4734V"><span><span class="hlt">Ice</span>2<span class="hlt">sea</span> - the future glacial contribution to <span class="hlt">sea</span>-level rise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaughan, D. G.; Ice2sea Consortium</p> <p>2009-04-01</p> <p>The melting of continental <span class="hlt">ice</span> (glaciers, <span class="hlt">ice</span> caps and <span class="hlt">ice</span> sheets) is a substantial source of current <span class="hlt">sea</span>-level rise, and one that is accelerating more rapidly than was predicted even a few years ago. Indeed, the most recent report from Intergovernmental Panel on Climate Change highlighted that the uncertainty in projections of future <span class="hlt">sea</span>-level rise is dominated by uncertainty concerning continental <span class="hlt">ice</span>, and that understanding of the key processes that will lead to loss of continental <span class="hlt">ice</span> must be improved before reliable projections of <span class="hlt">sea</span>-level rise can be produced. Such projections are urgently required for effective <span class="hlt">sea</span>-defence management and coastal adaptation planning. <span class="hlt">Ice</span>2<span class="hlt">sea</span> is a consortium of European institutes and international partners seeking European funding to support an integrated scientific programme to improve understanding concerning the future glacial contribution to <span class="hlt">sea</span>-level rise. This includes improving understanding of the processes that control, past, current and future <span class="hlt">sea</span>-level rise, and generation of improved estimates of the contribution of glacial components to <span class="hlt">sea</span>-level rise over the next 200 years. The programme will include targeted studies of key processes in mountain glacier systems and <span class="hlt">ice</span> caps (e.g. Svalbard), and in <span class="hlt">ice</span> sheets in both polar regions (Greenland and Antarctica) to improve understanding of how these systems will respond to future climate change. It will include fieldwork and remote sensing studies, and develop a suite of new, cross-validated glacier and <span class="hlt">ice</span>-sheet model. <span class="hlt">Ice</span>2<span class="hlt">sea</span> will deliver these results in forms accessible to scientists, policy-makers and the general public, which will include clear presentations of the sources of uncertainty. Our aim is both, to provide improved projections of the glacial contribution to <span class="hlt">sea</span>-level rise, and to leave a legacy of improved tools and techniques that will form the basis of ongoing refinements in <span class="hlt">sea</span>-level projection. <span class="hlt">Ice</span>2<span class="hlt">sea</span> will provide exciting opportunities for many</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRG..119.2276G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRG..119.2276G"><span>Organic iodine in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>: A comparison between winter in the Weddell <span class="hlt">Sea</span> and summer in the Amundsen <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granfors, Anna; Ahnoff, Martin; Mills, Matthew M.; Abrahamsson, Katarina</p> <p>2014-12-01</p> <p>Recent studies have recognized <span class="hlt">sea</span> <span class="hlt">ice</span> as a source of reactive iodine to the Antarctic boundary layer. Volatile iodinated compounds (iodocarbons) are released from <span class="hlt">sea</span> <span class="hlt">ice</span>, and they have been suggested to contribute to the formation of iodine oxide (IO), which takes part in tropospheric ozone destruction in the polar spring. We measured iodocarbons (CH3I, CH2ClI, CH2BrI, and CH2I2) in <span class="hlt">sea</span> <span class="hlt">ice</span>, snow, brine, and air during two expeditions to Antarctica, OSO 10/11 to the Amundsen <span class="hlt">Sea</span> during austral summer and ANT XXIX/6 to the Weddell <span class="hlt">Sea</span> in austral winter. These are the first reported measurements of iodocarbons from the Antarctic winter. Iodocarbons were enriched in <span class="hlt">sea</span> <span class="hlt">ice</span> in relation to seawater in both summer and winter. During summer, the positive relationship to chlorophyll a biomass indicated a biological origin. We suggest that CH3I is formed biotically in <span class="hlt">sea</span> <span class="hlt">ice</span> during both summer and winter. For CH2ClI, CH2BrI, and CH2I2, an additional abiotic source at the snow/<span class="hlt">ice</span> interface in winter is suggested. Elevated air <span class="hlt">concentrations</span> of CH3I and CH2ClI during winter indicate that they are enriched in lower troposphere and may take part in the formation of IO at polar sunrise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171197','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171197"><span>MODIS Snow and <span class="hlt">Sea</span> <span class="hlt">Ice</span> Products</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.</p> <p>2004-01-01</p> <p>In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and <span class="hlt">sea</span> <span class="hlt">ice</span> products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and <span class="hlt">Ice</span> Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. <span class="hlt">Sea</span> <span class="hlt">ice</span> products include <span class="hlt">ice</span> extent determined with two different algorithms, and <span class="hlt">sea</span> <span class="hlt">ice</span> surface temperature. The algorithms used to develop these products are described. Both the snow and <span class="hlt">sea</span> <span class="hlt">ice</span> products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-002288&hterms=moderating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmoderating','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-002288&hterms=moderating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmoderating"><span><span class="hlt">Ice</span> in Caspian <span class="hlt">Sea</span> and Aral <span class="hlt">Sea</span>, Kazakhstan</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>In this MODIS image from December 3, 2001, winter <span class="hlt">sea</span> <span class="hlt">ice</span> can be seen forming in the shallow waters of the northern Caspian (left) and Aral (upper right) <span class="hlt">Seas</span>. Despite the inflow of the Volga River (upper left), the northern portion of the Caspian <span class="hlt">Sea</span> averages only 17 ft in depth, and responds to the region's continental climate, which is cold in winter and hot and dry in the summer. The southern part of the <span class="hlt">Sea</span> is deeper and remains <span class="hlt">ice</span>-free throughout the winter. The dirty appearance of the <span class="hlt">ice</span> may be due to sediment in the water, but may also be due to wind-driven dust. The wind in the region can blow at hurricane-force strength and can cause the <span class="hlt">ice</span> to pile up in hummocks that are anchored to the <span class="hlt">sea</span> bottom. The eastern portion of the Aral <span class="hlt">Sea</span> is also beginning to freeze. At least two characteristics of the Aral <span class="hlt">Sea</span> 'compete' in determining whether its waters will freeze. The <span class="hlt">Sea</span> is shallow, which increases the likelihood of freezing, but it is also very salty, which means that lower temperatures are required to freeze it than would be required for fresh water. With average December temperatures of 18o F, it's clearly cold enough to allow <span class="hlt">ice</span> to form. As the waters that feed the Aral <span class="hlt">Sea</span> continue to be diverted for agriculture, the <span class="hlt">Sea</span> becomes shallower and the regional climate becomes even more continental. This is because large bodies of water absorb and retain heat, moderating seasonal changes in temperature. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001599.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001599.html"><span>Clouds Over <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-11-01</p> <p>Low-lying clouds over <span class="hlt">sea</span> <span class="hlt">ice</span> on the Bellingshausen <span class="hlt">Sea</span>. Credit: NASA / Maria-Jose Vinas NASA's Operation <span class="hlt">Ice</span>Bridge is an airborne science mission to study Earth's polar <span class="hlt">ice</span>. For more information about <span class="hlt">Ice</span>Bridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24276772','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24276772"><span>Fatty acid and stable isotope characteristics of <span class="hlt">sea</span> <span class="hlt">ice</span> and pelagic particulate organic matter in the Bering <span class="hlt">Sea</span>: tools for estimating <span class="hlt">sea</span> <span class="hlt">ice</span> algal contribution to Arctic food web production.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Shiway W; Budge, Suzanne M; Gradinger, Rolf R; Iken, Katrin; Wooller, Matthew J</p> <p>2014-03-01</p> <p>We determined fatty acid (FA) profiles and carbon stable isotopic composition of individual FAs (δ(13)CFA values) from <span class="hlt">sea</span> <span class="hlt">ice</span> particulate organic matter (i-POM) and pelagic POM (p-POM) in the Bering <span class="hlt">Sea</span> during maximum <span class="hlt">ice</span> extent, <span class="hlt">ice</span> melt, and <span class="hlt">ice</span>-free conditions in 2010. Based on FA biomarkers, differences in relative composition of diatoms, dinoflagellates, and bacteria were inferred for i-POM versus p-POM and for seasonal succession stages in p-POM. Proportions of diatom markers were higher in i-POM (16:4n-1, 6.6-8.7%; 20:5n-3, 19.6-25.9%) than in p-POM (16:4n-1, 1.2-4.0%; 20:5n-3, 5.5-14.0%). The dinoflagellate marker 22:6n-3/20:5n-3 was highest in p-POM. Bacterial FA <span class="hlt">concentration</span> was higher in the bottom 1 cm of <span class="hlt">sea</span> <span class="hlt">ice</span> (14-245 μg L(-1)) than in the water column (0.6-1.7 μg L(-1)). Many i-POM δ(13)C(FA) values were higher (up to ~10‰) than those of p-POM, and i-POM δ(13)C(FA) values increased with day length. The higher i-POM δ(13)C(FA) values are most likely related to the reduced dissolved inorganic carbon (DIC) availability within the semi-closed <span class="hlt">sea</span> <span class="hlt">ice</span> brine channel system. Based on a modified Rayleigh equation, the fraction of <span class="hlt">sea</span> <span class="hlt">ice</span> DIC fixed in i-POM ranged from 12 to 73%, implying that carbon was not limiting for primary productivity in the sympagic habitat. These differences in FA composition and δ(13)C(FA) values between i-POM and p-POM will aid efforts to track the proportional contribution of <span class="hlt">sea</span> <span class="hlt">ice</span> algal carbon to higher trophic levels in the Bering <span class="hlt">Sea</span> and likely other Arctic <span class="hlt">seas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7084M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7084M"><span>Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss and recent extreme cold winter in Eurasia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide</p> <p>2014-05-01</p> <p>Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> in preceding autumn to winter season. However, the tropical and/or mid-latitude <span class="hlt">sea</span> surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of <span class="hlt">sea</span> <span class="hlt">ice</span> change from observational data. In this study, we examine possible linkage between the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to <span class="hlt">sea</span> <span class="hlt">ice</span> reduction. We perform two sets of experiments with different realistic <span class="hlt">sea</span> <span class="hlt">ice</span> boundary conditions calculated by composite of observed <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>; one is reduced <span class="hlt">sea</span> <span class="hlt">ice</span> extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss. We would like to introduce more important results and mechanisms in detail in my presentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010TellB..62..621J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010TellB..62..621J"><span>Rapid changes in surface water carbonate chemistry during Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> melt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Elizabeth M.; Bakker, Dorothee C. E.; Venables, Hugh J.; Whitehouse, Michael J.; Korb, Rebecca E.; Watson, Andrew J.</p> <p>2010-11-01</p> <p>ABSTRACT The effect of <span class="hlt">sea</span> <span class="hlt">ice</span> melt on the carbonate chemistry of surface waters in the Weddell-Scotia Confluence, Southern Ocean, was investigated during January 2008. Contrasting <span class="hlt">concentrations</span> of dissolved inorganic carbon (DIC), total alkalinity (TA) and the fugacity of carbon dioxide (fCO2) were observed in and around the receding <span class="hlt">sea</span> <span class="hlt">ice</span> edge. The precipitation of carbonate minerals such as ikaite (CaCO3.6H2O) in <span class="hlt">sea</span> <span class="hlt">ice</span> brine has the net effect of decreasing DIC and TA and increasing the fCO2 in the brine. Deficits in DIC up to 12 +/- 3 μmol kg-1 in the marginal <span class="hlt">ice</span> zone (MIZ) were consistent with the release of DIC-poor brines to surface waters during <span class="hlt">sea</span> <span class="hlt">ice</span> melt. Biological utilization of carbon was the dominant processes and accounted for 41 +/- 1 μmol kg-1 of the summer DIC deficit. The data suggest that the combined effects of biological carbon uptake and the precipitation of carbonates created substantial undersaturation in fCO2 of 95 μatm in the MIZ during summer <span class="hlt">sea</span> <span class="hlt">ice</span> melt. Further work is required to improve the understanding of ikaite chemistry in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> and its importance for the <span class="hlt">sea</span> <span class="hlt">ice</span> carbon pump.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A22A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A22A..08H"><span>The Global Radiative Impact of the <span class="hlt">Sea-Ice</span>-Albedo Feedback in the Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudson, S. R.</p> <p>2009-12-01</p> <p> approximations are difficult to see and understand, I use representative datasets and calculate the effect with relatively simple math. The solar zenith angle is calculated as a function of latitude and time for an entire year, giving the top-of-atmosphere (ToA) incident flux; the ToA albedo, as a function of solar zenith angle, is taken from observations by CERES, for clear and cloudy skies over <span class="hlt">sea</span> <span class="hlt">ice</span> (cold and melting) and ocean; cloud cover data are taken from the cloud atlas of Warren and Hahn; monthly gridded <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span> from passive microwave data were downloaded from NSIDC and are interpolated to daily <span class="hlt">concentrations</span>. The total energy absorbed in each grid cell is then calculated in a very straightforward way for 2.5-minute time steps throughout the year. This is done both with the mean <span class="hlt">ice</span> <span class="hlt">concentration</span> from 1979 to 1998, and then with various modified <span class="hlt">concentration</span> fields, including realistic current and future fields, as well as a permanently <span class="hlt">ice</span>-free Arctic. Clouds are left unchanged, though because of their importance, their effect is investigated. The details of the calculation, including assumptions and approximations will be presented, along with a range of results for current and future changes, as well as for an estimate on the upper bound: a global-annual mean of about 0.7 W m-2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23D1175M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23D1175M"><span><span class="hlt">Sea</span> <span class="hlt">ice</span>-induced cold air advection as a mechanism controlling tundra primary productivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macias-Fauria, M.; Karlsen, S. R.</p> <p>2015-12-01</p> <p>The recent sharp decline in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent, <span class="hlt">concentration</span>, and volume leaves urgent questions regarding its effects on ecological processes. Changes in tundra productivity have been associated with <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics on the basis that most tundra ecosystems lay close to the <span class="hlt">sea</span>. Although some studies have addressed the potential effect of <span class="hlt">sea</span> <span class="hlt">ice</span> decline on the primary productivity of terrestrial arctic ecosystems (Bhatt et al., 2010), a clear picture of the mechanisms and patterns linking both processes remains elusive. We hypothesised that <span class="hlt">sea</span> <span class="hlt">ice</span> might influence tundra productivity through 1) cold air advection during the growing season (direct/weather effect) or 2) changes in regional climate induced by changes in <span class="hlt">sea</span> <span class="hlt">ice</span> (indirect/climate effect). We present a test on the direct/weather effect hypothesis: that is, tundra productivity is coupled with <span class="hlt">sea</span> <span class="hlt">ice</span> when <span class="hlt">sea</span> <span class="hlt">ice</span> remains close enough from land vegetation during the growing season for cold air advection to limit temperatures locally. We employed weekly MODIS-derived Normalised Difference Vegetation Index (as a proxy for primary productivity) and <span class="hlt">sea</span> <span class="hlt">ice</span> data at a spatial resolution of 232m for the period 2000-2014 (included), covering the Svalbard Archipelago. Our results suggest that <span class="hlt">sea</span> <span class="hlt">ice</span>-induced cold air advection is a likely mechanism to explain patterns of NDVI trends and heterogeneous spatial dynamics in the Svalbard archipelago. The mechanism offers the potential to explain <span class="hlt">sea</span> <span class="hlt">ice</span>/tundra productivity dynamics in other Arctic areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27387912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27387912"><span>Hydrocarbon biodegradation by Arctic <span class="hlt">sea-ice</span> and sub-<span class="hlt">ice</span> microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garneau, Marie-Ève; Michel, Christine; Meisterhans, Guillaume; Fortin, Nathalie; King, Thomas L; Greer, Charles W; Lee, Kenneth</p> <p>2016-10-01</p> <p>The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, <span class="hlt">ice</span>-covered <span class="hlt">seas</span>. Hydrocarbon degradation potential of <span class="hlt">ice</span>-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at -1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by (3)H-leucine uptake rates. After incubation, sub-<span class="hlt">ice</span> and <span class="hlt">sea-ice</span> communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of <span class="hlt">sea-ice</span> and sub-<span class="hlt">ice</span> communities; in <span class="hlt">sea-ice</span> microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-<span class="hlt">ice</span> microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low <span class="hlt">concentration</span> of dissolved organic matter (DOM) in sub-<span class="hlt">ice</span> seawater may explain higher hydrocarbon degradation when compared to <span class="hlt">sea</span> <span class="hlt">ice</span>, where DOM was abundant and composed of labile exopolysaccharides. © Fisheries and Oceans Canada [2016].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE34A1464B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE34A1464B"><span>An Investigation of Mineral Dynamics in <span class="hlt">Sea</span> <span class="hlt">Ice</span> by Solubility Measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butler, B.; Kennedy, H.; Papadimitriou, S.</p> <p>2016-02-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> is a composite material with a sponge-like structure. The framework of the structure is composed of pure <span class="hlt">ice</span>, and within the pores exists a <span class="hlt">concentrated</span> seawater brine. When the temperature is reduced, the volume of this residual brine decreases, while its salinity increases. As a result of the paired changes to temperature and salinity, the brine becomes supersaturated with respect to a mineral at several points when cooling <span class="hlt">sea</span> <span class="hlt">ice</span> towards -30°C, creating a sequence of minerals that precipitate. The presence of countless microscopic salt crystals encapsulated within the <span class="hlt">ice</span>, coupled with changes in brine volume associated with their precipitation/dissolution, results in changes to the optical and structural properties of the medium that contribute to the surface energy balance in <span class="hlt">sea</span> <span class="hlt">ice</span> environments. Furthermore, attainment of mineral equilibrium can result in abrupt changes in brine composition and osmotic conditions in the isolated brine pockets, imposing challenging conditions upon the biota that habitat the <span class="hlt">sea</span> <span class="hlt">ice</span> environment. Mirabilite (Na2SO4.10H2O), gypsum (CaSO4.2H2O) and hydrohalite (NaCl.2H2O) each represent minerals that are understood to exist within <span class="hlt">sea</span> <span class="hlt">ice</span>. Previous research has focused upon mineral extraction/detection, and the specific temperature for the onset of each minerals precipitation in <span class="hlt">sea</span> <span class="hlt">ice</span>; rather than the overarching dynamics. For this reason, solubility measurements of mirabilite, gypsum and hydrohalite in conditions representative of equilibrium <span class="hlt">sea</span> <span class="hlt">ice</span> brines were carried between 0 and -28°C, covering a range of undersaturated and supersaturated conditions for each mineral. Results provide accurate data for the onset of each minerals formation in <span class="hlt">sea</span> <span class="hlt">ice</span>, as well as important information on the way in which precipitation and dissolution reactions are affected when <span class="hlt">sea</span> <span class="hlt">ice</span> warms or cools. By incorporating the solubility data into a model that simluates the temperature-salinity profiles of first-year <span class="hlt">sea</span> <span class="hlt">ice</span>, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43B2035W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43B2035W"><span>Biogeochemical Coupling between Ocean and <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.</p> <p>2016-12-01</p> <p>Biogeochemical processes in ocean and <span class="hlt">sea</span> <span class="hlt">ice</span> are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and <span class="hlt">sea</span> <span class="hlt">ice</span> biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column <span class="hlt">sea</span> <span class="hlt">ice</span> biogeochemical module has recently been incorporated into the <span class="hlt">sea</span> <span class="hlt">ice</span> component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and <span class="hlt">sea</span> <span class="hlt">ice</span>. The coupling of ocean and <span class="hlt">sea</span> <span class="hlt">ice</span> biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting <span class="hlt">sea</span> <span class="hlt">ice</span> into surface waters. Sensitivity tests suggest <span class="hlt">sea</span> <span class="hlt">ice</span> and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. <span class="hlt">Sea</span> <span class="hlt">ice</span> algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the <span class="hlt">sea</span> <span class="hlt">ice</span>-ocean BGC system to physical changes in polar climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP23B1393S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP23B1393S"><span>High-resolution record of last post-glacial variations of <span class="hlt">sea-ice</span> cover and river discharge in the western Laptev <span class="hlt">Sea</span> (Arctic Ocean)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stein, R. H.; Hörner, T.; Fahl, K.</p> <p>2014-12-01</p> <p>Here, we provide a high-resolution reconstruction of <span class="hlt">sea-ice</span> cover variations in the western Laptev <span class="hlt">Sea</span>, a crucial area in terms of <span class="hlt">sea-ice</span> production in the Arctic Ocean and a region characterized by huge river discharge. Furthermore, the shallow Laptev <span class="hlt">Sea</span> was strongly influenced by the post-glacial <span class="hlt">sea</span>-level rise that should also be reflected in the sedimentary records. The <span class="hlt">sea</span> <span class="hlt">Ice</span> Proxy IP25 (Highly-branched mono-isoprenoid produced by <span class="hlt">sea-ice</span> algae; Belt et al., 2007) was measured in two sediment cores from the western Laptev <span class="hlt">Sea</span> (PS51/154, PS51/159) that offer a high-resolution composite record over the last 18 ka. In addition, sterols are applied as indicator for marine productivity (brassicasterol, dinosterol) and input of terrigenous organic matter by river discharge into the ocean (campesterol, ß-sitosterol). The <span class="hlt">sea-ice</span> cover varies distinctly during the whole time period and shows a general increase in the Late Holocene. A maximum in IP25 <span class="hlt">concentration</span> can be found during the Younger Dryas. This sharp increase can be observed in the whole circumarctic realm (Chukchi <span class="hlt">Sea</span>, Bering <span class="hlt">Sea</span>, Fram Strait and Laptev <span class="hlt">Sea</span>). Interestingly, there is no correlation between elevated numbers of <span class="hlt">ice</span>-rafted debris (IRD) interpreted as local <span class="hlt">ice</span>-cap expansions (Taldenkova et al. 2010), and <span class="hlt">sea</span> <span class="hlt">ice</span> cover distribution. The transgression and flooding of the shelf <span class="hlt">sea</span> that occurred over the last 16 ka in this region, is reflected by decreasing terrigenous (riverine) input, reflected in the strong decrease in sterol (ß-sitosterol and campesterol) <span class="hlt">concentrations</span>. ReferencesBelt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo <span class="hlt">sea</span> <span class="hlt">ice</span>: IP25. Organic Geochemistry 38 (1), 16e27. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ya, Ovsepyan, Kandiano, E., 2010. History of <span class="hlt">ice</span>-rafting and water mass evolution at the northern Siberian continental margin (Laptev <span class="hlt">Sea</span>) during Late</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1248935','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1248935"><span>Norwegian Young <span class="hlt">Sea</span> <span class="hlt">Ice</span> Experiment (N-<span class="hlt">ICE</span>) Field Campaign Report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walden, V. P.; Hudson, S. R.; Cohen, L.</p> <p></p> <p>The Norwegian Young <span class="hlt">Sea</span> <span class="hlt">Ice</span> (N-<span class="hlt">ICE</span>) experiment was conducted aboard the R/V Lance research vessel from January through June 2015. The primary purpose of the experiment was to better understand thin, first-year <span class="hlt">sea</span> <span class="hlt">ice</span>. This includes understanding of how different components of the Arctic system affect <span class="hlt">sea</span> <span class="hlt">ice</span>, but also how changing <span class="hlt">sea</span> <span class="hlt">ice</span> affects the system. A major part of this effort is to characterize the atmospheric conditions throughout the experiment. A micropulse lidar (MPL) (S/N: 108) was deployed from the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility as part of the atmospheric suitemore » of instruments. The MPL operated successfully throughout the entire experiment, acquiring data from 21 January 2015 through 23 June 2015. The MPL was the essential instrument for determining the phase (water, <span class="hlt">ice</span> or mixed) of the lower-level clouds over the <span class="hlt">sea</span> <span class="hlt">ice</span>. Data obtained from the MPL during the N-<span class="hlt">ICE</span> experiment show large cloud fractions over young, thin Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> from January through June 2015 (north of Svalbard). The winter season was characterized by frequent synoptic storms and large fluctuations in the near-surface temperature. There was much less synoptic activity in spring and summer as the near-surface temperature rose to 0 C. The cloud fraction was lower in winter (60%) than in the spring and summer (80%). Supercooled liquid clouds were observed for most of the deployment, appearing first in mid-February. Spring and summer clouds were characterized by low, thick, uniform clouds.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29080010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29080010"><span>Future <span class="hlt">sea</span> <span class="hlt">ice</span> conditions and weather forecasts in the Arctic: Implications for Arctic shipping.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad</p> <p>2017-12-01</p> <p>The ability to forecast <span class="hlt">sea</span> <span class="hlt">ice</span> (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on <span class="hlt">sea</span> <span class="hlt">ice</span> and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span> for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future <span class="hlt">sea</span> <span class="hlt">ice</span> conditions. Our results showed that, despite a general tendency toward less <span class="hlt">sea</span> <span class="hlt">ice</span> cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by <span class="hlt">sea</span> <span class="hlt">ice</span> blocking narrow passages. This will make <span class="hlt">sea</span> <span class="hlt">ice</span> forecasts on shorter time and space scales and Arctic weather prediction even more important.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.3301J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.3301J"><span>The interaction between <span class="hlt">sea</span> <span class="hlt">ice</span> and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of <span class="hlt">sea</span> <span class="hlt">ice</span> cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.</p> <p>2016-11-01</p> <p>Changes in the <span class="hlt">sea</span> <span class="hlt">ice</span> cover of the Nordic <span class="hlt">Seas</span> have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between <span class="hlt">sea</span> <span class="hlt">ice</span> and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a <span class="hlt">sea</span> <span class="hlt">ice</span> covered and salinity stratified Nordic <span class="hlt">Seas</span>, and consists of a <span class="hlt">sea</span> <span class="hlt">ice</span> component and a two-layer ocean. The <span class="hlt">sea</span> <span class="hlt">ice</span> thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent <span class="hlt">sea</span> <span class="hlt">ice</span> export. Whether <span class="hlt">sea</span> <span class="hlt">ice</span> stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the <span class="hlt">sea</span> <span class="hlt">ice</span> acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the <span class="hlt">sea</span> <span class="hlt">ice</span> acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in <span class="hlt">sea</span> <span class="hlt">ice</span>. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of <span class="hlt">sea</span> <span class="hlt">ice</span>. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4455714','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4455714"><span>Regional variability in <span class="hlt">sea</span> <span class="hlt">ice</span> melt in a changing Arctic</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Perovich, Donald K.; Richter-Menge, Jacqueline A.</p> <p>2015-01-01</p> <p>In recent years, the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover has undergone a precipitous decline in summer extent. The <span class="hlt">sea</span> <span class="hlt">ice</span> mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean <span class="hlt">ice</span> equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort <span class="hlt">Sea</span> towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to <span class="hlt">ice</span> losses in the Beaufort <span class="hlt">Sea</span>, due to decreases in <span class="hlt">ice</span> <span class="hlt">concentration</span>. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the <span class="hlt">sea</span> <span class="hlt">ice</span> cover. PMID:26032323</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26032323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26032323"><span>Regional variability in <span class="hlt">sea</span> <span class="hlt">ice</span> melt in a changing Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perovich, Donald K; Richter-Menge, Jacqueline A</p> <p>2015-07-13</p> <p>In recent years, the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover has undergone a precipitous decline in summer extent. The <span class="hlt">sea</span> <span class="hlt">ice</span> mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean <span class="hlt">ice</span> equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort <span class="hlt">Sea</span> towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to <span class="hlt">ice</span> losses in the Beaufort <span class="hlt">Sea</span>, due to decreases in <span class="hlt">ice</span> <span class="hlt">concentration</span>. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the <span class="hlt">sea</span> <span class="hlt">ice</span> cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC51F1065F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC51F1065F"><span>Trends in <span class="hlt">Sea</span> <span class="hlt">Ice</span> Cover, <span class="hlt">Sea</span> Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.</p> <p>2011-12-01</p> <p> <span class="hlt">ice</span> breakup and later <span class="hlt">sea</span> <span class="hlt">ice</span> formation. <span class="hlt">Sea</span> surface temperatures have also shown warming, where sites show significant warming particularly during August, September, and October. Satellite-derived chlorophyll-a <span class="hlt">concentrations</span> over the past decade have shown trends seemingly in direct response to changing <span class="hlt">sea</span> <span class="hlt">ice</span> conditions, with increasing trends in chlorophyll-a <span class="hlt">concentrations</span> when <span class="hlt">sea</span> <span class="hlt">ice</span> declines (and vice versa). In some cases, however, satellite-derived chlorophyll-a <span class="hlt">concentrations</span> do not show expected changes with <span class="hlt">sea</span> <span class="hlt">ice</span> variability, indicating that limitations on biological productivity in this region are complex and spatially heterogeneous. An understanding of these spatial and temporal complexities impacting biological productivity is needed for the accurate prediction of how overall ecosystems may be altered with further expected warming <span class="hlt">sea</span> surface temperatures and declines in <span class="hlt">sea</span> <span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51A0965H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51A0965H"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> Mass Reconciliation Exercise (SIMRE) for altimetry derived <span class="hlt">sea</span> <span class="hlt">ice</span> thickness data sets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendricks, S.; Haas, C.; Tsamados, M.; Kwok, R.; Kurtz, N. T.; Rinne, E. J.; Uotila, P.; Stroeve, J.</p> <p>2017-12-01</p> <p>Satellite altimetry is the primary remote sensing data source for retrieval of Arctic <span class="hlt">sea-ice</span> thickness. Observational data sets are available from current and previous missions, namely ESA's Envisat and CryoSat as well as NASA ICESat. In addition, freeboard results have been published from the earlier ESA ERS missions and candidates for new data products are the Sentinel-3 constellation, the CNES AltiKa mission and NASA laser altimeter successor ICESat-2. With all the different aspects of sensor type and orbit configuration, all missions have unique properties. In addition, thickness retrieval algorithms have evolved over time and data centers have developed different strategies. These strategies may vary in choice of auxiliary data sets, algorithm parts and product resolution and masking. The <span class="hlt">Sea</span> <span class="hlt">Ice</span> Mass Reconciliation Exercise (SIMRE) is a project by the <span class="hlt">sea-ice</span> radar altimetry community to bridge the challenges of comparing data sets across missions and algorithms. The ESA Arctic+ research program facilitates this project with the objective to collect existing data sets and to derive a reconciled estimate of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> mass balance. Starting with CryoSat-2 products, we compare results from different data centers (UCL, AWI, NASA JPL & NASA GSFC) at full resolution along selected orbits with independent <span class="hlt">ice</span> thickness estimates. Three regions representative of first-year <span class="hlt">ice</span>, multiyear <span class="hlt">ice</span> and mixed <span class="hlt">ice</span> conditions are used to compare the difference in thickness and thickness change between products over the seasonal cycle. We present first results and provide an outline for the further development of SIMRE activities. The methodology for comparing data sets is designed to be extendible and the project is open to contributions by interested groups. Model results of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness will be added in a later phase of the project to extend the scope of SIMRE beyond EO products.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.1035T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.1035T"><span>Seasonal to interannual Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> predictability in current global climate models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tietsche, S.; Day, J. J.; Guemas, V.; Hurlin, W. J.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Collins, M.; Hawkins, E.</p> <p>2014-02-01</p> <p>We establish the first intermodel comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent and volume, there is potential predictive skill for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. <span class="hlt">Sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> errors are largest in the marginal <span class="hlt">ice</span> zone, and in winter they are almost zero away from the <span class="hlt">ice</span> edge. <span class="hlt">Sea</span> <span class="hlt">ice</span> thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by <span class="hlt">sea</span> <span class="hlt">ice</span> advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE54B1584J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE54B1584J"><span>The interaction between <span class="hlt">sea</span> <span class="hlt">ice</span> and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of <span class="hlt">sea-ice</span> cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.</p> <p>2016-02-01</p> <p>In this study, we develop a simple conceptual model to examine how interactions between <span class="hlt">sea</span> <span class="hlt">ice</span> and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a <span class="hlt">sea-ice</span> covered and salinity stratified ocean, and consists of a <span class="hlt">sea-ice</span> component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The <span class="hlt">sea-ice</span> thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent <span class="hlt">sea-ice</span> export. Whether <span class="hlt">sea</span> <span class="hlt">ice</span> stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the <span class="hlt">sea</span> <span class="hlt">ice</span> acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the <span class="hlt">sea</span> <span class="hlt">ice</span> acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in <span class="hlt">sea</span> <span class="hlt">ice</span>. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of <span class="hlt">sea</span> <span class="hlt">ice</span>. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934902','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934902"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> Biogeochemistry: A Guide for Modellers</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tedesco, Letizia; Vichi, Marcello</p> <p>2014-01-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> is a fundamental component of the climate system and plays a key role in polar trophic food webs. Nonetheless <span class="hlt">sea</span> <span class="hlt">ice</span> biogeochemical dynamics at large temporal and spatial scales are still rarely described. Numerical models may potentially contribute integrating among sparse observations, but available models of <span class="hlt">sea</span> <span class="hlt">ice</span> biogeochemistry are still scarce, whether their relevance for properly describing the current and future state of the polar oceans has been recently addressed. A general methodology to develop a <span class="hlt">sea</span> <span class="hlt">ice</span> biogeochemical model is presented, deriving it from an existing validated model application by extension of generic pelagic biogeochemistry model parameterizations. The described methodology is flexible and considers different levels of ecosystem complexity and vertical representation, while adopting a strategy of coupling that ensures mass conservation. We show how to apply this methodology step by step by building an intermediate complexity model from a published realistic application and applying it to analyze theoretically a typical season of first-year <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic, the one currently needing the most urgent understanding. The aim is to (1) introduce <span class="hlt">sea</span> <span class="hlt">ice</span> biogeochemistry and address its relevance to ocean modelers of polar regions, supporting them in adding a new <span class="hlt">sea</span> <span class="hlt">ice</span> component to their modelling framework for a more adequate representation of the <span class="hlt">sea</span> <span class="hlt">ice</span>-covered ocean ecosystem as a whole, and (2) extend our knowledge on the relevant controlling factors of <span class="hlt">sea</span> <span class="hlt">ice</span> algal production, showing that beyond the light and nutrient availability, the duration of the <span class="hlt">sea</span> <span class="hlt">ice</span> season may play a key-role shaping the algal production during the on going and upcoming projected changes. PMID:24586604</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23E..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23E..01R"><span>Variational Ridging in <span class="hlt">Sea</span> <span class="hlt">Ice</span> Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.</p> <p>2017-12-01</p> <p>This work presents the results of a new development to make basin-scale <span class="hlt">sea</span> <span class="hlt">ice</span> models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale <span class="hlt">sea</span> <span class="hlt">ice</span> field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating <span class="hlt">sea</span> <span class="hlt">ice</span> as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale <span class="hlt">sea</span> <span class="hlt">ice</span> models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community <span class="hlt">sea</span> <span class="hlt">ice</span> code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of <span class="hlt">sea</span> <span class="hlt">ice</span> ridges, and points to the need for improved measurements of the evolution of porosity of deformed <span class="hlt">ice</span> in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of <span class="hlt">sea</span> <span class="hlt">ice</span> volume derived from altimetric measurements of <span class="hlt">sea</span> <span class="hlt">ice</span> freeboard.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....8901A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....8901A"><span>Operational use of high-resolution sst in a coupled <span class="hlt">sea</span> <span class="hlt">ice</span>-ocean model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albretsen, A.</p> <p>2003-04-01</p> <p>A high-latitude, near real time, <span class="hlt">sea</span> surface temperature (SST) product with 10 km resolution is developed at the Norwegian Meteorological Institute (met.no) through the EUMETSAT project OSI-SAF (Ocean and <span class="hlt">Sea</span> <span class="hlt">Ice</span> Satellite Application Facility). The product covers the Atlantic Ocean from 50N to 90N and is produced twice daily. A digitized SST and <span class="hlt">sea</span> <span class="hlt">ice</span> map is produced manually once a week at the <span class="hlt">Ice</span> Mapping Service at met.no using all available information from the previous week. This map is the basis for a daily SST analysis, in which the most recent OSI-SAF SST products are successively overlaid. The resulting SST analysis field is then used in a simple data assimilation scheme in a coupled <span class="hlt">ice</span>-ocean model to perform daily 10 days forecasts of ocean and <span class="hlt">sea</span> <span class="hlt">ice</span> variables. Also, the associated OSI-SAF <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> product, built from different polar orbiting satellites, is assimilated into the <span class="hlt">sea</span> <span class="hlt">ice</span> model. Preliminary estimates of impact on forecast skill and error statistics will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24190391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24190391"><span>Bacterial activity in <span class="hlt">sea</span> <span class="hlt">ice</span> and open water of the Weddell <span class="hlt">Sea</span>, Antarctica: A microautoradiographic study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grossmann, S</p> <p>1994-07-01</p> <p>Metabolic activity of bacteria was investigated in open water, newly forming <span class="hlt">sea</span> <span class="hlt">ice</span>, and successive stages of pack <span class="hlt">ice</span> in the Weddell <span class="hlt">Sea</span>. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an <span class="hlt">ice</span>-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell <span class="hlt">concentration</span> of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When <span class="hlt">sea</span> <span class="hlt">ice</span> was forming in high <span class="hlt">concentrations</span> of phytoplankton, bacterial biomass in the newly formed <span class="hlt">ice</span> was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new <span class="hlt">ice</span>, since specific bacterial activity was reduced during <span class="hlt">ice</span> formation, and enrichment of bacteria was not observed when <span class="hlt">ice</span> formed at low algal <span class="hlt">concentration</span>. During growth of pack <span class="hlt">ice</span>, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of <span class="hlt">ice</span> development, and percentages of active cells were as low as 3-5%. In old, thick pack <span class="hlt">ice</span>, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the <span class="hlt">ice</span> and were dominated by bacteria with lower average metabolic activity than those of <span class="hlt">ice</span>-free water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070021414&hterms=impact+factor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dimpact%2Bfactor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070021414&hterms=impact+factor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dimpact%2Bfactor"><span>Impact of Surface Roughness on AMSR-E <span class="hlt">Sea</span> <span class="hlt">Ice</span> Products</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew</p> <p>2006-01-01</p> <p>This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational <span class="hlt">sea</span> <span class="hlt">ice</span> algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and <span class="hlt">ice</span> data collected during the AMSR-<span class="hlt">Ice</span>03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of <span class="hlt">sea</span> <span class="hlt">ice</span> in the pixel area viewed. For example, this paper showed that if the <span class="hlt">sea</span> <span class="hlt">ice</span> areas modeled in this paper mere assumed to be completely smooth, <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span> were underestimated by nearly 14% using the NT <span class="hlt">sea</span> <span class="hlt">ice</span> algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled <span class="hlt">ice</span>. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA619963','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA619963"><span><span class="hlt">Sea</span> Spray and <span class="hlt">Icing</span> in the Emerging Open Water of the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-06-12</p> <p><span class="hlt">concentrations</span> of wind-generated <span class="hlt">sea</span> spray and the resulting spray <span class="hlt">icing</span> on offshore structures, such as wind turbines and exploration, drilling , and...We anticipate that structures placed in shallow water—wind turbines, drilling rigs, or man-made production islands, for instance—will, therefore...and the severity of <span class="hlt">sea</span> spray <span class="hlt">icing</span> on fixed offshore structures. We will use existing information on the relationship of the spray <span class="hlt">concentration</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040120981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040120981"><span>EOS Aqua AMSR-E Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Validation Program: Arctic2003 Aircraft Campaign Flight Report</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Markus,T.</p> <p>2003-01-01</p> <p>In March 2003 a coordinated Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) <span class="hlt">sea</span> <span class="hlt">ice</span> products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E <span class="hlt">sea</span> <span class="hlt">ice</span> products to be validated include <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>, <span class="hlt">sea</span> <span class="hlt">ice</span> temperature, and snow depth on <span class="hlt">sea</span> <span class="hlt">ice</span>. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and <span class="hlt">ice</span> properties including <span class="hlt">sea</span> <span class="hlt">ice</span> temperature and snow depth on <span class="hlt">sea</span> <span class="hlt">ice</span> at a study area near Barrow, AK and at a Navy <span class="hlt">ice</span> camp located in the Beaufort <span class="hlt">Sea</span>. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-<span class="hlt">sea-ice</span> processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering <span class="hlt">Sea</span> <span class="hlt">ice</span> edge, the Chukchi <span class="hlt">Sea</span>, and Norton Sound.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11D..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11D..03S"><span>The Impact of Stratospheric Circulation Extremes on Minimum Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Extent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, K. L.; Polvani, L. M.; Tremblay, B.</p> <p>2017-12-01</p> <p>The interannual variability of summertime Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> in the Bering Straight and the <span class="hlt">Sea</span> of Okhotsk in winter, the Barents <span class="hlt">Sea</span> in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in <span class="hlt">sea</span> <span class="hlt">ice</span> growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in <span class="hlt">sea</span> <span class="hlt">ice</span> loss, although the dynamic and thermodynamic processes driving these <span class="hlt">sea</span> <span class="hlt">ice</span> anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000266.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000266.html"><span>NASA Science Flights Target Melting Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>This summer, with <span class="hlt">sea</span> <span class="hlt">ice</span> across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar <span class="hlt">ice</span> just completed its first flights. Its target: aquamarine pools of melt water on the <span class="hlt">ice</span> surface that may be accelerating the overall <span class="hlt">sea</span> <span class="hlt">ice</span> retreat. NASA’s Operation <span class="hlt">Ice</span>Bridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on <span class="hlt">sea</span> <span class="hlt">ice</span> in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over <span class="hlt">sea</span> <span class="hlt">ice</span>, as seen from an Operation <span class="hlt">Ice</span>Bridge flight over the Beaufort <span class="hlt">Sea</span> on July 14, 2016. During this summer campaign, <span class="hlt">Ice</span>Bridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> yearly minimum extent in September. Credit: NASA/Operation <span class="hlt">Ice</span>Bridge</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080040137&hterms=AES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080040137&hterms=AES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAES"><span>Comparison of NASA Team2 and AES-York <span class="hlt">Ice</span> <span class="hlt">Concentration</span> Algorithms Against Operational <span class="hlt">Ice</span> Charts From the Canadian <span class="hlt">Ice</span> Service</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shokr, Mohammed; Markus, Thorsten</p> <p>2006-01-01</p> <p><span class="hlt">Ice</span> <span class="hlt">concentration</span> retrieved from spaceborne passive-microwave observations is a prime input to operational <span class="hlt">sea-ice</span>-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate <span class="hlt">ice</span> <span class="hlt">concentration</span> from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between <span class="hlt">ice</span> <span class="hlt">concentrations</span> (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian <span class="hlt">Ice</span> Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total <span class="hlt">ice</span> <span class="hlt">concentration</span> by 18.35% and 9.66% <span class="hlt">concentration</span> counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved <span class="hlt">concentrations</span> of thin and thick <span class="hlt">ice</span> are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total <span class="hlt">ice</span> <span class="hlt">concentration</span> approaches 100%. If thin and thick <span class="hlt">ice</span> types coexist in comparable <span class="hlt">concentrations</span>, the algorithms' estimates agree with CIS'S estimates. In terms of <span class="hlt">ice</span> <span class="hlt">concentration</span> retrieval, thin <span class="hlt">ice</span> is more problematic than thick <span class="hlt">ice</span>. The concept of using a single tie point to represent a thin <span class="hlt">ice</span> surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total <span class="hlt">ice</span> <span class="hlt">concentration</span> in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick <span class="hlt">ice</span> <span class="hlt">concentrations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.2411S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.2411S"><span>Predicting September <span class="hlt">sea</span> <span class="hlt">ice</span>: Ensemble skill of the SEARCH <span class="hlt">Sea</span> <span class="hlt">Ice</span> Outlook 2008-2013</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, Julienne; Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward</p> <p>2014-04-01</p> <p>Since 2008, the Study of Environmental Arctic Change <span class="hlt">Sea</span> <span class="hlt">Ice</span> Outlook has solicited predictions of September <span class="hlt">sea-ice</span> extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed <span class="hlt">ice</span> extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial <span class="hlt">ice</span>, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of <span class="hlt">sea-ice</span> prediction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601522','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601522"><span>Multiscale Models of Melting Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>September 29, 2013 LONG-TERM GOALS <span class="hlt">Sea</span> <span class="hlt">ice</span> reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond...and <span class="hlt">ice</span> floe configurations. <span class="hlt">Ice</span> - albedo feedback has played a major role in the recent declines of the summer Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> pack. However...understanding the evolution of melt ponds and <span class="hlt">sea</span> <span class="hlt">ice</span> albedo remains a significant challenge to improving climate models. Our research is focused on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131....7H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131....7H"><span>SIPEX 2012: Extreme <span class="hlt">sea-ice</span> and atmospheric conditions off East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.</p> <p>2016-09-01</p> <p>In 2012, Antarctic <span class="hlt">sea-ice</span> coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-<span class="hlt">ice</span>-atmosphere system off East Antarctica, prior to and during the <span class="hlt">Sea</span> <span class="hlt">Ice</span> Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the <span class="hlt">sea-ice</span> and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-<span class="hlt">ice</span>-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic <span class="hlt">sea-ice</span> extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive <span class="hlt">sea-ice</span> extent and <span class="hlt">concentration</span> anomalies during most of 2012, coincident with negative atmospheric pressure and <span class="hlt">sea</span>-surface temperature anomalies. Heavily deformed <span class="hlt">sea</span> <span class="hlt">ice</span> appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of <span class="hlt">sea</span> <span class="hlt">ice</span> from the east. This increased westward <span class="hlt">ice</span> flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more <span class="hlt">sea</span> <span class="hlt">ice</span> to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of <span class="hlt">sea-ice</span> extent from the western Ross <span class="hlt">Sea</span> during austral winter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC24A..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC24A..05K"><span>Identifying Climate Model Teleconnection Mechanisms Between Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Loss and Mid-Latitude Winter Storms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kravitz, B.; Mills, C.; Rasch, P. J.; Wang, H.; Yoon, J. H.</p> <p>2016-12-01</p> <p>The role of Arctic amplification, including observed decreases in <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>, thickness, and extent, with potential for exciting downstream atmospheric responses in the mid-latitudes, is a timely issue. We identify the role of the regionality of autumn <span class="hlt">sea</span> <span class="hlt">ice</span> loss on downstream mid-latitude responses using engineering methodologies adapted to climate modeling, which allow for multiple Arctic <span class="hlt">sea</span> regions to be perturbed simultaneously. We evaluate downstream responses in various climate fields (e.g., temperature, precipitation, cloud cover) associated with perturbations in the Beaufort/Chukchi <span class="hlt">Seas</span> and the Kara/Barents <span class="hlt">Seas</span>. Simulations suggest that the United States response is primarily linked to <span class="hlt">sea</span> <span class="hlt">ice</span> changes in the Beaufort/Chukchi <span class="hlt">Seas</span>, whereas Eurasian response is primarily due to Kara/Barents <span class="hlt">sea</span> <span class="hlt">ice</span> coverage changes. Downstream effects are most prominent approximately 6-10 weeks after the initial perturbation (<span class="hlt">sea</span> <span class="hlt">ice</span> loss). Our findings suggest that winter mid-latitude storms (connected to the so-called "Polar Vortex") are linked to <span class="hlt">sea</span> <span class="hlt">ice</span> loss in particular areas, implying that further <span class="hlt">sea</span> <span class="hlt">ice</span> loss associated with climate change will exacerbate these types of extreme events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28011294','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28011294"><span><span class="hlt">Sea-ice</span> eukaryotes of the Gulf of Finland, Baltic <span class="hlt">Sea</span>, and evidence for herbivory on weakly shade-adapted <span class="hlt">ice</span> algae.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Majaneva, Markus; Blomster, Jaanika; Müller, Susann; Autio, Riitta; Majaneva, Sanna; Hyytiäinen, Kirsi; Nagai, Satoshi; Rintala, Janne-Markus</p> <p>2017-02-01</p> <p>To determine community composition and physiological status of early spring <span class="hlt">sea-ice</span> organisms, we collected <span class="hlt">sea-ice</span>, slush and under-<span class="hlt">ice</span> water samples from the Baltic <span class="hlt">Sea</span>. We combined light microscopy, HPLC pigment analysis and pyrosequencing, and related the biomass and physiological status of <span class="hlt">sea-ice</span> algae with the protistan community composition in a new way in the area. In terms of biomass, centric diatoms including a distinct Melosira arctica bloom in the upper intermediate section of the fast <span class="hlt">ice</span>, dinoflagellates, euglenoids and the cyanobacterium Aphanizomenon sp. predominated in the <span class="hlt">sea-ice</span> sections and unidentified flagellates in the slush. Based on pigment analyses, the <span class="hlt">ice</span>-algal communities showed no adjusted photosynthetic pigment pools throughout the <span class="hlt">sea</span> <span class="hlt">ice</span>, and the bottom-<span class="hlt">ice</span> communities were not shade-adapted. The <span class="hlt">sea</span> <span class="hlt">ice</span> included more characteristic phototrophic taxa (49%) than did slush (18%) and under-<span class="hlt">ice</span> water (37%). Cercozoans and ciliates were the richest taxon groups, and the differences among the communities arose mainly from the various phagotrophic protistan taxa inhabiting the communities. The presence of pheophytin a coincided with an elevated ciliate biomass and read abundance in the drift <span class="hlt">ice</span> and with a high Eurytemora affinis read abundance in the pack <span class="hlt">ice</span>, indicating that ciliates and Eurytemora affinis were grazing on algae. Copyright © 2016 Elsevier GmbH. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02456.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02456.html"><span><span class="hlt">Sea</span>Winds Wind-<span class="hlt">Ice</span> Interaction</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-05-07</p> <p>The figure demonstrates of the capability of the <span class="hlt">Sea</span>Winds instrument on NASA QuikScat satellite in monitoring both <span class="hlt">sea</span> <span class="hlt">ice</span> and ocean surface wind, thus helping to further our knowledge in wind-<span class="hlt">ice</span> interaction and its effect on climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013FrCh....1...25N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013FrCh....1...25N"><span>Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal <span class="hlt">sea</span> <span class="hlt">ice</span>: basal <span class="hlt">sea</span> <span class="hlt">ice</span> communities as a capacitor for iron</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noble, Abigail; Saito, Mak; Moran, Dawn; Allen, Andrew</p> <p>2013-10-01</p> <p>Dissolved and particulate metal <span class="hlt">concentrations</span> are reported from three sites beneath and at the base of the McMurdo Sound seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> in the Ross <span class="hlt">Sea</span> of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the <span class="hlt">sea</span> <span class="hlt">ice</span> after the winter season. Third, dissolved Co:PO43- ratios were consistent with previously observed Ross <span class="hlt">Sea</span> stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a <span class="hlt">sea</span> <span class="hlt">ice</span> biomass source. The <span class="hlt">sea</span> <span class="hlt">ice</span> biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound <span class="hlt">sea</span> <span class="hlt">ice</span> by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the <span class="hlt">sea</span> <span class="hlt">ice</span> by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14..193B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14..193B"><span>The Ross <span class="hlt">Sea</span> Dipole - temperature, snow accumulation and <span class="hlt">sea</span> <span class="hlt">ice</span> variability in the Ross <span class="hlt">Sea</span> region, Antarctica, over the past 2700 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin</p> <p>2018-02-01</p> <p>High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated <span class="hlt">ice</span> core record from the eastern Ross <span class="hlt">Sea</span>, named the Roosevelt Island Climate Evolution (RICE) <span class="hlt">ice</span> core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross <span class="hlt">Sea</span> captured by other <span class="hlt">ice</span> cores. For most of this interval, the eastern Ross <span class="hlt">Sea</span> was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>. However, West Antarctica cooled and the western Ross <span class="hlt">Sea</span> showed no significant isotope temperature trend. This pattern here is referred to as the Ross <span class="hlt">Sea</span> Dipole. Notably, during the Little <span class="hlt">Ice</span> Age, West Antarctica and the western Ross <span class="hlt">Sea</span> experienced colder than average temperatures, while the eastern Ross <span class="hlt">Sea</span> underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross <span class="hlt">Sea</span> but increasing in the western Ross <span class="hlt">Sea</span>. We interpret this pattern as reflecting an increase in <span class="hlt">sea</span> <span class="hlt">ice</span> in the eastern Ross <span class="hlt">Sea</span> with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...166....4S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...166....4S"><span>Modelling <span class="hlt">sea</span> <span class="hlt">ice</span> formation in the Terra Nova Bay polynya</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.</p> <p>2017-02-01</p> <p> realistic polynya extent estimates. The model-derived polynya extent has been validated by comparing the modelled <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> against MODIS high resolution satellite images, confirming that the model is able to reproduce reasonably well the TNB polynya evolution in terms of both shape and extent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980021232','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980021232"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> on the Southern Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobs, Stanley S.</p> <p>1998-01-01</p> <p>Year-round satellite records of <span class="hlt">sea</span> <span class="hlt">ice</span> distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>. In the Amundsen & Bellingshausen <span class="hlt">Seas</span>, <span class="hlt">sea</span> <span class="hlt">ice</span> extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The <span class="hlt">sea</span> <span class="hlt">ice</span> decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean <span class="hlt">ice</span> thickness, with attendant impacts upon vertical heat flux and the formation of snow <span class="hlt">ice</span> and brine. The cause of the regional warming and loss of <span class="hlt">sea</span> <span class="hlt">ice</span> is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross <span class="hlt">Sea</span>, <span class="hlt">ice</span> extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of <span class="hlt">sea</span> <span class="hlt">ice</span> range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS21B0197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS21B0197M"><span>Biologically-Oriented Processes in the Coastal <span class="hlt">Sea</span> <span class="hlt">Ice</span> Zone of the White <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melnikov, I. A.</p> <p>2002-12-01</p> <p>The annual advance and retreat of <span class="hlt">sea</span> <span class="hlt">ice</span> is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. <span class="hlt">Sea</span> <span class="hlt">ice</span> biological data obtained in the tidal zone of Kandalaksha Gulf (White <span class="hlt">Sea</span>) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the <span class="hlt">ice</span>-free summer season. However, there is little information on the <span class="hlt">ice</span>-covered winter season (6-7 months duration), and, especially, on the <span class="hlt">sea-ice</span> biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast <span class="hlt">ice</span>. Trends in the annual extent of <span class="hlt">sea</span> <span class="hlt">ice</span> showed significant impacts on <span class="hlt">ice</span>-associated biological communities. Three types of <span class="hlt">sea</span> <span class="hlt">ice</span> impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when <span class="hlt">sea</span> <span class="hlt">ice</span> protects these populations from grinding (ii) negative, when <span class="hlt">ice</span> grinds both fauna and flora, and (iii) a combined effect, when fast <span class="hlt">ice</span> protects, but anchored <span class="hlt">ice</span> grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of <span class="hlt">sea</span> <span class="hlt">ice</span> melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C21D0685B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C21D0685B"><span>Influence of the <span class="hlt">sea-ice</span> edge on the Arctic nearshore environment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnhart, K. R.; Overeem, I.; Anderson, R. S.</p> <p>2013-12-01</p> <p>Coasts form the dynamic interface of the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a zone of relatively high population, infrastructure, biodiversity, and ecosystem services. A significant difference between Arctic and temperate coasts is the presence of <span class="hlt">sea</span> <span class="hlt">ice</span>. <span class="hlt">Sea</span> <span class="hlt">ice</span> influences Arctic coasts in two main ways: (1) the length of the <span class="hlt">sea</span> <span class="hlt">ice</span>-free season controls the length of time over which nearshore water can interact with the land, and (2) the <span class="hlt">sea</span> <span class="hlt">ice</span> edge controls the fetch over which storm winds can blow over open water, resulting in changes in nearshore water level and wave field. The resulting nearshore hydrodynamic environment impacts all aspects of the coastal system. Here, we use satellite records of <span class="hlt">sea</span> <span class="hlt">ice</span> along with a simple model for wind-driven storm surge and waves to document how changes in the length and character of the <span class="hlt">sea</span> <span class="hlt">ice</span>-free season have impacted the nearshore hydrodynamic environment. For our <span class="hlt">sea</span> <span class="hlt">ice</span> analysis we primarily use the Bootstrap <span class="hlt">Sea</span> <span class="hlt">Ice</span> <span class="hlt">Concentrations</span> from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. We make whole-Arctic maps of <span class="hlt">sea</span> <span class="hlt">ice</span> change in the coastal zone. In addition to evaluating changes in length of the <span class="hlt">sea</span> <span class="hlt">ice</span>-free season at the coast, we look at changes segmented by azimuth. This allows us to consider changes in the <span class="hlt">sea</span> <span class="hlt">ice</span> in the context of the wind field. For our storm surge and wave field analysis we focus on the Beaufort <span class="hlt">Sea</span> region. This region has experienced some of the greatest changes in both <span class="hlt">sea</span> <span class="hlt">ice</span> cover and coastal erosion rates in the Arctic and is anticipated to experience significant change in the future. In addition, the NOAA ESRL GMD has observed the wind field at Barrow since extends to 1977. In our past work on the rapid and accelerating coastal erosion, we have shown that one may model storm surge with a 2D numerical bathystrophic model, and that waves are well represented by the Shore Protection Manual methods for shallow-water fetch-limited waves. We use</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20601510','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20601510"><span>Proteorhodopsin-bearing bacteria in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koh, Eileen Y; Atamna-Ismaeel, Nof; Martin, Andrew; Cowie, Rebecca O M; Beja, Oded; Davy, Simon K; Maas, Elizabeth W; Ryan, Ken G</p> <p>2010-09-01</p> <p>Proteorhodopsins (PRs) are widespread bacterial integral membrane proteins that function as light-driven proton pumps. Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> supports a complex community of autotrophic algae, heterotrophic bacteria, viruses, and protists that are an important food source for higher trophic levels in <span class="hlt">ice</span>-covered regions of the Southern Ocean. Here, we present the first report of PR-bearing bacteria, both dormant and active, in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> from a series of sites in the Ross <span class="hlt">Sea</span> using gene-specific primers. Positive PR sequences were generated from genomic DNA at all depths in <span class="hlt">sea</span> <span class="hlt">ice</span>, and these sequences aligned with the classes Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. The sequences showed some similarity to previously reported PR sequences, although most of the sequences were generally distinct. Positive PR sequences were also observed from cDNA reverse transcribed from RNA isolated from <span class="hlt">sea</span> <span class="hlt">ice</span> samples. This finding indicates that these sequences were generated from metabolically active cells and suggests that the PR gene is functional within <span class="hlt">sea</span> <span class="hlt">ice</span>. Both blue-absorbing and green-absorbing forms of PRs were detected, and only a limited number of blue-absorbing forms were found and were in the midsection of the <span class="hlt">sea</span> <span class="hlt">ice</span> profile in this study. Questions still remain regarding the protein's ecological functions, and ultimately, field experiments will be needed to establish the ecological and functional role of PRs in the <span class="hlt">sea</span> <span class="hlt">ice</span> ecosystem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000220.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000220.html"><span>Polar Bears Across the Arctic Face Shorter <span class="hlt">Sea</span> <span class="hlt">Ice</span> Season</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Polar bears already face shorter <span class="hlt">ice</span> seasons - limiting prime hunting and breeding opportunities. Nineteen separate polar bear subpopulations live throughout the Arctic, spending their winters and springs roaming on <span class="hlt">sea</span> <span class="hlt">ice</span> and hunting. The bears have evolved mainly to eat seals, which provide necessary fats and nutrients in the harsh Arctic environment. Polar bears can't outswim their prey, so instead they perch on the <span class="hlt">ice</span> as a platform and ambush seals at breathing holes or break through the <span class="hlt">ice</span> to access their dens. The total number of <span class="hlt">ice</span>-covered days declined at the rate of seven to 19 days per decade between 1979 and 2014. The decline was even greater in the Barents <span class="hlt">Sea</span> and the Arctic basin. <span class="hlt">Sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> during the summer months — an important measure because summertime is when some subpopulations are forced to fast on land — also declined in all regions, by 1 percent to 9 percent per decade. Read more: go.nasa.gov/2cIZSSc Photo credit: Mario Hoppmann</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29957836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29957836"><span>Reproductive performance and diving behaviour share a common <span class="hlt">sea-ice</span> <span class="hlt">concentration</span> optimum in Adélie penguins (Pygoscelis adeliae).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Le Guen, Camille; Kato, Akiko; Raymond, Ben; Barbraud, Christophe; Beaulieu, Michaël; Bost, Charles-André; Delord, Karine; MacIntosh, Andrew J J; Meyer, Xavier; Raclot, Thierry; Sumner, Michael; Takahashi, Akinori; Thiebot, Jean-Baptiste; Ropert-Coudert, Yan</p> <p>2018-06-29</p> <p>The Southern Ocean is currently experiencing major environmental changes, including in <span class="hlt">sea-ice</span> cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco-indicators of environmental conditions in the Antarctic region. Here, based on nine years of <span class="hlt">sea-ice</span> data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate <span class="hlt">sea-ice</span> cover (ca. 20%). We further examined the effects of <span class="hlt">sea-ice</span> conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive <span class="hlt">sea-ice</span> cover. The relationship between several dive parameters and <span class="hlt">sea-ice</span> cover in the foraging area appears to be quadratic. In years of low and high <span class="hlt">sea-ice</span> cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate <span class="hlt">sea-ice</span> cover. Our study therefore suggests that <span class="hlt">sea-ice</span> cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the <span class="hlt">sea-ice</span> effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span>, Climate and Fram Strait</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunkins, K.</p> <p>1984-01-01</p> <p>When <span class="hlt">sea</span> <span class="hlt">ice</span> is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. <span class="hlt">Sea</span> <span class="hlt">ice</span> also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal <span class="hlt">Ice</span> Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the <span class="hlt">ice</span> pack in that area including the interactions between <span class="hlt">sea</span>, air and <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCD.....8.5227I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCD.....8.5227I"><span>The melt pond fraction and spectral <span class="hlt">sea</span> <span class="hlt">ice</span> albedo retrieval from MERIS data: validation and trends of <span class="hlt">sea</span> <span class="hlt">ice</span> albedo and melt pond fraction in the Arctic for years 2002-2011</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; Perovich, D.; Zege, E.; Malinka, A.; Prikhach, A.; Katsev, I.</p> <p>2014-10-01</p> <p>The presence of melt ponds on the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the <span class="hlt">sea</span> <span class="hlt">ice</span>, which has consequences on the heat balance and mass balance of <span class="hlt">sea</span> <span class="hlt">ice</span>. An algorithm to retrieve melt pond fraction and <span class="hlt">sea</span> <span class="hlt">ice</span> albedo (Zege et al., 2014) from the MEdium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, ship borne and in situ campaign data. The result show the best correlation for landfast and multiyear <span class="hlt">ice</span> of high <span class="hlt">ice</span> <span class="hlt">concentrations</span> (albedo: R = 0.92, RMS = 0.068, melt pond fraction: R = 0.6, RMS = 0.065). The correlation for lower <span class="hlt">ice</span> <span class="hlt">concentrations</span>, subpixel <span class="hlt">ice</span> floes, blue <span class="hlt">ice</span> and wet <span class="hlt">ice</span> is lower due to complicated surface conditions and <span class="hlt">ice</span> drift. Combining all aerial observations gives a mean albedo RMS equal to 0.089 and a mean melt pond fraction RMS equal to 0.22. The in situ melt pond fraction correlation is R = 0.72 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the ASPeCT protocol, which is the reason for discrepancy between the satellite value and observed value: mean R = 0.21, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and <span class="hlt">ice</span> has been developed to assist with the validation on swath data. The case studies and trend analysis for the whole MERIS period (2002-2011) show pronounced and reasonable spatial features of melt pond fractions and <span class="hlt">sea</span> <span class="hlt">ice</span> albedo. The most prominent feature is the melt onset shifting towards spring (starting already in weeks 3 and 4 of June) within the multiyear <span class="hlt">ice</span> area, north to the Queen Elizabeth Islands and North Greenland.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR31A..05O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR31A..05O"><span>A Krill's Eye View: <span class="hlt">Sea</span> <span class="hlt">Ice</span> Microstructure and Microchemistry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obbard, R. W.; Lieb-Lappen, R.</p> <p>2015-12-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> plays important roles in the marine ecosystem and our environment, and a detailed understanding of all aspects of its microstructure is especially important in this time of changing climate. For many months of the year, the <span class="hlt">ice</span> forms a permeable barrier between Polar oceans and the atmosphere, and as it freezes and melts, its microstructure evolves and changes in ways that affect other parts of that system. <span class="hlt">Sea</span> <span class="hlt">ice</span> also provides a microhabitat that is an important part of the marine ecosystem, but much remains to be learned about it on this scale. In material terms, <span class="hlt">sea</span> <span class="hlt">ice</span> is multiphase and very close to its melting point, and these properties make its microstructure particularly complex and dynamic, as well as challenging and interesting to study. We use a combination of analytical methods to achieve a very detailed understanding of <span class="hlt">sea</span> <span class="hlt">ice</span> microstructure - specifically the morphology and distribution of <span class="hlt">ice</span> crystals and brine channels. Overall porosity affects freeboard, emissivity, and optical and mechanical properties, but pore connectivity is critical to gas and fluid transport, salt flux to polar oceans, the transfer of halogens to the boundary layer troposphere, and the transport of nutrients and pollutants to microorganisms. When <span class="hlt">sea</span> <span class="hlt">ice</span> forms, salts are expelled from newly formed <span class="hlt">ice</span> crystals and <span class="hlt">concentrated</span> on grain boundaries and in brine pockets and channels. We use synchrotron-based X-ray fluorescence spectroscopy (SXRF) and scanning electron microscope-based energy dispersive spectroscopy (EDS) to map the location in two dimensions of several important salt components in <span class="hlt">sea</span> <span class="hlt">ice</span>: SXRF for bromine, chlorine, potassium, calcium and iron, EDS for these as well as some lighter elements such as sodium, magnesium, and silicon. We use X-ray microcomputed tomography (microCT) to produce three-dimensional models of brine channels and to study changes in brine network topology due to warming and cooling. Both microCT and optical thin sections provide</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044114&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044114&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Ku band airborne radar altimeter observations of marginal <span class="hlt">sea</span> <span class="hlt">ice</span> during the 1984 Marginal <span class="hlt">Ice</span> Zone Experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, Mark R.</p> <p>1991-01-01</p> <p>Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal <span class="hlt">ice</span> zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with <span class="hlt">ice</span> properties recorded during the Marginal <span class="hlt">Ice</span> Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the <span class="hlt">ice</span> edge with a high degree of accuracy, calculating the <span class="hlt">ice</span> <span class="hlt">concentration</span>, and discriminating a number of different <span class="hlt">ice</span> classes. This suggests that microwave radar altimeters have a sensitivity to <span class="hlt">sea</span> <span class="hlt">ice</span> which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the <span class="hlt">sea</span> <span class="hlt">ice</span> geophysics puzzle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19884496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19884496"><span>The future of <span class="hlt">ice</span> sheets and <span class="hlt">sea</span> <span class="hlt">ice</span>: between reversible retreat and unstoppable loss.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Notz, Dirk</p> <p>2009-12-08</p> <p>We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> and the retreat of <span class="hlt">ice</span> sheets: Once these <span class="hlt">ice</span> masses have shrunk below an anticipated critical extent, the <span class="hlt">ice</span>-albedo feedback might lead to the irreversible and unstoppable loss of the remaining <span class="hlt">ice</span>. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer <span class="hlt">sea</span> <span class="hlt">ice</span>. Hence, in a cooler climate, <span class="hlt">sea</span> <span class="hlt">ice</span> could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer <span class="hlt">sea</span> <span class="hlt">ice</span> might largely be a consequence of a slow shift in <span class="hlt">ice</span>-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer <span class="hlt">sea-ice</span> extent. This variability will render seasonal forecasts of the Arctic summer <span class="hlt">sea-ice</span> extent increasingly difficult. We also discuss why, in contrast to Arctic summer <span class="hlt">sea</span> <span class="hlt">ice</span>, a tipping point is more likely to exist for the loss of the Greenland <span class="hlt">ice</span> sheet and the West Antarctic <span class="hlt">ice</span> sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31A2081H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31A2081H"><span>Monitoring Subsurface <span class="hlt">Ice</span>-Ocean Processes Using Underwater Acoustics in the Ross <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lee, W. S.; Yun, S.</p> <p>2016-12-01</p> <p>The Ross <span class="hlt">Sea</span> is a dynamic area of <span class="hlt">ice</span>-ocean interaction, where a large component of the Southern Ocean's <span class="hlt">sea</span> <span class="hlt">ice</span> formation occurs within regional polynyas in addition to the destructive processes happening at the seaward boundary of the Ross <span class="hlt">Ice</span> Shelf. Recent studies show the <span class="hlt">sea-ice</span> season has been lengthening and the <span class="hlt">sea</span> <span class="hlt">ice</span> extent has been growing with more persistent and larger regional polynyas. These trends have important implications for the Ross <span class="hlt">Sea</span> ecosystem with polynyas supporting high rates of primary productivity in the area. Monitoring trends in <span class="hlt">sea</span> <span class="hlt">ice</span> and <span class="hlt">ice</span> shelf dynamics in the Southern Ocean has relied heavily on satellite imagery and remote sensing methods despite a significant portion of these physical processes occurring beneath the ocean surface. In January 2014, an ocean bottom hydrophone (OBH) was moored on the seafloor in the polynya area of Terra Nova Bay in the northwest region of the Ross <span class="hlt">Sea</span>, north of the Drygalski <span class="hlt">Ice</span> Tongue. The OBH recorded a year long record of the underwater low frequency acoustic spectrum up to 500 Hz from January 29 until it was recovered the following December 17, 2014. The acoustic records reveal a complex annual history of <span class="hlt">ice</span> generated signals with over 50,000 detected events. These <span class="hlt">ice</span> generated events related to collisions and cracking provide important insight for the timing and intensity of the <span class="hlt">ice</span>-ocean dynamics happening below the <span class="hlt">sea</span> surface as the polynya grows and expands and the nearby Drygalski <span class="hlt">ice</span> tongue flows into Terra Nova Bay. Additionally, high <span class="hlt">concentrations</span> of baleen whale vocalizations in frequencies ranging from 200-400 Hz from September - December suggest a strong seasonal presence of whales in this ecologically important polynya region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970009603','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970009603"><span>Polarimetric Signatures of <span class="hlt">Sea</span> <span class="hlt">Ice</span>. Part 1; Theoretical Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.</p> <p>1995-01-01</p> <p>Physical, structural, and electromagnetic properties and interrelating processes in <span class="hlt">sea</span> <span class="hlt">ice</span> are used to develop a composite model for polarimetric backscattering signatures of <span class="hlt">sea</span> <span class="hlt">ice</span>. Physical properties of <span class="hlt">sea</span> <span class="hlt">ice</span> constituents such as <span class="hlt">ice</span>, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. <span class="hlt">Sea</span> <span class="hlt">ice</span> structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in <span class="hlt">sea</span> <span class="hlt">ice</span>, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of <span class="hlt">sea</span> <span class="hlt">ice</span> depend on crystal sizes and brine volumes, which are affected by <span class="hlt">ice</span> growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. <span class="hlt">Sea</span> <span class="hlt">ice</span> signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing <span class="hlt">sea</span> <span class="hlt">ice</span>, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of <span class="hlt">sea</span> <span class="hlt">ice</span> polarimetric signatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.9761D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.9761D"><span>Modulation of the Seasonal Cycle of Antarctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Extent Related to the Southern Annular Mode</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doddridge, Edward W.; Marshall, John</p> <p>2017-10-01</p> <p>Through analysis of remotely sensed <span class="hlt">sea</span> surface temperature (SST) and <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> data, we investigate the impact of winds related to the Southern Annular Mode (SAM) on <span class="hlt">sea</span> <span class="hlt">ice</span> extent around Antarctica. We show that positive SAM anomalies in the austral summer are associated with anomalously cold SSTs that persist and lead to anomalous <span class="hlt">ice</span> growth in the following autumn, while negative SAM anomalies precede warm SSTs and a reduction in <span class="hlt">sea</span> <span class="hlt">ice</span> extent during autumn. The largest effect occurs in April, when a unit change in the detrended summertime SAM is followed by a 1.8±0.6 ×105 km2 change in detrended <span class="hlt">sea</span> <span class="hlt">ice</span> extent. We find no evidence that <span class="hlt">sea</span> <span class="hlt">ice</span> extent anomalies related to the summertime SAM affect the wintertime <span class="hlt">sea</span> <span class="hlt">ice</span> extent maximum. Our analysis shows that the wind anomalies related to the negative SAM during the 2016/2017 austral summer contributed to the record minimum Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent observed in March 2017.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013478','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013478"><span>Variability and Anomalous Trends in the Global <span class="hlt">Sea</span> <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2012-01-01</p> <p> MODIS, AMSR-E and SSM/I data reveal that the <span class="hlt">sea</span> <span class="hlt">ice</span> production rate at the coastal polynyas along the Ross <span class="hlt">Ice</span> Shelf has been increasing since 1992. This also means that the salinization rate and the formation of bottom water in the region are going up as well. Simulation studies indicate that the stronger production rate is likely associated with the ozone hole that has caused a deepening of the lows in the West Antarctic region and therefore stronger winds off the Ross <span class="hlt">Ice</span> Shelf. Stronger winds causes larger coastal polynyas near the shelf and hence an enhanced <span class="hlt">ice</span> production in the region during the autumn and winter period. Results of analysis of temperature data from MODIS and AMSR-E shows that the area and <span class="hlt">concentration</span> of the <span class="hlt">sea</span> <span class="hlt">ice</span> cover are highly correlated with surface temperature for both the Arctic and Antarctic, especially in the seasonal regions where the correlation coefficients are about 0.9. Abnormally high <span class="hlt">sea</span> surface temperatures (SSTs) and surface <span class="hlt">ice</span> temperatures (SITs) were also observed in 2007 and 2011when drastic reductions in the summer <span class="hlt">ice</span> cover occurred, This phenomenon is consistent with the expected warming of the upper layer of the Arctic Ocean on account of <span class="hlt">ice</span>-albedo feedback. Changes in atmospheric circulation are also expected to have a strong influence on the <span class="hlt">sea</span> <span class="hlt">ice</span> cover but the results of direct correlation analyses of the <span class="hlt">sea</span> <span class="hlt">ice</span> cover with the Northern and the Southern Annular Mode indices show relatively weak correlations, This might be due in part to the complexity of the dynamics of the system that can be further altered by some phenomena like the Antarctic Circumpolar Wave and extra polar processes like the El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (POD),</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..473M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..473M"><span>Isolating the Liquid Cloud Response to Recent Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Variability Using Spaceborne Lidar Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.</p> <p>2018-01-01</p> <p>While the radiative influence of clouds on Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is known, the influence of <span class="hlt">sea</span> <span class="hlt">ice</span> cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between <span class="hlt">sea</span> <span class="hlt">ice</span> cover and Arctic clouds is important for predicting the rate of future <span class="hlt">sea</span> <span class="hlt">ice</span> loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over <span class="hlt">sea</span> <span class="hlt">ice</span> and over open water. Using a novel surface mask to restrict our analysis to where <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> varies, we isolate the influence of <span class="hlt">sea</span> <span class="hlt">ice</span> cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for <span class="hlt">sea</span> <span class="hlt">ice</span> melt and growth. Summer is the only season with no observed cloud response to <span class="hlt">sea</span> <span class="hlt">ice</span> cover variability: liquid cloud profiles are nearly identical over <span class="hlt">sea</span> <span class="hlt">ice</span> and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer <span class="hlt">sea</span> <span class="hlt">ice</span> loss. In contrast, more liquid clouds are observed over open water than over <span class="hlt">sea</span> <span class="hlt">ice</span> in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall <span class="hlt">sea</span> <span class="hlt">ice</span> loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013QSRv...64...33I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013QSRv...64...33I"><span>The Svalbard-Barents <span class="hlt">Sea</span> <span class="hlt">ice</span>-sheet - Historical, current and future perspectives</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ingólfsson, Ólafur; Landvik, Jon Y.</p> <p>2013-03-01</p> <p>The history of research on the Late Quaternary Svalbard-Barents <span class="hlt">Sea</span> <span class="hlt">ice</span> sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the <span class="hlt">Ice</span> Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents <span class="hlt">sea</span> <span class="hlt">ice</span> sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major <span class="hlt">ice</span> sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents <span class="hlt">Sea</span> <span class="hlt">ice</span> sheet has changed. The first reconstructions depicted it as a static, <span class="hlt">concentric</span>, single-domed <span class="hlt">ice</span> sheet, with <span class="hlt">ice</span> flowing from an <span class="hlt">ice</span> divide over the central northern Barents <span class="hlt">Sea</span> that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere <span class="hlt">ice</span> sheets. We now increasingly perceive it as a very dynamic, multidomed <span class="hlt">ice</span> sheet, controlled by climate fluctuations, relative <span class="hlt">sea</span>-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents <span class="hlt">Sea</span> <span class="hlt">ice</span> sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based <span class="hlt">ice</span> sheets build-up and decay.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE34A1465J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE34A1465J"><span>Mobile, stationary and mixed phase tracers: consequences to <span class="hlt">sea</span> <span class="hlt">ice</span> biogeochemistry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeffery, N.; Elliott, S.; Hunke, E. C.; Deal, C.; Jin, M.</p> <p>2016-02-01</p> <p>Models of brine motion in <span class="hlt">sea</span> <span class="hlt">ice</span> have offered mechanisms for transporting biogeochemical compounds vertically within the <span class="hlt">ice</span> and between the <span class="hlt">ice</span>-ocean interface. In these models, <span class="hlt">sea</span> <span class="hlt">ice</span> microstructure and/or gross physical properties determine the resupply of nitrate, for example, to sympagic algae and that resupply, in large part, constrains <span class="hlt">sea</span> <span class="hlt">ice</span> primary production. The assumption of brine transport models is that the transported matter exists in a purely mobile phase within the <span class="hlt">ice</span> brine channels. As a result, non-reacting, mobile phase tracers evolve like salinity in dynamic <span class="hlt">sea</span> <span class="hlt">ice</span>. Field and laboratory observations indicate that this is a good approximation for the primary algal macronutrients - nitrate, silicate and phosphate, but clear deviations are evident for ammonium, micronutrients such as iron, humic substances, algal bi-products such as gels and extracellular polysaccharides, and the algae themselves. This wide range of biogeochemical matter resists brine motion and is present in both the mobile and stationary phases, i.e. these tracers are "mixed" with respect to their transport phases. Although the precise mechanism for this resistance may be due to attachment by frustules, "stickiness" of the material surface, adsorption, or, in the case of microorganisms, active motility, a key common element in all cases is the presence of the <span class="hlt">ice</span> matrix. In this presentation we investigate the consequences of mixed phase tracers in <span class="hlt">sea</span> <span class="hlt">ice</span> on algal <span class="hlt">concentrations</span>, vertical distributions, and the potential accumulation of biogeochemical matter within the <span class="hlt">ice</span>. We assume that <span class="hlt">sea</span> <span class="hlt">ice</span> growth promotes retention to the stationary phase, while melt and the disintegration of the <span class="hlt">ice</span> matrix promotes release into the mobile phase. By varying the retention and release timescales of this formulation, we retrieve the purely mobile and maximal accumulation limits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..343G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..343G"><span>Estimation of degree of <span class="hlt">sea</span> <span class="hlt">ice</span> ridging based on dual-polarized C-band SAR data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni</p> <p>2018-01-01</p> <p>For ship navigation in the Baltic <span class="hlt">Sea</span> <span class="hlt">ice</span>, parameters such as <span class="hlt">ice</span> edge, <span class="hlt">ice</span> <span class="hlt">concentration</span>, <span class="hlt">ice</span> thickness and degree of ridging are usually reported daily in manually prepared <span class="hlt">ice</span> charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual <span class="hlt">ice</span> charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of <span class="hlt">ice</span> ridging in the Baltic <span class="hlt">Sea</span> region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> information extracted from Finnish <span class="hlt">ice</span> charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized <span class="hlt">ice</span> charts. The overall agreement between the <span class="hlt">ice</span>-chart-based degree of <span class="hlt">ice</span> ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of <span class="hlt">ice</span> ridging reported in the <span class="hlt">ice</span> charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> regime in the Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> Drift Monitoring in the Bohai <span class="hlt">Sea</span> Based on GF4 Satellite</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.</p> <p>2018-04-01</p> <p>The Bohai <span class="hlt">Sea</span> is the inland <span class="hlt">sea</span> with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai <span class="hlt">Sea</span> due to frequent cold wave influx. According to historical records, there have been three serious <span class="hlt">ice</span> packs in the Bohai <span class="hlt">Sea</span> in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of <span class="hlt">sea</span> <span class="hlt">ice</span> and <span class="hlt">sea</span> <span class="hlt">ice</span> in the Bohai <span class="hlt">Sea</span>. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor <span class="hlt">sea</span> <span class="hlt">ice</span> drift and calculate the speed and direction of <span class="hlt">sea</span> <span class="hlt">ice</span> drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of <span class="hlt">sea</span> <span class="hlt">ice</span> drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor <span class="hlt">sea</span> <span class="hlt">ice</span> drift and can be used for drift monitoring of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Bohai <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28025300','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28025300"><span>Linking scales in <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weiss, Jérôme; Dansereau, Véronique</p> <p>2017-02-13</p> <p>Mechanics plays a key role in the evolution of the <span class="hlt">sea</span> <span class="hlt">ice</span> cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on <span class="hlt">ice</span> thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline <span class="hlt">ice</span>, however characterized by a small correlation length, below the <span class="hlt">ice</span> thickness scale. Conversely, the <span class="hlt">sea</span> <span class="hlt">ice</span> mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the <span class="hlt">sea</span> <span class="hlt">ice</span> cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws.This article is part of the themed issue 'Microdynamics of <span class="hlt">ice</span>'. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSPTA.37550352W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSPTA.37550352W"><span>Linking scales in <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weiss, Jérôme; Dansereau, Véronique</p> <p>2017-02-01</p> <p>Mechanics plays a key role in the evolution of the <span class="hlt">sea</span> <span class="hlt">ice</span> cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on <span class="hlt">ice</span> thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline <span class="hlt">ice</span>, however characterized by a small correlation length, below the <span class="hlt">ice</span> thickness scale. Conversely, the <span class="hlt">sea</span> <span class="hlt">ice</span> mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the <span class="hlt">sea</span> <span class="hlt">ice</span> cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of <span class="hlt">ice</span>'.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2791593','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2791593"><span>The future of <span class="hlt">ice</span> sheets and <span class="hlt">sea</span> <span class="hlt">ice</span>: Between reversible retreat and unstoppable loss</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Notz, Dirk</p> <p>2009-01-01</p> <p>We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> and the retreat of <span class="hlt">ice</span> sheets: Once these <span class="hlt">ice</span> masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining <span class="hlt">ice</span>. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer <span class="hlt">sea</span> <span class="hlt">ice</span>. Hence, in a cooler climate, <span class="hlt">sea</span> <span class="hlt">ice</span> could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer <span class="hlt">sea</span> <span class="hlt">ice</span> might largely be a consequence of a slow shift in <span class="hlt">ice</span>-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer <span class="hlt">sea-ice</span> extent. This variability will render seasonal forecasts of the Arctic summer <span class="hlt">sea-ice</span> extent increasingly difficult. We also discuss why, in contrast to Arctic summer <span class="hlt">sea</span> <span class="hlt">ice</span>, a tipping point is more likely to exist for the loss of the Greenland <span class="hlt">ice</span> sheet and the West Antarctic <span class="hlt">ice</span> sheet. PMID:19884496</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.488...36L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.488...36L"><span>Precession and atmospheric CO2 modulated variability of <span class="hlt">sea</span> <span class="hlt">ice</span> in the central Okhotsk <span class="hlt">Sea</span> since 130,000 years ago</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo, Li; Belt, Simon T.; Lattaud, Julie; Friedrich, Tobias; Zeeden, Christian; Schouten, Stefan; Smik, Lukas; Timmermann, Axel; Cabedo-Sanz, Patricia; Huang, Jyh-Jaan; Zhou, Liping; Ou, Tsong-Hua; Chang, Yuan-Pin; Wang, Liang-Chi; Chou, Yu-Min; Shen, Chuan-Chou; Chen, Min-Te; Wei, Kuo-Yen; Song, Sheng-Rong; Fang, Tien-Hsi; Gorbarenko, Sergey A.; Wang, Wei-Lung; Lee, Teh-Quei; Elderfield, Henry; Hodell, David A.</p> <p>2018-04-01</p> <p>Recent reduction in high-latitude <span class="hlt">sea</span> <span class="hlt">ice</span> extent demonstrates that <span class="hlt">sea</span> <span class="hlt">ice</span> is highly sensitive to external and internal radiative forcings. In order to better understand <span class="hlt">sea</span> <span class="hlt">ice</span> system responses to external orbital forcing and internal oscillations on orbital timescales, here we reconstruct changes in <span class="hlt">sea</span> <span class="hlt">ice</span> extent and summer <span class="hlt">sea</span> surface temperature (SSST) over the past 130,000 yrs in the central Okhotsk <span class="hlt">Sea</span>. We applied novel organic geochemical proxies of <span class="hlt">sea</span> <span class="hlt">ice</span> (IP25), SSST (TEX86L) and open water marine productivity (a tri-unsaturated highly branched isoprenoid and biogenic opal) to marine sediment core MD01-2414 (53°11.77‧N, 149°34.80‧E, water depth 1123 m). To complement the proxy data, we also carried out transient Earth system model simulations and sensitivity tests to identify contributions of different climatic forcing factors. Our results show that the central Okhotsk <span class="hlt">Sea</span> was <span class="hlt">ice</span>-free during Marine Isotope Stage (MIS) 5e and the early-mid Holocene, but experienced variable <span class="hlt">sea</span> <span class="hlt">ice</span> cover during MIS 2-4, consistent with intervals of relatively high and low SSST, respectively. Our data also show that the <span class="hlt">sea</span> <span class="hlt">ice</span> extent was governed by precession-dominated insolation changes during intervals of atmospheric CO2 <span class="hlt">concentrations</span> ranging from 190 to 260 ppm. However, the proxy record and the model simulation data show that the central Okhotsk <span class="hlt">Sea</span> was near <span class="hlt">ice</span>-free regardless of insolation forcing throughout the penultimate interglacial, and during the Holocene, when atmospheric CO2 was above ∼260 ppm. Past <span class="hlt">sea</span> <span class="hlt">ice</span> conditions in the central Okhotsk <span class="hlt">Sea</span> were therefore strongly modulated by both orbital-driven insolation and CO2-induced radiative forcing during the past glacial/interglacial cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea"><span>Variability and Trends in the Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Cover: Results from Different Techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert</p> <p>2017-01-01</p> <p>Variability and trend studies of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and <span class="hlt">Sea</span> <span class="hlt">Ice</span> Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover. All four provide generally similar <span class="hlt">ice</span> patterns but significant disagreements in <span class="hlt">ice</span> <span class="hlt">concentration</span> distributions especially in the marginal <span class="hlt">ice</span> zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new <span class="hlt">ice</span> and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover. Hadley and NT1 data usually provide the highest and lowest monthly <span class="hlt">ice</span> extents, respectively. The Hadley data also show the lowest trends in <span class="hlt">ice</span> extent and <span class="hlt">ice</span> area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents <span class="hlt">Sea</span> and Beaufort <span class="hlt">Sea</span> regions, where <span class="hlt">sea</span> <span class="hlt">ice</span> has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11884754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11884754"><span>Antarctic krill under <span class="hlt">sea</span> <span class="hlt">ice</span>: elevated abundance in a narrow band just south of <span class="hlt">ice</span> edge.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn</p> <p>2002-03-08</p> <p>We surveyed Antarctic krill (Euphausia superba) under <span class="hlt">sea</span> <span class="hlt">ice</span> using the autonomous underwater vehicle Autosub-2. Krill were <span class="hlt">concentrated</span> within a band under <span class="hlt">ice</span> between 1 and 13 kilometers south of the <span class="hlt">ice</span> edge. Within this band, krill densities were fivefold greater than that of open water. The under-<span class="hlt">ice</span> environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under <span class="hlt">ice</span> over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under <span class="hlt">ice</span> reaching 27 kilometers beyond the <span class="hlt">ice</span> edge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27670112','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27670112"><span>Microbial mercury methylation in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W</p> <p>2016-08-01</p> <p>Atmospheric deposition of mercury onto <span class="hlt">sea</span> <span class="hlt">ice</span> and circumpolar <span class="hlt">sea</span> water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, <span class="hlt">sea</span> <span class="hlt">ice</span> and <span class="hlt">sea</span> water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within <span class="hlt">sea</span> <span class="hlt">ice</span>. Anaerobic bacteria known to methylate mercury were notably absent from <span class="hlt">sea-ice</span> metagenomes. We propose that Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> can harbour a microbial source of methylmercury in the Southern Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5599042-airborne-gravity-measurement-over-sea-ice-western-weddel-sea','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5599042-airborne-gravity-measurement-over-sea-ice-western-weddel-sea"><span>Airborne gravity measurement over <span class="hlt">sea-ice</span>: The western Weddel <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brozena, J.; Peters, M.; LaBrecque, J.</p> <p>1990-10-01</p> <p>An airborne gravity study of the western Weddel <span class="hlt">Sea</span>, east of the Antarctic Peninsula, has shown that floating pack-<span class="hlt">ice</span> provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the <span class="hlt">sea-ice</span> covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant <span class="hlt">sea-ice</span> is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the <span class="hlt">sea-ice</span> reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-<span class="hlt">ice</span> surface closely approximates that of the mean <span class="hlt">sea</span>-level surface at wavelengths > 10-20 km. With the airborne method the percentage of <span class="hlt">ice</span> coverage, the mixture of first and multi-year <span class="hlt">ice</span> and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the <span class="hlt">ice</span> is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell <span class="hlt">Sea</span> are observed in the gravity map.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9548T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9548T"><span>Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell <span class="hlt">Sea</span> <span class="hlt">Ice</span> Pack</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack <span class="hlt">ice</span> in the Weddell <span class="hlt">Sea</span> (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm <span class="hlt">sea</span> <span class="hlt">ice</span> cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high <span class="hlt">ice</span> permeability and cyclic events of brine movements within the <span class="hlt">sea</span> <span class="hlt">ice</span> cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) <span class="hlt">concentrations</span>. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale <span class="hlt">sea</span> <span class="hlt">ice</span> model simulations also suggest a context of increasingly deep snow, warm <span class="hlt">ice</span>, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> conditions, characterized by a longer <span class="hlt">ice</span> season, thicker, and more <span class="hlt">concentrated</span> <span class="hlt">ice</span> are sufficient to increase the snow depth and, somehow counterintuitively, to warm the <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESSD....6..367L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESSD....6..367L"><span><span class="hlt">Sea</span> <span class="hlt">ice</span> in the Baltic <span class="hlt">Sea</span> - revisiting BASIS <span class="hlt">ice</span>, a historical data set covering the period 1960/1961-1978/1979</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Dietze, H.</p> <p>2014-12-01</p> <p>The Baltic <span class="hlt">Sea</span> is a seasonally <span class="hlt">ice</span>-covered, marginal <span class="hlt">sea</span> in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by <span class="hlt">sea</span> <span class="hlt">ice</span>, the local weather services have been monitoring <span class="hlt">sea</span> <span class="hlt">ice</span> conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961 to 1978/1979. This data set, dubbed Data Bank for Baltic <span class="hlt">Sea</span> <span class="hlt">Ice</span> and <span class="hlt">Sea</span> Surface Temperatures (BASIS) <span class="hlt">ice</span>, is based on hand-drawn maps that were collected and then digitised in 1981 in a joint project of the Finnish Institute of Marine Research (today the Finnish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS <span class="hlt">ice</span> was designed for storage on punch cards and all <span class="hlt">ice</span> information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard <span class="hlt">ice</span> quantities (including information on <span class="hlt">ice</span> types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical <span class="hlt">ice</span> models and provide easy-to-access unique historical reference material for <span class="hlt">sea</span> <span class="hlt">ice</span> in the Baltic <span class="hlt">Sea</span>. In addition we provide statistics showcasing the data quality. The website http://www.baltic-ocean.org hosts the post-processed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science, PANGAEA (doi:10.1594/PANGAEA.832353).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000837.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000837.html"><span><span class="hlt">Sea</span> <span class="hlt">ice</span> around Ostrov Sakhalin, eastern Russia</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Located off the east coast of Russia, the <span class="hlt">Sea</span> of Okhotsk stretches down to 45 degrees North latitude, and <span class="hlt">sea</span> <span class="hlt">ice</span> forms regularly in the basin. In fact, it is the lowest latitude for seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> formation in the world. On January 4, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the <span class="hlt">ice</span>-covered <span class="hlt">Sea</span> of Okhotsk. Every winter, winds from East Siberia, frigid air temperatures, and a large amount of freshwater flowing out from rivers promote the formation of <span class="hlt">sea</span> <span class="hlt">ice</span> in the region. Much of the freshwater comes from the Amur River, one of the ten longest rivers in the world. From year to year, variations in temperature and wind speed can cause large fluctuations in <span class="hlt">sea</span> <span class="hlt">ice</span> extent. The <span class="hlt">sea</span> spans more than 1,500,000 square kilometers (600,000 square miles), and <span class="hlt">ice</span> cover can spread across 50 to 90 percent of it at its annual peak. On average, that <span class="hlt">ice</span> persists for 180 days. According to research published in 2014, the region's <span class="hlt">sea</span> <span class="hlt">ice</span> has been decreasing over a 34-year period. Annual <span class="hlt">ice</span> production in the <span class="hlt">Sea</span> of Okhotsk dropped by more than 11 percent from 1974 to 2008. The researchers suggest that this decline has, at least in part, "led to weakening of the overturning in the North Pacific." Water with less <span class="hlt">sea</span> <span class="hlt">ice</span> is fresher, less dense, and unable to sink and circulate as well as salty, dense water. A weakened circulation in the North Pacific has implications for the supply of nutrients, such as iron, that affect biological productivity. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160010671&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160010671&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea"><span>Covariance Between Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> and Clouds Within Atmospheric State Regimes at the Satellite Footprint Level</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming</p> <p>2015-01-01</p> <p>Understanding the cloud response to <span class="hlt">sea</span> <span class="hlt">ice</span> change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of <span class="hlt">sea</span> <span class="hlt">ice</span>-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between <span class="hlt">sea</span> <span class="hlt">ice</span> and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more <span class="hlt">sea</span> <span class="hlt">ice</span>. The largest-magnitude cloud-<span class="hlt">sea</span> <span class="hlt">ice</span> covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27818851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27818851"><span>Covariance between Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> and clouds within atmospheric state regimes at the satellite footprint level.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taylor, Patrick C; Kato, Seiji; Xu, Kuan-Man; Cai, Ming</p> <p>2015-12-27</p> <p>Understanding the cloud response to <span class="hlt">sea</span> <span class="hlt">ice</span> change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of <span class="hlt">sea</span> <span class="hlt">ice</span>-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between <span class="hlt">sea</span> <span class="hlt">ice</span> and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more <span class="hlt">sea</span> <span class="hlt">ice</span>. The largest-magnitude cloud-<span class="hlt">sea</span> <span class="hlt">ice</span> covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040035786&hterms=ships+location&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dships%2Blocation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040035786&hterms=ships+location&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dships%2Blocation"><span>Studies of the Antarctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Edges and <span class="hlt">Ice</span> Extents from Satellite and Ship Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Worby, Anthony P.; Comiso, Josefino C.</p> <p>2003-01-01</p> <p>Passive-microwave derived <span class="hlt">ice</span> edge locations in Antarctica are assessed against other satellite data as well as in situ observations of <span class="hlt">ice</span> edge location made between 1989 and 2000. The passive microwave data generally agree with satellite and ship data but the <span class="hlt">ice</span> <span class="hlt">concentration</span> at the observed <span class="hlt">ice</span> edge varies greatly with averages of 14% for the TEAM algorithm and 19% for the Bootstrap algorithm. The comparisons of passive microwave with the field data show that in the <span class="hlt">ice</span> growth season (March - October) the agreement is extremely good, with r(sup 2) values of 0.9967 and 0.9797 for the Bootstrap and TEAM algorithms respectively. In the melt season however (November - February) the passive microwave <span class="hlt">ice</span> edge is typically 1-2 degrees south of the observations due to the low <span class="hlt">concentration</span> and saturated nature of the <span class="hlt">ice</span>. Sensitivity studies show that these results can have significant impact on trend and mass balance studies of the <span class="hlt">sea</span> <span class="hlt">ice</span> cover in the Southern Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41A0425S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41A0425S"><span>Precipitation Impacts of a Shrinking Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.</p> <p>2009-12-01</p> <p>Since the beginning of the modern satellite record in October 1978, the extent of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> has declined in all months, with the strongest downward trend at the end of the melt season in September. Recently the September trends have accelerated. Through 2001, the extent of September <span class="hlt">sea</span> <span class="hlt">ice</span> was decreasing at a rate of -7 per cent per decade. By 2006, the rate of decrease had risen to -8.9 per cent per decade. In September 2007, Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent fell to its lowest level recorded, 23 per cent below the previous record set in 2005, boosting the downward trend to -10.7 per cent per decade. <span class="hlt">Ice</span> extent in September 2008 was the second lowest in the satellite record. Including 2008, the trend in September <span class="hlt">sea</span> <span class="hlt">ice</span> extent stands at -11.8 percent per decade. Compared to the 1970s, September <span class="hlt">ice</span> extent has retreated by 40 per cent. Summer 2009 looks to repeat the anomalously low <span class="hlt">ice</span> conditions that characterized the last couple of years. Scientists have long expected that a shrinking Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover will lead to strong warming of the overlying atmosphere, and as a result, affect atmospheric circulation and precipitation patterns. Recent results show clear evidence of Arctic warming linked to declining <span class="hlt">ice</span> extent, yet observational evidence for responses of atmospheric circulation and precipitation patterns is just beginning to emerge. Rising air temperatures should lead to an increase in the moisture holding capacity of the atmosphere, with the potential to impact autumn precipitation. Although climate models predict a hemispheric wide decrease in snow cover as atmospheric <span class="hlt">concentrations</span> of GHGs increase, increased precipitation, particular in autumn and winter may result as the Arctic transitions towards a seasonally <span class="hlt">ice</span> free state. In this study we use atmospheric reanalysis data and a cyclone tracking algorithm to investigate the influence of recent extreme <span class="hlt">ice</span> loss years on precipitation patterns in the Arctic and the Northern Hemisphere. Results show</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817781A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817781A"><span>Providing Real-time <span class="hlt">Sea</span> <span class="hlt">Ice</span> Modeling Support to the U.S. Coast Guard</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allard, Richard; Dykes, James; Hebert, David; Posey, Pamela; Rogers, Erick; Wallcraft, Alan; Phelps, Michael; Smedstad, Ole Martin; Wang, Shouping; Geiszler, Dan</p> <p>2016-04-01</p> <p>The Naval Research Laboratory (NRL) supported the U.S. Coast Guard Research Development Center (RDC) through a demonstration project during the summer and autumn of 2015. Specifically, a modeling system composed of a mesoscale atmospheric model, regional <span class="hlt">sea</span> <span class="hlt">ice</span> model, and regional wave model were loosely coupled to provide real-time 72-hr forecasts of environmental conditions for the Beaufort/Chukchi <span class="hlt">Seas</span>. The system components included a 2-km regional Community <span class="hlt">Ice</span> CodE (CICE) <span class="hlt">sea</span> <span class="hlt">ice</span> model, 15-km Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model, and a 5-km regional WAVEWATCH III wave model. The wave model utilized modeled <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> fields to incorporate the effects of <span class="hlt">sea</span> <span class="hlt">ice</span> on waves. The other modeling components assimilated atmosphere, ocean, and <span class="hlt">ice</span> observations available from satellite and in situ sources. The modeling system generated daily 72-hr forecasts of synoptic weather (including visibility), <span class="hlt">ice</span> drift, <span class="hlt">ice</span> thickness, <span class="hlt">ice</span> <span class="hlt">concentration</span> and <span class="hlt">ice</span> strength for missions within the economic exclusion zone off the coast of Alaska and a transit to the North Pole in support of the National Science Foundation GEOTRACES cruise. Model forecasts graphics were shared on a common web page with selected graphical products made available via ftp for bandwidth limited users. Model <span class="hlt">ice</span> thickness and <span class="hlt">ice</span> drift show very good agreement compared with Cold Regions Research and Engineering Laboratory (CRREL) <span class="hlt">Ice</span> Mass Balance buoys. This demonstration served as a precursor to a fully coupled atmosphere-ocean-wave-<span class="hlt">ice</span> modeling system under development. National <span class="hlt">Ice</span> Center (NIC) analysts used these model data products (CICE and COAMPS) along with other existing model and satellite data to produce the predicted 48-hr position of the <span class="hlt">ice</span> edge. The NIC served as a liaison with the RDC and NRL to provide feedback on the model predictions. This evaluation provides a baseline analysis of the current models for future comparison studies</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005812&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005812&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea"><span>Bellingshausen <span class="hlt">Sea</span> <span class="hlt">Ice</span> Extent Recorded in an Antarctic Peninsula <span class="hlt">Ice</span> Core</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Porter, Stacy E.; Parkinson, Claire L.; Mosley-Thompson, Ellen</p> <p>2016-01-01</p> <p>Annual net accumulation (A(sub n)) from the Bruce Plateau (BP) <span class="hlt">ice</span> core retrieved from the Antarctic Peninsula exhibits a notable relationship with <span class="hlt">sea</span> <span class="hlt">ice</span> extent (SIE) in the Bellingshausen <span class="hlt">Sea</span>. Over the satellite era, both BP A(sub n) and Bellingshausen SIE are influenced by large-scale climatic factors such as the Amundsen <span class="hlt">Sea</span> Low, Southern Annular Mode, and Southern Oscillation. In addition to the direct response of BP A(sub n) to Bellingshausen SIE (e.g., more open water as a moisture source), these large-scale climate phenomena also link the BP and the Bellingshausen <span class="hlt">Sea</span> indirectly such that they exhibit similar responses (e.g., northerly wind anomalies advect warm, moist air to the Antarctic Peninsula and neighboring Bellingshausen <span class="hlt">Sea</span>, which reduces SIE and increases A(sub n)). Comparison with a time series of fast <span class="hlt">ice</span> at South Orkney Islands reveals a relationship between BP A(sub n) and <span class="hlt">sea</span> <span class="hlt">ice</span> in the northern Weddell <span class="hlt">Sea</span> that is relatively consistent over the twentieth century, except when it is modulated by atmospheric wave patterns described by the Trans-Polar Index. The trend of increasing accumulation on the Bruce Plateau since approximately 1970 agrees with other climate records and reconstructions in the region and suggests that the current rate of <span class="hlt">sea</span> <span class="hlt">ice</span> loss in the Bellingshausen <span class="hlt">Sea</span> is unrivaled in the twentieth century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoRL..35.8501D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoRL..35.8501D"><span>Calcium carbonate as ikaite crystals in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dieckmann, Gerhard S.; Nehrke, Gernot; Papadimitriou, Stathys; Göttlicher, Jörg; Steininger, Ralph; Kennedy, Hilary; Wolf-Gladrow, Dieter; Thomas, David N.</p> <p>2008-04-01</p> <p>We report on the discovery of the mineral ikaite (CaCO3.6H2O) in <span class="hlt">sea-ice</span> from the Southern Ocean. The precipitation of CaCO3 during the freezing of seawater has previously been predicted from thermodynamic modelling, indirect measurements, and has been documented in artificial <span class="hlt">sea</span> <span class="hlt">ice</span> during laboratory experiments but has not been reported for natural <span class="hlt">sea-ice</span>. It is assumed that CaCO3 formation in <span class="hlt">sea</span> <span class="hlt">ice</span> may be important for a <span class="hlt">sea</span> <span class="hlt">ice</span>-driven carbon pump in <span class="hlt">ice</span>-covered oceanic waters. Without direct evidence of CaCO3 precipitation in <span class="hlt">sea</span> <span class="hlt">ice</span>, its role in this and other processes has remained speculative. The discovery of CaCO3.6H2O crystals in natural <span class="hlt">sea</span> <span class="hlt">ice</span> provides the necessary evidence for the evaluation of previous assumptions and lays the foundation for further studies to help elucidate the role of ikaite in the carbon cycle of the seasonally <span class="hlt">sea</span> <span class="hlt">ice</span>-covered regions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026115','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026115"><span>The role of <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics in global climate change</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hibler, William D., III</p> <p>1992-01-01</p> <p>The topics covered include the following: general characteristics of <span class="hlt">sea</span> <span class="hlt">ice</span> drift; <span class="hlt">sea</span> <span class="hlt">ice</span> rheology; <span class="hlt">ice</span> thickness distribution; <span class="hlt">sea</span> <span class="hlt">ice</span> thermodynamic models; equilibrium thermodynamic models; effect of internal brine pockets and snow cover; model simulations of Arctic <span class="hlt">Sea</span> <span class="hlt">ice</span>; and sensitivity of <span class="hlt">sea</span> <span class="hlt">ice</span> models to climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4193S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4193S"><span>Trend analysis of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição</p> <p>2009-04-01</p> <p>The extent of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by <span class="hlt">ice</span> in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent will decline through the 21st century as a consequence of global warming and many studies predict a <span class="hlt">ice</span> free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>. Much of the analysis of the <span class="hlt">ice</span> extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the <span class="hlt">sea</span> <span class="hlt">ice</span> extent time series available at National Snow and <span class="hlt">Ice</span> Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21A0651T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21A0651T"><span>Online <span class="hlt">Sea</span> <span class="hlt">Ice</span> Knowledge and Data Platform: www.seaiceportal.de</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treffeisen, R. E.; Nicolaus, M.; Bartsch, A.; Fritzsch, B.; Grosfeld, K.; Haas, C.; Hendricks, S.; Heygster, G.; Hiller, W.; Krumpen, T.; Melsheimer, C.; Nicolaus, A.; Ricker, R.; Weigelt, M.</p> <p>2016-12-01</p> <p>There is an increasing public interest in <span class="hlt">sea</span> <span class="hlt">ice</span> information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on <span class="hlt">sea</span> <span class="hlt">ice</span> and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archived data of many key parameters of <span class="hlt">sea</span> <span class="hlt">ice</span> and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations (e.g., AMSR2, CryoSat-2 and SMOS) of <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>, freeboard, thickness and drift are available as gridded data sets. <span class="hlt">Sea</span> <span class="hlt">ice</span> and snow temperatures and thickness as well as atmospheric parameters are available from autonomous <span class="hlt">ice</span>-tethered platforms (buoys). Additional ship observations, <span class="hlt">ice</span> station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on <span class="hlt">sea</span> <span class="hlt">ice</span> and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback and are open for potential new partners.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0754M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0754M"><span>Coordinated Mapping of <span class="hlt">Sea</span> <span class="hlt">Ice</span> Deformation Features with Autonomous Vehicles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.</p> <p>2016-12-01</p> <p>Decreases in summer <span class="hlt">sea</span> <span class="hlt">ice</span> extent in the Beaufort and Chukchi <span class="hlt">Seas</span> has lead to a transition from a largely perennial <span class="hlt">ice</span> cover, to a seasonal <span class="hlt">ice</span> cover. This drives shifts in <span class="hlt">sea</span> <span class="hlt">ice</span> production, dynamics, <span class="hlt">ice</span> types, and thickness distribution. To examine how the processes driving <span class="hlt">ice</span> advance might also impact the morphology of the <span class="hlt">ice</span> cover, a coordinated <span class="hlt">ice</span> mapping effort was undertaken during a field campaign in the Beaufort <span class="hlt">Sea</span> in October, 2015. Here, we present observations of <span class="hlt">sea</span> <span class="hlt">ice</span> draft topography from six missions of an Autonomous Underwater Vehicle run under different <span class="hlt">ice</span> types and deformation features observed during autumn freeze-up. <span class="hlt">Ice</span> surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between <span class="hlt">sea</span> <span class="hlt">ice</span> surface topography and <span class="hlt">ice</span> underside morphology for a range of sample <span class="hlt">ice</span> types, including hummocked multiyear <span class="hlt">ice</span>, rubble fields, young <span class="hlt">ice</span> ridges and rafts, and consolidated pancake <span class="hlt">ice</span>. These data are compared to prior observations of <span class="hlt">ice</span> morphological features from deformed Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>. Such data will be useful for improving parameterizations of <span class="hlt">sea</span> <span class="hlt">ice</span> redistribution during deformation, and for better constraining estimates of airborne or satellite <span class="hlt">sea</span> <span class="hlt">ice</span> thickness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53D..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53D..01N"><span>Examining Differences in Arctic and Antarctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.</p> <p>2015-12-01</p> <p>The paradox of the rapid reduction of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> versus the stability (or slight increase) of Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in <span class="hlt">sea</span> <span class="hlt">ice</span> growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> production. Melt water from Antarctic <span class="hlt">ice</span> shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>. Also, wind effects may positively contribute to Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt <span class="hlt">sea</span> <span class="hlt">ice</span> as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of <span class="hlt">sea</span> <span class="hlt">ice</span> still need to be identified for the Antarctic, which are opposed to factors that help accelerate <span class="hlt">sea</span> <span class="hlt">ice</span> loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in <span class="hlt">sea</span> <span class="hlt">ice</span> properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> change to contribute to resolving the Arctic-Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> paradox.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21B1124W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21B1124W"><span>Synthesis of User Needs for Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Predictions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiggins, H. V.; Turner-Bogren, E. J.; Sheffield Guy, L.</p> <p>2017-12-01</p> <p>Forecasting Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> on sub-seasonal to seasonal scales in a changing Arctic is of interest to a diverse range of stakeholders. However, <span class="hlt">sea</span> <span class="hlt">ice</span> forecasting is still challenging due to high variability in weather and ocean conditions and limits to prediction capabilities; the science needs for observations and modeling are extensive. At a time of challenged science funding, one way to prioritize <span class="hlt">sea</span> <span class="hlt">ice</span> prediction efforts is to examine the information needs of various stakeholder groups. This poster will present a summary and synthesis of existing surveys, reports, and other literature that examines user needs for <span class="hlt">sea</span> <span class="hlt">ice</span> predictions. The synthesis will include lessons learned from the <span class="hlt">Sea</span> <span class="hlt">Ice</span> Prediction Network (a collaborative, multi-agency-funded project focused on seasonal Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> predictions), the <span class="hlt">Sea</span> <span class="hlt">Ice</span> for Walrus Outlook (a resource for Alaska Native subsistence hunters and coastal communities, that provides reports on weather and <span class="hlt">sea</span> <span class="hlt">ice</span> conditions), and other efforts. The poster will specifically compare the scales and variables of <span class="hlt">sea</span> <span class="hlt">ice</span> forecasts currently available, as compared to what information is requested by various user groups.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5179961','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5179961"><span>Linking scales in <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Weiss, Jérôme; Dansereau, Véronique</p> <p>2017-01-01</p> <p>Mechanics plays a key role in the evolution of the <span class="hlt">sea</span> <span class="hlt">ice</span> cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on <span class="hlt">ice</span> thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline <span class="hlt">ice</span>, however characterized by a small correlation length, below the <span class="hlt">ice</span> thickness scale. Conversely, the <span class="hlt">sea</span> <span class="hlt">ice</span> mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the <span class="hlt">sea</span> <span class="hlt">ice</span> cover, called Maxwell–elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025300</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=kelp&id=EJ335092','ERIC'); return false;" href="https://eric.ed.gov/?q=kelp&id=EJ335092"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> and Oceanographic Conditions.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Oceanus, 1986</p> <p>1986-01-01</p> <p>The coastal waters of the Beaufort <span class="hlt">Sea</span> are covered with <span class="hlt">ice</span> three-fourths of the year. These waters (during winter) are discussed by considering: consolidation of coastal <span class="hlt">ice</span>; under-<span class="hlt">ice</span> water; brine circulation; biological energy; life under the <span class="hlt">ice</span> (including kelp and larger animals); food chains; and <span class="hlt">ice</span> break-up. (JN)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20434194','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20434194"><span>Arctic Ocean <span class="hlt">sea</span> <span class="hlt">ice</span> drift origin derived from artificial radionuclides.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C</p> <p>2010-07-15</p> <p>Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the <span class="hlt">sea</span>, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. <span class="hlt">Sea-ice</span> formed in the shallow continental shelves incorporate sediments with variable <span class="hlt">concentrations</span> of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of <span class="hlt">sea-ice</span> sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main <span class="hlt">sea</span> <span class="hlt">ice</span> drift patterns derived from the mean field of <span class="hlt">sea-ice</span> motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which <span class="hlt">sea</span> <span class="hlt">ice</span> incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of <span class="hlt">sea</span> <span class="hlt">ice</span> from the Kara-Laptev <span class="hlt">Sea</span> and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of <span class="hlt">sea-ice</span>. Copyright 2010 Elsevier B.V. All</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GML....36..101M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GML....36..101M"><span>High-resolution IP25-based reconstruction of <span class="hlt">sea-ice</span> variability in the western North Pacific and Bering <span class="hlt">Sea</span> during the past 18,000 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Méheust, Marie; Stein, Ruediger; Fahl, Kirsten; Max, Lars; Riethdorf, Jan-Rainer</p> <p>2016-04-01</p> <p>Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, <span class="hlt">sea</span> <span class="hlt">ice</span> is an essential component of the global climate system. In the context of its alarming decrease in terms of <span class="hlt">concentration</span>, thickness and duration, understanding the processes controlling <span class="hlt">sea-ice</span> variability and reconstructing paleo-<span class="hlt">sea-ice</span> extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker <span class="hlt">sea-ice</span> proxy, was used for a high-resolution reconstruction of the <span class="hlt">sea-ice</span> extent and its variability in the western North Pacific and western Bering <span class="hlt">Sea</span> during the past 18,000 years. To identify mechanisms controlling the <span class="hlt">sea-ice</span> variability, IP25 data were associated with published <span class="hlt">sea</span>-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal <span class="hlt">sea-ice</span> cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced <span class="hlt">sea</span> <span class="hlt">ice</span> or <span class="hlt">ice</span>-free conditions prevailed in the study area. The variability in <span class="hlt">sea-ice</span> extent seems to be linked to climate anomalies and <span class="hlt">sea</span>-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering <span class="hlt">Sea</span>, especially the Alaskan Stream injection though the Aleutian passes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C22A..07I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C22A..07I"><span>Retrieval of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness during Arctic summer using melt pond color</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Istomina, L.; Nicolaus, M.; Heygster, G.</p> <p>2016-12-01</p> <p>The thickness of <span class="hlt">sea</span> <span class="hlt">ice</span> is an important climatic variable. Together with the <span class="hlt">ice</span> <span class="hlt">concentration</span>, it defines the total <span class="hlt">sea</span> <span class="hlt">ice</span> volume, is linked within the climatic feedback mechanisms and affects the Arctic energy balance greatly. During Arctic summer, the <span class="hlt">sea</span> <span class="hlt">ice</span> cover changes rapidly, which includes the presence of melt ponds, as well as reduction of <span class="hlt">ice</span> albedo and <span class="hlt">ice</span> thickness. Currently available remote sensing retrievals of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness utilize data from altimeter, microwave, thermal infrared sensors and their combinations. All of these methods are compromised in summer in the presence of melt. This only leaves in situ and airborne <span class="hlt">sea</span> <span class="hlt">ice</span> thickness data available in summer. At the same time, data of greater coverage is needed for assimilation in global circulation models and correct estimation of <span class="hlt">ice</span> mass balance.This study presents a new approach to estimate <span class="hlt">sea</span> <span class="hlt">ice</span> thickness in summer in the presence of melt ponds. Analysis of field data obtained during the RV "Polarstern" cruise ARK27/3 (August - October 2012) has shown a clear connection of <span class="hlt">ice</span> thickness under melt ponds to their measured spectral albedo and to melt pond color in the hue-saturation-luminance color space from field photographs. An empirical function is derived from the HSL values and applied to aerial imagery obtained during various airborne campaigns. Comparison to in situ <span class="hlt">ice</span> thickness shows a good correspondence to the <span class="hlt">ice</span> thickness value retrieved in the melt ponds. A similar retrieval is developed for satellite spectral bands using the connection of the measured pond spectral albedo to the <span class="hlt">ice</span> thickness within the melt ponds. Correction of the retrieved <span class="hlt">ice</span> thickness in ponds to derive total thickness of <span class="hlt">sea</span> <span class="hlt">ice</span> is discussed. Case studies and application to very high resolution optical data are presented, as well as a concept to transfer the method to satellite data of lower spatial resolution where melt ponds become subpixel features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C24A..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C24A..01N"><span>Arctic and Antarctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Changes and Impacts (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nghiem, S. V.</p> <p>2013-12-01</p> <p>The extent of springtime Arctic perennial <span class="hlt">sea</span> <span class="hlt">ice</span>, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of <span class="hlt">sea</span> <span class="hlt">ice</span> reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial <span class="hlt">sea</span> <span class="hlt">ice</span>, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial <span class="hlt">sea</span> <span class="hlt">ice</span> in 2012 in the Beaufort <span class="hlt">Sea</span> and Chukchi <span class="hlt">Sea</span>. In contrast to the rapid and extensive loss of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic, Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent anywhere close to the decreasing rate of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>. There exist publications presenting various factors driving changes in Arctic and Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of <span class="hlt">sea</span> <span class="hlt">ice</span> changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of <span class="hlt">sea</span> <span class="hlt">ice</span> response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of <span class="hlt">sea</span> <span class="hlt">ice</span> changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> changes are discussed. Understanding <span class="hlt">sea</span> <span class="hlt">ice</span> changes and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351197','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351197"><span>Validation of <span class="hlt">sea</span> <span class="hlt">ice</span> models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR <span class="hlt">SEA</span> <span class="hlt">ICE</span> MODEL VALIDATION</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.</p> <p></p> <p>Here, we implement a variance-based distance metric (D n) to objectively assess skill of <span class="hlt">sea</span> <span class="hlt">ice</span> models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total <span class="hlt">sea</span> <span class="hlt">ice</span> extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of <span class="hlt">sea</span> <span class="hlt">ice</span> models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos <span class="hlt">sea</span> <span class="hlt">ice</span> model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> and thickness.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1351197-validation-sea-ice-models-using-uncertainty-based-distance-metric-multiple-model-variables-new-metric-sea-ice-model-validation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1351197-validation-sea-ice-models-using-uncertainty-based-distance-metric-multiple-model-variables-new-metric-sea-ice-model-validation"><span>Validation of <span class="hlt">sea</span> <span class="hlt">ice</span> models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR <span class="hlt">SEA</span> <span class="hlt">ICE</span> MODEL VALIDATION</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...</p> <p>2017-04-01</p> <p>Here, we implement a variance-based distance metric (D n) to objectively assess skill of <span class="hlt">sea</span> <span class="hlt">ice</span> models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total <span class="hlt">sea</span> <span class="hlt">ice</span> extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of <span class="hlt">sea</span> <span class="hlt">ice</span> models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos <span class="hlt">sea</span> <span class="hlt">ice</span> model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> and thickness.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001600.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001600.html"><span>Iceberg trapped in <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-11-01</p> <p>An iceberg trapped in <span class="hlt">sea</span> <span class="hlt">ice</span> in the Amundsen <span class="hlt">Sea</span>, seen from the <span class="hlt">Ice</span>Bridge DC-8 during the Getz 07 mission on Oct. 27. Credit: NASA / Maria-Jose Vinas NASA's Operation <span class="hlt">Ice</span>Bridge is an airborne science mission to study Earth's polar <span class="hlt">ice</span>. For more information about <span class="hlt">Ice</span>Bridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C11B..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C11B..03P"><span>Airborne radar surveys of snow depth over Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> during Operation <span class="hlt">Ice</span>Bridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.</p> <p>2012-12-01</p> <p>Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global <span class="hlt">sea</span> <span class="hlt">ice</span> thickness and distribution [5, 6]. Estimation of <span class="hlt">sea-ice</span> thickness from these altimeters relies on freeboard measurements and the presence of snow cover on <span class="hlt">sea</span> <span class="hlt">ice</span> affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the <span class="hlt">sea-ice</span> thickness estimate. To improve the accuracy of the <span class="hlt">sea-ice</span> thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of <span class="hlt">Ice</span> Sheets deploys the Snow Radar as a part of NASA Operation <span class="hlt">Ice</span>Bridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on <span class="hlt">sea</span> <span class="hlt">ice</span> from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-<span class="hlt">ice</span> interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-<span class="hlt">ice</span> interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation <span class="hlt">Ice</span>Bridge 2010-2011 Antarctic campaigns. In 2010, three <span class="hlt">sea</span> <span class="hlt">ice</span> flights were flown, two in the Weddell <span class="hlt">Sea</span> and one in the Amundsen and Bellingshausen <span class="hlt">Seas</span>. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell <span class="hlt">Sea</span> was flown, allowing for a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESSDD...7..419L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESSDD...7..419L"><span><span class="hlt">Sea</span> <span class="hlt">ice</span> in the Baltic <span class="hlt">Sea</span> - revisiting BASIS <span class="hlt">ice</span>, a~historical data set covering the period 1960/1961-1978/1979</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Dietze, H.</p> <p>2014-06-01</p> <p>The Baltic <span class="hlt">Sea</span> is a seasonally <span class="hlt">ice</span>-covered, marginal <span class="hlt">sea</span>, situated in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by <span class="hlt">sea</span> <span class="hlt">ice</span>, the local weather services have been monitoring <span class="hlt">sea</span> <span class="hlt">ice</span> conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961. This data set, dubbed Data Bank for Baltic <span class="hlt">Sea</span> <span class="hlt">Ice</span> and <span class="hlt">Sea</span> Surface Temperatures (BASIS) <span class="hlt">ice</span>, is based on hand-drawn maps that were collected and then digitised 1981 in a joint project of the Finnish Institute of Marine Research (today Finish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS <span class="hlt">ice</span> was designed for storage on punch cards and all <span class="hlt">ice</span> information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard <span class="hlt">ice</span> quantities (including information on <span class="hlt">ice</span> types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical <span class="hlt">ice</span> models and provide easy-to-access unique historical reference material for <span class="hlt">sea</span> <span class="hlt">ice</span> in the Baltic <span class="hlt">Sea</span>. In addition we provide statistics showcasing the data quality. The website <a href="www.baltic-ocean.org"target="_blank">www.baltic-ocean.org<a/> hosts the post-prossed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science PANGEA (<a href="http://dx.doi.org/"target="_blank">doi:10.1594/PANGEA.832353<a/>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22715789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22715789"><span>[Spectral features analysis of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic Ocean].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ke, Chang-qing; Xie, Hong-jie; Lei, Rui-bo; Li, Qun; Sun, Bo</p> <p>2012-04-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> in the Arctic Ocean plays an important role in the global climate change, and its quick change and impact are the scientists' focus all over the world. The spectra of different kinds of <span class="hlt">sea</span> <span class="hlt">ice</span> were measured with portable ASD FieldSpec 3 spectrometer during the long-term <span class="hlt">ice</span> station of the 4th Chinese national Arctic Expedition in 2010, and the spectral features were analyzed systematically. The results indicated that the reflectance of <span class="hlt">sea</span> <span class="hlt">ice</span> covered by snow is the highest one, naked <span class="hlt">sea</span> <span class="hlt">ice</span> the second, and melted <span class="hlt">sea</span> <span class="hlt">ice</span> the lowest. Peak and valley characteristics of spectrum curves of <span class="hlt">sea</span> <span class="hlt">ice</span> covered by thick snow, thin snow, wet snow and snow crystal are very significant, and the reflectance basically decreases with the wavelength increasing. The rules of reflectance change with wavelength of natural <span class="hlt">sea</span> <span class="hlt">ice</span>, white <span class="hlt">ice</span> and blue <span class="hlt">ice</span> are basically same, the reflectance of them is medium, and that of grey <span class="hlt">ice</span> is far lower than natural <span class="hlt">sea</span> <span class="hlt">ice</span>, white <span class="hlt">ice</span> and blue <span class="hlt">ice</span>. It is very significant for scientific research to analyze the spectral features of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic Ocean and to implement the quantitative remote sensing of <span class="hlt">sea</span> <span class="hlt">ice</span>, and to further analyze its response to the global warming.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41D0434C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41D0434C"><span><span class="hlt">Ice</span> Sheet and <span class="hlt">Sea</span> <span class="hlt">Ice</span> Observations from Unmanned Aircraft Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crocker, R. I.; Maslanik, J. A.</p> <p>2011-12-01</p> <p>A suite of sensors has been assembled to map <span class="hlt">ice</span> sheet and <span class="hlt">sea</span> <span class="hlt">ice</span> surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map <span class="hlt">ice</span> sheet elevations near Jakobshavn Isbræ in Greenland, and to measure <span class="hlt">sea</span> <span class="hlt">ice</span> freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait <span class="hlt">sea</span> <span class="hlt">ice</span> conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.739E..42Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.739E..42Z"><span>Techniques for <span class="hlt">Sea</span> <span class="hlt">Ice</span> Characteristics Extraction and <span class="hlt">Sea</span> <span class="hlt">Ice</span> Monitoring Using Multi-Sensor Satellite Data in the Bohai <span class="hlt">Sea</span>-Dragon 3 Programme Final Report (2012-2016)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xi; Zhang, Jie; Meng, Junmin</p> <p>2016-08-01</p> <p>The objectives of Dragon-3 programme (ID: 10501) are to develop methods for classification <span class="hlt">sea</span> <span class="hlt">ice</span> types and retrieving <span class="hlt">ice</span> thickness based on multi-sensor data. In this final results paper, we give a briefly introduction for our research work and mainly results. Key words: the Bohai <span class="hlt">Sea</span> <span class="hlt">ice</span>, <span class="hlt">Sea</span> <span class="hlt">ice</span>, optical and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015207','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015207"><span>Regional Changes in the <span class="hlt">Sea</span> <span class="hlt">Ice</span> Cover and <span class="hlt">Ice</span> Production in the Antarctic</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2011-01-01</p> <p>Coastal polynyas around the Antarctic continent have been regarded as <span class="hlt">sea</span> <span class="hlt">ice</span> factories because of high <span class="hlt">ice</span> production rates in these regions. The observation of a positive trend in the extent of Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> during the satellite era has been intriguing in light of the observed rapid decline of the <span class="hlt">ice</span> extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross <span class="hlt">Sea</span>, strongly negative in the Bellingshausen/Amundsen <span class="hlt">Seas</span> and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal <span class="hlt">ice</span> zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover could be caused primarily by enhanced <span class="hlt">ice</span> production in the Ross <span class="hlt">Sea</span> that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross <span class="hlt">Sea</span> shelf, analysis of <span class="hlt">sea</span> <span class="hlt">ice</span> drift data from 1992 to 2008 yields a positive rate-of-increase in the net <span class="hlt">ice</span> export of about 30,000 km2 per year. For a characteristic <span class="hlt">ice</span> thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in <span class="hlt">ice</span> production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-<span class="hlt">ice</span> shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..647F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..647F"><span>The refreezing of melt ponds on Arctic <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David</p> <p>2015-02-01</p> <p>The presence of melt ponds on the surface of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> significantly reduces its albedo, inducing a positive feedback leading to <span class="hlt">sea</span> <span class="hlt">ice</span> thinning. While the role of melt ponds in enhancing the summer melt of <span class="hlt">sea</span> <span class="hlt">ice</span> is well known, their impact on suppressing winter freezing of <span class="hlt">sea</span> <span class="hlt">ice</span> has, hitherto, received less attention. Melt ponds freeze by forming an <span class="hlt">ice</span> lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying <span class="hlt">sea</span> <span class="hlt">ice</span> and the <span class="hlt">ice</span> lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal <span class="hlt">ice</span> growth at the base of the underlying <span class="hlt">sea</span> <span class="hlt">ice</span>. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the <span class="hlt">ice</span> lid, trapped pond, and underlying <span class="hlt">sea</span> <span class="hlt">ice</span>. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal <span class="hlt">sea</span> <span class="hlt">ice</span> growth. We estimate that for a typical <span class="hlt">sea</span> <span class="hlt">ice</span> pond coverage in autumn, excluding the impact of trapped ponds in models overestimates <span class="hlt">ice</span> growth by up to 265 million km3, an overestimate of 26%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23705008','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23705008"><span>Change and variability in East antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> seasonality, 1979/80-2009/10.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki</p> <p>2013-01-01</p> <p>Recent analyses have shown that significant changes have occurred in patterns of <span class="hlt">sea</span> <span class="hlt">ice</span> seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of <span class="hlt">sea</span> <span class="hlt">ice</span> advance, retreat and resultant <span class="hlt">ice</span> season duration in East Antarctica. These were calculated from satellite-derived <span class="hlt">ice</span> <span class="hlt">concentration</span> data for the period 1979/80 to 2009/10. The pattern of change in <span class="hlt">sea</span> <span class="hlt">ice</span> seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine "icescape", including fast <span class="hlt">ice</span>, polynyas and the marginal <span class="hlt">ice</span> zone. A trend towards shorter <span class="hlt">sea-ice</span> duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95-110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West <span class="hlt">Ice</span> Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced <span class="hlt">sea</span> <span class="hlt">ice</span> production/melt. Areas of positive trend in <span class="hlt">ice</span> season duration are more extensive, and include an extensive zone from 160-170°E (i.e., the western Ross <span class="hlt">Sea</span> sector) and the near-coastal zone between 40-100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen <span class="hlt">Sea</span> and western Ross <span class="hlt">Sea</span> sectors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.8481G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.8481G"><span>Impact of aerosol emission controls on future Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagné, M.-Ã..; Gillett, N. P.; Fyfe, J. C.</p> <p>2015-10-01</p> <p>We examine the response of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> to projected aerosol and aerosol precursor emission changes under the Representative <span class="hlt">Concentration</span> Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in <span class="hlt">sea</span> <span class="hlt">ice</span> extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in <span class="hlt">sea</span> <span class="hlt">ice</span> extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become <span class="hlt">ice</span>-free during summertime in 2045, but it does not become <span class="hlt">ice</span>-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GMS...180.....D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GMS...180.....D"><span>Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Decline: Observations, Projections, Mechanisms, and Implications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeWeaver, Eric T.; Bitz, Cecilia M.; Tremblay, L.-Bruno</p> <p></p> <p>This volume addresses the rapid decline of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>, placing recent <span class="hlt">sea</span> <span class="hlt">ice</span> decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of <span class="hlt">sea</span> <span class="hlt">ice</span>. Highlights of the work presented here include • An appraisal of the role played by wind forcing in driving the decline; • A reconstruction of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> conditions prior to human observations, based on proxy data from sediments; • A modeling approach for assessing the impact of <span class="hlt">sea</span> <span class="hlt">ice</span> decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; • Contrasting studies on the existence of a "tipping point," beyond which Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> decline will become (or has already become) irreversible, including an examination of the role of the small <span class="hlt">ice</span> cap instability in global warming simulations; • A significant summertime atmospheric response to <span class="hlt">sea</span> <span class="hlt">ice</span> reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>, model projections of future <span class="hlt">sea</span> <span class="hlt">ice</span> loss, and the consequences of <span class="hlt">sea</span> <span class="hlt">ice</span> loss for the natural and human systems of the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3982526','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3982526"><span>Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal <span class="hlt">sea</span> <span class="hlt">ice</span>: basal <span class="hlt">sea</span> <span class="hlt">ice</span> communities as a capacitor for iron</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.</p> <p>2013-01-01</p> <p>Dissolved and particulate metal <span class="hlt">concentrations</span> are reported from three sites beneath and at the base of the McMurdo Sound seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> in the Ross <span class="hlt">Sea</span> of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the <span class="hlt">sea</span> <span class="hlt">ice</span> after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross <span class="hlt">Sea</span> stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a <span class="hlt">sea</span> <span class="hlt">ice</span> biomass source. The <span class="hlt">sea</span> <span class="hlt">ice</span> biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound <span class="hlt">sea</span> <span class="hlt">ice</span> by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the <span class="hlt">sea</span> <span class="hlt">ice</span> by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24832800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24832800"><span><span class="hlt">Sea</span> <span class="hlt">ice</span> microorganisms: environmental constraints and extracellular responses.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ewert, Marcela; Deming, Jody W</p> <p>2013-03-28</p> <p>Inherent to <span class="hlt">sea</span> <span class="hlt">ice</span>, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. <span class="hlt">Sea-ice</span> organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the <span class="hlt">ice</span>. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in <span class="hlt">sea</span> <span class="hlt">ice</span>. In this concept paper we consider two main areas of <span class="hlt">sea-ice</span> microbiology: the physico-chemical properties that define <span class="hlt">sea</span> <span class="hlt">ice</span> as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in <span class="hlt">sea</span> <span class="hlt">ice</span>. Gaps in knowledge and testable hypotheses are identified for future research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3960889','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3960889"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> Microorganisms: Environmental Constraints and Extracellular Responses</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ewert, Marcela; Deming, Jody W.</p> <p>2013-01-01</p> <p>Inherent to <span class="hlt">sea</span> <span class="hlt">ice</span>, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. <span class="hlt">Sea-ice</span> organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the <span class="hlt">ice</span>. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in <span class="hlt">sea</span> <span class="hlt">ice</span>. In this concept paper we consider two main areas of <span class="hlt">sea-ice</span> microbiology: the physico-chemical properties that define <span class="hlt">sea</span> <span class="hlt">ice</span> as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in <span class="hlt">sea</span> <span class="hlt">ice</span>. Gaps in knowledge and testable hypotheses are identified for future research. PMID:24832800</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5070557','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5070557"><span>Covariance between Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> and clouds within atmospheric state regimes at the satellite footprint level</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kato, Seiji; Xu, Kuan‐Man; Cai, Ming</p> <p>2015-01-01</p> <p>Abstract Understanding the cloud response to <span class="hlt">sea</span> <span class="hlt">ice</span> change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of <span class="hlt">sea</span> ice‐cloud relationship in the Arctic using a satellite footprint‐level quantification of the covariance between <span class="hlt">sea</span> <span class="hlt">ice</span> and Arctic low cloud properties from NASA A‐Train active remote sensing data. The covariances between Arctic low cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more <span class="hlt">sea</span> <span class="hlt">ice</span>. The largest‐magnitude cloud‐<span class="hlt">sea</span> <span class="hlt">ice</span> covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and <span class="hlt">sea</span> <span class="hlt">ice</span> is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near‐surface static stability is found at larger <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span>. PMID:27818851</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850017730&hterms=Parkinsons+circulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DParkinsons%2Bcirculation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850017730&hterms=Parkinsons+circulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DParkinsons%2Bcirculation"><span>Possible <span class="hlt">Sea</span> <span class="hlt">Ice</span> Impacts on Oceanic Deep Convection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, C. L.</p> <p>1984-01-01</p> <p>Many regions of the world ocean known or suspected to have deep convection are <span class="hlt">sea-ice</span> covered for at least a portion of the annual cycle. As this suggests that <span class="hlt">sea</span> <span class="hlt">ice</span> might have some impact on generating or maintaining this phenomenon, several mechanisms by which <span class="hlt">sea</span> <span class="hlt">ice</span> could exert an influence are presented in the following paragraphs. <span class="hlt">Sea</span> <span class="hlt">ice</span> formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As <span class="hlt">sea</span> <span class="hlt">ice</span> forms, either by <span class="hlt">ice</span> accretion or by in situ <span class="hlt">ice</span> formation in open water or in lead areas between <span class="hlt">ice</span> floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the <span class="hlt">ice</span>. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive <span class="hlt">ice</span> formation and a relatively unstable oceanic density structure.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045752&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045752&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons"><span>The role of <span class="hlt">sea</span> <span class="hlt">ice</span> in 2 x CO2 climate model sensitivity. Part 1: The total influence of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness and extent</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.</p> <p>1995-01-01</p> <p>As a first step in investigating the effects of <span class="hlt">sea</span> <span class="hlt">ice</span> changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple <span class="hlt">sea</span> <span class="hlt">ice</span> model while varying the <span class="hlt">sea</span> <span class="hlt">ice</span> distributions and thicknesses in the control run. Thinner <span class="hlt">ice</span> amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner <span class="hlt">ice</span> to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater <span class="hlt">sea</span> <span class="hlt">ice</span> extent in the control run, which provides more opportunity for <span class="hlt">sea</span> <span class="hlt">ice</span> reduction. An experiment with <span class="hlt">sea</span> <span class="hlt">ice</span> not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of <span class="hlt">sea</span> <span class="hlt">ice</span> on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to <span class="hlt">sea</span> <span class="hlt">ice</span> variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the <span class="hlt">sea</span> <span class="hlt">ice</span> impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying <span class="hlt">sea</span> level increases of varying magnitude or no change. These results highlight the importance of properly constraining the <span class="hlt">sea</span> <span class="hlt">ice</span> response to climate perturbations, necessitating the use of more realistic <span class="hlt">sea</span> <span class="hlt">ice</span> and ocean models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A"><span>Controls on Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> from first-year and multi-year <span class="hlt">ice</span> survival rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.</p> <p>2009-12-01</p> <p>The recent decrease in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover has transpired with a significant loss of multi-year (MY) <span class="hlt">ice</span>. The transition to an Arctic that is populated by thinner first-year (FY) <span class="hlt">sea</span> <span class="hlt">ice</span> has important implications for future trends in area and volume. We develop a reduced model for Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> with which we investigate how the survivability of FY and MY <span class="hlt">ice</span> control various aspects of the <span class="hlt">sea-ice</span> system. We demonstrate that Arctic <span class="hlt">sea-ice</span> area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September <span class="hlt">sea-ice</span> in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY <span class="hlt">ice</span>. This model, used in concert with a <span class="hlt">sea-ice</span> simulation that traces FY and MY <span class="hlt">ice</span> areas to estimate the survival rates, reveals that small trends in the <span class="hlt">ice</span> survival rates explain the decline in total Arctic <span class="hlt">ice</span> area, and the relatively larger loss of MY <span class="hlt">ice</span> area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for <span class="hlt">ice</span> area (~ 1 year) implies that Arctic <span class="hlt">ice</span> area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for <span class="hlt">ice</span> volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in <span class="hlt">ice</span> volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of <span class="hlt">ice</span> area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September <span class="hlt">ice</span> area and volume will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026121','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026121"><span>A toy model of <span class="hlt">sea</span> <span class="hlt">ice</span> growth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thorndike, Alan S.</p> <p>1992-01-01</p> <p>My purpose here is to present a simplified treatment of the growth of <span class="hlt">sea</span> <span class="hlt">ice</span>. By ignoring many details, it is possible to obtain several results that help to clarify the ways in which the <span class="hlt">sea</span> <span class="hlt">ice</span> cover will respond to climate change. Three models are discussed. The first deals with the growth of <span class="hlt">sea</span> <span class="hlt">ice</span> during the cold season. The second describes the cycle of growth and melting for perennial <span class="hlt">ice</span>. The third model extends the second to account for the possibility that the <span class="hlt">ice</span> melts away entirely in the summer. In each case, the objective is to understand what physical processes are most important, what <span class="hlt">ice</span> properties determine the <span class="hlt">ice</span> behavior, and to which climate variables the system is most sensitive.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7955K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7955K"><span>Springtime atmospheric transport controls Arctic summer <span class="hlt">sea-ice</span> extent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kapsch, Marie; Graversen, Rune; Tjernström, Michael</p> <p>2013-04-01</p> <p>The <span class="hlt">sea-ice</span> extent in the Arctic has been steadily decreasing during the satellite remote sensing era, 1979 to present, with the highest rate of retreat found in September. Contributing factors causing the <span class="hlt">ice</span> retreat are among others: changes in surface air temperature (SAT; Lindsay and Zhang, 2005), <span class="hlt">ice</span> circulation in response to winds/pressure patterns (Overland et al., 2008) and ocean currents (Comiso et al., 2008), as well as changes in radiative fluxes (e.g. due to changes in cloud cover; Francis and Hunter, 2006; Maksimovich and Vihma, 2012) and ocean conditions. However, large interannual variability is superimposed onto the declining trend - the <span class="hlt">ice</span> extent by the end of the summer varies by several million square kilometer between successive years (Serreze et al., 2007). But what are the processes causing the year-to-year <span class="hlt">ice</span> variability? A comparison of years with an anomalously large September <span class="hlt">sea-ice</span> extent (HIYs - high <span class="hlt">ice</span> years) with years showing an anomalously small <span class="hlt">ice</span> extent (LIYs - low <span class="hlt">ice</span> years) reveals that the <span class="hlt">ice</span> variability is most pronounced in the Arctic Ocean north of Siberia (which became almost entirely <span class="hlt">ice</span> free in September of 2007 and 2012). Significant <span class="hlt">ice-concentration</span> anomalies of up to 30% are observed for LIYs and HIYs in this area. Focusing on this area we find that the greenhouse effect associated with clouds and water-vapor in spring is crucial for the development of the <span class="hlt">sea</span> <span class="hlt">ice</span> during the subsequent months. In years where the end-of-summer <span class="hlt">sea-ice</span> extent is well below normal, a significantly enhanced transport of humid air is evident during spring into the region where the <span class="hlt">ice</span> retreat is encountered. The anomalous convergence of humidity increases the cloudiness, resulting in an enhancement of the greenhouse effect. As a result, downward longwave radiation at the surface is larger than usual. In mid May, when the <span class="hlt">ice</span> anomaly begins to appear and the surface albedo therefore becomes anomalously low, the net shortwave radiation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCD.....9.5521K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCD.....9.5521K"><span>Seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> predictions for the Arctic based on assimilation of remotely sensed observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.</p> <p>2015-10-01</p> <p>The recent thinning and shrinking of the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover has increased the interest in seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> forecasts. Typical tools for such forecasts are numerical models of the coupled ocean <span class="hlt">sea</span> <span class="hlt">ice</span> system such as the North Atlantic/Arctic Ocean <span class="hlt">Sea</span> <span class="hlt">Ice</span> Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed <span class="hlt">ice</span> thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 <span class="hlt">ice</span> thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF <span class="hlt">ice</span> <span class="hlt">concentration</span> and <span class="hlt">sea</span> surface temperature products. We investigate the skill of predictions of the summer <span class="hlt">ice</span> conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort <span class="hlt">Sea</span>) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 <span class="hlt">ice</span> thickness product that uses a spatially varying scaling factor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0753X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0753X"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> Freeboard and Thickness from the 2013 <span class="hlt">Ice</span>Bridge ATM and DMS Data in Ross <span class="hlt">Sea</span>, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, H.; Tian, L.; Tang, J.; Ackley, S. F.</p> <p>2016-12-01</p> <p>In November (20, 21, 27, and 28) 2013, NASA's <span class="hlt">Ice</span>Bridge mission flew over the Ross <span class="hlt">Sea</span>, Antarctica and collected important <span class="hlt">sea</span> <span class="hlt">ice</span> data with the ATM and DMS for the first time. We will present our methods to derive the local <span class="hlt">sea</span> level and total freeboard for <span class="hlt">ice</span> thickness retrieval from these two datasets. The methods include (1) leads classification from DMS data using an automated lead detection method, (2) potential leads from the reflectance of less than 0.25 from the ATM laser shots of L1B data, (3) local <span class="hlt">sea</span> level retrieval based on these qualified ATM laser shots (L1B) within the DMS-derived leads (after outliers removal from the mean ± 2 standard deviation of these ATM elevations), (4) establishment of an empirical equation of local <span class="hlt">sea</span> level as a function of distance from the starting point of each <span class="hlt">Ice</span>Bridge flight, (5) total freeboard retrieval from the ATM L2 elevations by subtracting the local <span class="hlt">sea</span> level derived from the empirical equation, and (6) <span class="hlt">ice</span> thickness retrieval. The <span class="hlt">ice</span> thickness derived from this method will be analyzed and compared with ICESat data (2003-2009) and other available data for the same region at the similar time period. Possible change and potential reasons will be identified and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070038189','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070038189"><span>Physical and Radiative Characteristics and Long Term Variability of the Okhotsk <span class="hlt">Sea</span> <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nishio, Fumihiko; Comiso, Josefino C.; Gersten, Robert; Nakayama, Masashige; Ukita, Jinro; Gasiewski, Al; Stanko, Boba; Naoki, Kazuhiro</p> <p>2007-01-01</p> <p>Much of what we know about the large scale characteristics of the Okhotsk <span class="hlt">Sea</span> <span class="hlt">ice</span> cover comes from <span class="hlt">ice</span> <span class="hlt">concentration</span> maps derived from passive microwave data. To understand what these satellite data represents in a highly divergent and rapidly changing environment like the Okhotsk <span class="hlt">Sea</span>, we analyzed concurrent satellite, aircraft, and ship data and characterized the <span class="hlt">sea</span> <span class="hlt">ice</span> cover at different scales from meters to tens of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated how the general radiative and physical characteristics of the <span class="hlt">ice</span> cover changes as well as quantify the distribution of different <span class="hlt">ice</span> types in the region. <span class="hlt">Ice</span> <span class="hlt">concentration</span> maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the <span class="hlt">ice</span> cover. Analysis of MODIS data reveals that thick <span class="hlt">ice</span> types represents about 37% of the <span class="hlt">ice</span> cover indicating that young and new <span class="hlt">ice</span> represent a large fraction of the lice cover that averages about 90% <span class="hlt">ice</span> <span class="hlt">concentration</span>, according to passive microwave data. A rapid decline of -9% and -12 % per decade is observed suggesting warming signals but further studies are required because of aforementioned characteristics and because the length of the <span class="hlt">ice</span> season is decreasing by only 2 to 4 days per decade.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080018456&hterms=Secret&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThe%2BSecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080018456&hterms=Secret&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThe%2BSecret"><span>The Secret of the Svalbard <span class="hlt">Sea</span> <span class="hlt">Ice</span> Barrier</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, Son V.; Van Woert, Michael L.; Neumann, Gregory</p> <p>2004-01-01</p> <p>An elongated <span class="hlt">sea</span> <span class="hlt">ice</span> feature called the Svalbard <span class="hlt">sea</span> <span class="hlt">ice</span> barrier rapidly formed over an area in the Barents <span class="hlt">Sea</span> to the east of Svalbard posing navigation hazards. The secret of its formation lies in the bottom bathymetry that governs the distribution of cold Arctic waters masses, which impacts <span class="hlt">sea</span> <span class="hlt">ice</span> growth on the water surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017680','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017680"><span>Contrasts in Arctic shelf <span class="hlt">sea-ice</span> regimes and some implications: Beaufort <span class="hlt">Sea</span> versus Laptev <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reimnitz, E.; Dethleff, D.; Nurnberg, D.</p> <p>1994-01-01</p> <p>The winter <span class="hlt">ice</span>-regime of the 500 km) from the mainland than in the Beaufort <span class="hlt">Sea</span>. As a result, the annual freeze-up does not incorporate old, deep-draft <span class="hlt">ice</span>, and with a lack of compression, such deep-draft <span class="hlt">ice</span> is not generated in situ, as on the Beaufort <span class="hlt">Sea</span> shelf. The Laptev <span class="hlt">Sea</span> has as much as 1000 km of fetch at the end of summer, when freezing storms move in and large (6 m) waves can form. Also, for the first three winter months, the polynya lies inshore at a water depth of only 10 m. Turbulence and freezing are excellent conditions for sediment entrainment by frazil and anchor <span class="hlt">ice</span>, when compared to conditions in the short-fetched Beaufort <span class="hlt">Sea</span>. We expect entrainment to occur yearly. Different from the intensely <span class="hlt">ice</span>-gouged Beaufort <span class="hlt">Sea</span> shelf, hydraulic bedforms probably dominate in the Laptev <span class="hlt">Sea</span>. Corresponding with the large volume of <span class="hlt">ice</span> produced, more dense water is generated in the Laptev <span class="hlt">Sea</span>, possibly accompanied by downslope sediment transport. Thermohaline convection at the midshelf polynya, together with the reduced rate of bottom disruption by <span class="hlt">ice</span> keels, may enhance benthic productivity and permit establishment of open-shelf benthic communities which in the Beaufort <span class="hlt">Sea</span> can thrive only in the protection of barrier islands. Indirect evidence for high benthic productivity is found in the presence of walrus, who also require year-round open water. By contrast, lack of a suitable environment restricts walrus from the Beaufort <span class="hlt">Sea</span>, although over 700 km farther to the south. We could speculate on other consequences of the different <span class="hlt">ice</span> regimes in the Beaufort and Laptev <span class="hlt">Seas</span>, but these few examples serve to point out the dangers of exptrapolating from knowledge gained in the North American Arctic to other shallow Arctic shelf settings. ?? 1994.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190395','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190395"><span>Polar bears and <span class="hlt">sea</span> <span class="hlt">ice</span> habitat change</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Durner, George M.; Atwood, Todd C.; Butterworth, Andy</p> <p>2017-01-01</p> <p>The polar bear (Ursus maritimus) is an obligate apex predator of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> and as such can be affected by climate warming-induced changes in the extent and composition of pack <span class="hlt">ice</span> and its impacts on their seal prey. <span class="hlt">Sea</span> <span class="hlt">ice</span> declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater <span class="hlt">ice</span> drift, <span class="hlt">ice</span> fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic <span class="hlt">seas</span> will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear <span class="hlt">sea</span> <span class="hlt">ice</span> that has been typical in that region is being replaced by thinner annual <span class="hlt">ice</span>. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in <span class="hlt">sea</span> <span class="hlt">ice</span> will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014133','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014133"><span>Rising methane emissions from northern wetlands associated with <span class="hlt">sea</span> <span class="hlt">ice</span> decline</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David</p> <p>2015-01-01</p> <p>Abstract The Arctic is rapidly transitioning toward a seasonal <span class="hlt">sea</span> ice‐free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span> to methane emissions simulated by three process‐based biogeochemical models, this study shows that rising wetland methane emissions are associated with <span class="hlt">sea</span> <span class="hlt">ice</span> retreat. Our analyses indicate that simulated high‐latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a <span class="hlt">sea</span> ice‐induced, autumn‐focused, warming. Since these results suggest a continued rise in methane emissions with future <span class="hlt">sea</span> <span class="hlt">ice</span> decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions. PMID:27667870</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010420','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010420"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> Thickness, Freeboard, and Snow Depth products from Operation <span class="hlt">Ice</span>Bridge Airborne Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kurtz, N. T.; Farrell, S. L.; Studinger, M.; Galin, N.; Harbeck, J. P.; Lindsay, R.; Onana, V. D.; Panzer, B.; Sonntag, J. G.</p> <p>2013-01-01</p> <p>The study of <span class="hlt">sea</span> <span class="hlt">ice</span> using airborne remote sensing platforms provides unique capabilities to measure a wide variety of <span class="hlt">sea</span> <span class="hlt">ice</span> properties. These measurements are useful for a variety of topics including model evaluation and improvement, assessment of satellite retrievals, and incorporation into climate data records for analysis of interannual variability and long-term trends in <span class="hlt">sea</span> <span class="hlt">ice</span> properties. In this paper we describe methods for the retrieval of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness, freeboard, and snow depth using data from a multisensor suite of instruments on NASA's Operation <span class="hlt">Ice</span>Bridge airborne campaign. We assess the consistency of the results through comparison with independent data sets that demonstrate that the <span class="hlt">Ice</span>Bridge products are capable of providing a reliable record of snow depth and <span class="hlt">sea</span> <span class="hlt">ice</span> thickness. We explore the impact of inter-campaign instrument changes and associated algorithm adaptations as well as the applicability of the adapted algorithms to the ongoing <span class="hlt">Ice</span>Bridge mission. The uncertainties associated with the retrieval methods are determined and placed in the context of their impact on the retrieved <span class="hlt">sea</span> <span class="hlt">ice</span> thickness. Lastly, we present results for the 2009 and 2010 <span class="hlt">Ice</span>Bridge campaigns, which are currently available in product form via the National Snow and <span class="hlt">Ice</span> Data Center</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.int-res.com/abstracts/meps/v407/p293-302/','USGSPUBS'); return false;" href="http://www.int-res.com/abstracts/meps/v407/p293-302/"><span>Divergent movements of walrus and <span class="hlt">sea</span> <span class="hlt">ice</span> in the Nothern Bering <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jay, Chadwick V.; Udevitz, Mark S.; Kwok, Ron; Fischbach, Anthony S.; Douglas, David C.</p> <p>2010-01-01</p> <p>The Pacific walrus Odobenus rosmarus divergens is a large Arctic pinniped of the Chukchi and Bering <span class="hlt">Seas</span>. Reductions of <span class="hlt">sea</span> <span class="hlt">ice</span> projected to occur in the Arctic by mid-century raise concerns for conservation of the Pacific walrus. To understand the significance of <span class="hlt">sea</span> <span class="hlt">ice</span> loss to the viability of walruses, it would be useful to better understand the spatial associations between the movements of <span class="hlt">sea</span> <span class="hlt">ice</span> and walruses. We investigated whether local-scale (~1 to 100 km) walrus movements correspond to movements of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Bering <span class="hlt">Sea</span> in early spring, using locations from radio-tracked walruses and measures of <span class="hlt">ice</span> floe movements from processed synthetic aperture radar satellite imagery. We used generalized linear mixed-effects models to analyze the angle between walrus and <span class="hlt">ice</span> floe movement vectors and the distance between the final geographic position of walruses and their associated <span class="hlt">ice</span> floes (displacement), as functions of observation duration, proportion of time the walrus was in water, and geographic region. Analyses were based on 121 walrus-<span class="hlt">ice</span> vector pairs and observations lasting 12 to 36 h. Angles and displacements increased with observation duration, proportion of time the walrus spent in the water, and varied among regions (regional mean angles ranged from 40° to 81° and mean displacements ranged from 15 to 35 km). Our results indicated a lack of correspondence between walruses and their initially associated <span class="hlt">ice</span> floes, suggesting that local areas of walrus activities were independent of the movement of <span class="hlt">ice</span> floes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119.2327A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119.2327A"><span>Implications of fractured Arctic perennial <span class="hlt">ice</span> cover on thermodynamic and dynamic <span class="hlt">sea</span> <span class="hlt">ice</span> processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon</p> <p>2014-04-01</p> <p>Decline of the Arctic summer minimum <span class="hlt">sea</span> <span class="hlt">ice</span> extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort <span class="hlt">Seas</span>, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack <span class="hlt">ice</span>, thereby causing flexural swell and failure of the <span class="hlt">sea</span> <span class="hlt">ice</span>. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects <span class="hlt">sea</span> <span class="hlt">ice</span> dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort <span class="hlt">Sea</span> region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the <span class="hlt">ice</span> pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of <span class="hlt">ice</span> floes was identified in affected areas. The impact of this process in future Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining <span class="hlt">sea</span> <span class="hlt">ice</span> cover. We conclude that this process is an important positive feedback to Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss, and timing of initiation is critical in how it affects <span class="hlt">sea</span> <span class="hlt">ice</span> thermodynamic and dynamic processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C33B1261W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C33B1261W"><span>Impacts and Questions Regarding Future <span class="hlt">Sea</span> <span class="hlt">Ice</span> Conditions in the Canadian Arctic: Perspectives of the Canadian <span class="hlt">Ice</span> Service</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, K. J.; de Abreu, R.; Falkingham, J.</p> <p>2006-12-01</p> <p>The Canadian <span class="hlt">Ice</span> Service (CIS) is responsible for monitoring and reporting <span class="hlt">sea</span> <span class="hlt">ice</span> conditions to support marine shipping and other maritime activities in Canada's Arctic. The location, <span class="hlt">concentration</span> and movement of perennial (old) <span class="hlt">ice</span> is the primary control on the level and type of shipping allowable and feasible in Canadian waters. As such, the likelihood and timing of a transition from a perennial <span class="hlt">ice</span> regime to a seasonal one is of high interest to CIS marine clients. This presentation will review the kinds of questions we are being asked about future <span class="hlt">sea</span> <span class="hlt">ice</span> conditions, how we are responding to them given our current understanding, and what we base these responses on. This presentation will highlight the importance of climate change science, as well as present the type of science still needed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8068J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8068J"><span><span class="hlt">Sea-ice</span> cover in the Nordic <span class="hlt">Seas</span> and the sensitivity to Atlantic water temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.</p> <p>2017-04-01</p> <p>Changes in the <span class="hlt">sea-ice</span> cover of the Nordic <span class="hlt">Seas</span> have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a <span class="hlt">sea-ice</span> cover can persist in the Nordic <span class="hlt">Seas</span> is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of <span class="hlt">sea</span> <span class="hlt">ice</span> in a Nordic <span class="hlt">Seas</span>-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The <span class="hlt">sea</span>-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, <span class="hlt">sea</span> <span class="hlt">ice</span> is present in the interior of the domain. However, the <span class="hlt">sea-ice</span> cover in the margins of the Nordic <span class="hlt">Seas</span>, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of <span class="hlt">sea</span> <span class="hlt">ice</span> and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic <span class="hlt">Seas</span>-like domain is fully covered in <span class="hlt">sea</span> <span class="hlt">ice</span>. Warm water is still entering the Nordic <span class="hlt">Seas</span>, however, this happens at depths below a cold, fresh surface layer produced by melted <span class="hlt">sea</span> <span class="hlt">ice</span>. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic <span class="hlt">Seas</span> before the <span class="hlt">sea-ice</span> cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004DSRI...51.1601M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004DSRI...51.1601M"><span>Effects of summer <span class="hlt">ice</span> coverage on phytoplankton assemblages in the Ross <span class="hlt">Sea</span>, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mangoni, O.; Modigh, M.; Conversano, F.; Carrada, G. C.; Saggiomo, V.</p> <p>2004-11-01</p> <p>An oceanographic cruise was conducted in the Ross <span class="hlt">Sea</span> (Antarctica) during summer 2001 as part of the Italian National Program for Antarctic Research (PNRA). Extensive areas of pack <span class="hlt">ice</span> occurred over the Ross <span class="hlt">Sea</span>, atypical for summer when offshore waters are normally free of <span class="hlt">ice</span>. The present study focuses on the effects of increased <span class="hlt">ice</span> coverage on phytoplankton assemblages. Water samples collected at various depths at 72 hydrographical stations in offshore and coastal waters were used to determine size-fractionated phytoplankton biomass as chlorophyll a (chla) <span class="hlt">concentrations</span>, and HPLC photosynthetic pigments. For the offshore waters, the average chla <span class="hlt">concentration</span> was 57.8 mg m-2, approximately three times the values recorded under <span class="hlt">ice</span>-free conditions during summer 1996. In coastal waters, the average chla <span class="hlt">concentrations</span> were 102 and 206 mg m-2 during January and February, respectively, i.e., up to 2.5 times those of 1996. Micro- and nano-phytoplankton size fractions made up about 90% of the phytoplankton biomass over the entire study area and were composed primarily of diatoms with a pico-phytoplankton fraction dominated by prymnesiophyceans. The broken pack and melting <span class="hlt">ice</span> was strongly coloured by an extensive algal biomass suggesting that the phytoplankton was a result of seeding from <span class="hlt">ice</span> algal communities. The Ross <span class="hlt">Sea</span> considered to be one of the most productive areas of the Southern Ocean, had primary production values about four-fold those of other areas. The lengthening of the <span class="hlt">ice</span> season observed in the Western Ross <span class="hlt">Sea</span>, associated with a considerable increase in phytoplankton biomass as observed in summer 2001, would have a major impact on the trophic structure of the entire ecosystem, and presumably, also on carbon export.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31A1151B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31A1151B"><span>Influence of <span class="hlt">sea</span> <span class="hlt">ice</span> on Arctic coasts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnhart, K. R.; Kay, J. E.; Overeem, I.; Anderson, R. S.</p> <p>2017-12-01</p> <p>Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a focal point for population, infrastructure, biodiversity, and ecosystem services. A key difference between Arctic and temperate coasts is the presence of <span class="hlt">sea</span> <span class="hlt">ice</span>. Changes in <span class="hlt">sea</span> <span class="hlt">ice</span> cover can influence the coast because (1) the length of the <span class="hlt">sea</span> <span class="hlt">ice</span>-free season controls the time over which nearshore water can interact with the land, and (2) the location of the <span class="hlt">sea</span> <span class="hlt">ice</span> edge controls the fetch over which storm winds can interact with open ocean water, which in turn governs nearshore water level and wave field. We first focus on the interaction of <span class="hlt">sea</span> <span class="hlt">ice</span> and <span class="hlt">ice</span>-rich coasts. We combine satellite records of <span class="hlt">sea</span> <span class="hlt">ice</span> with a model for wind-driven storm surge and waves to estimate how changes in the <span class="hlt">sea</span> <span class="hlt">ice</span>-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort <span class="hlt">Sea</span> Coast for the period 1979-2012. This region has experienced some of the greatest changes in both <span class="hlt">sea</span> <span class="hlt">ice</span> cover and coastal erosion rates in the Arctic: the median length of the open-water season has expanded by 90 percent, while coastal erosion rates have more than doubled from 8.7 to 19 m yr-1. At Drew Point, NW winds increase shoreline water levels that control the incision of a submarine notch, the rate-limiting step of coastal retreat. The maximum water-level setup at Drew Point has increased consistently with increasing fetch. We extend our analysis to the entire Arctic using both satellite-based observations and global coupled climate model output from the Community Earth System Model Large Ensemble (CESM-LE) project. This 30-member ensemble employs a 1-degree version of the CESM-CAM5 historical forcing for the period 1920-2005, and RCP 8.5 forcing from 2005-2100. A control model run with constant pre-industrial (1850) forcing characterizes internal variability in a constant climate. Finally, we compare observations and model results to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013710','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013710"><span>Mass Balance of Multiyear <span class="hlt">Sea</span> <span class="hlt">Ice</span> in the Southern Beaufort <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1) Determination of the net growth and melt of multiyear (MY) <span class="hlt">sea</span> <span class="hlt">ice</span> during its transit through the southern Beaufort <span class="hlt">Sea</span> 2) Identification of...which we refer to as the FGIV dataset. Analysis of melt processes from <span class="hlt">ice</span> core and IMB data (Eicken) Through stratigraphic analysis of <span class="hlt">sea</span> <span class="hlt">ice</span>...samples that are brought back to shore were melted and used to determine profiles of salinity and stable isotope ratios. These data allow us to identify</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16349347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16349347"><span>Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of <span class="hlt">Sea</span> <span class="hlt">Ice</span> in the Weddell <span class="hlt">Sea</span>, Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grossmann, S; Dieckmann, G S</p> <p>1994-08-01</p> <p>Bacterial response to formation and growth of <span class="hlt">sea</span> <span class="hlt">ice</span> was investigated during autumn in the northeastern Weddell <span class="hlt">Sea</span>. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of <span class="hlt">ice</span> development. During initial <span class="hlt">ice</span> formation, <span class="hlt">concentrations</span> of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the <span class="hlt">ice</span> matrix. This suggests that physical enrichment of bacteria by <span class="hlt">ice</span> crystals is not effective. Due to low <span class="hlt">concentrations</span> of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed <span class="hlt">ice</span> via attachment to algal cells or aggregates was not recorded in this study. As soon as the <span class="hlt">ice</span> had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during <span class="hlt">ice</span> growth. In thick pack <span class="hlt">ice</span>, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial <span class="hlt">concentrations</span> of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack <span class="hlt">ice</span>, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of <span class="hlt">ice</span> development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick <span class="hlt">ice</span>, bacterial secondary production exceeded primary production of microalgae.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003146','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003146"><span>Characterizing Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Topography Using High-Resolution <span class="hlt">Ice</span>Bridge Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie</p> <p>2016-01-01</p> <p>We present an analysis of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation <span class="hlt">Ice</span>Bridge mission. Surface features in the <span class="hlt">sea</span> <span class="hlt">ice</span> cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by <span class="hlt">ice</span> type to estimate the topographic variability across first-year and multi-year <span class="hlt">ice</span> regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27660738','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27660738"><span>Influence of <span class="hlt">ice</span> thickness and surface properties on light transmission through Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R</p> <p>2015-09-01</p> <p>The observed changes in physical properties of <span class="hlt">sea</span> <span class="hlt">ice</span> such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of <span class="hlt">sea-ice</span>-melt and under-<span class="hlt">ice</span> primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of <span class="hlt">sea</span> <span class="hlt">ice</span>. We measured spectral under-<span class="hlt">ice</span> radiance and irradiance using the new Nereid Under-<span class="hlt">Ice</span> (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving <span class="hlt">sea</span> <span class="hlt">ice</span>. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-<span class="hlt">ice</span> optical measurements with three dimensional under-<span class="hlt">ice</span> topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying <span class="hlt">ice</span>-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-<span class="hlt">ice</span> light field on small scales (<1000 m 2 ), while <span class="hlt">sea</span> <span class="hlt">ice</span>-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness and surface albedo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008666','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008666"><span>A New Normal for the <span class="hlt">Sea</span> <span class="hlt">Ice</span> Index</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fetterer, Florence; Windnagel, Ann; Meier, Walter N.</p> <p>2014-01-01</p> <p>The NSIDC <span class="hlt">Sea</span> <span class="hlt">Ice</span> Index is a popular data product that shows users how <span class="hlt">ice</span> extent and <span class="hlt">concentration</span> have changed since the beginning of the passive microwave satellite record in 1978. It shows time series of monthly <span class="hlt">ice</span> extent anomalies rather than actual extent values, in order to emphasize the information the data are carrying. Along with the time series, an image of average extent for the previous month is shown as a white field, with a pink line showing the median extent for that month. These are updated monthly; corresponding daily products are updated daily.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000638.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000638.html"><span>Warming <span class="hlt">Seas</span> and Melting <span class="hlt">Ice</span> Sheets</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p><span class="hlt">Sea</span> level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, <span class="hlt">sea</span> level rises. When <span class="hlt">ice</span> is exposed to heat, it melts. And when <span class="hlt">ice</span> on land melts and water runs into the ocean, <span class="hlt">sea</span> level rises. For thousands of years, <span class="hlt">sea</span> level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s <span class="hlt">seas</span> are rising. Globally, <span class="hlt">sea</span> level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland <span class="hlt">ice</span> sheet is shedding about 300 gigatons of <span class="hlt">ice</span> a year into the ocean, making it the single largest source of <span class="hlt">sea</span> level rise from melting <span class="hlt">ice</span>. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C53B..07A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C53B..07A"><span>Summer <span class="hlt">Sea</span> <span class="hlt">ice</span> in the Pacific Arctic sector from the CHINARE-2010 cruise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ackley, S. F.; Xie, H.; Lei, R.; Huang, W.; Chinare 2010 Arctic Sea Ice Group</p> <p>2010-12-01</p> <p>The Fourth Chinese National Arctic Research Expedition (CHINARE) from July 1 to Sep. 23, 2010, the last Chinese campaign in Arctic Ocean contributing to the fourth International Polar Year (IPY), conducted comprehensive scientific studies on ocean-<span class="hlt">ice</span>-atmosphere interaction and the marine ecosystem’s response to climatic change in Arctic. This paper presents an overview on <span class="hlt">sea</span> <span class="hlt">ice</span> (<span class="hlt">ice</span> <span class="hlt">concentration</span>, floe size, melt pond coverage, <span class="hlt">sea</span> <span class="hlt">ice</span> and snow thickness) of the Pacific Arctic sector, in particular between 150°W to 180°W to 86°N, based on: (1) underway visual observations of <span class="hlt">sea</span> <span class="hlt">ice</span> at half-hourly and automatic cameras recording (both side looking from the icebreaker R.V. Xuelong) every 10 to 15 seconds; (2) a downward-looking video mounted on the left side of the vessel at a height of 7 m above waterline recording overturning of <span class="hlt">ice</span> floes; (3) on-site measurements of snow and <span class="hlt">ice</span> thickness using drilling and electromagnetic instrument EM31 (9.8 kHz) at eight short-term (~3 hours each) and one 12-day <span class="hlt">ice</span> stations; (4) six flights of aerial photogrammetry from helicopter, and (5) Satellite data (AMSE-E <span class="hlt">ice</span> <span class="hlt">concentration</span> and ENVISAT ASAR) and NIC <span class="hlt">ice</span> charts) that extended the observations/measurements along beyond the ship track and airborne flights. In the northward leg, the largest <span class="hlt">ice</span> <span class="hlt">concentration</span> zone was in the area starting from ~75°N (July 29), with <span class="hlt">ice</span> <span class="hlt">concentration</span> of 60-90% (mean ~80%), <span class="hlt">ice</span> thickness of 1.5-2m, melt ponds of 10-50% of <span class="hlt">ice</span>, ridged <span class="hlt">ice</span> of 10-30% of <span class="hlt">ice</span>, and floe size of 100’s meters to kms. The 12-day <span class="hlt">ice</span> station (from Aug 7-19), started at 86.92°N/178.88°W and moved a total of 175.7km, was on an <span class="hlt">ice</span> floe over 100 km2 in size and ~2 m in mean thickness. There were two heavy and several slight snowfall events in the period (July 29 to Aug 19). Snow thickness varies from 5cm to 15 cm, and melted about 5cm during the 12-day <span class="hlt">ice</span> camp. In the southward leg, the largest <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> zone was in the area between 87°N to 80</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3654H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3654H"><span>Post-glacial variations of <span class="hlt">sea</span> <span class="hlt">ice</span> cover and river discharge in the western Laptev <span class="hlt">Sea</span> (Arctic Ocean) - a high-resolution study over the last 18 ka</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten</p> <p>2015-04-01</p> <p>Here, we provide a high-resolution reconstruction of <span class="hlt">sea-ice</span> cover variations in the western Laptev <span class="hlt">Sea</span>, a crucial area in terms of <span class="hlt">sea-ice</span> production in the Arctic Ocean and a region characterized by huge river discharge. Furthermore, the shallow Laptev <span class="hlt">Sea</span> was strongly influenced by the post-glacial <span class="hlt">sea</span>-level rise that should also be reflected in the sedimentary records. The <span class="hlt">sea</span> <span class="hlt">Ice</span> Proxy IP25 (Highly-branched mono-isoprenoid produced by <span class="hlt">sea-ice</span> algae; Belt et al., 2007) was measured in two sediment cores from the western Laptev <span class="hlt">Sea</span> (PS51/154, PS51/159) that offer a high-resolution composite record over the last 18 ka. In addition, sterols are applied as indicator for marine productivity (brassicasterol, dinosterol) and input of terrigenous organic matter by river discharge into the ocean (campesterol, ß-sitosterol). The <span class="hlt">sea-ice</span> cover varies distinctly during the whole time period and shows a general increase in the Late Holocene. A maximum in IP25 <span class="hlt">concentration</span> can be found during the Younger Dryas. This sharp increase can be observed in the whole circumarctic realm (Chukchi <span class="hlt">Sea</span>, Bering <span class="hlt">Sea</span>, Fram Strait and Laptev <span class="hlt">Sea</span>). Interestingly, there is no correlation between elevated numbers of <span class="hlt">ice</span>-rafted debris (IRD) interpreted as local <span class="hlt">ice</span>-cap expansions (Taldenkova et al. 2010), and <span class="hlt">sea</span> <span class="hlt">ice</span> cover distribution. The transgression and flooding of the shelf <span class="hlt">sea</span> that occurred over the last 16 ka in this region, is reflected by decreasing terrigenous (riverine) input, reflected in the strong decrease in sterol (ß-sitosterol and campesterol) <span class="hlt">concentrations</span>. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo <span class="hlt">sea</span> <span class="hlt">ice</span>: IP25. Organic Geochemistry 38 (1), 16e27. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ya, Ovsepyan, Kandiano, E., 2010. History of <span class="hlt">ice</span>-rafting and water mass evolution at the northern Siberian continental margin (Laptev <span class="hlt">Sea</span>) during Late</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711856','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711856"><span>Influence of <span class="hlt">sea</span> <span class="hlt">ice</span> on Arctic precipitation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kopec, Ben G.; Feng, Xiahong; Michel, Fred A.; Posmentier, Eric S.</p> <p>2016-01-01</p> <p>Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by <span class="hlt">sea</span> <span class="hlt">ice</span> through its control on evaporation and precipitation. However, the quantitative link between precipitation and <span class="hlt">sea</span> <span class="hlt">ice</span> extent is poorly constrained. Here we present observational evidence for the response of precipitation to <span class="hlt">sea</span> <span class="hlt">ice</span> reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with <span class="hlt">sea</span> <span class="hlt">ice</span> change in the Canadian Arctic and Greenland <span class="hlt">Sea</span> regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of <span class="hlt">sea</span> <span class="hlt">ice</span> on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km2 <span class="hlt">sea</span> <span class="hlt">ice</span> lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.1486K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.1486K"><span>Windows in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>: Light transmission and <span class="hlt">ice</span> algae in a refrozen lead</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.</p> <p>2017-06-01</p> <p>The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year <span class="hlt">ice</span> cover, with significant consequences for radiative transfer through the <span class="hlt">ice</span> pack and light availability for algal growth. A thinner, more dynamic <span class="hlt">ice</span> cover will possibly result in more frequent leads, covered by newly formed <span class="hlt">ice</span> with little snow cover. We studied a refrozen lead (≤0.27 m <span class="hlt">ice</span>) in drifting pack <span class="hlt">ice</span> north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young <span class="hlt">sea</span> <span class="hlt">ICE</span> expedition (N-<span class="hlt">ICE</span>2015). We measured downwelling incident and <span class="hlt">ice</span>-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted <span class="hlt">sea</span> <span class="hlt">ice</span> samples. We found occasionally very high MAA <span class="hlt">concentrations</span> (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during <span class="hlt">ice</span> melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin <span class="hlt">ice</span> was significantly higher than that of the adjacent thicker <span class="hlt">ice</span> with deep snow cover, <span class="hlt">ice</span> algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent <span class="hlt">ice</span>. <span class="hlt">Ice</span> algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53E0937L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53E0937L"><span>Middle Range <span class="hlt">Sea</span> <span class="hlt">Ice</span> Prediction System of Voyage Environmental Information System in Arctic <span class="hlt">Sea</span> Route</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lim, H. S.</p> <p>2017-12-01</p> <p>Due to global warming, the <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic Ocean is melting dramatically in summer, which is providing a new opportunity to exploit the Northern <span class="hlt">Sea</span> Route (NSR) connecting Asia and Europe ship route. Recent increases in logistics transportation through NSR and resource development reveal the possible threats of marine pollution and marine transportation accidents without real-time navigation system. To develop a safe Voyage Environmental Information System (VEIS) for vessels operating, the Korea Institute of Ocean Science and Technology (KIOST) which is supported by the Ministry of Oceans and Fisheries, Korea has initiated the development of short-term and middle range prediction system for the <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> (SIC) and <span class="hlt">sea</span> <span class="hlt">ice</span> thickness (SIT) in NSR since 2014. The <span class="hlt">sea</span> <span class="hlt">ice</span> prediction system of VEIS consists of AMSR2 satellite composite images (a day), short-term (a week) prediction system, and middle range (a month) prediction system using a statistical method with re-analysis data (TOPAZ) and short-term predicted model data. In this study, the middle range prediction system for the SIC and SIT in NSR is calibrated with another middle range predicted atmospheric and oceanic data (NOAA CFSv2). The system predicts one month SIC and SIT on a daily basis, as validated with dynamic composite SIC data extracted from AMSR2 L2 satellite images.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS31C1297H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS31C1297H"><span>Transient sensitivities of <span class="hlt">sea</span> <span class="hlt">ice</span> export through the Canadian Arctic Archipelago inferred from a coupled ocean/<span class="hlt">sea-ice</span> adjoint model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heimbach, P.; Losch, M.; Menemenlis, D.; Campin, J.; Hill, C.</p> <p>2008-12-01</p> <p>The sensitivity of <span class="hlt">sea-ice</span> export through the Canadian Arctic Archipelago (CAA), measured in terms of its solid freshwater export through Lancaster Sound, to changes in various elements of the ocean and <span class="hlt">sea-ice</span> state, and to elements of the atmospheric forcing fields through time and space is assessed by means of a coupled ocean/<span class="hlt">sea-ice</span> adjoint model. The adjoint model furnishes full spatial sensitivity maps (also known as Lagrange multipliers) of the export metric to a variety of model variables at any chosen point in time, providing the unique capability to quantify major drivers of <span class="hlt">sea-ice</span> export variability. The underlying model is the MIT ocean general circulation model (MITgcm), which is coupled to a Hibler-type dynamic/thermodynamic <span class="hlt">sea-ice</span> model. The configuration is based on the Arctic face of the ECCO3 high-resolution cubed-sphere model, but coarsened to 36-km horizontal grid spacing. The adjoint of the coupled system has been derived by means of automatic differentiation using the software tool TAF. Finite perturbation simulations are performed to check the information provided by the adjoint. The <span class="hlt">sea-ice</span> model's performance in the presence of narrow straits is assessed with different <span class="hlt">sea-ice</span> lateral boundary conditions. The adjoint sensitivity clearly exposes the role of the model trajectory and the transient nature of the problem. The complex interplay between forcing, dynamics, and boundary condition is demonstrated in the comparison between the different calculations. The study is a step towards fully coupled adjoint-based ocean/<span class="hlt">sea-ice</span> state estimation at basin to global scales as part of the ECCO efforts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcMSn..31....1Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcMSn..31....1Z"><span>Modeling ocean wave propagation under <span class="hlt">sea</span> <span class="hlt">ice</span> covers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Xin; Shen, Hayley H.; Cheng, Sukun</p> <p>2015-02-01</p> <p>Operational ocean wave models need to work globally, yet current ocean wave models can only treat <span class="hlt">ice</span>-covered regions crudely. The purpose of this paper is to provide a brief overview of <span class="hlt">ice</span> effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or <span class="hlt">sea</span>, <span class="hlt">sea</span> <span class="hlt">ice</span> can be classified as: landfast <span class="hlt">ice</span> zone, shear zone, and the marginal <span class="hlt">ice</span> zone. All <span class="hlt">ice</span> covers attenuate wave energy. Only long swells can penetrate deep into an <span class="hlt">ice</span> cover. Being closest to open water, wave propagation in the marginal <span class="hlt">ice</span> zone is the most complex to model. The physical appearance of <span class="hlt">sea</span> <span class="hlt">ice</span> in the marginal <span class="hlt">ice</span> zone varies. Grease <span class="hlt">ice</span>, pancake <span class="hlt">ice</span>, brash <span class="hlt">ice</span>, floe aggregates, and continuous <span class="hlt">ice</span> sheet may be found in this zone at different times and locations. These types of <span class="hlt">ice</span> are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized <span class="hlt">ice</span> cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of <span class="hlt">ice</span> floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous <span class="hlt">ice</span> sheet, and the viscous layer model is suitable for grease <span class="hlt">ice</span>. For different <span class="hlt">sea</span> <span class="hlt">ice</span> types we may need different wave <span class="hlt">ice</span> interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various <span class="hlt">ice</span> covers need to be implemented in the operational ocean wave models. In this review, we introduce the <span class="hlt">sea</span> <span class="hlt">ice</span> types, previous wave <span class="hlt">ice</span> interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different <span class="hlt">ice</span> covers, and the effect of <span class="hlt">ice</span> floe breaking on shaping the <span class="hlt">sea</span> <span class="hlt">ice</span> morphology</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04300&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bworld','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04300&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bworld"><span><span class="hlt">Ice</span> Types in the Beaufort <span class="hlt">Sea</span>, Alaska</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p><p/> Determining the amount and type of <span class="hlt">sea</span> <span class="hlt">ice</span> in the polar oceans is crucial to improving our knowledge and understanding of polar weather and long term climate fluctuations. These views from two satellite remote sensing instruments; the synthetic aperture radar (SAR) on board the RADARSAT satellite and the Multi-angle Imaging SpectroRadiometer (MISR), illustrate different methods that may be used to assess <span class="hlt">sea</span> <span class="hlt">ice</span> type. <span class="hlt">Sea</span> <span class="hlt">ice</span> in the Beaufort <span class="hlt">Sea</span> off the north coast of Alaska was classified and mapped in these concurrent images acquired March 19, 2001 and mapped to the same geographic area.<p/>To identify <span class="hlt">sea</span> <span class="hlt">ice</span> types, the National Oceanic and Atmospheric Administration (NOAA) National <span class="hlt">Ice</span> Center constructs <span class="hlt">ice</span> charts using several data sources including RADARSAT SAR images such as the one shown at left. SAR classifies <span class="hlt">sea</span> <span class="hlt">ice</span> types primarily by how the surface and subsurface roughness influence radar backscatter. In the SAR image, white lines delineate different <span class="hlt">sea</span> <span class="hlt">ice</span> zones as identified by the National <span class="hlt">Ice</span> Center. Regions of mostly multi-year <span class="hlt">ice</span> (A) are separated from regions with large amounts of first year and younger <span class="hlt">ice</span> (B-D), and the dashed white line at bottom marks the coastline. In general, <span class="hlt">sea</span> <span class="hlt">ice</span> types that exhibit increased radar backscatter appear bright in SAR and are identified as rougher, older <span class="hlt">ice</span> types. Younger, smoother <span class="hlt">ice</span> types appear dark to SAR. Near the top of the SAR image, however, red arrows point to bright areas in which large, crystalline 'frost flowers' have formed on young, thin <span class="hlt">ice</span>, causing this young <span class="hlt">ice</span> type to exhibit an increased radar backscatter. Frost flowers are strongly backscattering at radar wavelengths (cm) due to both surface roughness and the high salinity of frost flowers, which causes them to be highly reflective to radar energy.<p/>Surface roughness is also registered by MISR, although the roughness observed is at a different spatial scale. Older, rougher <span class="hlt">ice</span> areas are predominantly backward scattering to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26347538','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26347538"><span>Processes controlling surface, bottom and lateral melt of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> in a state of the art <span class="hlt">sea</span> <span class="hlt">ice</span> model.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela</p> <p>2015-10-13</p> <p>We present a modelling study of processes controlling the summer melt of the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover. We perform a sensitivity study and focus our interest on the thermodynamics at the <span class="hlt">ice</span>-atmosphere and <span class="hlt">ice</span>-ocean interfaces. We use the Los Alamos community <span class="hlt">sea</span> <span class="hlt">ice</span> model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the <span class="hlt">ice</span>-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various <span class="hlt">sea</span> <span class="hlt">ice</span> parametrizations tested in this sensitivity study introduce a wide spread in the simulated <span class="hlt">sea</span> <span class="hlt">ice</span> characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of <span class="hlt">sea</span> <span class="hlt">ice</span>, this work can serve as a guide for future research priorities. © 2015 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12210820G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12210820G"><span>Spring snow conditions on Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> north of Svalbard, during the Norwegian Young <span class="hlt">Sea</span> <span class="hlt">ICE</span> (N-<span class="hlt">ICE</span>2015) expedition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian</p> <p>2017-10-01</p> <p>Snow is crucial over <span class="hlt">sea</span> <span class="hlt">ice</span> due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young <span class="hlt">Sea</span> <span class="hlt">ICE</span> (N-<span class="hlt">ICE</span>2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year <span class="hlt">ice</span>, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year <span class="hlt">ice</span>. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over <span class="hlt">sea</span> <span class="hlt">ice</span> compared to previous observations, due to more variable <span class="hlt">sea</span> <span class="hlt">ice</span> and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.1823S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.1823S"><span>Mapping and assessing variability in the Antarctic marginal <span class="hlt">ice</span> zone, pack <span class="hlt">ice</span> and coastal polynyas in two <span class="hlt">sea</span> <span class="hlt">ice</span> algorithms with implications on breeding success of snow petrels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine</p> <p>2016-08-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> variability within the marginal <span class="hlt">ice</span> zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack <span class="hlt">ice</span> and coastal polynyas in the total Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic <span class="hlt">ice</span> cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the <span class="hlt">sea</span> <span class="hlt">ice</span> cover that is covered by each of these <span class="hlt">ice</span> categories. However, estimates of the amount of MIZ, consolidated pack <span class="hlt">ice</span> and polynyas depend strongly on which <span class="hlt">sea</span> <span class="hlt">ice</span> algorithm is used. This study uses two popular passive microwave <span class="hlt">sea</span> <span class="hlt">ice</span> algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentrations</span> to evaluate the distribution and variability in the MIZ, the consolidated pack <span class="hlt">ice</span> and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack <span class="hlt">ice</span> is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack <span class="hlt">ice</span> area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack <span class="hlt">ice</span> area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken <span class="hlt">ice</span> within the consolidated <span class="hlt">ice</span> pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040015192&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040015192&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DParkinsons"><span>Observed and Modeled Trends in Southern Ocean <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>2003-01-01</p> <p>Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and <span class="hlt">ice</span> surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of <span class="hlt">sea</span> <span class="hlt">ice</span> variations in the model calculations. Both <span class="hlt">sea</span> <span class="hlt">ice</span> thickness and <span class="hlt">sea</span> <span class="hlt">ice</span> extent decrease markedly in the doubled CO, case, thereby allowing the <span class="hlt">ice</span> feedbacks to occur. Stand-alone <span class="hlt">sea</span> <span class="hlt">ice</span> models have shown Southern Ocean hemispherically averaged winter <span class="hlt">ice</span>-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean <span class="hlt">ice</span> cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean <span class="hlt">sea</span> <span class="hlt">ice</span> since late 1978 has revealed overall increases rather than decreases in <span class="hlt">ice</span> extents, with <span class="hlt">ice</span> extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross <span class="hlt">Sea</span>, while the trends are negative in the Bellingshausen/Amundsen <span class="hlt">Seas</span>. Greater spatial detail can be obtained by examining trends in the length of the <span class="hlt">sea</span> <span class="hlt">ice</span> season, and those trends show a coherent picture of shortening <span class="hlt">sea</span> <span class="hlt">ice</span> seasons throughout almost the entire Bellingshausen and Amundsen <span class="hlt">Seas</span> to the west of the Antarctic Peninsula and in the far western Weddell <span class="hlt">Sea</span> immediately to the east of the Peninsula, with lengthening <span class="hlt">sea</span> <span class="hlt">ice</span> seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27651531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27651531"><span>Loss of connectivity among island-dwelling Peary caribou following <span class="hlt">sea</span> <span class="hlt">ice</span> decline.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jenkins, Deborah A; Lecomte, Nicolas; Schaefer, James A; Olsen, Steffen M; Swingedouw, Didier; Côté, Steeve D; Pellissier, Loïc; Yannic, Glenn</p> <p>2016-09-01</p> <p>Global warming threatens to reduce population connectivity for terrestrial wildlife through significant and rapid changes to <span class="hlt">sea</span> <span class="hlt">ice</span>. Using genetic fingerprinting, we contrasted extant connectivity in island-dwelling Peary caribou in northern Canada with continental-migratory caribou. We next examined if <span class="hlt">sea-ice</span> contractions in the last decades modulated population connectivity and explored the possible impact of future climate change on long-term connectivity among island caribou. We found a strong correlation between genetic and geodesic distances for both continental and Peary caribou, even after accounting for the possible effect of <span class="hlt">sea</span> surface. <span class="hlt">Sea</span> <span class="hlt">ice</span> has thus been an effective corridor for Peary caribou, promoting inter-island connectivity and population mixing. Using a time series of remote sensing <span class="hlt">sea-ice</span> data, we show that landscape resistance in the Canadian Arctic Archipelago has increased by approximately 15% since 1979 and may further increase by 20-77% by 2086 under a high-emission scenario (RCP8.5). Under the persistent increase in greenhouse gas <span class="hlt">concentrations</span>, reduced connectivity may isolate island-dwelling caribou with potentially significant consequences for population viability. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030056665&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030056665&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DParkinsons"><span>30-Year Satellite Record Reveals Accelerated Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Loss, Antarctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Trend Reversal</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.</p> <p>2003-01-01</p> <p>Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent observed in the early 1970's.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870007787&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870007787&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal"><span>Microwave properties of <span class="hlt">sea</span> <span class="hlt">ice</span> in the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Onstott, R. G.; Larson, R. W.</p> <p>1986-01-01</p> <p>Active microwave properties of summer <span class="hlt">sea</span> <span class="hlt">ice</span> were measured. Backscatter data were acquired at frequencies from 1 to 17 GHz, at angles from 0 to 70 deg from vertical, and with like and cross antenna polarizations. Results show that melt-water, snow thickness, snowpack morphology, snow surface roughness, <span class="hlt">ice</span> surface roughness, and deformation characteristics are the fundamental scene parameters which govern the summer <span class="hlt">sea</span> <span class="hlt">ice</span> backscatter response. A thick, wet snow cover dominates the backscatter response and masks any <span class="hlt">ice</span> sheet features below. However, snow and melt-water are not distributed uniformly and the stage of melt may also be quite variable. These nonuniformities related to <span class="hlt">ice</span> type are not necessarily well understood and produce unique microwave signature characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.481...61C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.481...61C"><span>Seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> cover during the warm Pliocene: Evidence from the Iceland <span class="hlt">Sea</span> (ODP Site 907)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clotten, Caroline; Stein, Ruediger; Fahl, Kirsten; De Schepper, Stijn</p> <p>2018-01-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> is a critical component in the Arctic and global climate system, yet little is known about its extent and variability during past warm intervals, such as the Pliocene (5.33-2.58 Ma). Here, we present the first multi-proxy (IP25, sterols, alkenones, palynology) <span class="hlt">sea</span> <span class="hlt">ice</span> reconstructions for the Late Pliocene Iceland <span class="hlt">Sea</span> (ODP Site 907). Our interpretation of a seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> cover with occasional <span class="hlt">ice</span>-free intervals between 3.50-3.00 Ma is supported by reconstructed alkenone-based summer <span class="hlt">sea</span> surface temperatures. As evidenced from brassicasterol and dinosterol, primary productivity was low between 3.50 and 3.00 Ma and the site experienced generally oligotrophic conditions. The East Greenland Current (and East Icelandic Current) may have transported <span class="hlt">sea</span> <span class="hlt">ice</span> into the Iceland <span class="hlt">Sea</span> and/or brought cooler and fresher waters favoring local <span class="hlt">sea</span> <span class="hlt">ice</span> formation. Between 3.00 and 2.40 Ma, the Iceland <span class="hlt">Sea</span> is mainly <span class="hlt">sea</span> <span class="hlt">ice</span>-free, but seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> occurred between 2.81 and 2.74 Ma. <span class="hlt">Sea</span> <span class="hlt">ice</span> extending into the Iceland <span class="hlt">Sea</span> at this time may have acted as a positive feedback for the build-up of the Greenland <span class="hlt">Ice</span> Sheet (GIS), which underwent a major expansion ∼2.75 Ma. Thereafter, most likely a stable <span class="hlt">sea</span> <span class="hlt">ice</span> edge developed close to Greenland, possibly changing together with the expansion and retreat of the GIS and affecting the productivity in the Iceland <span class="hlt">Sea</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JESS..126...70K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JESS..126...70K"><span>Ocean <span class="hlt">sea-ice</span> modelling in the Southern Ocean around Indian Antarctic stations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Anurag; Dwivedi, Suneet; Rajak, D. Ram</p> <p>2017-07-01</p> <p>An eddy-resolving coupled ocean <span class="hlt">sea-ice</span> modelling is carried out in the Southern Ocean region (9°-78°E; 51°-71°S) using the MITgcm. The model domain incorporates the Indian Antarctic stations, Maitri (11.7{°}E; 70.7{°}S) and Bharati (76.1{°}E; 69.4{°}S). The realistic simulation of the surface variables, namely, <span class="hlt">sea</span> surface temperature (SST), <span class="hlt">sea</span> surface salinity (SSS), surface currents, <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> (SIC) and <span class="hlt">sea</span> <span class="hlt">ice</span> thickness (SIT) is presented for the period of 1997-2012. The horizontal resolution of the model varies between 6 and 10 km. The highest vertical resolution of 5 m is taken near the surface, which gradually increases with increasing depths. The seasonal variability of the SST, SSS, SIC and currents is compared with the available observations in the region of study. It is found that the SIC of the model domain is increasing at a rate of 0.09% per month (nearly 1% per year), whereas, the SIC near Maitri and Bharati regions is increasing at a rate of 0.14 and 0.03% per month, respectively. The variability of the drift of the <span class="hlt">sea-ice</span> is also estimated over the period of simulation. It is also found that the <span class="hlt">sea</span> <span class="hlt">ice</span> volume of the region increases at the rate of 0.0004 km3 per month (nearly 0.005 km3 per year). Further, it is revealed that the accumulation of <span class="hlt">sea</span> <span class="hlt">ice</span> around Bharati station is more as compared to Maitri station.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9654S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9654S"><span>Micromechanics of <span class="hlt">sea</span> <span class="hlt">ice</span> gouge in shear zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sammonds, Peter; Scourfield, Sally; Lishman, Ben</p> <p>2015-04-01</p> <p>The deformation of <span class="hlt">sea</span> <span class="hlt">ice</span> is a key control on the Arctic Ocean dynamics. Shear displacement on all scales is an important deformation process in the <span class="hlt">sea</span> cover. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction and block sliding in <span class="hlt">ice</span> ridges through to the micro-scale mechanics. Shear deformation will not only depend on the speed of movement of <span class="hlt">ice</span> surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Recent observations made during fieldwork in the Barents <span class="hlt">Sea</span> show that shear produces a gouge similar to a fault gouge in a shear zone in the crust. A range of sizes of gouge are exhibited. The consolidation of these fragments has a profound influence on the shear strength and the rate of the processes involved. We review experimental results in <span class="hlt">sea</span> <span class="hlt">ice</span> mechanics from mid-scale experiments, conducted in the Hamburg model ship <span class="hlt">ice</span> tank, simulating <span class="hlt">sea</span> <span class="hlt">ice</span> floe motion and interaction and compare these with laboratory experiments on <span class="hlt">ice</span> friction done in direct shear, and upscale to field measurement of <span class="hlt">sea</span> <span class="hlt">ice</span> friction and gouge deformation made during experiments off Svalbard. We find that consolidation, fragmentation and bridging play important roles in the overall dynamics and fit the model of Sammis and Ben-Zion, developed for understanding the micro-mechanics of rock fault gouge, to the <span class="hlt">sea</span> <span class="hlt">ice</span> problem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP54A..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP54A..03P"><span>Late Holocene <span class="hlt">sea</span> <span class="hlt">ice</span> conditions in Herald Canyon, Chukchi <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearce, C.; O'Regan, M.; Rattray, J. E.; Hutchinson, D. K.; Cronin, T. M.; Gemery, L.; Barrientos, N.; Coxall, H.; Smittenberg, R.; Semiletov, I. P.; Jakobsson, M.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> in the Arctic Ocean has been in steady decline in recent decades and, based on satellite data, the retreat is most pronounced in the Chukchi and Beaufort <span class="hlt">seas</span>. Historical observations suggest that the recent changes were unprecedented during the last 150 years, but for a longer time perspective, we rely on the geological record. For this study, we analyzed sediment samples from two piston cores from Herald Canyon in the Chukchi <span class="hlt">Sea</span>, collected during the 2014 SWERUS-C3 Arctic Ocean Expedition. The Herald Canyon is a local depression across the Chukchi Shelf, and acts as one of the main pathways for Pacific Water to the Arctic Ocean after entering through the narrow and shallow Bering Strait. The study site lies at the modern-day seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> minimum edge, and is thus an ideal location for the reconstruction of past <span class="hlt">sea</span> <span class="hlt">ice</span> variability. Both sediment cores contain late Holocene deposits characterized by high sediment accumulation rates (100-300 cm/kyr). Core 2-PC1 from the shallow canyon flank (57 m water depth) is 8 meter long and extends back to 4200 cal yrs BP, while the upper 3 meters of Core 4-PC1 from the central canyon (120 mwd) cover the last 3000 years. The chronologies of the cores are based on radiocarbon dates and the 3.6 ka Aniakchak CFE II tephra, which is used as an absolute age marker to calculate the marine radiocarbon reservoir age. Analysis of biomarkers for <span class="hlt">sea</span> <span class="hlt">ice</span> and surface water productivity indicate stable <span class="hlt">sea</span> <span class="hlt">ice</span> conditions throughout the entire late Holocene, ending with an abrupt increase of phytoplankton sterols in the very top of both sediment sequences. The shift is accompanied by a sudden increase in coarse sediments (> 125 µm) and a minor change in δ13Corg. We interpret this transition in the top sediments as a community turnover in primary producers from <span class="hlt">sea</span> <span class="hlt">ice</span> to open water biota. Most importantly, our results indicate that the ongoing rapid <span class="hlt">ice</span> retreat in the Chukchi <span class="hlt">Sea</span> of recent decades was unprecedented during the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9299E..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9299E..03J"><span>Development of <span class="hlt">sea</span> <span class="hlt">ice</span> monitoring with aerial remote sensing technology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei</p> <p>2014-11-01</p> <p>In the north China <span class="hlt">Sea</span> district, <span class="hlt">sea</span> <span class="hlt">ice</span> disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the <span class="hlt">sea</span> <span class="hlt">ice</span> situation becomes too critical. The monitoring of <span class="hlt">sea</span> <span class="hlt">ice</span> is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor <span class="hlt">sea</span> <span class="hlt">ice</span> mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the <span class="hlt">sea</span> <span class="hlt">ice</span> in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of <span class="hlt">sea</span> <span class="hlt">ice</span>, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get <span class="hlt">sea</span> <span class="hlt">ice</span> charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor <span class="hlt">sea</span> <span class="hlt">ice</span>. Aerial remote sensing is an important means in <span class="hlt">sea</span> <span class="hlt">ice</span> monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the <span class="hlt">sea</span> <span class="hlt">ice</span> monitoring using aerial remote sensing technology are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760039698&hterms=1103&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231103','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760039698&hterms=1103&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231103"><span>Beaufort <span class="hlt">Sea</span> <span class="hlt">ice</span> zones as delineated by microwave imagery</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, W. J.; Gloersen, P.; Webster, W. J.; Wilheit, T. T.; Ramseier, R. O.</p> <p>1976-01-01</p> <p>Microwave and infrared data were obtained from a research aircraft over the Beaufort <span class="hlt">Sea</span> <span class="hlt">ice</span> from the shoreline of Harrison Bay northward to a latitude of almost 81 deg N. The data acquired were compared with microwave data obtained on the surface at an approximate position of 75 deg N, 150 deg W. Over this north-south transect of the polar <span class="hlt">ice</span> canopy it was discovered that the <span class="hlt">sea</span> <span class="hlt">ice</span> could be divided into five distinct zones. The shorefast <span class="hlt">sea</span> <span class="hlt">ice</span> was found to consist uniformly of first-year <span class="hlt">sea</span> <span class="hlt">ice</span>. The second zone was found to be a mixture of first-year <span class="hlt">sea</span> <span class="hlt">ice</span>, medium size multiyear floes, and many recently refrozen leads, polynyas, and open water; considerable shearing activity was evident in this zone. The third zone was a mixture of first-year and multiyear <span class="hlt">sea</span> <span class="hlt">ice</span> which had a uniform microwave signature. The fourth zone was found to be a mixture of first-year <span class="hlt">sea</span> <span class="hlt">ice</span> and medium-to-large size multiyear floes which was similar in composition to the second zone. The fifth zone was almost exclusively multiyear <span class="hlt">ice</span> extending to the North Pole.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCD.....8.1517K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCD.....8.1517K"><span>About uncertainties in <span class="hlt">sea</span> <span class="hlt">ice</span> thickness retrieval from satellite radar altimetry: results from the ESA-CCI <span class="hlt">Sea</span> <span class="hlt">Ice</span> ECV Project Round Robin Exercise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.</p> <p>2014-03-01</p> <p>One goal of the European Space Agency Climate Change Initiative <span class="hlt">sea</span> <span class="hlt">ice</span> Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time <span class="hlt">sea</span> <span class="hlt">ice</span> thickness distribution. An important step to achieve this goal is to assess the accuracy of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising <span class="hlt">sea</span> <span class="hlt">ice</span> freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and <span class="hlt">sea</span> <span class="hlt">ice</span> freeboard from Operation <span class="hlt">Ice</span> Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of <span class="hlt">sea</span> <span class="hlt">ice</span> draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year <span class="hlt">ice</span> the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS <span class="hlt">sea</span> <span class="hlt">ice</span> draft agrees with the mean <span class="hlt">sea</span> <span class="hlt">ice</span> draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in <span class="hlt">sea</span> <span class="hlt">ice</span> draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain <span class="hlt">sea</span> <span class="hlt">ice</span> thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an <span class="hlt">ice</span>-type dependent <span class="hlt">sea</span> <span class="hlt">ice</span> density is as mandatory</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991JGR....9618411L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991JGR....9618411L"><span><span class="hlt">Sea</span> <span class="hlt">ice</span> ridging in the eastern Weddell <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lytle, V. I.; Ackley, S. F.</p> <p>1991-10-01</p> <p>In August 1986, <span class="hlt">sea</span> <span class="hlt">ice</span> ridge heights and spatial frequency in the eastern Weddell <span class="hlt">Sea</span> were measured using a ship-based acoustical sounder. Using a minimum ridge sail height of 0.75 m, a total of 933 ridges were measured along a track length of 415 km. The ridge frequency varied from 0.4 to 10.5 ridges km-1. The mean height of the ridges was found to be about 1.1 m regardless of the ridge frequency. These results are compared to other ridging statistics from the Ross <span class="hlt">Sea</span> and found to be similar. Comparison with Arctic data, however, indicates that the height and frequency of the ridges are considerably less in the Weddell <span class="hlt">Sea</span> than in the Arctic. Whereas in the Arctic the mean ridge height tends to increase with the ridge frequency, we found that this was not the case in the Weddell <span class="hlt">Sea</span>, where the mean ridge height remained constant irrespective of the ridge frequency. Estimates of the contribution of deformed <span class="hlt">ice</span> to the total <span class="hlt">ice</span> thickness are generally low except for a single 53-km section where the ridge frequency increased by an order of magnitude. This resulted in an increase in the equivalent mean <span class="hlt">ice</span> thickness due to ridging from 0.04 m in the less deformed areas to 0.45 m in the highly deformed section. These values were found to be consistent with values obtained from drilled profile lines during the same cruise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193618','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193618"><span>Holocene <span class="hlt">sea</span> surface temperature and <span class="hlt">sea</span> <span class="hlt">ice</span> extent in the Okhotsk and Bering <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harada, Naomi; Katsuki, Kota; Nakagawa, Mitsuhiro; Matsumoto, Akiko; Seki, Osamu; Addison, Jason A.; Finney, Bruce P.; Sato, Miyako</p> <p>2014-01-01</p> <p>Accurate prediction of future climate requires an understanding of the mechanisms of the Holocene climate; however, the driving forces, mechanisms, and processes of climate change in the Holocene associated with different time scales remain unclear. We investigated the drivers of Holocene <span class="hlt">sea</span> surface temperature (SST) and <span class="hlt">sea</span> <span class="hlt">ice</span> extent in the North Pacific Ocean, and the Okhotsk and Bering <span class="hlt">Seas</span>, as inferred from sediment core records, by using the alkenone unsaturation index as a biomarker of SST and abundances of <span class="hlt">sea</span> <span class="hlt">ice</span>-related diatoms (F. cylindrus and F. oceanica) as an indicator of <span class="hlt">sea</span> <span class="hlt">ice</span> extent to explore controlling mechanisms in the high-latitude Pacific. Temporal changes in alkenone content suggest that alkenone production was relatively high during the middle Holocene in the Okhotsk <span class="hlt">Sea</span> and the western North Pacific, but highest in the late Holocene in the eastern Bering <span class="hlt">Sea</span> and the eastern North Pacific. The Holocene variations of alkenone-SSTs at sites near Kamchatka in the Northwest Pacific, as well as in the western and eastern regions of the Bering <span class="hlt">Sea</span>, and in the eastern North Pacific track the changes of Holocene summer insolation at 50°N, but at other sites in the western North Pacific, in the southern Okhotsk <span class="hlt">Sea</span>, and the eastern Bering <span class="hlt">Sea</span> they do not. In addition to insolation, other atmosphere and ocean climate drivers, such as <span class="hlt">sea</span> <span class="hlt">ice</span> distribution and changes in the position and activity of the Aleutian Low, may have systematically influenced the timing and magnitude of warming and cooling during the Holocene within the subarctic North Pacific. Periods of high <span class="hlt">sea</span> <span class="hlt">ice</span> extent in both the Okhotsk and Bering <span class="hlt">Seas</span> may correspond to some periods of frequent or strong winter–spring dust storms in the Mongolian Gobi Desert, particularly one centered at ∼4–3 thousand years before present (kyr BP). Variation in storm activity in the Mongolian Gobi Desert region may reflect changes in the strength and positions of the Aleutian Low and Siberian</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930029686&hterms=continental+drift&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcontinental%2Bdrift','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930029686&hterms=continental+drift&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcontinental%2Bdrift"><span>Observing the advection of <span class="hlt">sea</span> <span class="hlt">ice</span> in the Weddell <span class="hlt">Sea</span> using buoy and satellite passive microwave data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Massom, Robert A.</p> <p>1992-01-01</p> <p>Data from four buoys tracked by Nimbus 6 and concurrent <span class="hlt">ice</span> <span class="hlt">concentrations</span> retrieved from Nimbus 7 scanning multichannel microwave radiometer data are used to investigate the progress and behavior of an area of <span class="hlt">sea</span> <span class="hlt">ice</span> as it drifts from the southwestern Weddell <span class="hlt">Sea</span>. The overall drift characteristics and their relationship to <span class="hlt">ice</span> edge displacement are examined within the framework of four zones. Three phases are identified in the large-scale behavior of the Weddell <span class="hlt">Sea</span> <span class="hlt">ice</span> cover, namely, a rapid equatorward and eastward advance, a quasi-equilibrium phase, and a period of rapid recession. Outbreaks of cold continental air alternate with incursions of relatively warm air from the north; warm conditions are recorded as far as 1200 km in from the <span class="hlt">ice</span> edge in winter. Closed loops in the buoy trajectories, which are clockwise to the south of 63 deg S, reverse to become anticlockwise to the north. A coherence is observed in the response of the buoys to the passage of storms, even though the buoys separated by a distance of over 100 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA123762','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA123762"><span>The Growth, Structure, and Properties of <span class="hlt">Sea</span> <span class="hlt">Ice</span>,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-11-01</p> <p>First, the natural range of temperatures at which <span class="hlt">sea</span> <span class="hlt">ice</span> exists is just a few degrees off its melting point. In fact, <span class="hlt">sea</span> <span class="hlt">ice</span> normally is only...surface of lakes and <span class="hlt">seas</span>. If <span class="hlt">ice</span> sank into its melt, as do most solids, there would be a tendency for natural water bodies to freeze completely to...I I I -c 1 I II I I 02 b . Figure 1. Structure of <span class="hlt">ice</span> I. The fact that ordinary <span class="hlt">ice</span> is such an open, low density solid also suggests that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21A0652H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21A0652H"><span>NWS Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program: Operations, Customer Support & Challenges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heim, R.; Schreck, M. B.</p> <p>2016-12-01</p> <p>The National Weather Service's Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program offers daily <span class="hlt">sea</span> <span class="hlt">ice</span> and <span class="hlt">sea</span> surface temperature analysis products. The program also delivers a five day <span class="hlt">sea</span> <span class="hlt">ice</span> forecast 3 times each week, provides a 3 month <span class="hlt">sea</span> <span class="hlt">ice</span> outlook at the end of each month, and has staff available to respond to <span class="hlt">sea</span> <span class="hlt">ice</span> related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer <span class="hlt">sea</span> <span class="hlt">ice</span> free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program. The ASIP is in constant contact with the National <span class="hlt">Ice</span> Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on <span class="hlt">sea</span> <span class="hlt">ice</span> outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program as well as delve into what we see as the future of the ASIP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS13H..02E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS13H..02E"><span><span class="hlt">Sea-ice</span> information co-management: Planning for sustainable multiple uses of <span class="hlt">ice</span>-covered <span class="hlt">seas</span> in a rapidly changing Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eicken, H.; Lovecraft, A. L.</p> <p>2012-12-01</p> <p>A thinner, less extensive and more mobile summer <span class="hlt">sea-ice</span> cover is a major element and driver of Arctic Ocean change. Declining summer <span class="hlt">sea</span> <span class="hlt">ice</span> presents Arctic stakeholders with substantial challenges and opportunities from the perspective of sustainable ocean use and derivation of <span class="hlt">sea-ice</span> or ecosystem services. <span class="hlt">Sea-ice</span> use by people and wildlife as well as its role as a major environmental hazard focuses the interests and concerns of indigenous hunters and Arctic coastal communities, resource managers and the maritime industry. In particular, rapid <span class="hlt">sea-ice</span> change and intensifying offshore industrial activities have raised fundamental questions as to how best to plan for and manage multiple and increasingly overlapping ocean and <span class="hlt">sea</span> <span class="hlt">ice</span> uses. The western North American Arctic - a region that has seen some of the greatest changes in <span class="hlt">ice</span> and ocean conditions in the past three decades anywhere in the North - is the focus of our study. Specifically, we examine the important role that relevant and actionable <span class="hlt">sea-ice</span> information can play in allowing stakeholders to evaluate risks and reconcile overlapping and potentially competing interests. Our work in coastal Alaska suggests that important prerequisites to address such challenges are common values, complementary bodies of expertise (e.g., local or indigenous knowledge, engineering expertise, environmental science) and a forum for the implementation and evaluation of a <span class="hlt">sea-ice</span> data and information framework. Alongside the International Polar Year 2007-08 and an associated boost in Arctic Ocean observation programs and platforms, there has been a movement towards new governance bodies that have these qualities and can play a central role in guiding the design and optimization of Arctic observing systems. To help further the development of such forums an evaluation of the density and spatial distribution of institutions, i.e., rule sets that govern ocean use, as well as the use of scenario planning and analysis can serve as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C32B..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C32B..06D"><span>Discrete-element simulation of <span class="hlt">sea-ice</span> mechanics: Contact mechanics and granular jamming</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Damsgaard, A.; Adcroft, A.; Sergienko, O. V.; Stern, A. A.</p> <p>2017-12-01</p> <p>Lagrangian models of <span class="hlt">sea-ice</span> dynamics offer several advantages to Eulerian continuum methods. Spatial discretization on the <span class="hlt">ice</span>-floe scale is natural for Lagrangian models, which additionally offer the convenience of being able to handle arbitrary <span class="hlt">sea-ice</span> <span class="hlt">concentrations</span>. This is likely to improve model performance in <span class="hlt">ice</span>-marginal zones with strong advection. Furthermore, phase transitions in granular rheology around the jamming limit, such as observed when <span class="hlt">sea</span> <span class="hlt">ice</span> moves through geometric confinements, includes sharp thresholds in effective viscosity which are typically ignored in Eulerian models. Granular jamming is a stochastic process dependent on having the right grains in the right place at the right time, and the jamming likelihood over time can be described by a probabilistic model. Difficult to parameterize in continuum formulations, jamming occurs naturally in dense granular systems simulated in a Lagrangian framework, and is a very relevant process controlling <span class="hlt">sea-ice</span> transport through narrow straits. We construct a flexible discrete-element framework for simulating Lagrangian <span class="hlt">sea-ice</span> dynamics at the <span class="hlt">ice</span>-floe scale, forced by ocean and atmosphere velocity fields. Using this framework, we demonstrate that frictionless contact models based on compressive stiffness alone are unlikely to jam, and describe two different approaches based on friction and tensile strength which both result in increased bulk shear strength of the granular assemblage. The frictionless but cohesive contact model, with certain tensile strength values, can display jamming behavior which on the large scale is very similar to a more complex and realistic model with contact friction and <span class="hlt">ice</span>-floe rotation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13E..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13E..07L"><span>EM Bias-Correction for <span class="hlt">Ice</span> Thickness and Surface Roughness Retrievals over Rough Deformed <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.</p> <p>2016-12-01</p> <p>The very rough ridge <span class="hlt">sea</span> <span class="hlt">ice</span> accounts for significant percentage of total <span class="hlt">ice</span> areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth <span class="hlt">sea</span> <span class="hlt">ice</span>. Rough <span class="hlt">sea</span> <span class="hlt">ice</span> surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the <span class="hlt">ice</span> thickness retrievals. To understand and quantify such <span class="hlt">sea</span> <span class="hlt">ice</span> surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough <span class="hlt">sea</span> <span class="hlt">ice</span> `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the <span class="hlt">ice</span> thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA <span class="hlt">Ice</span>Bridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed <span class="hlt">sea</span> <span class="hlt">ice</span>. For <span class="hlt">sea</span> <span class="hlt">ice</span> thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed <span class="hlt">sea</span> <span class="hlt">ice</span>, suggesting that <span class="hlt">sea</span> <span class="hlt">ice</span> surface roughness effects can be modeled and corrected based solely on the radar return waveforms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013684','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013684"><span>ASPECTS OF ARCTIC <span class="hlt">SEA</span> <span class="hlt">ICE</span> OBSERVABLE BY SEQUENTIAL PASSIVE MICROWAVE OBSERVATIONS FROM THE NIMBUS-5 SATELLITE.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, William J.; Gloersen, Per; Zwally, H. Jay; ,</p> <p>1984-01-01</p> <p>Observations made from 1972 to 1976 with the Electrically Scanning Microwave Radiometer on board the Nimbus-5 satellite provide sequential synoptic information of the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover. This four-year data set was used to construct a fairly continuous series of three-day average 19-GHz passive microwave images which has become a valuable source of polar information, yielding many anticipated and unanticipated discoveries of the <span class="hlt">sea</span> <span class="hlt">ice</span> canopy observed in its entirety through the clouds and during the polar night. Short-term, seasonal, and annual variations of key <span class="hlt">sea</span> <span class="hlt">ice</span> parameters, such as <span class="hlt">ice</span> edge position, <span class="hlt">ice</span> types, mixtures of <span class="hlt">ice</span> types, <span class="hlt">ice</span> <span class="hlt">concentrations</span>, and snow melt on the <span class="hlt">ice</span>, are presented for various parts of the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617029','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617029"><span>Radar Remote Sensing of <span class="hlt">Ice</span> and <span class="hlt">Sea</span> State and Air-<span class="hlt">Sea</span> Interaction in the Marginal <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of <span class="hlt">Ice</span> and <span class="hlt">Sea</span> State and Air-<span class="hlt">Sea</span>...Interaction in the Marginal <span class="hlt">Ice</span> Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with <span class="hlt">ice</span> . A nautical X-band radar on a vessel dedicated to science would be used to follow the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150004436','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150004436"><span><span class="hlt">Sea-Ice</span> Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.</p> <p>2015-01-01</p> <p>Airborne and spaceborne altimeters provide measurements of <span class="hlt">sea-ice</span> elevation, from which <span class="hlt">sea-ice</span> freeboard and thickness may be derived. Observations of the Arctic <span class="hlt">ice</span> pack by satellite altimeters indicate a significant decline in <span class="hlt">ice</span> thickness, and volume, over the last decade. NASA's <span class="hlt">Ice</span>, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key <span class="hlt">sea-ice</span> observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over <span class="hlt">sea</span> <span class="hlt">ice</span> in the Greenland <span class="hlt">Sea</span> and assess the capabilities of photon-counting techniques for <span class="hlt">sea-ice</span> freeboard retrieval. We compare freeboard estimates in the marginal <span class="hlt">ice</span> zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where <span class="hlt">sea-ice</span> floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer <span class="hlt">sea-ice</span> thickness, and when compared with coincident but independent <span class="hlt">ice</span> thickness estimates, MABEL <span class="hlt">ice</span> thicknesses agreed to within 0.65m or better.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002001.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002001.html"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> in McClure Strait</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired August 17, 2010 In mid-August 2010, the Northwest Passage was almost—but not quite—free of <span class="hlt">ice</span>. The <span class="hlt">ice</span> content in the northern route through the passage (through the Western Parry Channel) was very light, but <span class="hlt">ice</span> remained in McClure (or M’Clure) Strait. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 17, 2010. Although most of McClure Strait looks perfectly <span class="hlt">ice</span>-free, immediately west of Prince Patrick Island, a band of <span class="hlt">sea</span> <span class="hlt">ice</span> stretches southward across the strait (left edge of the image). The National Snow and <span class="hlt">Ice</span> Data Center <span class="hlt">Sea</span> <span class="hlt">Ice</span> News and Analysis blog reported that even more <span class="hlt">ice</span> remained in the southern route (through Amundsen’s Passage) of the Northwest Passage in mid-August 2010. Nevertheless, the <span class="hlt">ice</span> content in the northern route was not only well below the 1968–2000 average, but also nearly a month ahead of the clearing observed in 2007, when Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> set a record low. As of mid-August 2010, however, overall <span class="hlt">sea</span> <span class="hlt">ice</span> extent was higher than it had been at the same time of year in 2007. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Caption by Michon Scott. To learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=45333 Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Click here to see more images from NASA Goddard’s Earth Observatory</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713065F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713065F"><span>Determination of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> variability modes on interannual timescales via nonhierarchical clustering</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco</p> <p>2015-04-01</p> <p>Over the modern observational era, the northern hemisphere <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual <span class="hlt">sea-ice</span> variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the <span class="hlt">sea</span> <span class="hlt">ice</span> thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of <span class="hlt">sea</span> <span class="hlt">ice</span> fields with a state-of-the-art ocean-<span class="hlt">sea-ice</span> model, but we also verify the robustness of determined clusters in other Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29704449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29704449"><span>Contribution of <span class="hlt">sea</span> <span class="hlt">ice</span> microbial production to Antarctic benthic communities is driven by <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics and composition of functional guilds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wing, Stephen R; Leichter, James J; Wing, Lucy C; Stokes, Dale; Genovese, Sal J; McMullin, Rebecca M; Shatova, Olya A</p> <p>2018-04-28</p> <p>Organic matter produced by the <span class="hlt">sea</span> <span class="hlt">ice</span> microbial community (SIMCo) is an important link between <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics and secondary production in near-shore food webs of Antarctica. <span class="hlt">Sea</span> <span class="hlt">ice</span> conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007-2015. A predictable <span class="hlt">sea</span> <span class="hlt">ice</span> persistence gradient along the length of the Sound and evidence for a distinct change in <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics in 2011 were observed. We used stable isotope analysis (δ 13 C and δ 15 N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10-20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the <span class="hlt">sea</span> <span class="hlt">ice</span> persistence gradient. Mass-balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near-shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m 2 ), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent <span class="hlt">sea</span> <span class="hlt">ice</span> (2008-2009) and years with extensive <span class="hlt">sea</span> <span class="hlt">ice</span> breakout (2012-2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics and near-shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C11B0499S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C11B0499S"><span>Expanding research capabilities with <span class="hlt">sea</span> <span class="hlt">ice</span> climate records for analysis of long-term climate change and short-term variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, D. J.; Meier, W. N.</p> <p>2008-12-01</p> <p>Recent <span class="hlt">sea</span> <span class="hlt">ice</span> analysis is leading to predictions of a <span class="hlt">sea</span> <span class="hlt">ice</span>-free summertime in the Arctic within 20 years, or even sooner. <span class="hlt">Sea</span> <span class="hlt">ice</span> topics, such as <span class="hlt">concentration</span>, extent, motion, and age, are predominately studied using satellite data. At the National Snow and <span class="hlt">Ice</span> Data Center (NSIDC), passive microwave <span class="hlt">sea</span> <span class="hlt">ice</span> data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing <span class="hlt">sea</span> <span class="hlt">ice</span> conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in <span class="hlt">sea</span> <span class="hlt">ice</span> and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of <span class="hlt">sea</span> <span class="hlt">ice</span> beyond the traditional cryospheric community.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02971&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea%2Bworld','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02971&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea%2Bworld"><span>Comparative Views of Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Growth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>NASA researchers have new insights into the mysteries of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.<p/>Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete <span class="hlt">ice</span> cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.<p/>The two images above are separated by nine days (earlier image on the left). Both images represent an area (approximately 96 by 128 kilometers; 60 by 80 miles)located in the Baufort <span class="hlt">Sea</span>, north of the Alaskan coast. The brighter features are older thicker <span class="hlt">ice</span> and the darker areas show young, recently formed <span class="hlt">ice</span>. Within the nine-day span, large and extensive cracks in the <span class="hlt">ice</span> cover have formed due to <span class="hlt">ice</span> movement. These cracks expose the open ocean to the cold, frigid atmosphere where <span class="hlt">sea</span> <span class="hlt">ice</span> grows rapidly and thickens.<p/>Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> thickness for the first time. 'Before we knew only the extent of the <span class="hlt">ice</span> cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called <span class="hlt">Sea</span> <span class="hlt">Ice</span> Thickness Derived From High Resolution Radar Imagery. 'We also knew that the <span class="hlt">sea</span> <span class="hlt">ice</span> extent had decreased over the last 20 years, but we knew very little about <span class="hlt">ice</span> thickness.'<p/>'Since <span class="hlt">sea</span> <span class="hlt">ice</span> is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'<p/>Until now, observations of polar <span class="hlt">sea</span> <span class="hlt">ice</span> thickness have been available for specific areas, but not for the entire polar region.<p/>The new radar mapping technique has also given scientists a close look at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100033640','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100033640"><span>The Satellite Passive-Microwave Record of <span class="hlt">Sea</span> <span class="hlt">Ice</span> in the Ross <span class="hlt">Sea</span> Since Late 1978</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>2009-01-01</p> <p>Satellites have provided us with a remarkable ability to monitor many aspects of the globe day-in and day-out and <span class="hlt">sea</span> <span class="hlt">ice</span> is one of numerous variables that by now have quite substantial satellite records. Passive-microwave data have been particularly valuable in <span class="hlt">sea</span> <span class="hlt">ice</span> monitoring, with a record that extends back to August 1987 on daily basis (for most of the period), to November 1970 on a less complete basis (again for most of the period), and to December 1972 on a less complete basis. For the period since November 1970, Ross <span class="hlt">Sea</span> <span class="hlt">sea</span> <span class="hlt">ice</span> imagery is available at spatial resolution of approximately 25 km. This allows good depictions of the seasonal advance and retreat of the <span class="hlt">ice</span> cover each year, along with its marked interannual variability. The Ross <span class="hlt">Sea</span> <span class="hlt">ice</span> extent typically reaches a minimum of approximately 0.7 x 10(exp 6) square kilometers in February, rising to a maximum of approximately 4.0 x 10(exp 6) square kilometers in September, with much variability among years for both those numbers. The Ross <span class="hlt">Sea</span> images show clearly the day-by-day activity greatly from year to year. Animations of the data help to highlight the dynamic nature of the Ross <span class="hlt">Sea</span> <span class="hlt">ice</span> cover. The satellite data also allow calculation of trends in the <span class="hlt">ice</span> cover over the period of the satellite record. Using linear least-squares fits, the Ross <span class="hlt">Sea</span> <span class="hlt">ice</span> extent increased at an average rate of 12,600 plus or minus 1,800 square kilometers per year between November 1978 and December 2007, with every month exhibiting increased <span class="hlt">ice</span> extent and the rates of increase ranging from a low of 7,500 plus or minus 5,000 square kilometers per year for the February <span class="hlt">ice</span> extents to a high of 20,300 plus or minus 6,100 kilometers per year for the October <span class="hlt">ice</span> extents. On a yearly average basis, for 1979-2007 the Ross <span class="hlt">Sea</span> <span class="hlt">ice</span> extent increased at a rate of 4.8 plus or minus 1.6 % per decade. Placing the Ross <span class="hlt">Sea</span> in the context of the Southern Ocean as a whole, over the November 1978-December 2007 period the Ross <span class="hlt">Sea</span> had</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4653624','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4653624"><span>Additional Arctic observations improve weather and <span class="hlt">sea-ice</span> forecasts for the Northern <span class="hlt">Sea</span> Route</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime</p> <p>2015-01-01</p> <p>During <span class="hlt">ice</span>-free periods, the Northern <span class="hlt">Sea</span> Route (NSR) could be an attractive shipping route. The decline in Arctic <span class="hlt">sea-ice</span> extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of <span class="hlt">sea</span> <span class="hlt">ice</span> could make ship navigation along the NSR difficult. Accurate forecasts of weather and <span class="hlt">sea</span> <span class="hlt">ice</span> are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and <span class="hlt">sea-ice</span> forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The <span class="hlt">sea-ice</span> forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven <span class="hlt">sea-ice</span> advection along the NSR. PMID:26585690</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0644M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0644M"><span>Modelling of <span class="hlt">Sea</span> <span class="hlt">Ice</span> Thermodynamics and Biogeochemistry during the N-<span class="hlt">ICE</span>2015 Expedition in the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, A.; Duarte, P.; Mork Olsen, L.; Kauko, H.; Assmy, P.; Rösel, A.; Itkin, P.; Hudson, S. R.; Granskog, M. A.; Gerland, S.; Sundfjord, A.; Steen, H.; Jeffery, N.; Hunke, E. C.; Elliott, S.; Turner, A. K.</p> <p>2016-12-01</p> <p>Changes in the <span class="hlt">sea</span> <span class="hlt">ice</span> regime of the Arctic Ocean over the last decades from a thick perennial multiyear <span class="hlt">ice</span> to a first year <span class="hlt">ice</span> have been well documented. These changes in the <span class="hlt">sea</span> <span class="hlt">ice</span> regime will affect feedback mechanisms between the <span class="hlt">sea</span> <span class="hlt">ice</span>, atmosphere and ocean. Here we evaluate the performance of the Los Alamos <span class="hlt">Sea</span> <span class="hlt">Ice</span> Model (CICE), a state of the art <span class="hlt">sea</span> <span class="hlt">ice</span> model, to predict <span class="hlt">sea</span> <span class="hlt">ice</span> physical and biogeochemical properties at time scales of a few weeks. We also identify the most problematic prognostic variables and what is necessary to improve their forecast. The availability of a complete data set of forcing collected during the Norwegian Young <span class="hlt">sea</span> <span class="hlt">Ice</span> (N-<span class="hlt">ICE</span>-2015) expedition north of Svalbard opens the possibility to properly test CICE. Oceanographic, atmospheric, <span class="hlt">sea</span> <span class="hlt">ice</span>, snow, and biological data were collected above, on, and below the <span class="hlt">ice</span> using R/V Lance as the base for the <span class="hlt">ice</span> camps that were drifting south towards the Fram Strait. Over six months, four different drifts took place, from the Nansen Basin, through the marginal <span class="hlt">ice</span> zone, to the open ocean. Obtained results from the model show a good performance regarding <span class="hlt">ice</span> thickness, salinity and temperature. Nutrients and <span class="hlt">sea</span> <span class="hlt">ice</span> algae are however not modelled as accurately. We hypothesize that improvements in biogeochemical modeling may be achieved by complementing brine drainage with a diffusion parameterization and biogeochemical modeling with the introduction of an explicit formulation to forecast chlorophyll and regulate photosynthetic efficiency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011036"><span>Improving Surface Mass Balance Over <span class="hlt">Ice</span> Sheets and Snow Depth on <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan</p> <p>2013-01-01</p> <p>Surface mass balance (SMB) over <span class="hlt">ice</span> sheets and snow on <span class="hlt">sea</span> <span class="hlt">ice</span> (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On <span class="hlt">ice</span> sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar <span class="hlt">sea</span> <span class="hlt">ice</span> cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland <span class="hlt">ice</span> sheet and the smallest satellite-recorded Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent, making this meeting both timely and relevant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3255O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3255O"><span>Evaluating Impacts of Recent Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Loss on the Northern Hemisphere Winter Climate Change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogawa, Fumiaki; Keenlyside, Noel; Gao, Yongqi; Koenigk, Torben; Yang, Shuting; Suo, Lingling; Wang, Tao; Gastineau, Guillaume; Nakamura, Tetsu; Cheung, Ho Nam; Omrani, Nour-Eddine; Ukita, Jinro; Semenov, Vladimir</p> <p>2018-04-01</p> <p>Wide disagreement among individual modeling studies has contributed to a debate on the role of recent <span class="hlt">sea</span> <span class="hlt">ice</span> loss in the Arctic amplification of global warming and the Siberian wintertime cooling trend. We perform coordinated experiments with six atmospheric general circulation models forced by the observed and climatological daily <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> and <span class="hlt">sea</span> surface temperature. The results indicate that the impact of the recent <span class="hlt">sea</span> <span class="hlt">ice</span> decline is rather limited to the high-latitude lower troposphere in winter, and the <span class="hlt">sea</span> <span class="hlt">ice</span> changes do not significantly lead to colder winters over Siberia. The observed wintertime Siberian temperature and corresponding circulation trends are reproduced in a small number of ensemble members but not by the multimodel ensemble mean, suggesting that atmospheric internal dynamics could have played a major role in the observed trends.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE14A1392Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE14A1392Z"><span>Seasonal and Interannual Variability of the Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span>: A Comparison between AO-FVCOM and Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Chen, C.; Beardsley, R. C.; Gao, G.; Qi, J.; Lin, H.</p> <p>2016-02-01</p> <p>A high-resolution (up to 2 km), unstructured-grid, fully <span class="hlt">ice-sea</span> coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> over the period 1978-2014. Good agreements were found between simulated and observed <span class="hlt">sea</span> <span class="hlt">ice</span> extent, <span class="hlt">concentration</span>, drift velocity and thickness, indicating that the AO-FVCOM captured not only the seasonal and interannual variability but also the spatial distribution of the <span class="hlt">sea</span> <span class="hlt">ice</span> in the Arctic in the past 37 years. Compared with other six Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME and UW), the AO-FVCOM-simulated <span class="hlt">ice</span> thickness showed a higher correlation coefficient and a smaller difference with observations. An effort was also made to examine the physical processes attributing to the model-produced bias in the <span class="hlt">sea</span> <span class="hlt">ice</span> simulation. The error in the direction of the <span class="hlt">ice</span> drift velocity was sensitive to the wind turning angle; smaller when the wind was stronger, but larger when the wind was weaker. This error could lead to the bias in the near-surface current in the fully or partially <span class="hlt">ice</span>-covered zone where the <span class="hlt">ice-sea</span> interfacial stress was a major driving force.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA549401','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA549401"><span>Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span>: Using Airborne Topographic Mapper Measurements (ATM) to Determine <span class="hlt">Sea</span> <span class="hlt">Ice</span> Thickness</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-05-10</p> <p>Track Distance (Km) E le v a ti o n ( m ) ATM Elevation Profile Elevation 18 Figure 13: Geoid shape of earth’s equipotential surface , which is...inferred for the region between successive leads. Therefore, flying over a lead in the <span class="hlt">ice</span> is very important for determining the exact <span class="hlt">sea</span> surface elevation...inferred for the region between successive leads. Therefore, flying over a lead in the <span class="hlt">ice</span> is very important for determining the exact <span class="hlt">sea</span> surface</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6676H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6676H"><span>Scaling properties of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> deformation in high-resolution viscous-plastic <span class="hlt">sea</span> <span class="hlt">ice</span> models and satellite observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hutter, Nils; Losch, Martin; Menemenlis, Dimitris</p> <p>2017-04-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>-ocean simulation, the small scale <span class="hlt">sea-ice</span> deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled <span class="hlt">sea</span> <span class="hlt">ice</span> deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of <span class="hlt">sea</span> <span class="hlt">ice</span> deformation that is observed in satellite data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J"><span>Antarctic Climate Variability: Covariance of Ozone and <span class="hlt">Sea</span> <span class="hlt">Ice</span> in Atmosphere - Ocean Coupled Model Simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jrrar, Amna; Abraham, N. Luke; Pyle, John A.; Holland, David</p> <p>2014-05-01</p> <p>Changes in <span class="hlt">sea</span> <span class="hlt">ice</span> significantly modulate climate change because of its high reflective and insulating nature. While Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Extent (SIE) shows a negative trend. Antarctic SIE shows a weak but positive trend, estimated at 0.127 x 106 km2 per decade. The trend results from large regional cancellations, more <span class="hlt">ice</span> in the Weddell and the Ross <span class="hlt">seas</span>, and less <span class="hlt">ice</span> in the Amundsen - Bellingshausen <span class="hlt">seas</span>. A number of studies had demonstrated that stratospheric ozone depletion has had a major impact on the atmospheric circulation, causing a positive trend in the Southern Annular Mode (SAM), which has been linked to the observed positive trend in autumn <span class="hlt">sea</span> <span class="hlt">ice</span> in the Ross <span class="hlt">Sea</span>. However, other modelling studies show that models forced with prescribed ozone hole simulate decreased <span class="hlt">sea</span> <span class="hlt">ice</span> in all regions comparative to a control run. A recent study has also shown that stratospheric ozone recovery will mitigate Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss. To verify this assumed relationship, it is important first to investigate the covariance between ozone's natural (dynamical) variability and Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> distribution in pre-industrial climate, to estimate the trend due to natural variability. We investigate the relationship between anomalous Antarctic ozone years and the subsequent changes in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> distribution in a multidecadal control simulation using the AO-UMUKCA model. The model has a horizontal resolution of 3.75 X 2.5 degrees in longitude and latitude; and 60 hybrid height levels in the vertical, from the surface up to a height of 84 km. The ocean component is the NEMO ocean model on the ORCA2 tripolar grid, and the <span class="hlt">sea</span> <span class="hlt">ice</span> model is CICE. We evaluate the model's performance in terms of <span class="hlt">sea</span> <span class="hlt">ice</span> distribution, and we calculate <span class="hlt">sea</span> <span class="hlt">ice</span> extent trends for composites of anomalously low versus anomalously high SH polar ozone column. We apply EOF analysis to the seasonal anomalies of <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>, MSLP, and Z 500, and identify the leading climate modes controlling the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRF..118.1533D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRF..118.1533D"><span>The Greenland <span class="hlt">Ice</span> Sheet's surface mass balance in a seasonally <span class="hlt">sea</span> <span class="hlt">ice</span>-free Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, J. J.; Bamber, J. L.; Valdes, P. J.</p> <p>2013-09-01</p> <p>General circulation models predict a rapid decrease in <span class="hlt">sea</span> <span class="hlt">ice</span> extent with concurrent increases in near-surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land <span class="hlt">ice</span> masses may experience an increase in accumulation due to enhanced evaporation from a seasonally <span class="hlt">sea</span> <span class="hlt">ice</span>-free Arctic Ocean. To investigate the impact of this phenomenon on Greenland <span class="hlt">Ice</span> Sheet climate and surface mass balance (SMB), a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of <span class="hlt">sea</span> <span class="hlt">ice</span> independently from <span class="hlt">sea</span> surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation, Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that <span class="hlt">sea</span> <span class="hlt">ice</span> decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland <span class="hlt">Sea</span>. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in <span class="hlt">sea</span> <span class="hlt">ice</span> cover is important for predicting Greenland SMB and <span class="hlt">ice</span> sheet evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C23D..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C23D..01R"><span><span class="hlt">Ice</span> sheet systems and <span class="hlt">sea</span> level change.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rignot, E. J.</p> <p>2015-12-01</p> <p>Modern views of <span class="hlt">ice</span> sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about <span class="hlt">ice</span> sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about <span class="hlt">ice</span> sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. <span class="hlt">Ice</span> sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine <span class="hlt">ice</span> sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter <span class="hlt">sea</span> level rise caused by rapid climate warming. While the current loss of <span class="hlt">ice</span> sheet mass to the ocean remains a trickle, every mm of <span class="hlt">sea</span> level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and <span class="hlt">ice</span> shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about <span class="hlt">sea</span> level change from vastly marine-based sectors: 2-m <span class="hlt">sea</span> level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen <span class="hlt">Sea</span> sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based <span class="hlt">ice</span> is in West Antarctica. Major advances in reducing uncertainties in <span class="hlt">sea</span> level projections will require massive, interdisciplinary efforts that are not currently in place</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150021896&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150021896&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsea"><span>Is <span class="hlt">Ice</span>-Rafted Sediment in a North Pole Marine Record Evidence for Perennial <span class="hlt">Sea-ice</span> Cover?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tremblay, L.B.; Schmidt, G.A.; Pfirman, S.; Newton, R.; DeRepentigny, P.</p> <p>2015-01-01</p> <p><span class="hlt">Ice</span>-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (approximately 88 degrees N). Based on modern <span class="hlt">sea-ice</span> drift trajectories and speeds, this has been taken as evidence of the presence of a perennial <span class="hlt">sea-ice</span> cover in the Arctic Ocean from the middle Miocene onwards. However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally <span class="hlt">ice</span>-free Arctic between the Miocene and the present. We use a coupled <span class="hlt">sea-ice</span> slab-ocean model including sediment transport tracers to map the spatial distribution of <span class="hlt">ice</span>-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial <span class="hlt">sea-ice</span> cover similar to that of the present day and one with seasonally <span class="hlt">ice</span>-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, <span class="hlt">sea</span> <span class="hlt">ice</span> takes more than 1 year to transport sediment from all its peripheral <span class="hlt">seas</span> to the North Pole. However, in a warmer climate, <span class="hlt">sea-ice</span> speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort <span class="hlt">Sea</span> origin at the North Pole. This is primarily because of the fact that <span class="hlt">sea-ice</span> interactions are much weaker with a thinner <span class="hlt">ice</span> cover and there is less resistance to drift. We conclude that the presence of <span class="hlt">ice</span>-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial <span class="hlt">sea-ice</span> cover in the Arctic Ocean, reconciling the ACEX ocean core data with other land and marine records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28715890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28715890"><span>Spring Melt and the Redistribution of Organochlorine Pesticides in the <span class="hlt">Sea-Ice</span> Environment: A Comparative Study between Arctic and Antarctic Regions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bigot, Marie; Hawker, Darryl W; Cropp, Roger; Muir, Derek Cg; Jensen, Bjarne; Bossi, Rossana; Bengtson Nash, Susan M</p> <p>2017-08-15</p> <p>Complementary sampling of air, snow, <span class="hlt">sea-ice</span>, and seawater for a range of organochlorine pesticides (OCPs) was undertaken through the early stages of respective spring <span class="hlt">sea-ice</span> melting at coastal sites in northeast Greenland and eastern Antarctica to investigate OCP <span class="hlt">concentrations</span> and redistribution during this time. Mean <span class="hlt">concentrations</span> in seawater, <span class="hlt">sea-ice</span> and snow were generally greater at the Arctic site. For example, α-HCH was found to have the largest <span class="hlt">concentrations</span> of all analytes in Arctic seawater and <span class="hlt">sea-ice</span> meltwater samples (224-253 and 34.7-48.2 pg·L -1 respectively compared to 1.0-1.3 and <0.63 pg·L -1 respectively for Antarctic samples). Differences in atmospheric samples were generally not as pronounced however. Findings suggest that <span class="hlt">sea-ice</span> OCP burdens originate from both snow and seawater. The distribution profile between seawater and <span class="hlt">sea-ice</span> showed a compound-dependency for Arctic samples not evident with those from the Antarctic, possibly due to full submersion of <span class="hlt">sea-ice</span> at the former. Seasonal <span class="hlt">sea-ice</span> melt processes may alter the exchange rates of selected OCPs between air and seawater, but are not expected to reverse their direction, which fugacity modeling indicates is volatilisation in the Arctic and net deposition in the Antarctic. These predictions are consistent with the limited current observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990ClDy....5..111M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990ClDy....5..111M"><span><span class="hlt">Sea-ice</span> anomalies observed in the Greenland and Labrador <span class="hlt">seas</span> during 1901 1984 and their relation to an interdecadal Arctic climate cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mysak, L. A.; Manak, D. K.; Marsden, R. F.</p> <p>1990-12-01</p> <p>Two independent <span class="hlt">ice</span> data sets from the Greenland and Labrador <span class="hlt">Seas</span> have been analyzed for the purpose of characterizing interannual and decadal time scale <span class="hlt">sea-ice</span> extent anomalies during this century. <span class="hlt">Sea-ice</span> <span class="hlt">concentration</span> data for the 1953 1984 period revealed the presence of a large positive anomaly in the Greenland <span class="hlt">Sea</span> during the 1960s which coincided with the “great salinity anomaly”, an upper-ocean low-salinity water mass that was observed to travel cyclonically around the northern North Atlantic during 1968 1982. This <span class="hlt">ice</span> anomaly as well as several smaller ones propagated into the Labrador <span class="hlt">Sea</span> and then across to the Labrador and east Newfoundland coast, over a period of 3 to 5 years. A complex empirical orthogonal function analysis of the same data also confirmed this propagation phenomenon. An inverse relation between <span class="hlt">sea-ice</span> and salinity anomalies in the Greenland-Labrador <span class="hlt">Sea</span> region was also generally found. An analysis of spring and summer <span class="hlt">ice</span>-limit data obtained from Danish Meteorological Institute charts for the period 1901 1956 indicated the presence of heavy <span class="hlt">ice</span> conditions (i.e., positive <span class="hlt">ice</span> anomalies) in the Greenland <span class="hlt">Sea</span> during 1902 1920 and in the late 1940s, and generally negative <span class="hlt">ice</span> anomalies during the 1920s and 1930s. Only limited evidence of the propagation of Greenland <span class="hlt">Sea</span> <span class="hlt">ice</span> anomalies into the Labrador <span class="hlt">Sea</span> was observed, however, probably because the data were from the <span class="hlt">ice</span>-melt seasons. On the other hand, several large <span class="hlt">ice</span> anomalies in the Greenland <span class="hlt">Sea</span> occurred 2 3 years after large runoffs (in the early 1930s and the late 1940s) from northern Canada into the western Arctic Ocean. Similarly, a large runoff into the Arctic during 1964 1966 preceded the large Greenland <span class="hlt">Sea</span> <span class="hlt">ice</span> anomaly of the 1960s. These facts, together with recent evidence of ‘climatic jumps’ in the Northern Hemisphere tropospheric circulation, suggest the existence of an interdecadal self-sustained climate cycle in the Arctic. In the Greenland <span class="hlt">Sea</span>, this cycle is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810825K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810825K"><span>Data-Driven Modeling and Prediction of Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael</p> <p>2016-04-01</p> <p>We present results of data-driven predictive analyses of <span class="hlt">sea</span> <span class="hlt">ice</span> over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to probabilistic prognostic models of <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> (SIC) anomalies on seasonal time scales. This approach is applied to monthly time series of state-of-the-art data-adaptive decompositions of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" for up to 6-months ahead. It will be shown in particular that the memory effects included intrinsically in the formulation of our non-Markovian MSM models allow for improvements of the prediction skill of large-amplitude SIC anomalies in certain Arctic regions on the one hand, and of September <span class="hlt">Sea</span> <span class="hlt">Ice</span> Extent, on the other. Further improvements allowed by the MSM framework will adopt a nonlinear formulation and explore next-generation data-adaptive decompositions, namely modification of Principal Oscillation Patterns (POPs) and rotated Multichannel Singular Spectrum Analysis (M-SSA).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6008T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6008T"><span>Influences of Ocean Thermohaline Stratification on Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.</p> <p>2009-04-01</p> <p>The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the <span class="hlt">sea</span> <span class="hlt">ice</span> and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced <span class="hlt">ice</span> motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal <span class="hlt">sea</span> <span class="hlt">ice</span> growth and melting. Heat fluxes into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via air-<span class="hlt">sea</span> exchange at leads and conduction through the <span class="hlt">ice</span>, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by <span class="hlt">Ice</span>-Tethered Profilers since summer 2004 and analyzed in conjunction with <span class="hlt">sea</span> <span class="hlt">ice</span> observations from <span class="hlt">Ice</span> Mass Balance Buoys and atmospheric heat flux estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of <span class="hlt">sea</span> <span class="hlt">ice</span> melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the flux of deep ocean heat to the surface that could influence <span class="hlt">sea</span> <span class="hlt">ice</span> growth/decay. Consistent with previous work, this study demonstrates that the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is most sensitive to changes in ocean mixed layer heat resulting from fluxes across its upper (air-<span class="hlt">sea</span> and/or <span class="hlt">ice</span>-water) interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038177&hterms=infrared+temperature+sensor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dinfrared%2Btemperature%2Bsensor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038177&hterms=infrared+temperature+sensor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dinfrared%2Btemperature%2Bsensor"><span>A Microwave Technique for Mapping <span class="hlt">Ice</span> Temperature in the Arctic Seasonal <span class="hlt">Sea</span> <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>St.Germain, Karen M.; Cavalieri, Donald J.</p> <p>1997-01-01</p> <p>A technique for deriving <span class="hlt">ice</span> temperature in the Arctic seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses <span class="hlt">ice</span> <span class="hlt">concentration</span> and type from a previously developed thin <span class="hlt">ice</span> algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the <span class="hlt">ice</span> temperature depends on <span class="hlt">ice</span> type.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31D..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31D..01S"><span>The <span class="hlt">Sea-Ice</span> Floe Size Distribution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.</p> <p>2017-12-01</p> <p>The size distribution of <span class="hlt">ice</span> floes in the polar <span class="hlt">seas</span> affects the dynamics and thermodynamics of the <span class="hlt">ice</span> cover and its interaction with the ocean and atmosphere. <span class="hlt">Ice</span>-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our <span class="hlt">ice</span>-ocean model, we calculated the FSD in the Beaufort and Chukchi <span class="hlt">seas</span> over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 <span class="hlt">ice</span> floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our <span class="hlt">ice</span>-ocean model resulted in reduced <span class="hlt">sea-ice</span> thickness, mainly in the marginal <span class="hlt">ice</span> zone, which improved the simulation of <span class="hlt">sea-ice</span> extent and yielded an earlier <span class="hlt">ice</span> retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820009687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820009687"><span>An optical model for the microwave properties of <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Larabee, J. K.</p> <p>1981-01-01</p> <p>The complex refractive index of <span class="hlt">sea</span> <span class="hlt">ice</span> is modeled and used to predict the microwave signatures of various <span class="hlt">sea</span> <span class="hlt">ice</span> types. Results are shown to correspond well with the observed values of the complex index inferred from dielectic constant and dielectric loss measurements performed in the field, and with observed microwave signatures of <span class="hlt">sea</span> <span class="hlt">ice</span>. The success of this modeling procedure vis a vis modeling of the dielectric properties of <span class="hlt">sea</span> <span class="hlt">ice</span> constituents used earlier by several others is explained. Multiple layer radiative transfer calculations are used to predict the microwave properties of first-year <span class="hlt">sea</span> <span class="hlt">ice</span> with and without snow, and multiyear <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660359','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660359"><span>Change and Variability in East Antarctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Seasonality, 1979/80–2009/10</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki</p> <p>2013-01-01</p> <p>Recent analyses have shown that significant changes have occurred in patterns of <span class="hlt">sea</span> <span class="hlt">ice</span> seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of <span class="hlt">sea</span> <span class="hlt">ice</span> advance, retreat and resultant <span class="hlt">ice</span> season duration in East Antarctica. These were calculated from satellite-derived <span class="hlt">ice</span> <span class="hlt">concentration</span> data for the period 1979/80 to 2009/10. The pattern of change in <span class="hlt">sea</span> <span class="hlt">ice</span> seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine “icescape”, including fast <span class="hlt">ice</span>, polynyas and the marginal <span class="hlt">ice</span> zone. A trend towards shorter <span class="hlt">sea-ice</span> duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95–110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West <span class="hlt">Ice</span> Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced <span class="hlt">sea</span> <span class="hlt">ice</span> production/melt. Areas of positive trend in <span class="hlt">ice</span> season duration are more extensive, and include an extensive zone from 160–170°E (i.e., the western Ross <span class="hlt">Sea</span> sector) and the near-coastal zone between 40–100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen <span class="hlt">Sea</span> and western Ross <span class="hlt">Sea</span> sectors. PMID:23705008</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820009925','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820009925"><span>Sensitivity of a climatologically-driven <span class="hlt">sea</span> <span class="hlt">ice</span> model to the ocean heat flux</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, C. L.; Good, M. R.</p> <p>1982-01-01</p> <p>Ocean heat flux sensitivity was studied on a numerical model of <span class="hlt">sea</span> <span class="hlt">ice</span> covering the Weddell <span class="hlt">Sea</span> region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the <span class="hlt">ice</span> to melt to its summertime thicknesses and <span class="hlt">concentrations</span> by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much <span class="hlt">ice</span> melt, producing the almost total disappearance of <span class="hlt">ice</span> in the Weddell <span class="hlt">Sea</span> by the end of the 14 months. These results are dependent on the atmospheric forcing fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNG31A1833A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNG31A1833A"><span>The statistical properties of <span class="hlt">sea</span> <span class="hlt">ice</span> velocity fields</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agarwal, S.; Wettlaufer, J. S.</p> <p>2016-12-01</p> <p>Thorndike and Colony (1982) showed that more than 70% of the variance of the <span class="hlt">ice</span> motion can be explained by the geostrophic winds. This conclusion was reached by analyzing only 2 years of data. Due to the importance of <span class="hlt">ice</span> motion in Arctic climate we ask how persistent is such a prediction. In so doing, we study and develop a stochastic model for the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> velocity fields based on the observed <span class="hlt">sea</span> <span class="hlt">ice</span> velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic <span class="hlt">Sea</span> Equivalent <span class="hlt">Ice</span> Extent (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et. al. 2012), we assess the connection to <span class="hlt">ice</span> motion. We divide the Arctic into dynamic and thermodynamic components, with focus on the dynamic part i.e. the velocity fields of <span class="hlt">sea</span> <span class="hlt">ice</span> driven by the geostrophic winds over the Arctic. We show (1) the stationarity of the spatial correlation structure of the velocity fields, and (2) the robustness of white noise structure present in the velocity fields on annual to bi-annual time scales, which combine to explain the white noise characteristics of the EIE on these time scales. S. Agarwal, W. Moon and J.S. Wettlaufer, Trends, noise and reentrant long-term persistence in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>, Proc. R. Soc. A, 468, 2416 (2012). A.S. Thorndike and R. Colony, <span class="hlt">Sea</span> <span class="hlt">ice</span> motion in response to geostrophic winds, J. Geophys. Res. 87, 5845 (1982).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29348581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29348581"><span>Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting <span class="hlt">sea</span> <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C</p> <p>2018-05-01</p> <p>Diatoms are significant primary producers in <span class="hlt">sea</span> <span class="hlt">ice</span>, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the <span class="hlt">ice</span> matrix environment. To cope with the variable and challenging conditions, <span class="hlt">sea</span> <span class="hlt">ice</span> diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS <span class="hlt">concentrations</span> and chemical composition corresponding to temperature and salinity gradients were present in <span class="hlt">sea</span> <span class="hlt">ice</span> from the Weddell <span class="hlt">Sea</span> and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated <span class="hlt">sea</span> <span class="hlt">ice</span> formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated <span class="hlt">sea</span> <span class="hlt">ice</span> formation was aligned with physiological and biochemical properties of the cells, and with field measurements of <span class="hlt">sea</span> <span class="hlt">ice</span> EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme <span class="hlt">sea</span> <span class="hlt">ice</span> habitat.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5067M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5067M"><span>Satellite altimetry in <span class="hlt">sea</span> <span class="hlt">ice</span> regions - detecting open water for estimating <span class="hlt">sea</span> surface heights</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang</p> <p>2017-04-01</p> <p>The Greenland <span class="hlt">Sea</span> and the Farm Strait are transporting <span class="hlt">sea</span> <span class="hlt">ice</span> from the central Arctic ocean southwards. They are covered by a dynamic changing <span class="hlt">sea</span> <span class="hlt">ice</span> layer with significant influences on the Earth climate system. Between the <span class="hlt">sea</span> <span class="hlt">ice</span> there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of <span class="hlt">sea</span> surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by <span class="hlt">sea</span> <span class="hlt">ice</span> show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and <span class="hlt">sea</span> <span class="hlt">ice</span> waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for <span class="hlt">sea</span> <span class="hlt">ice</span> motion. The classification results are used to derive information about the temporal evolution of <span class="hlt">sea</span> <span class="hlt">ice</span> extent and <span class="hlt">sea</span> surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic <span class="hlt">sea</span> level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the <span class="hlt">sea</span> <span class="hlt">ice</span> cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916606M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916606M"><span>Modelling <span class="hlt">sea</span> <span class="hlt">ice</span> dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murawski, Jens; Kleine, Eckhard</p> <p>2017-04-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed <span class="hlt">sea</span> <span class="hlt">ice</span> dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast <span class="hlt">ice</span> remains to be a challenge. It is understood that ridging and the formation of grounded <span class="hlt">ice</span> keels plays a role in the process. The <span class="hlt">ice</span> dynamic model includes a parameterisation of the stress associated with grounded <span class="hlt">ice</span> keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413439B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413439B"><span>Changes in the seasonality of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> and temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bintanja, R.</p> <p>2012-04-01</p> <p>Observations show that the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> will quickly diminish. However, at temperatures well below freezing, the <span class="hlt">sea</span> <span class="hlt">ice</span> cover during winter will exhibit a much weaker decline. In the future, the <span class="hlt">sea</span> <span class="hlt">ice</span> seasonal cycle will be no <span class="hlt">ice</span> in summer, and thin one-year <span class="hlt">ice</span> in winter. Hence, the seasonal cycle in <span class="hlt">sea</span> <span class="hlt">ice</span> cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in <span class="hlt">sea</span> <span class="hlt">ice</span> have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer <span class="hlt">sea</span> <span class="hlt">ice</span> reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in <span class="hlt">sea</span> <span class="hlt">ice</span>. This suggests that changes in the seasonal cycle in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24204642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24204642"><span>Floating <span class="hlt">ice</span>-algal aggregates below melting arctic <span class="hlt">sea</span> <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef</p> <p>2013-01-01</p> <p>During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting <span class="hlt">ice</span> floes of first-year pack <span class="hlt">ice</span>. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical <span class="hlt">ice</span>-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to <span class="hlt">ice</span>-algal blooms, the floating <span class="hlt">ice</span>-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the <span class="hlt">ice</span>-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and <span class="hlt">ice</span> amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface <span class="hlt">sea</span> <span class="hlt">ice</span> environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record <span class="hlt">sea</span> <span class="hlt">ice</span> minimum year.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804104','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804104"><span>Floating <span class="hlt">Ice</span>-Algal Aggregates below Melting Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef</p> <p>2013-01-01</p> <p>During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting <span class="hlt">ice</span> floes of first-year pack <span class="hlt">ice</span>. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical <span class="hlt">ice</span>-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to <span class="hlt">ice</span>-algal blooms, the floating <span class="hlt">ice</span>-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the <span class="hlt">ice</span>-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and <span class="hlt">ice</span> amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface <span class="hlt">sea</span> <span class="hlt">ice</span> environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record <span class="hlt">sea</span> <span class="hlt">ice</span> minimum year. PMID:24204642</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1423M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1423M"><span>Aircraft Surveys of the Beaufort <span class="hlt">Sea</span> Seasonal <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morison, J.</p> <p>2016-02-01</p> <p>The Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, <span class="hlt">ice</span>, and atmospheric measurements across the Beaufort-Chukchi <span class="hlt">sea</span> seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter <span class="hlt">sea</span> <span class="hlt">ice</span> extent and minimum summer <span class="hlt">sea</span> <span class="hlt">ice</span> extent. As such, it contains the full range of positions of the marginal <span class="hlt">ice</span> zone (MIZ) where <span class="hlt">sea</span> <span class="hlt">ice</span> interacts with open water. The increasing size and changing air-<span class="hlt">ice</span>-ocean properties of the SIZ are central to recent reductions in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent. The changes in the interplay among the atmosphere, <span class="hlt">ice</span>, and ocean require a systematic SIZ observational effort of coordinated atmosphere, <span class="hlt">ice</span>, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort <span class="hlt">Sea</span> SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the <span class="hlt">sea</span> surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, <span class="hlt">ice</span> character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the <span class="hlt">ice</span> edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AHEEM..64..115S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AHEEM..64..115S"><span>SPH Modelling of <span class="hlt">Sea-ice</span> Pack Dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staroszczyk, Ryszard</p> <p>2017-12-01</p> <p>The paper is concerned with the problem of <span class="hlt">sea-ice</span> pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of <span class="hlt">ice</span>, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the <span class="hlt">ice</span> behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a <span class="hlt">sea-ice</span> pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an <span class="hlt">ice</span> pack, including variations in <span class="hlt">ice</span> thickness and <span class="hlt">ice</span> area fraction in space and time. The effects of different initial <span class="hlt">ice</span> pack configurations and of different conditions assumed at the coast-<span class="hlt">ice</span> interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003226','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003226"><span>Does a Relationship Between Arctic Low Clouds and <span class="hlt">Sea</span> <span class="hlt">Ice</span> Matter?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Patrick C.</p> <p>2016-01-01</p> <p>Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, <span class="hlt">sea</span> <span class="hlt">ice</span> extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in <span class="hlt">sea</span> <span class="hlt">ice</span> extent, our results indicate a potentially significant amplifying <span class="hlt">sea</span> <span class="hlt">ice</span>-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in <span class="hlt">sea</span> <span class="hlt">ice</span> extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C13C0833H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C13C0833H"><span>A New Fast, Reliable Technique for the Sampling of Dissolved Inorganic Carbon in <span class="hlt">Sea</span> <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Y.; Wang, F.; Rysgaard, S.; Barber, D. G.</p> <p>2015-12-01</p> <p>For a long time, <span class="hlt">sea</span> <span class="hlt">ice</span> was considered to act as a lid over seawater preventing CO2 exchange between the atmosphere and ocean. Recent observations suggest that <span class="hlt">sea</span> <span class="hlt">ice</span> can be an active source or a sink for CO2, although its magnitude is not very clear. The direct measurements on CO2 flux based on the chamber method and eddy covariance often do not agree with each other. It is therefore important to measure the dissolved inorganic carbon (DIC) stock in <span class="hlt">sea</span> <span class="hlt">ice</span> precisely in order to better understand the CO2 flux through <span class="hlt">sea</span> <span class="hlt">ice</span>. The challenges in <span class="hlt">sea</span> <span class="hlt">ice</span> DIC sampling is how to melt the <span class="hlt">ice</span> core without being exposed to the air gaining or losing CO2. A common practice is to seal the <span class="hlt">ice</span> core in a self-prepared gas-tight plastic bag and suck the air out of the bag gently using a syringe (together with a needle) through a valve mounted on one side of the bag. However, this method is time consuming (takes up to several minutes to suck the air out) and very often there is large headspace found in the bag after the <span class="hlt">ice</span> melts due to the imperfect bag-preparation, which might affect the DIC <span class="hlt">concentration</span> in melt <span class="hlt">ice</span>-water. We developed a new technique by using a commercially available plastic bag with a vacuum sealer to seal the <span class="hlt">ice</span> core. In comparison to syringe-based method, this technique is fast and easy to operate; it takes less than 10 seconds to vacuum and seal the bag all in one button with no headspace left in the bag. Experimental tests with replicate <span class="hlt">ice</span> cores sealed by those two methods showed that there is no difference in the DIC <span class="hlt">concentration</span> measured after these two methods, suggesting that there is no loss of DIC during the course of vacuum sealing. In addition, a time series experiment on DIC in melt <span class="hlt">ice</span>-water stored in the new bag shows that when the samples were not poisoned, the DIC <span class="hlt">concentration</span> remains unchanged for at least 3 days in the bag; while poisoned by HgCl2, there is no change in DIC for at least 21 days, indicating that this new bag is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9522229N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9522229N"><span>Physical and biological oceanographic interaction in the spring bloom at the Bering <span class="hlt">Sea</span> marginal <span class="hlt">ice</span> edge zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niebauer, H. J.; Alexander, Vera; Henrichs, Susan</p> <p>1990-12-01</p> <p>At the edge of the melting <span class="hlt">sea</span> <span class="hlt">ice</span> pack in the Bering <span class="hlt">Sea</span> in spring, physical, biological, and chemical oceanographic processes combine to generate a short-lived, intense phytoplankton bloom that is associated with the retreating <span class="hlt">ice</span> edge. The bloom begins a week or so before the first of May triggered by insolation and by the low-salinity meltwater stratification in the presence of high nitrate <span class="hlt">concentrations</span> (˜ > 25 μM). Meltwater (salinity) stratification delineates <span class="hlt">ice</span> edge blooms from open water blooms where temperature gradients generate the stratification. Five cross-<span class="hlt">ice</span> sections of temperature, salinity, σt, chlorophyll, and nitrate are presented as a time series from April 27 to May 5 illustrating the bloom. Evidence of two separate but concurrent blooms in the <span class="hlt">ice</span> edge zone are presented. In addition, meteorological and oceanographic conditions were observed that should have been conducive to <span class="hlt">ice</span> edge up welling. While significant <span class="hlt">ice</span> and water movement occurred, upwelling was not observed. Finally, the Bering <span class="hlt">Sea</span> <span class="hlt">ice</span> edge spring bloom is compared with other <span class="hlt">ice</span> edge systems in both hemispheres, showing that initial Bering <span class="hlt">Sea</span> nitrate <span class="hlt">concentrations</span> are among the highest observed but quickly become limiting owing to the rapid build up of phytoplankton populations. This primary production is not coupled to the pelagic Zooplankton because Zooplankton are largely absent on account of the cold temperatures. Observed maximum chlorophyll <span class="hlt">concentrations</span> in the bloom are several times greater than those observed in other systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......190H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......190H"><span>The influence of <span class="hlt">sea</span> <span class="hlt">ice</span> on Antarctic <span class="hlt">ice</span> core sulfur chemistry and on the future evolution of Arctic snow depth: Investigations using global models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hezel, Paul J.</p> <p></p> <p> SO2-4 deposition to differences between the modern and LGM climates, including <span class="hlt">sea</span> <span class="hlt">ice</span> extent, <span class="hlt">sea</span> surface temperatures, oxidant <span class="hlt">concentrations</span>, and meteorological conditions. We are unable to find a mechanism whereby MSA deposition fluxes are higher than nss SO2-4 deposition fluxes on the East Antarctic Plateau in the LGM compared the modern period. We conclude that the observed differences between MSA and nss SO2-4 on glacial-interglacial time scales are due to post-depositional processes that affect the <span class="hlt">ice</span> core MSA <span class="hlt">concentrations</span>. We can not rule out the possibility of increased DMS emissions in the LGM compared to the modern day. If oceanic DMS production and ocean-to-air fluxes in the <span class="hlt">sea</span> <span class="hlt">ice</span> zone are significantly enhanced by the presence of <span class="hlt">sea</span> <span class="hlt">ice</span> as indicated by observations, we suggest that the potentially larger amplitude of the seasonal cycle in <span class="hlt">sea</span> <span class="hlt">ice</span> extent in the LGM implies a more important role for <span class="hlt">sea</span> <span class="hlt">ice</span> in modulating the sulfur cycle during the LGM compared to the modern period. We then shift our focus to study the evolution of snow depth on <span class="hlt">sea</span> <span class="hlt">ice</span> in global climate model simulations of the 20th and 21st centuries from the Coupled Model Intercomparison Project 5 (CMIP5). Two competing processes, decreasing <span class="hlt">sea</span> <span class="hlt">ice</span> extent and increasing precipitation, will affect snow accumulation on <span class="hlt">sea</span> <span class="hlt">ice</span> in the future, and it is not known a priori which will dominate. The decline in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent is a well-studied problem in future scenarios of climate change. Moisture convergence into the Arctic is also expected to increase in a warmer world, which may result in increasing snowfall rates. We show that the accumulated snow depth on <span class="hlt">sea</span> <span class="hlt">ice</span> in the spring declines as a result of decreased <span class="hlt">ice</span> extent in the early autumn, in spite of increased winter snowfall rates. The ringed seal (Phoca hispida ) depends on accumulated snow in the spring to build subnivean birth lairs, and provides one of the motivations for this study. Using an empirical threshold of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572179','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572179"><span>Mass Balance of Multiyear <span class="hlt">Sea</span> <span class="hlt">Ice</span> in the Southern Beaufort <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>datasets. Table 1 lists the primary data sources to be used. To determine sources and sinks of MY <span class="hlt">ice</span>, we use a simple model of MY <span class="hlt">ice</span> circulation, which is...shown in Figure 1. In this model , we consider the Beaufort <span class="hlt">Sea</span> to consist of four zones defined by mean drift of <span class="hlt">sea</span> <span class="hlt">ice</span> in summer and winter, such...Healy/Louis S. St. Laurant cruises 1 Seasonal <span class="hlt">Ice</span> Zone Observing Network 2 Polar Airborne Measurements and Arctic Regional Climate Model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11B0377L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11B0377L"><span>The melting <span class="hlt">sea</span> <span class="hlt">ice</span> of Arctic polar cap in the summer solstice month and the role of ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, S.; Yi, Y.</p> <p>2014-12-01</p> <p>The Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> using the daily <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> data. <span class="hlt">Sea</span> <span class="hlt">ice</span> data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic <span class="hlt">sea</span> <span class="hlt">ice</span> melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar <span class="hlt">sea</span> <span class="hlt">ice</span> melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE14B1411P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE14B1411P"><span>Atmospheric form drag over Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> derived from high-resolution <span class="hlt">Ice</span>Bridge elevation data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petty, A.; Tsamados, M.; Kurtz, N. T.</p> <p>2016-02-01</p> <p>Here we present a detailed analysis of atmospheric form drag over Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>, using high resolution, three-dimensional surface elevation data from the NASA Operation <span class="hlt">Ice</span>Bridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the <span class="hlt">sea</span> <span class="hlt">ice</span> cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear <span class="hlt">ice</span> regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in <span class="hlt">ice</span> type/age. The transition from a perennial to a seasonal <span class="hlt">ice</span> cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the <span class="hlt">sea</span> <span class="hlt">ice</span> model CICE, to improve the representation of form drag over Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> in global climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019880','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019880"><span><span class="hlt">Ice</span>-sheet sourced juxtaposed turbidite systems in Labrador <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hesse, R.; Klaucke, I.; Ryan, William B. F.; Piper, D.J.W.</p> <p>1997-01-01</p> <p><span class="hlt">Ice</span>-sheet sourced Pleistocene turbidite systems of the Labrador <span class="hlt">Sea</span> are different from non-glacially influenced systems in their facies distribution and depositional processes. Two large-scale sediment dispersal systems are juxtaposed, one mud-dominated and associated with the Northwest Atlantic Mid-Ocean Channel (NAMOC), the other sand-dominated and forming a huge submarine braided sandplain. Co-existence of the two systems reflects grain-size separation of the coarse and fine fractions on an enormous scale, caused by sediment winnowing at the entrance points of meltwater from the Laurentide <span class="hlt">Ice</span> Sheet (LIS) to the <span class="hlt">sea</span> (Hudson Strait, fiords) and involves a complex interplay of depositional and redepositional processes. The mud-rich NAMOC system is multisourced and represents a basinwide converging system of tributary canyons and channels. It focusses its sand load to the central trunk channel in basin centre, in the fashion of a "reverse" deep-<span class="hlt">sea</span> fan. The sand plain received its sediment from the Hudson Strait by turbidity currents that were generated either by failure of glacial prodelta slopes at the <span class="hlt">ice</span> margin, or by direct meltwater discharges with high bedload <span class="hlt">concentration</span>. We speculate that the latter might have been related to subglacial-lake outburst flooding through the Hudson Strait, possibly associated with <span class="hlt">ice</span>-rafting (Heinrich) events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4817708','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4817708"><span>Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yu, Zi-Chao; Chen, Xiu-Lan; Shen, Qing-Tao; Zhao, Dian-Li; Tang, Bai-Lu; Su, Hai-Nan; Wu, Zhao-Yu; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Yu, Yong; Zhou, Bai-Cheng; Chen, Bo; Zhang, Yu-Zhong</p> <p>2015-01-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent <span class="hlt">sea</span> <span class="hlt">ice</span> are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme <span class="hlt">sea</span> <span class="hlt">ice</span> environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>. We isolated a filamentous phage, f327, from an Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in <span class="hlt">sea</span> <span class="hlt">ice</span> in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in <span class="hlt">sea</span> <span class="hlt">ice</span> in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high <span class="hlt">concentration</span> of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> ecosystem. PMID:25303713</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries"><span>C-Band Backscatter Measurements of Winter <span class="hlt">Sea-Ice</span> in the Weddell <span class="hlt">Sea</span>, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.</p> <p>1995-01-01</p> <p>During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German <span class="hlt">ice</span>-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic <span class="hlt">sea-ice</span>. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several <span class="hlt">ice</span> types as the icebreaker crossed the Weddell <span class="hlt">Sea</span> and detailed measurements were made of corresponding snow and <span class="hlt">sea-ice</span> characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/<span class="hlt">ice</span> interfaces. Observations indicate so e similarities with Arctic <span class="hlt">sea-ice</span> scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell <span class="hlt">Sea</span>. This is due to the younger mean <span class="hlt">ice</span> age and thickness, and correspondingly higher mean salinities. In particular, smooth white <span class="hlt">ice</span> found in 1992 in divergent areas within the Weddell Gyre <span class="hlt">ice</span> pack was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year <span class="hlt">ice</span> forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year <span class="hlt">ice</span> on the other hand are clearly discriminated from younger undeformed <span class="hlt">ice</span>. thereby allowing successful separation of thick and thin <span class="hlt">ice</span>. Time-series data also indicate that C-band is sensitive to changes in snow and <span class="hlt">ice</span> conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810011207','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810011207"><span>Oceanographic influences on the <span class="hlt">sea</span> <span class="hlt">ice</span> cover in the <span class="hlt">Sea</span> of Okhotsk</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gratz, A. J.; Parkinson, C. L.</p> <p>1981-01-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> conditions in the <span class="hlt">Sea</span> of Okhotsk, as determined by satellite images from the electrically scanning microwave radiometer on board Nimbus 5, were analyzed in conjunction with the known oceanography. In particular, the <span class="hlt">sea</span> <span class="hlt">ice</span> coverage was compared with the bottom bathymetry and the surface currents, water temperatures, and salinity. It is found that <span class="hlt">ice</span> forms first in cold, shallow, low salinity waters. Once formed, the <span class="hlt">ice</span> seems to drift in a direction approximating the Okhotsk-Kuril current system. Two basic patterns of <span class="hlt">ice</span> edge positioning which persist for significant periods were identified as a rectangular structure and a wedge structure. Each of these is strongly correlated with the bathymetry of the region and with the known current system, suggesting that convective depth and ocean currents play an important role in determining <span class="hlt">ice</span> patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPa...9.2789S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPa...9.2789S"><span>High-resolution mineral dust and <span class="hlt">sea</span> <span class="hlt">ice</span> proxy records from the Talos Dome <span class="hlt">ice</span> core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.</p> <p>2013-12-01</p> <p>In this study we report on new non-<span class="hlt">sea</span> salt calcium (nssCa2+, mineral dust proxy) and <span class="hlt">sea</span> salt sodium (ssNa+, <span class="hlt">sea</span> <span class="hlt">ice</span> proxy) records along the East Antarctic Talos Dome deep <span class="hlt">ice</span> core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic <span class="hlt">ice</span> core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross <span class="hlt">Sea</span> area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic <span class="hlt">ice</span> cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale <span class="hlt">concentration</span> changes observed in Antarctic <span class="hlt">ice</span> cores during climate variations of the past 150 ka. Our transport model applied on <span class="hlt">ice</span> core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced <span class="hlt">sea</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850010134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850010134"><span>Data report on variations in the composition of <span class="hlt">sea</span> <span class="hlt">ice</span> during MIZEX/East'83 with the Nimbus-7 SMMR</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.</p> <p>1984-01-01</p> <p>Data acquired with the scanning multichannel microwave radiometer (SMMR) on board the Nimbus-7 satellite for a six-week period including the 1983 MIZEX in Fram Strait were analyzed with the use of a previously developed procedure for calculating <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>, multiyear fraction, and <span class="hlt">ice</span> temperature. These calculations can compared with independent observations made on the surface and from aircraft in order to check the validity of the calculations based on SMMR data. The calculation of multiyear fraction, which was known earlier to be invalid near the melting point of <span class="hlt">sea</span> <span class="hlt">ice</span>, was of particular interest during this period. The indication of multiyear <span class="hlt">ice</span> was found to disappear a number of times, presumably corresponding to freeze/thaw cycles which occurred in this time period. Both grid-print maps and grey-scale images of total <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> and multiyear <span class="hlt">sea</span> <span class="hlt">ice</span> fraction for the entire period are included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617621','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617621"><span>Wave-<span class="hlt">Ice</span> and Air-<span class="hlt">Ice</span>-Ocean Interaction During the Chukchi <span class="hlt">Sea</span> <span class="hlt">Ice</span> Edge Advance</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>During cruise CU-B UAF UW Airborne expendable <span class="hlt">Ice</span> Buoy (AXIB) Ahead, at and inside <span class="hlt">ice</span> edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside <span class="hlt">ice</span> edge w/ >50cm thickness <span class="hlt">Ice</span> mass balance T in snow-<span class="hlt">ice</span>-ocean, T, SLP at surface ~1 year WHOI CRREL (<span class="hlt">Sea</span>State DRI</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.C41C0992L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.C41C0992L"><span>The Role of Laboratory-Based Studies of the Physical and Biological Properties of <span class="hlt">Sea</span> <span class="hlt">Ice</span> in Supporting the Observation and Modeling of <span class="hlt">Ice</span> Covered <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Light, B.; Krembs, C.</p> <p>2003-12-01</p> <p>Laboratory-based studies of the physical and biological properties of <span class="hlt">sea</span> <span class="hlt">ice</span> are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on <span class="hlt">sea</span> <span class="hlt">ice</span> and the structure of <span class="hlt">ice</span>-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between <span class="hlt">sea</span> <span class="hlt">ice</span> and the atmosphere and <span class="hlt">sea</span> <span class="hlt">ice</span> and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of <span class="hlt">sea</span> <span class="hlt">ice</span> under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural <span class="hlt">sea</span> <span class="hlt">ice</span> core samples and laboratory-grown <span class="hlt">ice</span>. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of <span class="hlt">sea</span> <span class="hlt">ice</span> microstructure to changes in temperature, assessment of the relationships between <span class="hlt">ice</span> structure and the partitioning of solar radiation by first-year <span class="hlt">sea</span> <span class="hlt">ice</span> covers, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...814991L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...814991L"><span>On the discrepancy between observed and CMIP5 multi-model simulated Barents <span class="hlt">Sea</span> winter <span class="hlt">sea</span> <span class="hlt">ice</span> decline</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Dawei; Zhang, Rong; Knutson, Thomas R.</p> <p>2017-04-01</p> <p>This study aims to understand the relative roles of external forcing versus internal climate variability in causing the observed Barents <span class="hlt">Sea</span> winter <span class="hlt">sea</span> <span class="hlt">ice</span> extent (SIE) decline since 1979. We identify major discrepancies in the spatial patterns of winter Northern Hemisphere <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> trends over the satellite period between observations and CMIP5 multi-model mean externally forced response. The CMIP5 externally forced decline in Barents <span class="hlt">Sea</span> winter SIE is much weaker than that observed. Across CMIP5 ensemble members, March Barents <span class="hlt">Sea</span> SIE trends have little correlation with global mean surface air temperature trends, but are strongly anti-correlated with trends in Atlantic heat transport across the Barents <span class="hlt">Sea</span> Opening (BSO). Further comparison with control simulations from coupled climate models suggests that enhanced Atlantic heat transport across the BSO associated with regional internal variability may have played a leading role in the observed decline in winter Barents <span class="hlt">Sea</span> SIE since 1979.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1592C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1592C"><span>Multi-centennial Record of Labrador <span class="hlt">Sea</span> Primary Productivity and <span class="hlt">Sea-Ice</span> Variability Archived in Coralline Algal Ba/Ca</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, Phoebe; Halfar, Jochen; Adey, Walter; Hetzinger, Steffen; Zack, Thomas; Moore, Kent; Wortmann, Ulrich; Williams, Branwen; Hou, Alicia</p> <p>2017-04-01</p> <p>Arctic <span class="hlt">sea-ice</span> thickness and <span class="hlt">concentration</span> have dropped by approximately 9% per decade since 1978. Concurrent with this <span class="hlt">sea-ice</span> decline is an increase in rates of phytoplankton productivity, driven by shoaling of the mixed layer and enhanced transmittance of solar radiation into the surface ocean. This has recently been confirmed by phytoplankton studies in Arctic and Subarctic basins that have revealed earlier timing, prolonged duration, and increased primary productivity of the spring phytoplankton bloom. However, difficulties of navigating in remote <span class="hlt">ice</span>-laden waters and harsh polar climates have often resulted in short and incomplete records of in-situ plankton abundance in the northwestern Labrador <span class="hlt">Sea</span>. Alternatively, information of past ocean productivity may be gained through the study of trace nutrient distributions in the surface water column. Investigations of dissolved barium (Ba) <span class="hlt">concentrations</span> in the Arctic reveal significant depletions of Ba in surface seawaters due to biological scavenging during the spring phytoplankton bloom. Here we apply a barium-to-calcium (Ba/Ca) and carbon isotope (δ13C) multiproxy approach to long-lived crustose coralline algae in order to reconstruct an annually-resolved multi-centennial record of Labrador <span class="hlt">Sea</span> productivity related to <span class="hlt">sea-ice</span> variability in Labrador, Canada that extends well into the Little <span class="hlt">Ice</span> Age (LIA; 1646 AD). The crustose coralline alga Clathromorphum compactum is a shallow marine calcareous plant that is abundant along the eastern Canadian coastline, and produces annual growth increments which allow for the precise calendar dating and geochemical sampling of hard tissue. Algal Ba/Ca ratios can serve as a promising new proxy for surface water productivity, demonstrating a close correspondence to δ13C that does not suffer from the anthropogenically-induced carbon isotope decline (ex. Suess Effect) beginning in the 1960s. Coralline algal Ba/Ca demonstrates statistically significant correlations to both</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PNAS..114.3352W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PNAS..114.3352W"><span>Deep-<span class="hlt">sea</span> coral evidence for lower Southern Ocean surface nitrate <span class="hlt">concentrations</span> during the last <span class="hlt">ice</span> age</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xingchen Tony; Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.</p> <p>2017-03-01</p> <p>The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the <span class="hlt">ice</span> age decline in atmospheric CO2 <span class="hlt">concentration</span>, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the <span class="hlt">ice</span> ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-<span class="hlt">sea</span> coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate <span class="hlt">concentration</span> in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the <span class="hlt">ice</span> age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380069','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380069"><span>Deep-<span class="hlt">sea</span> coral evidence for lower Southern Ocean surface nitrate <span class="hlt">concentrations</span> during the last <span class="hlt">ice</span> age</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.</p> <p>2017-01-01</p> <p>The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the <span class="hlt">ice</span> age decline in atmospheric CO2 <span class="hlt">concentration</span>, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the <span class="hlt">ice</span> ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-<span class="hlt">sea</span> coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate <span class="hlt">concentration</span> in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the <span class="hlt">ice</span> age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively. PMID:28298529</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21A0658Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21A0658Z"><span>Changes in Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Thickness and Floe Size</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, J.; Schweiger, A. J. B.; Stern, H. L., III; Steele, M.</p> <p>2016-12-01</p> <p>A thickness, floe size, and enthalpy distribution <span class="hlt">sea</span> <span class="hlt">ice</span> model was implemented into the Pan-arctic <span class="hlt">Ice</span>-Ocean Modeling and Assimilation System (PIOMAS) by coupling the Zhang et al. [2015] <span class="hlt">sea</span> <span class="hlt">ice</span> floe size distribution (FSD) theory with the Thorndike et al. [1975] <span class="hlt">ice</span> thickness distribution (ITD) theory in order to explicitly simulate multicategory FSD and ITD simultaneously. A range of <span class="hlt">ice</span> thickness and floe size observations were used for model calibration and validation. The expanded, validated PIOMAS was used to study <span class="hlt">sea</span> <span class="hlt">ice</span> response to atmospheric and oceanic changes in the Arctic, focusing on the interannual variability and trends of <span class="hlt">ice</span> thickness and floe size over the period 1979-2015. It is found that over the study period both <span class="hlt">ice</span> thickness and floe size have been decreasing steadily in the Arctic. The simulated <span class="hlt">ice</span> thickness shows considerable spatiotemporal variability in recent years. As the <span class="hlt">ice</span> cover becomes thinner and weaker, the model simulates an increasing number of small floes (at the low end of the FSD), which affects <span class="hlt">sea</span> <span class="hlt">ice</span> properties, particularly in the marginal <span class="hlt">ice</span> zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0761S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0761S"><span>Current Status and Future Plan of Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> monitoring in South Korea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shin, J.; Park, J.</p> <p>2016-12-01</p> <p>Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is one of the most important parameters in climate. For monitoring of <span class="hlt">sea</span> <span class="hlt">ice</span> changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> monitoring system" to retrieve the <span class="hlt">sea</span> <span class="hlt">ice</span> extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent. This system has been implemented to the web site for real-time public service. The <span class="hlt">sea</span> <span class="hlt">ice</span> information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The <span class="hlt">sea</span> <span class="hlt">ice</span> information like <span class="hlt">sea</span> <span class="hlt">ice</span> extent, <span class="hlt">sea</span> <span class="hlt">ice</span> surface roughness, and predictive <span class="hlt">sea</span> <span class="hlt">ice</span> extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>" twice a year. We are trying to add more <span class="hlt">sea</span> <span class="hlt">ice</span> information into this system. Details of current status and future plan of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> monitoring and the methodology of the <span class="hlt">sea</span> <span class="hlt">ice</span> information retrievals will be presented in the meeting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7338G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7338G"><span>Aerosol-driven increase in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> over the middle of the twentieth century</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagné, Marie-Ève; Fyfe, John C.; Gillett, Nathan P.; Polyakov, Igor V.; Flato, Gregory M.</p> <p>2017-07-01</p> <p>Updated observational data sets without climatological infilling show that there was an increase in <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> in the eastern Arctic between 1950 and 1975, contrary to earlier climatology infilled observational data sets that show weak interannual variations during that time period. We here present climate model simulations showing that this observed <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> increase was primarily a consequence of cooling induced by increasing anthropogenic aerosols and natural forcing. Indeed, sulphur dioxide emissions, which lead to the formation of sulphate aerosols, peaked around 1980 causing a sharp increase in the burden of sulphate between the 1950s and 1970s; but since 1980, the burden has dropped. Our climate model simulations show that the cooling contribution of aerosols offset the warming effect of increasing greenhouse gases over the midtwentieth century resulting in the expansion of the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover. These results challenge the perception that Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent was unperturbed by human influence until the 1970s, suggesting instead that it exhibited earlier forced multidecadal variations, with implications for our understanding of impacts and adaptation in human and natural Arctic systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12h4011A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12h4011A"><span>Warming in the Nordic <span class="hlt">Seas</span>, North Atlantic storms and thinning Arctic <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.</p> <p>2017-08-01</p> <p>Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on <span class="hlt">sea</span> <span class="hlt">ice</span> in the Nordic <span class="hlt">Seas</span> (including the Barents <span class="hlt">Sea</span>). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of <span class="hlt">sea</span> <span class="hlt">ice</span> growth or even melting. Our analysis indicates that the recently observed <span class="hlt">sea</span> <span class="hlt">ice</span> decline in the Nordic <span class="hlt">Seas</span> during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic <span class="hlt">ice</span> at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..485H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..485H"><span>Thin <span class="hlt">Ice</span> Area Extraction in the Seasonal <span class="hlt">Sea</span> <span class="hlt">Ice</span> Zones of the Northern Hemisphere Using Modis Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayashi, K.; Naoki, K.; Cho, K.</p> <p>2018-04-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> has an important role of reflecting the solar radiation back into space. However, once the <span class="hlt">sea</span> <span class="hlt">ice</span> area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in <span class="hlt">sea</span> <span class="hlt">ice</span> areas. In this study, the authors have developed a method to extract thin <span class="hlt">ice</span> area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin <span class="hlt">sea</span> <span class="hlt">ice</span> in the visible region is rather low. Moreover, since the surface of thin <span class="hlt">sea</span> <span class="hlt">ice</span> is likely to be wet, the reflectance of thin <span class="hlt">sea</span> <span class="hlt">ice</span> in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin <span class="hlt">sea</span> <span class="hlt">ice</span> areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin <span class="hlt">ice</span> area were derived. By using those equations, most of the thin <span class="hlt">ice</span> areas which could be recognized from MODIS images were well extracted in the seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> zones in the Northern Hemisphere, namely the <span class="hlt">Sea</span> of Okhotsk, the Bering <span class="hlt">Sea</span> and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C54A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C54A..08S"><span>Tropical pacing of Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> increase</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, D. P.</p> <p>2015-12-01</p> <p>One reason why coupled climate model simulations generally do not reproduce the observed increase in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> extent may be that their internally generated climate variability does not sync with the observed phases of phenomena like the Pacific Decadal Oscillation (PDO) and ENSO. For example, it is unlikely for a free-running coupled model simulation to capture the shift of the PDO from its positive to negative phase during 1998, and the subsequent ~15 year duration of the negative PDO phase. In previously presented work based on atmospheric models forced by observed tropical SSTs and stratospheric ozone, we demonstrated that tropical variability is key to explaining the wind trends over the Southern Ocean during the past ~35 years, particularly in the Ross, Amundsen and Bellingshausen <span class="hlt">Seas</span>, the regions of the largest trends in <span class="hlt">sea</span> <span class="hlt">ice</span> extent and <span class="hlt">ice</span> season duration. Here, we extend this idea to coupled model simulations with the Community Earth System Model (CESM) in which the evolution of SST anomalies in the central and eastern tropical Pacific is constrained to match the observations. This ensemble of 10 "tropical pacemaker" simulations shows a more realistic evolution of Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> anomalies than does its unconstrained counterpart, the CESM Large Ensemble (both sets of runs include stratospheric ozone depletion and other time-dependent radiative forcings). In particular, the pacemaker runs show that increased <span class="hlt">sea</span> <span class="hlt">ice</span> in the eastern Ross <span class="hlt">Sea</span> is associated with a deeper Amundsen <span class="hlt">Sea</span> Low (ASL) and stronger westerlies over the south Pacific. These circulation patterns in turn are linked with the negative phase of the PDO, characterized by negative SST anomalies in the central and eastern Pacific. The timing of tropical decadal variability with respect to ozone depletion further suggests a strong role for tropical variability in the recent acceleration of the Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> trend, as ozone depletion stabilized by late 1990s, prior to the most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28607400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28607400"><span>Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> melt leads to atmospheric new particle formation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M</p> <p>2017-06-12</p> <p>Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting <span class="hlt">sea</span> <span class="hlt">ice</span> regions. The occurrence of such events across a full decade was anti-correlated with <span class="hlt">sea</span> <span class="hlt">ice</span> extent. New particles originating from open water and open pack <span class="hlt">ice</span> increased the cloud condensation nuclei <span class="hlt">concentration</span> background by at least ca. 20%, supporting a marine biosphere-climate link through <span class="hlt">sea</span> <span class="hlt">ice</span> melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C32B..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C32B..02S"><span>Structural Uncertainty in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, D. P.</p> <p>2016-12-01</p> <p>The inability of the vast majority of historical climate model simulations to reproduce the observed increase in Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> has motivated many studies about the quality of the observational record, the role of natural variability versus forced changes, and the possibility of missing or inadequate forcings in the models (such as freshwater discharge from thinning <span class="hlt">ice</span> shelves or an inadequate magnitude of stratospheric ozone depletion). In this presentation I will highlight another source of uncertainty that has received comparatively little attention: Structural uncertainty, that is, the systematic uncertainty in simulated <span class="hlt">sea</span> <span class="hlt">ice</span> trends that arises from model physics and mean-state biases. Using two large ensembles of experiments from the Community Earth System Model (CESM), I will show that the model is predisposed towards producing negative Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> trends during 1979-present, and that this outcome is not simply because the model's decadal variability is out-of-synch with that in nature. In the "Tropical Pacific Pacemaker" ensemble, in which observed tropical Pacific SST anomalies are prescribed, the model produces very realistic atmospheric circulation trends over the Southern Ocean, yet the <span class="hlt">sea</span> <span class="hlt">ice</span> trend is negative in every ensemble member. However, if the ensemble-mean trend (commonly interpreted as the forced response) is removed, some ensemble members show a <span class="hlt">sea</span> <span class="hlt">ice</span> increase that is very similar to the observed. While this results does confirm the important role of natural variability, it also suggests a strong bias in the forced response. I will discuss the reasons for this systematic bias and explore possible remedies. This an important problem to solve because projections of 21st -Century changes in the Antarctic climate system (including <span class="hlt">ice</span> sheet surface mass balance changes and related changes in the <span class="hlt">sea</span> level budget) have a strong dependence on the mean state of and changes in the Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> cover. This problem is not unique to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31B0741W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31B0741W"><span><span class="hlt">Sea</span> <span class="hlt">Ice</span> Evolution in the Pacific Arctic by Selected CMIP5 Models: the Present and the Future</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, M.; Yang, Q.; Overland, J. E.; Stabeno, P. J.</p> <p>2016-12-01</p> <p>With fast declining of <span class="hlt">sea</span> <span class="hlt">ice</span> cover in the Arctic, the timing of <span class="hlt">sea</span> <span class="hlt">ice</span> break-up and freeze-up is an urgent economic, social and scientific issue. Based on daily <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> data we assess three parameters: the dates of <span class="hlt">sea</span> <span class="hlt">ice</span> break-up and freeze-up and the annual <span class="hlt">sea</span> <span class="hlt">ice</span> duration in the Pacific Arctic. The <span class="hlt">sea</span> <span class="hlt">ice</span> duration is shrinking, with the largest trend during the past decade (1990-2015); this declining trend will continue based on CMIP5 model projections. The seven CMIP5 models used in current study are able to simulate all three parameters well when compared with observations. Comparisons made at eight Chukchi <span class="hlt">Sea</span> mooring sites and the eight Distributed Biological Observatory (DBO) boxes show consistent results as well. The 30-year averaged trend for annual <span class="hlt">sea</span> <span class="hlt">ice</span> duration is projected to be -0.68 days/year to -1.2 days/year for 2015-2044. This is equivalent 20 to 36 days reduction in the annual <span class="hlt">sea</span> <span class="hlt">ice</span> duration. A similar magnitude of the negative trend is also found at all eight DBO boxes. The reduction in annual <span class="hlt">sea</span> <span class="hlt">ice</span> duration will include both earlier break-up dates and later freeze-up date. However, models project that a later freeze-up contributes more than early break-up to the overall shortening of annual <span class="hlt">sea</span> <span class="hlt">ice</span> duration. Around the Bering Strait future changes are the smallest, with less than 20-days change in duration during next 30 years. Upto 60 days reduction of the <span class="hlt">sea</span> <span class="hlt">ice</span> duration is projected for the decade of 2030-2044 in the East Siberia, the Chukchi and the Beaufort <span class="hlt">Seas</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016760','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016760"><span>Influence of <span class="hlt">ice</span> thickness and surface properties on light transmission through Arctic <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.</p> <p>2015-01-01</p> <p>Abstract The observed changes in physical properties of <span class="hlt">sea</span> <span class="hlt">ice</span> such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea‐ice‐melt and under‐<span class="hlt">ice</span> primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of <span class="hlt">sea</span> <span class="hlt">ice</span>. We measured spectral under‐<span class="hlt">ice</span> radiance and irradiance using the new Nereid Under‐<span class="hlt">Ice</span> (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H‐ROV) designed for both remotely piloted and autonomous surveys underneath land‐fast and moving <span class="hlt">sea</span> <span class="hlt">ice</span>. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under‐<span class="hlt">ice</span> optical measurements with three dimensional under‐<span class="hlt">ice</span> topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice‐thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under‐<span class="hlt">ice</span> light field on small scales (<1000 m2), while <span class="hlt">sea</span> ice‐thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness and surface albedo. PMID:27660738</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PrOce.141..153Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PrOce.141..153Z"><span>The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.</p> <p>2016-02-01</p> <p>Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in <span class="hlt">sea</span> <span class="hlt">ice</span> brines is generally higher in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> compared to those from the Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span>, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher <span class="hlt">concentrations</span> of DOC in seawater would be reflected in a greater DOC incorporation into <span class="hlt">sea</span> <span class="hlt">ice</span>, enhancing bacterial respiration, which in turn would increase the pCO2 in the <span class="hlt">ice</span>. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC <span class="hlt">concentration</span> of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. <span class="hlt">Sea</span> <span class="hlt">ice</span> was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC <span class="hlt">concentration</span>, bacterial respiration, total alkalinity and pCO2 in <span class="hlt">sea</span> <span class="hlt">ice</span> and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in <span class="hlt">ice</span> was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in <span class="hlt">ice</span> was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the <span class="hlt">ice</span> interiors than at the surfaces or the bottom layers of the <span class="hlt">ice</span>, where exchanges at the air-<span class="hlt">ice</span> and <span class="hlt">ice</span>-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the <span class="hlt">ice</span> might approach 0.15 and 0.2. It is thus credible</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10583952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10583952"><span>Global Warming and Northern Hemisphere <span class="hlt">Sea</span> <span class="hlt">Ice</span> Extent.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov</p> <p>1999-12-03</p> <p>Surface and satellite-based observations show a decrease in Northern Hemisphere <span class="hlt">sea</span> <span class="hlt">ice</span> extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere <span class="hlt">sea</span> <span class="hlt">ice</span> extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 <span class="hlt">sea</span> <span class="hlt">ice</span> trends and less than 0.1 percent for the 1953-98 <span class="hlt">sea</span> <span class="hlt">ice</span> trends. Both models used here project continued decreases in <span class="hlt">sea</span> <span class="hlt">ice</span> thickness and extent throughout the next century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008473&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008473&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea"><span>Atmospheric Form Drag Coefficients Over Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Using Remotely Sensed <span class="hlt">Ice</span> Topography Data, Spring 2009-2015</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.</p> <p>2017-01-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> topography significantly impacts turbulent energy/momentum exchange, e.g., atmospheric (wind) drag, over Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>. Unfortunately, observational estimates of this contribution to atmospheric drag variability are spatially and temporally limited. Here we present new estimates of the neutral atmospheric form drag coefficient over Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> in early spring, using high-resolution Airborne Topographic Mapper elevation data from NASA's Operation <span class="hlt">Ice</span>Bridge mission. We utilize a new three-dimensional <span class="hlt">ice</span> topography data set and combine this with an existing parameterization scheme linking surface feature height and spacing to form drag. To be consistent with previous studies investigating form drag, we compare these results with those produced using a new linear profiling topography data set. The form drag coefficient from surface feature variability shows lower values [less than 0.5-1 × 10(exp. -3)] in the Beaufort/Chukchi <span class="hlt">Seas</span>, compared with higher values [greater than 0.5-1 ×10(exp. -3)] in the more deformed <span class="hlt">ice</span> regimes of the Central Arctic (north of Greenland and the Canadian Archipelago), which increase with coastline proximity. The results show moderate interannual variability, including a strong increase in the form drag coefficient from 2013 to 2014/2015 north of the Canadian Archipelago. The form drag coefficient estimates are extrapolated across the Arctic with Advanced Scatterometer satellite radar backscatter data, further highlighting the regional/interannual drag coefficient variability. Finally, we combine the results with existing parameterizations of form drag from floe edges (a function of <span class="hlt">ice</span> <span class="hlt">concentration</span>) and skin drag to produce, to our knowledge, the first pan-Arctic estimates of the total neutral atmospheric drag coefficient (in early spring) from 2009 to 2015.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4024236','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4024236"><span>Influence of stochastic <span class="hlt">sea</span> <span class="hlt">ice</span> parametrization on climate and the role of atmosphere–<span class="hlt">sea</span> ice–ocean interaction</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Juricke, Stephan; Jung, Thomas</p> <p>2014-01-01</p> <p>The influence of a stochastic <span class="hlt">sea</span> <span class="hlt">ice</span> strength parametrization on the mean climate is investigated in a coupled atmosphere–<span class="hlt">sea</span> ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic <span class="hlt">sea</span> <span class="hlt">ice</span> parametrization causes an effective weakening of the <span class="hlt">sea</span> <span class="hlt">ice</span>. In the uncoupled model this leads to an Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic <span class="hlt">sea</span> <span class="hlt">ice</span> quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of <span class="hlt">sea</span> <span class="hlt">ice</span>. However, stochastic <span class="hlt">sea</span> <span class="hlt">ice</span> perturbations affect regional <span class="hlt">sea</span> <span class="hlt">ice</span> characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic <span class="hlt">sea</span> <span class="hlt">ice</span> parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPRS..130..122B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPRS..130..122B"><span>Validation of Suomi-NPP VIIRS <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span> with very high-resolution satellite and airborne camera imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baldwin, Daniel; Tschudi, Mark; Pacifici, Fabio; Liu, Yinghui</p> <p>2017-08-01</p> <p>Two independent VIIRS-based <span class="hlt">Sea</span> <span class="hlt">Ice</span> <span class="hlt">Concentration</span> (SIC) products are validated against SIC as estimated from Very High Spatial Resolution Imagery for several VIIRS overpasses. The 375 m resolution VIIRS SIC from the Interface Data Processing Segment (IDPS) SIC algorithm is compared against estimates made from 2 m DigitalGlobe (DG) WorldView-2 imagery and also against estimates created from 10 cm Digital Mapping System (DMS) camera imagery. The 750 m VIIRS SIC from the Enterprise SIC algorithm is compared against DG imagery. The IDPS vs. DG comparisons reveal that, due to algorithm issues, many of the IDPS SIC retrievals were falsely assigned <span class="hlt">ice</span>-free values when the pixel was clearly over <span class="hlt">ice</span>. These false values increased the validation bias and RMS statistics. The IDPS vs. DMS comparisons were largely over <span class="hlt">ice</span>-covered regions and did not demonstrate the false retrieval issue. The validation results show that products from both the IDPS and Enterprise algorithms were within or very close to the 10% accuracy (bias) specifications in both the non-melting and melting conditions, but only products from the Enterprise algorithm met the 25% specifications for the uncertainty (RMS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171250','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171250"><span>ICESat Observations of Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span>: A First Look</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, Ron; Zwally, H. Jay; Yi, Dong-Hui</p> <p>2004-01-01</p> <p>Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin <span class="hlt">ice</span> or open water) in the <span class="hlt">sea</span> <span class="hlt">ice</span> cover as well as to surface relief of old and first-year <span class="hlt">ice</span>. The precision of the elevation estimates, measured over relatively flat <span class="hlt">sea</span> <span class="hlt">ice</span>, is approx. 2 cm Using the thickness of thin-<span class="hlt">ice</span> in recent openings to estimate <span class="hlt">sea</span> level references, we obtain the <span class="hlt">sea-ice</span> free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying <span class="hlt">sea</span> surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to <span class="hlt">ice</span> thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean <span class="hlt">ice</span> cover at length scales at and above the spatial dimension of the altimeter footprint.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.9720M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.9720M"><span><span class="hlt">Sea</span> <span class="hlt">ice</span> decline and 21st century trans-Arctic shipping routes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melia, N.; Haines, K.; Hawkins, E.</p> <p>2016-09-01</p> <p>The observed decline in Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> is projected to continue, opening shorter trade routes across the Arctic Ocean, with potentially global economic implications. Here we quantify, using Coupled Model Intercomparison Project Phase 5 global climate model simulations calibrated to remove spatial biases, how projected <span class="hlt">sea</span> <span class="hlt">ice</span> loss might increase opportunities for Arctic transit shipping. By midcentury for standard open water vessels, the frequency of navigable periods doubles, with routes across the central Arctic becoming available. A <span class="hlt">sea</span> <span class="hlt">ice</span>-ship speed relationship is used to show that European routes to Asia typically become 10 days faster via the Arctic than alternatives by midcentury, and 13 days faster by late century, while North American routes become 4 days faster. Future greenhouse gas emissions have a larger impact by late century; the shipping season reaching 4-8 months in Representative <span class="hlt">Concentration</span> Pathway (RCP)8.5 double that of RCP2.6, both with substantial interannual variability. Moderately, <span class="hlt">ice</span>-strengthened vessels likely enable Arctic transits for 10-12 months by late century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013753','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013753"><span>Forecasting Future <span class="hlt">Sea</span> <span class="hlt">Ice</span> Conditions: A Lagrangian Approach</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future <span class="hlt">Sea</span> <span class="hlt">Ice</span> Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian <span class="hlt">ice</span>... Lagrangian <span class="hlt">sea-ice</span> back trajectories to estimate thermodynamic and dynamic (advection) <span class="hlt">ice</span> loss. APPROACH We use a Lagrangian trajectory model to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..672H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..672H"><span>Scaling Properties of Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Deformation in a High-Resolution Viscous-Plastic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Model and in Satellite Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hutter, Nils; Losch, Martin; Menemenlis, Dimitris</p> <p>2018-01-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>-ocean simulation, the small-scale <span class="hlt">sea</span> <span class="hlt">ice</span> deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled <span class="hlt">sea</span> <span class="hlt">ice</span> deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of <span class="hlt">sea</span> <span class="hlt">ice</span> deformation that is observed in satellite data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29576996','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29576996"><span>Scaling Properties of Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Deformation in a High-Resolution Viscous-Plastic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Model and in Satellite Observations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hutter, Nils; Losch, Martin; Menemenlis, Dimitris</p> <p>2018-01-01</p> <p><span class="hlt">Sea</span> <span class="hlt">ice</span> models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic <span class="hlt">sea</span> <span class="hlt">ice</span>-ocean simulation, the small-scale <span class="hlt">sea</span> <span class="hlt">ice</span> deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled <span class="hlt">sea</span> <span class="hlt">ice</span> deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of <span class="hlt">sea</span> <span class="hlt">ice</span> deformation that is observed in satellite data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840059709&hterms=Thorndike&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThorndike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840059709&hterms=Thorndike&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThorndike"><span>Measuring the <span class="hlt">sea</span> <span class="hlt">ice</span> floe size distribution</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rothrock, D. A.; Thorndike, A. S.</p> <p>1984-01-01</p> <p>The <span class="hlt">sea</span> <span class="hlt">ice</span> covering the Arctic Ocean is broken into distinct pieces,called floes. In the summer, these floes, which have diameters ranging up to 100 km, are separated from each other by a region of open water. In the winter, floes still exist, but they are less easily identified. An understanding of the geometry of the <span class="hlt">ice</span> pack is of interest for a number of practical applications associated with transportation in <span class="hlt">ice</span>-covered <span class="hlt">seas</span> and with the design of offshore structures intended to survive in the presence of <span class="hlt">ice</span>. The present investigation has the objective to clarify ideas about floe sizes and to propose techniques for measuring them. Measurements are presented with the primary aim to illustrate points of technique or approach. A preliminary discussion of the floe size distribution of <span class="hlt">sea</span> <span class="hlt">ice</span> is devoted to questions of definition and of measurement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070035024','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070035024"><span>Arctic <span class="hlt">Sea</span> <span class="hlt">Ice</span> Parameters from AMSR-E Data using Two Techniques, and Comparisons with <span class="hlt">Sea</span> <span class="hlt">Ice</span> from SSM</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Parkinson, Claire L.</p> <p>2007-01-01</p> <p>We use two algorithms to process AMSR-E data in order to determine algorithm dependence, if any, on the estimates of <span class="hlt">sea</span> <span class="hlt">ice</span> <span class="hlt">concentration</span>, <span class="hlt">ice</span> extent and area, and trends and to evaluate how AMSR-E data compare with historical SSM/I data. The monthly <span class="hlt">ice</span> <span class="hlt">concentrations</span> derived from the two algorithms from AMSR-E data (the AMSR-E Bootstrap Algorithm, or ABA, and the enhanced NASA Team algorithm, or NT2) differ on average by about 1 to 3%, with data from the consolidated <span class="hlt">ice</span> region being generally comparable for ABA and NT2 retrievals while data in the marginal <span class="hlt">ice</span> zones and thin <span class="hlt">ice</span> regions show higher values when the NT2 algorithm is used. The <span class="hlt">ice</span> extents and areas derived separately from AMSR-E using these two algorithms are, however, in good agreement, with the differences (ABA-NT2) being about 6.6 x 10(exp 4) square kilometers on average for <span class="hlt">ice</span> extents and -6.6 x 10(exp 4) square kilometers for <span class="hlt">ice</span> area which are small compared to mean seasonal values of 10.5 x 10(exp 6) and 9.8 x 10(exp 6) for <span class="hlt">ice</span> extent and area: respectively. Likewise, extents and areas derived from the same algorithm but from AMSR-E and SSM/I data are consistent but differ by about -24.4 x 10(exp 4) square kilometers and -13.9 x 10(exp 4) square kilometers, respectively. The discrepancies are larger with the estimates of extents than area mainly because of differences in channel selection and sensor resolutions. Trends in extent during the AMSR-E era were also estimated and results from all three data sets are shown to be in good agreement (within errors).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53C..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53C..02R"><span><span class="hlt">Sea</span> <span class="hlt">ice</span> thickness derived from radar altimetry: achievements and future plans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ricker, R.; Hendricks, S.; Paul, S.; Kaleschke, L.; Tian-Kunze, X.</p> <p>2017-12-01</p> <p>The retrieval of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> thickness is one of the major objectives of the European CryoSat-2 radar altimeter mission and the 7-year long period of operation has produced an unprecedented record of monthly <span class="hlt">sea</span> <span class="hlt">ice</span> thickness information. We present CryoSat-2 results that show changes and variability of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> from the winter season 2010/2011 until fall 2017. CryoSat-2, however, was designed to observe thick perennial <span class="hlt">sea</span> <span class="hlt">ice</span>, while an accurate retrieval of thin seasonal <span class="hlt">sea</span> <span class="hlt">ice</span> is more challenging. We have therefore developed a method of completing and improving Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> thickness information within the ESA SMOS+ <span class="hlt">Sea</span> <span class="hlt">Ice</span> project by merging CryoSat-2 and SMOS <span class="hlt">sea</span> <span class="hlt">ice</span> thickness retrievals. Using these satellite missions together overcomes several issues of single-mission retrievals and provides a more accurate and comprehensive view on the state of Arctic <span class="hlt">sea-ice</span> thickness at higher temporal resolution. However, stand-alone CryoSat-2 observations can be used as reference data for the exploitation of older pulse-limited radar altimetry data sets over <span class="hlt">sea</span> <span class="hlt">ice</span>. In order to observe trends in <span class="hlt">sea</span> <span class="hlt">ice</span> thickness, it is required to minimize inter-mission biases between subsequent satellite missions. Within the ESA Climate Change Initiative (CCI) on <span class="hlt">Sea</span> <span class="hlt">Ice</span>, a climate data record of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness derived from satellite radar altimetry has been developed for both hemispheres, based on the 15-year (2002-2017) monthly retrievals from Envisat and CryoSat-2 and calibrated in the 2010-2012 overlap period. The next step in promoting the utilization of <span class="hlt">sea</span> <span class="hlt">ice</span> thickness information from radar altimetry is to provide products by a service that meets the requirements for climate applications and operational systems. This task will be pursued within a Copernicus Climate Change Service project (C3S). This framework also aims to include additional sensors such as onboard Sentinel-3 and we will show first results of Sentinel-3 Arctic <span class="hlt">sea-ice</span> thickness. These</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrEaS...6...22J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrEaS...6...22J"><span>Organic matter controls of iron incorporation in growing <span class="hlt">sea</span> <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janssens, Julie; Meiners, Klaus M.; Townsend, Ashley T.; Lannuzel, Delphine</p> <p>2018-03-01</p> <p>This study presents the first laboratory-controlled <span class="hlt">sea-ice</span> growth experiment conducted under trace metal clean conditions. The role played by organic matter, in the incorporation of iron (Fe) into <span class="hlt">sea</span> <span class="hlt">ice</span> was investigated by means of laboratory <span class="hlt">ice</span>-growth experiments using a titanium cold-finger apparatus. Experiments were also conducted to understand the role of extracellular polymeric substances (EPS) in the enrichment of ammonium in <span class="hlt">sea</span> <span class="hlt">ice</span>. <span class="hlt">Sea</span> <span class="hlt">ice</span> was grown from several seawater solutions containing different quantities and qualities of particulate Fe (PFe), dissolved Fe (DFe) and organic matter. <span class="hlt">Sea</span> <span class="hlt">ice</span> and seawater were analyzed for particulate organic carbon and nitrogen, macro-nutrients, extracellular EPS, PFe and DFe, and particulate aluminium. The experiments showed that biogenic PFe is preferentially incorporated into <span class="hlt">sea</span> <span class="hlt">ice</span> compared to lithogenic PFe. Furthermore, <span class="hlt">sea</span> <span class="hlt">ice</span> grown from ultra-violet (UV) and non-UV treated seawaters exhibits contrasting incorporation rates of organic matter and Fe. Whereas the effects of UV-treatments were not always significant, we do find indications that the type or organic matter controls the enrichment of Fe in forming <span class="hlt">sea</span> <span class="hlt">ice</span>.. Specifically, we come to the conclusion that the incorporation of DFe is favored by the presence of organic ligands in the source solution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060044030&hterms=SLP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSLP','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060044030&hterms=SLP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSLP"><span>Ross <span class="hlt">sea</span> <span class="hlt">ice</span> motion, area flux, and deformation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>kwok, Ron</p> <p>2005-01-01</p> <p>The <span class="hlt">sea</span> <span class="hlt">ice</span> motion, area export, and deformation of the Ross <span class="hlt">Sea</span> <span class="hlt">ice</span> cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of <span class="hlt">ice</span> deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave <span class="hlt">ice</span> motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross <span class="hlt">Sea</span>. With the passive microwave <span class="hlt">ice</span> motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) <span class="hlt">ice</span> area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross <span class="hlt">Sea</span> produces almost twice its own area of <span class="hlt">sea</span> <span class="hlt">ice</span> during the winter. Cross-gate <span class="hlt">sea</span> level pressure (SLP) gradients explain 60% of the variance in the <span class="hlt">ice</span> area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross <span class="hlt">Sea</span> Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170010244&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170010244&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea"><span>Improvements in <span class="hlt">Ice</span>-Sheet <span class="hlt">Sea</span>-Level Projections</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shepherd, Andrew; Nowicki, Sophie</p> <p>2017-01-01</p> <p><span class="hlt">Ice</span> losses from Antarctica and Greenland are the largest uncertainty in <span class="hlt">sea</span>-level projections. Nevertheless, improvements in <span class="hlt">ice</span>-sheet models over recent decades have led to closer agreement with satellite observations, keeping track with their increasing contribution to global <span class="hlt">sea</span>-level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8163M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8163M"><span>How <span class="hlt">sea</span> <span class="hlt">ice</span> could be the cold beating heart of European weather</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margrethe Ringgaard, Ida; Yang, Shuting; Hesselbjerg Christensen, Jens; Kaas, Eigil</p> <p>2017-04-01</p> <p>The possibility that the ongoing rapid demise of Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> may instigate abrupt changes is, however, not tackled by current research in general. <span class="hlt">Ice</span> cores from the Greenland <span class="hlt">Ice</span> Sheet (GIS) show clear evidence of past abrupt warm events with up to 15 degrees warming in less than a decade, most likely triggered by rapid disappearance of Nordic <span class="hlt">Seas</span> <span class="hlt">sea</span> <span class="hlt">ice</span>. At present, both Arctic <span class="hlt">Sea</span> <span class="hlt">ice</span> and the GIS are in strong transformation: Arctic <span class="hlt">sea-ice</span> cover has been retreating during most of the satellite era and in recent years, Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> experienced a dramatic reduction and the summer extent was in 2012 and 2016 only half of the 1979-2000 average. With such dramatic change in the current <span class="hlt">sea</span> <span class="hlt">ice</span> coverage as a point of departure, several studies have linked reduction in wintertime <span class="hlt">sea</span> <span class="hlt">ice</span> in the Barents-Kara <span class="hlt">seas</span> to cold weather anomalies over Europe and through large scale tele-connections to regional warming elsewhere. Here we aim to investigate if, and how, Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> impacts European weather, i.e. if the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> works as the 'cold heart' of European weather. To understand the effects of the <span class="hlt">sea</span> <span class="hlt">ice</span> reduction on the full climate system, a fully-coupled global climate model, EC-Earth, is used. A new energy-conserving method for assimilating <span class="hlt">sea</span> <span class="hlt">ice</span> using the sensible heat flux is implemented in the coupled climate model and compared to the traditional, non-conserving, method of assimilating <span class="hlt">sea</span> <span class="hlt">ice</span>. Using this new method, experiments are performed with reduced <span class="hlt">sea</span> <span class="hlt">ice</span> cover in the Barents-Kara <span class="hlt">seas</span> under both warm and cold conditions in Europe. These experiments are used to evaluate how the Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> modulates European winter weather under present climate conditions with a view towards favouring both relatively cold and warm conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7955M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7955M"><span>Remarkable separability of circulation response to Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss and greenhouse gas forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.</p> <p>2017-08-01</p> <p>Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel <span class="hlt">sea</span> <span class="hlt">ice</span> nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) <span class="hlt">concentrations</span> and associated Arctic <span class="hlt">sea</span> <span class="hlt">ice</span> loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to <span class="hlt">sea</span> <span class="hlt">ice</span> loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41D0761S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41D0761S"><span>NWS Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program: Operations and Decision Support Services</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.</p> <p>2015-12-01</p> <p>The National Weather Service's Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program offers daily <span class="hlt">sea</span> <span class="hlt">ice</span> and <span class="hlt">sea</span> surface temperature analysis products. The program also delivers a five day <span class="hlt">sea</span> <span class="hlt">ice</span> forecast 3 times each week, provides a 3 month <span class="hlt">sea</span> <span class="hlt">ice</span> outlook at the end of each month, and has staff available to respond to <span class="hlt">sea</span> <span class="hlt">ice</span> related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer <span class="hlt">sea</span> <span class="hlt">ice</span> free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program. The ASIP is in constant contact with the National <span class="hlt">Ice</span> Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on <span class="hlt">sea</span> <span class="hlt">ice</span> outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska <span class="hlt">Sea</span> <span class="hlt">Ice</span> Program as well as delve into what we see as the future of the ASIP.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>