Sample records for ice core covering

  1. Is Ice-Rafted Sediment in a North Pole Marine Record Evidence for Perennial Sea-ice Cover?

    NASA Technical Reports Server (NTRS)

    Tremblay, L.B.; Schmidt, G.A.; Pfirman, S.; Newton, R.; DeRepentigny, P.

    2015-01-01

    Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (approximately 88 degrees N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards. However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present. We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with other land and marine records.

  2. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  3. Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover?

    PubMed

    Tremblay, L B; Schmidt, G A; Pfirman, S; Newton, R; DeRepentigny, P

    2015-10-13

    Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (≈88° N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards (Krylov et al. 2008 Paleoceanography 23, PA1S06. (doi:10.1029/2007PA001497); Darby 2008 Paleoceanography 23, PA1S07. (doi:10.1029/2007PA001479)). However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present (Polyak et al. 2010 Quaternary Science Reviews 29, 1757-1778. (doi:10.1016/j.quascirev.2010.02.010)). We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with

  4. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    NASA Astrophysics Data System (ADS)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  5. Greenland ice cores tell tales on past sea level changes

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.

    2017-12-01

    All the deep ice cores drilled to the base of the Greenland ice sheet contain ice from the previous warm climate period, the Eemian 130-115 thousand years before present. This demonstrates the resilience of the Greenland ice sheet to a warming of 5 oC. Studies of basal material further reveal the presence of boreal forest over Greenland before ice covered Greenland. Conditions for Boreal forest implies temperatures at this time has been more than 10 oC warmer than the present. To compare the paleo-behavior of the Greenland ice sheet to the present in relation to sea level rise knowledge gabs include the reaction of ice streams to climate changes. To address this the international EGRIP-project is drilling an ice core in the center of the North East Greenland Ice Stream (NEGIS). The first results will be presented.

  6. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  7. Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Vance, Steven D.; Panning, Mark P.; Stähler, Simon; Cammarano, Fabio; Bills, Bruce G.; Tobie, Gabriel; Kamata, Shunichi; Kedar, Sharon; Sotin, Christophe; Pike, William T.; Lorenz, Ralph; Huang, Hsin-Hua; Jackson, Jennifer M.; Banerdt, Bruce

    2018-01-01

    Geophysical measurements can reveal the structures and thermal states of icy ocean worlds. The interior density, temperature, sound speed, and electrical conductivity thus characterize their habitability. We explore the variability and correlation of these parameters using 1-D internal structure models. We invoke thermodynamic consistency using available thermodynamics of aqueous MgSO4, NaCl (as seawater), and NH3; pure water ice phases I, II, III, V, and VI; silicates; and any metallic core that may be present. Model results suggest, for Europa, that combinations of geophysical parameters might be used to distinguish an oxidized ocean dominated by MgSO4 from a more reduced ocean dominated by NaCl. In contrast with Jupiter's icy ocean moons, Titan and Enceladus have low-density rocky interiors, with minimal or no metallic core. The low-density rocky core of Enceladus may comprise hydrated minerals or anhydrous minerals with high porosity. Cassini gravity data for Titan indicate a high tidal potential Love number (k2>0.6), which requires a dense internal ocean (ρocean>1,200 kg m-3) and icy lithosphere thinner than 100 km. In that case, Titan may have little or no high-pressure ice, or a surprisingly deep water-rock interface more than 500 km below the surface, covered only by ice VI. Ganymede's water-rock interface is the deepest among known ocean worlds, at around 800 km. Its ocean may contain multiple phases of high-pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's interior structure may be intermediate to those of Titan and Europa, with a water-rock interface 250 km below the surface covered by ice V but not ice VI.

  8. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  9. Dansgaard-Oeschger cycles observed in the Greenland ReCAP ice core project

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Simonsen, Marius; Maffezzoli, Niccoló; Gkinis, Vasileios; Svensson, Anders; Jensen, Camilla Marie; Dallmayr, Remi; Spolaor, Andrea; Edwards, Ross

    2017-04-01

    The new REnland ice CAP (RECAP) ice core was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis (CFA) during the last 3 months of 2015. The Renland ice core was obtained as part of the ReCAP project, extending 584.11 meters to the bottom of the Renland ice cap located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland ice core offers high accumulation, but also reaches far back in time. Results show that despite the short length the RECAP ice core holds ice all the way back to the past warm interglacial period, the Eemian. The glacial section is strongly thinned and covers on 20 meters of the ReCAP core, but nonetheless due to the high resolution of the measurements all 25 expected DO events could be identified. The record was analyzed for multiple elements including the water isotopes, forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na+, and sea ice proxies as well as acidity useful for finding volcanic layers to date the core. Below the glacial section another 20 meters of warm Eemian ice have been analysed. Here we present the chemistry results as obtained by continuous flow analysis (CFA) and compare the glacial section with the chemistry profile from other Greenland ice cores.

  10. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an "ice-sealed" east Antarctic lake.

    PubMed

    Doran, Peter T; Fritsen, Christian H; McKay, Christopher P; Priscu, John C; Adams, Edward E

    2003-01-07

    Lake Vida, one of the largest lakes in the McMurdo Dry Valleys of Antarctica, was previously believed to be shallow (<10 m) and frozen to its bed year-round. New ice-core analysis and temperature data show that beneath 19 m of ice is a water column composed of a NaCl brine with a salinity seven times that of seawater that remains liquid below -10 degrees C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice cover is stabilized by a negative feedback between ice growth and the freezing-point depression of the brine. The ice cover contains frozen microbial mats throughout that are viable after thawing and has a history that extends to at least 2,800 (14)C years B.P., suggesting that the brine has been isolated from the atmosphere for as long. To our knowledge, Lake Vida has the thickest subaerial lake ice cover recorded and may represent a previously undiscovered end-member lacustrine ecosystem on Earth.

  11. Ice core carbonyl sulfide measurements from a new South Pole ice core (SPICECORE)

    NASA Astrophysics Data System (ADS)

    Aydin, M.; Nicewonger, M. R.; Saltzman, E. S.

    2017-12-01

    Carbonyl sulfide (COS) is the most abundant sulfur gas in the troposphere with a present-day mixing ratio of about 500 ppt. Direct and indirect emissions from the oceans are the predominant sources of atmospheric COS. The primary removal mechanism is uptake by terrestrial plants during photosynthesis. Because plants do not respire COS, atmospheric COS levels are linked to terrestrial gross primary productivity (GPP). Ancient air trapped in polar ice cores has been used to reconstruct COS records of the past atmosphere, which can be used to infer past GPP variability and potential changes in oceanic COS emission. We are currently analyzing samples from a newly drilled intermediate depth ice core from South Pole, Antarctica (SPICECORE). This core is advantageous for studying COS because the cold temperatures of South Pole ice lead to very slow rates of in situ loss due to hydrolysis. One hundred and eighty-four bubbly ice core samples have been analyzed to date with gas ages ranging from about 9.2 thousand (733 m depth) to 75 years (126 m depth) before present. After a 2% correction for gravitational enrichment in the firn, the mean COS mixing ratio for the data set is 312±15 ppt (±1s), with the data set median also equal to 312 ppt. The only significant long-term trend in the record is a 5-10% increase in COS during the last 2-3 thousand years of the Holocene. The SPICECORE data agree with previously published ice core COS records from other Antarctic sites during times of overlap, confirming earlier estimates of COS loss rates to in situ hydrolysis in ice cores. Antarctic ice core data place strict constraints on the COS mixing ratio and its range of variability in the southern hemisphere atmosphere during the last several millennia. Implications for the atmospheric COS budget will be discussed.

  12. Toward an integrated ice core chronology using relative and orbital tie-points

    NASA Astrophysics Data System (ADS)

    Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Blunier, T.; Capron, E.; Chappellaz, J.; Fischer, H.; Leuenberger, M.; Lipenkov, V.; Loutre, M.-F.; Martinerie, P.; Parrenin, F.; Prié, F.; Raynaud, D.; Veres, D.; Wolff, E.

    2012-04-01

    Precise ice cores chronologies are essential to better understand the mechanisms linking climate change to orbital and greenhouse gases concentration forcing. A tool for ice core dating (DATICE [developed by Lemieux-Dudon et al., 2010] permits to generate a common time-scale integrating relative and absolute dating constraints on different ice cores, using an inverse method. Nevertheless, this method has only been applied for a 4-ice cores scenario and for the 0-50 kyr time period. Here, we present the bases for an extension of this work back to 800 ka using (1) a compilation of published and new relative and orbital tie-points obtained from measurements of air trapped in ice cores and (2) an adaptation of the DATICE inputs to 5 ice cores for the last 800 ka. We first present new measurements of δ18Oatm and δO2/N2 on the Talos Dome and EPICA Dome C (EDC) ice cores with a particular focus on Marine Isotopic Stages (MIS) 5, and 11. Then, we show two tie-points compilations. The first one is based on new and published CH4 and δ18Oatm measurements on 5 ice cores (NorthGRIP, EPICA Dronning Maud Land, EDC, Talos Dome and Vostok) in order to produce a table of relative gas tie-points over the last 400 ka. The second one is based on new and published records of δO2/N2, δ18Oatm and air content to provide a table of orbital tie-points over the last 800 ka. Finally, we integrate the different dating constraints presented above in the DATICE tool adapted to 5 ice cores to cover the last 800 ka and show how these constraints compare with the established gas chronologies of each ice core.

  13. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake

    PubMed Central

    Doran, Peter T.; Fritsen, Christian H.; McKay, Christopher P.; Priscu, John C.; Adams, Edward E.

    2003-01-01

    Lake Vida, one of the largest lakes in the McMurdo Dry Valleys of Antarctica, was previously believed to be shallow (<10 m) and frozen to its bed year-round. New ice-core analysis and temperature data show that beneath 19 m of ice is a water column composed of a NaCl brine with a salinity seven times that of seawater that remains liquid below −10°C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice cover is stabilized by a negative feedback between ice growth and the freezing-point depression of the brine. The ice cover contains frozen microbial mats throughout that are viable after thawing and has a history that extends to at least 2,800 14C years B.P., suggesting that the brine has been isolated from the atmosphere for as long. To our knowledge, Lake Vida has the thickest subaerial lake ice cover recorded and may represent a previously undiscovered end-member lacustrine ecosystem on Earth. PMID:12518052

  14. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  15. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  16. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1990-01-01

    Passive microwave data collected by Nimbus 7 were used to classify and monitor the Arctic multilayer sea ice cover. Sea ice concentration maps during several summer minima are analyzed to obtain estimates of ice floes that survived summer, and the results are compared with multiyear-ice concentrations derived from these data by using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data was found to be about 25 to 40 percent less than the summer ice-cover minimum, indicating that the multiyear ice cover in winter is inadequately represented by the passive microwave winter data and that a significant fraction of the Arctic multiyear ice floes exhibits a first-year ice signature.

  17. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  18. Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland

    PubMed Central

    Willerslev, Eske; Cappellini, Enrico; Boomsma, Wouter; Nielsen, Rasmus; Hebsgaard, Martin B.; Brand, Tina B.; Hofreiter, Michael; Bunce, Michael; Poinar, Hendrik N.; Dahl-Jensen, Dorthe; Johnsen, Sigfus; Steffensen, Jørgen Peder; Bennike, Ole; Schwenninger, Jean-Luc; Nathan, Roger; Armitage, Simon; de Hoog, Cees-Jan; Alfimov, Vasily; Christl, Marcus; Beer, Juerg; Muscheler, Raimund; Barker, Joel; Sharp, Martin; Penkman, Kirsty E.H.; Haile, James; Taberlet, Pierre; Gilbert, M. Thomas P.; Casoli, Antonella; Campani, Elisa; Collins, Matthew J.

    2009-01-01

    One of the major difficulties in paleontology is the acquisition of fossil data from the 10% of Earth’s terrestrial surface that is covered by thick glaciers and ice sheets. Here we reveal that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores and allow reconstructions of past flora and fauna. We show that high altitude southern Greenland, currently lying below more than two kilometers of ice, was once inhabited by a diverse array of conifer trees and insects that may date back more than 450 thousand years. The results provide the first direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections. PMID:17615355

  19. Flow structure at an ice-covered river confluence

    NASA Astrophysics Data System (ADS)

    Martel, Nancy; Biron, Pascale; Buffin-Bélanger, Thomas

    2017-04-01

    River confluences are known to exhibit complex relationships between flow structure, sediment transport and bed-form development. Flow structure at these sites is influenced by the junction angle, the momentum flux ratio (Mr) and bed morphology. In cold regions where an ice cover is present for most of the winter period, the flow structure is also likely affected by the roughness effect of the ice. However, very few studies have examined the impact of an ice cover on the flow structure at a confluence. The aims of this study are (1) to describe the evolution of an ice cover at a river confluence and (2) to characterize and compare the flow structure at a river confluence with and without an ice cover. The field site is a medium-sized confluence (around 40 m wide) between the Mit is and Neigette Rivers in the Bas-Saint-Laurent region, Quebec (Canada). The confluence was selected because a thick ice cover is present for most of the winter allowing for safe field work. Two winter field campaigns were conducted in 2015 and 2016 to obtain ice cover measurements in addition to hydraulic and morphological measurements. Daily monitoring of the evolution of the ice cover was made with a Reconyx camera. Velocity profiles were collected with an acoustic Doppler current profiler (ADCP) to reconstruct the three-dimensional flow structure. Time series of photographs allow the evolution of the ice cover to be mapped, linking the processes leading to the formation of the primary ice cover for each year. The time series suggests that these processes are closely related with both confluence flow zones and hydro-climatic conditions. Results on the thickness of the ice cover from in situ measurements reveal that the ice thickness tends to be thinner at the center of the confluence where high turbulent exchanges take place. Velocity measurements reveal that the ice cover affects velocity profiles by moving the highest velocities towards the center of the profiles. A spatio

  20. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  1. Evaporation of ice in planetary atmospheres - Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1979-01-01

    The existence of ice covered rivers on Mars is considered. It is noted that the evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. It is determined that even with a mean Martian insolation rate above the ice of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as ice-choked rivers. Finally, the exobiological implications of ice covered channels or lakes on Mars are discussed.

  2. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  3. Ice Chemistry in Starless Molecular Cores

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.

    2015-06-01

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H2O:CO:CO2:N2:NH3 ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H2O2 and O2H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H2CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH3 could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%-10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  4. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  5. Sensitivity of Great Lakes Ice Cover to Air Temperature

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Titze, D.

    2016-12-01

    Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.

  6. Nature and History of Cenozoic Polar Ice Covers: The Case of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Spielhagen, R.; Thiede, J.

    2009-04-01

    The nature of the modern climate System is characterized by steep temperature gradients between the tropical and polar climatic zones and finds its most spectacular expression in the formation of ice caps in high Northern and Southern latitudes. While polar regions of Planet Earth have been glaciated repeatedly in the long course of their geological history, the Cenozoic transition from a „greenhouse" to an „icehouse" has in fact produced a unique climatic scenario with bipolar glacation, different from all previous glacial events. The Greenland ice sheet is a remainder of the Northern Hemisphere last glacial maximum ice sheets and represents hence a spectacular anomaly. Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of ice caps and sea ice covers both on the Southern as well on the Northern hemisphere since Eocene times, aqpprox. 45 Mio. years ago. While this was well known in the case of Antarctica already for some time, previous ideas about the origin of Northern hemisphere glaciation during Pliocene times (approx. 2-3 Mio. years ago) have been superceded by the dramatic findings of coarse, terrigenous ice rafted detritus in Eocene sediments from Lomonosov Ridge (close to the North Pole) apparently slightly older than the oldest Antarctic records of ice rafting.The histories of the onset of Cenozoic glaciation in high Northern and Southern latitudes remain enigmatic and are presently subjects of international geological drilling projects, with prospects to reveal some of their secrets over the coming decades. By virtue of the physical porperties of ice and the processes controlling the dynamics of the turn-over of the ice-sheets only young records of glacial ice caps on Antarctica and on Greemnland have been preserved, on Greenland with ice probably not older than a few hundred thousand years, on Antarctica potentially as old as 1.5-2 Mio. years. Deep-sea cores with their records od ice

  7. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    PubMed Central

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329

  8. Rapid changes in ice core gas records - Part 1: On the accuracy of methane synchronisation of ice cores

    NASA Astrophysics Data System (ADS)

    Köhler, P.

    2010-08-01

    Methane synchronisation is a concept to align ice core records during rapid climate changes of the Dansgaard/Oeschger (D/O) events onto a common age scale. However, atmospheric gases are recorded in ice cores with a log-normal-shaped age distribution probability density function, whose exact shape depends mainly on the accumulation rate on the drilling site. This age distribution effectively shifts the mid-transition points of rapid changes in CH4 measured in situ in ice by about 58% of the width of the age distribution with respect to the atmospheric signal. A minimum dating uncertainty, or artefact, in the CH4 synchronisation is therefore embedded in the concept itself, which was not accounted for in previous error estimates. This synchronisation artefact between Greenland and Antarctic ice cores is for GRIP and Byrd less than 40 years, well within the dating uncertainty of CH4, and therefore does not calls the overall concept of the bipolar seesaw into question. However, if the EPICA Dome C ice core is aligned via CH4 to NGRIP this synchronisation artefact is in the most recent unified ice core age scale (Lemieux-Dudon et al., 2010) for LGM climate conditions of the order of three centuries and might need consideration in future gas chronologies.

  9. High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core

    NASA Astrophysics Data System (ADS)

    Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.

    2013-12-01

    In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea

  10. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  11. Were lakes on early Mars perennially were ice-covered?

    NASA Astrophysics Data System (ADS)

    Sumner, D. Y.; Rivera-Hernandez, F.; Mackey, T. J.

    2016-12-01

    Paleo-lake deposits indicate that Mars once sustained liquid water, supporting the idea of an early "wet and warm" Mars. However, liquid water can be sustained under ice in cold conditions as demonstrated by perennially ice-covered lakes (PICLs) in Antarctica. If martian lakes were ice-covered, the global climate on early Mars could have been much colder and dryer than if the atmosphere was in equilibrium with long-lived open water lakes. Modern PICLs on Earth have diagnostic sedimentary features. Unlike open water lakes that are dominated by mud, and drop stones or tills if icebergs are present, previous studies determined that deposits in PICLs can include coarser grains that are transported onto the ice cover, where they absorb solar radiation, melt through the ice and are deposited with lacustrine muds. In Lake Hoare, Antarctica, these coarse grains form conical sand mounds and ridges. Our observations of ice-covered lakes Joyce, Fryxell, Vanda and Hoare, Antarctica suggest that the distributions of grains depend significantly on ice characteristics. Deposits in these lakes contain moderately well to moderately sorted medium to very coarse sand grains, which preferentially melt through the ice whereas granules and larger grains remain on the ice surface. Similarly, high albedo grains are concentrated on the ice surface, whereas low albedo grains melt deeper into the ice, demonstrating a segregation of grains due to ice-sediment interactions. In addition, ice cover thickness may determine the spatial distribution of sand deposited in PICLs. Localized sand mounds and ridges composed of moderately sorted sand are common in PICLs with rough ice covers greater than 3 m thick. In contrast, lakes with smooth and thinner ice have disseminated sand grains and laterally extensive sand layers but may not have sand mounds. At Gale Crater, Mars, the Murray formation consists of sandy lacustrine mudstones, but the depositional process for the sand is unknown. The presence of

  12. Toward unified ice core chronologies with the DatIce tool

    NASA Astrophysics Data System (ADS)

    Toye Mahamadou Kele, H.; Lemieux-Dudon, B.; Blayo, E.

    2012-04-01

    Antarctic and Greenland ice cores provide a means to study the phase relationships of climate changes in both hemispheres. They also enable to study the timing between climate, and greenhouse gases or orbital forcings. One key step for such studies is to improve the absolute and relative precisions of ice core age scales (for ice and trapped gas), and beyond that, to try to reach the best consistency between chronologies of paleo records of any kind. The DatIce tool is designed to increase the consistency between pre-existing (also called background) core chronologies. It formulates a variational inverse problem which aims at correcting three key quantities that uniquely define the core age scales: the accumulation rate, the total thinning function, and the close-off depth. For that purpose, it integrates paleo data constraints of many types among which age markers (with for instance documented volcanoes eruptions), and stratigraphic links (with for instance abrupt changes in methane concentration). A cost function is built that enables to calculate new chronologies by making a trade-off between all the constraints (background chronologies and paleo data). The method presented in Lemieux-Dudon et al (2010) has already been applied simultaneously to EPICA EDML and EDC, Vostok and NGRIP. Currently, on going works are conducted at LSCE Saclay and LGGE Grenoble laboratories to construct unified Antarctic chronologies by applying the DatIce tool with new ice cores and new sets of paleo measurements. We here present the DatIce tool, the underlying methodology, and its potential applications. We further show some improvements that have been made recently. We especially adress the issue related to the calibration of the error of pre-existing core chronologies. They are inputs that may have a strong impact on the results. However these uncertainties are uneasy to analyze, since prior chronologies are most of the time assessed on the basis of glaciological models (firn

  13. Ice Core Records of Recent Northwest Greenland Climate

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Wong, G. J.; Ferris, D.; Lutz, E.; Howley, J. A.; Kelly, M. A.; Axford, Y.; Hawley, R. L.

    2014-12-01

    Meteorological station data from NW Greenland indicate a 3oC temperature rise since 1990, with most of the warming occurring in fall and winter. According to remote sensing data, the NW Greenland ice sheet (GIS) and coastal ice caps are responding with ice mass loss and margin retreat, but the cryosphere's response to previous climate variability is poorly constrained in this region. We are developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate change and cryospheric response in NW Greenland to improve projections of future ice loss and sea level rise in a warming climate. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 21 m) from the coastal region of the GIS (2Barrel site; 76.9317o N, 63.1467o W, 1685 m el.) and the summit of North Ice Cap (76.938o N, 67.671o W, 1273 m el.) in 2011, 2012 and 2014. The 2Barrel ice core record has statistically significant relationships with regional spring and fall Baffin Bay sea ice extent, summertime temperature, and annual precipitation. Here we evaluate relationships between the 2014 North Ice Cap firn core glaciochemical record and climate variability from regional instrumental stations and reanalysis datasets. We compare the coastal North Ice Cap record to more inland records from 2Barrel, Camp Century and NEEM to evaluate spatial and elevational gradients in recent NW Greenland climate change.

  14. Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS)

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N. B.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.

    2014-07-01

    The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75°37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP (North Greenland Ice Core Project) ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.

  15. Microbiota within the perennial ice cover of Lake Vida, Antarctica.

    PubMed

    Mosier, Annika C; Murray, Alison E; Fritsen, Christian H

    2007-02-01

    Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.

  16. Eurasian methoxy aromatic acid ice core record of biomass burning

    NASA Astrophysics Data System (ADS)

    Grieman, M. M.; Aydin, M.; Fritzsche, D.; McConnell, J. R.; Opel, T.; Sigl, M.; Saltzman, E. S.

    2017-12-01

    On a global basis, wildfires affect the carbon cycle, atmospheric chemistry, climate, and ecosystem dynamics. Well-dated regional proxy records can provide insight into the relationship between biomass burning and climate on millennial and centennial timescales. There is little historical information about long-term regional biomass burning variability in Siberia, the largest forested area in the Northern Hemisphere. In this study, vanillic acid and para-hydroxybenzoic acid were analyzed in the Eurasian Arctic Akademii Nauk ice core in samples covering the past 2600 years. These aromatic acids are generated during burning from the pyrolysis of lignin and transported as atmospheric aerosol. This is the first millennial-scale ice core record of these aromatic acids. Ice core meltwater samples were analyzed for vanillic acid and para-hydroxybenzoic acid using ion chromatography and electrospray tandem mass spectrometric detection. The levels of vanillic acid and para-hydroxybenzoic acid ranged from <0.05 to about 1 ppb. Three periods of strongly elevated levels were found during the preindustrial late Holocene: 650-300 BCE, 340-660 CE, and 1460-1660 CE. The most recent of these periods coincides with increased pulsing of ice-rafted debris in the North Atlantic (or Bond event) and a weakened Asian monsoon suggesting a link between Siberian burning and global patterns of climate change on centennial timescales.

  17. Measurements of ethane in Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Fosse, E. K.; Aydin, K. M.; Saltzman, E. S.

    2011-12-01

    Ethane is one of the most abundant hydrocarbons in the atmosphere. The major ethane sources are fossil fuel production and use, biofuel combustion, and biomass-burning emissions and the primary loss pathway is via reaction with OH. A paleoatmospheric ethane record would be useful as a tracer of biomass-burning emissions, providing a constraint on past changes in atmospheric methane and methane isotopes. An independent biomass-burning tracer would improve our understanding of the relationship between biomass burning and climate. The mean annual atmospheric ethane level at high southern latitudes is about 230 parts per trillion (ppt), and Antarctic firn air measurements suggest that atmospheric ethane levels in the early 20th century were considerably lower (Aydin et al., 2011). In this study, we present preliminary measurements of ethane (C2H6) in Antarctic ice core samples with gas ages ranging from 0-1900 C.E. Samples were obtained from dry-drilled ice cores from South Pole and Vostok in East Antarctica, and from the West Antarctic Ice Sheet Divide (WAIS-D). Gases were extracted from the ice by melting under vacuum in a glass vessel sealed by indium wire and were analyzed using high resolution GC/MS with isotope dilution. Ethane levels measured in ice core samples were in the range 100-220 ppt, with a mean of 157 ± 45 ppt (n=12). System blanks contribute roughly half the amount of ethane extracted from a 300 g ice core sample. These preliminary data exhibit a temporal trend, with higher ethane levels from 0-900 C.E., followed by a decline, reaching a minimum between 1600-1700 C.E. These trends are consistent with variations in ice core methane isotopes and carbon monoxide isotopes (Ferretti et al., 2005, Wang et al., 2010), which indicate changes in biomass burning emissions over this time period. These preliminary data suggest that Antarctic ice core bubbles contain paleoatmospheric ethane levels. With further improvement of laboratory techniques it appears

  18. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka - Reconstructions from biomarker records

    NASA Astrophysics Data System (ADS)

    Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.

    2018-02-01

    The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP25 and the related phytoplankton - sea ice index PIP25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.

  19. The Mount Logan (Yukon) Ice Cores: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fisher, D. A.

    2004-05-01

    Three ice cores were taken at different elevations on or near My Logan in the years 2001 and 2002. The summit core (PRCol) comes from the summit plateau ( 5340 masl, length 187 m to bedrock, mean temperature -29 C ) and was done by the Geological Survey of Canada. The NIPR group cored 210m on the flanks of the mountain at King Col (4200 masl mean temperature -16C) and the UNH group cored 20 km from the mountain at Eclipse "Dome" (3015 masl,length 345 m mean temperature -5C) . The three cores were done cooperatively by GSC, NIPR and UNH and cover nominally 30 ka, 1 ka and 2ka respectively . Located very close to the Gulf of Alaska these core records are thought to reflect the climate history of the Pacific Ocean and having three widely spaced elevations, the sites "see" different distances to different sources. The lowest site (Eclipse) has excellent seasonals but a very muted δ 18O history with no obvious little ice age, whereas the most recent 1ka of the PRCol summit sites contains two very large and sudden δ 18O and d (deuterium excess) shifts at 1850 AD and ~ 800 AD. The δ 18O shifts which happen from one year to the next are about 4 o/oo . The summit site (PRCol) δ 18O response is "backwards", ie the Little Ice Age δ 18O values are 4 o/oo more positive than recent ones. The PRCol δ 18O and d suggest that the source water can either be ëlocalí (Gulf of Alaska) or very distant (tropics) . The Eclipse site seems only to get the local water . A massive dust storm originating in central Asia (Gobi) in April 2001 dumped a visible layer all over the St Elias Mountains and this layer was sampled, to provide a calibration "Asian dust event". The satellite and isotoic signatures both agreed that Gobi was the source. The PRCol record covers the Holocene and well back into the ice age. The transition is defined by a sudden ECM shift on the flanks of a more gradual O18 shift. Acknowledgements. Logan consortium consists of : Geological Survey of Canada : Jocelyne

  20. The structure of internal stresses in the uncompacted ice cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhorukov, K.K.

    1995-12-31

    Interactions between engineering structures and sea ice cover are associated with an inhomogeneous space/time field of internal stresses. Field measurements (e.g., Coon, 1989; Tucker, 1992) have revealed considerable local stresses depending on the regional stress field and ice structure. These stresses appear in different time and space scales and depend on rheologic properties of the ice. To estimate properly the stressed state a knowledge of a connection between internal stress components in various regions of the ice cover is necessary. To develop reliable algorithms for estimates of ice action on engineering structures new experimental data are required to take intomore » account both microscale (comparable with local ice inhomogeneities) and small-scale (kilometers) inhomogeneities of the ice cover. Studies of compacted ice (concentration N is nearly 1) are mostly important. This paper deals with the small-scale spatial distribution of internal stresses in the interaction zone between the ice covers of various concentrations and icebergs. The experimental conditions model a situation of the interaction between a wide structure and the ice cover. Field data on a drifting ice were collected during the Russian-US experiment in Antarctica WEDDELL-I in 1992.« less

  1. The tephrostratigraphy of Mt. Berlin volcano, Antarctica: Integrating blue ice tephra and ice core tephra records

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; McIntosh, W. C.; Kurbatov, A.

    2016-12-01

    Reconstructing volcanic activity in Antarctica is difficult because of the limited outcrop exposure. However, ice is an excellent medium for sampling tephra, allowing for a more complete eruptive record than can be found in other depositional environments. Furthermore, because of low ambient temperature, glass shards trapped in ice remain unaltered and unhydrated. Mt. Berlin is an ice covered volcano in Marie Byrd Land, Antarctica, and, because of heavy glaciation, eruptive records on the volcano itself are sparse. Here, we present the integration of two different records of Mt. Berlin volcanism: the blue ice record found at Mt. Moulton (Dunbar et al., 2008) and the ice core record from the WAIS Divide ice core. Tephra from Mt. Berlin are also found in other ice and marine core records, and these have been correlated and integrated into the combined volcanic record. The Mt. Moulton blue ice area is located 30 km from Mt. Berlin and hosts a fabulous tephra record spanning the last 500 ka. A total of 36 tephra from Mt. Berlin were sampled in stratigraphic order and nine were directly dated by 40Ar/39Ar dating method. Twenty five tephra from WAIS Divide have been analyzed and are geochemically similar to Mt. Berlin with ice core ages dating back to 70 ka. The two tephra records were integrated using their respective timescales. In locations where the Mt. Moulton record does not have precise chronology, the δ18O records from Mt. Moulton (Popp, 2008) and WAIS (WAIS, 2015) were used to integrate the stratigraphy. In total 61 tephra from both ice sections provide an excellent record of the magmatic evolution of Mt. Berlin over the past 500 ka. EMP analyses on glass shards show a gradual change in Fe and S over time. Most of the other major elements remain relatively unchanged. The trend in Fe and S could be produced by progressive tapping of a single, stratified magma chamber, but the long duration of volcanism makes this unlikely. We instead favor small batches of

  2. A common and optimized age scale for Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Veres, D.; Landais, A.; Bazin, L.; Lemieux-Dudon, B.; Toye Mahamadou Kele, H.; Wolff, E.; Martinerie, P.

    2012-04-01

    Dating ice cores is a complex problem because 1) there is a age shift between the gas bubbles and the surrounding ice 2) there are many different ice cores which can be synchronized with various proxies and 3) there are many methods to date the ice and the gas bubbles, each with advantages and drawbacks. These methods fall into the following categories: 1) Ice flow (for the ice) and firn densification modelling (for the gas bubbles); 2) Comparison of ice core proxies with insolation variations (so-called orbital tuning methods); 3) Comparison of ice core proxies with other well dated archives; 4) Identification of well-dated horizons, such as tephra layers or geomagnetic anomalies. Recently, an new dating tool has been developped (DATICE, Lemieux-Dudon et al., 2010), to take into account all the different dating information into account and produce a common and optimal chronology for ice cores with estimated confidence intervals. In this talk we will review the different dating information for Antarctic ice cores and show how the DATICE tool can be applied.

  3. Critical Fracture Toughness Measurements of an Antarctic Ice Core

    NASA Astrophysics Data System (ADS)

    Christmann, Julia; Müller, Ralf; Webber, Kyle; Isaia, Daniel; Schader, Florian; Kippstuhl, Sepp; Freitag, Johannes; Humbert, Angelika

    2014-05-01

    Fracture toughness is a material parameter describing the resistance of a pre-existing defect in a body to further crack extension. The fracture toughness of glacial ice as a function of density is important for modeling efforts aspire to predict calving behavior. In the presented experiments this fracture toughness is measured using an ice core from Kohnen Station, Dronning Maud Land, Antarctica. The samples were sawed in an ice lab at the Alfred Wegener Institute in Bremerhaven at -20°C and had the dimensions of standard test samples with thickness 14 mm, width 28 mm and length 126 mm. The samples originate from a depth of 94.6 m to 96 m. The grain size of the samples was also identified. The grain size was found to be rather uniform. The critical fracture toughness is determined in a four-point bending approach using single edge V-notch beam samples. The initial notch length was around 2.5 mm and was prepared using a drilling machine. The experimental setup was designed at the Institute of Materials Science at Darmstadt. In this setup the force increases linearly, until the maximum force is reached, where the specific sample fractures. This procedure was done in an ice lab with a temperature of -15°C. The equations to calculate the fracture toughness for pure bending are derived from an elastic stress analysis and are given as a standard test method to detect the fracture toughness. An X-ray computer tomography (CT scanner) was used to determine the ice core densities. The tests cover densities from 843 kg m-3 to 871 kg m-3. Thereby the influence of the fracture toughness on the density was analyzed and compared to previous investigations of this material parameter. Finally the dependence of the measured toughness on thickness, width, and position in the core cross-section was investigated.

  4. Glaciochemical investigation of an ice core from Belukha Glacier,Siberian Altai

    NASA Astrophysics Data System (ADS)

    Olivier, S.; Schwikowski, S.; Gäggeler, H. W.; Lüthi, M.; Eyrik, S.; Blaser, C.; Saurer, M.; Schotterer, U.

    2003-04-01

    Little is known about climatic change and paleo-atmospheric composition in Siberia. The Altai is the only alpine region in this area covered by glaciers that might serve as archives for such studies. Moreover, it is located close to air pollution sources in East Kazakhstan and South Siberia (heavy metal mining, metallurgy) as well as to the nuclear test site of Semipalatinsk (release of radionuclides into the atmosphere). In order to reconstruct air pollution levels in the Altai region, a 140-meter ice core down to bedrock was recovered from the Belukha glacier (N49^o48'26", E86^o34'43", 4062 m asl) in July 2001. This site was selected based on the results of an exploratory study conducted in 2000. So far, the concentrations of major ionic species and the stable isotope ratio δ18O were determined in the approx. 90 topmost meters of the ice core covering about 200 years. Dating of the upper part of the ice core was performed by a combination of methods that include e.g. nuclear techniques and annual-layer counting. The annual net accumulation amounts to about 0.53 m weq. and indicates that snow at the Belukha glacier might be partly eroded by wind, a situation that is often observed for a glacier saddle. The borehole temperature (-16 ^oC at 80 m depth), the discernible fluctuations of the stable isotope and chemistry records as well as the linearity of the decrease of the log. 210Pb activities with depth indicate that the glaciochemical record is well preserved and not significantly altered by melting processes. In pre-industrial ice concentrations of carboxylic acids and ammonium are high, suggesting the surrounding forest as source of biogenic emissions.

  5. Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS)

    NASA Astrophysics Data System (ADS)

    Vallelonga, P.; Christianson, K.; Alley, R. B.; Anandakrishnan, S.; Christian, J. E. M.; Dahl-Jensen, D.; Gkinis, V.; Holme, C.; Jacobel, R. W.; Karlsson, N.; Keisling, B. A.; Kipfstuhl, S.; Kjær, H. A.; Kristensen, M. E. L.; Muto, A.; Peters, L. E.; Popp, T.; Riverman, K. L.; Svensson, A. M.; Tibuleac, C.; Vinther, B. M.; Weng, Y.; Winstrup, M.

    2014-01-01

    The Northeast Greenland Ice Stream (NEGIS) is the sole interior Greenlandic ice stream. Fast flow initiates near the summit dome, and the ice stream terminates approximately 1000 km downstream in three large outlet glaciers that calve into the Greenland Sea. To better understand this important system, in the summer of 2012 we drilled a 67 m firn core and conducted ground-based radio-echo sounding (RES) and active-source seismic surveys at a site approximately 150 km downstream from the onset of streaming flow (NEGIS firn core, 75° 37.61' N, 35°56.49' W). The site is representative of the upper part of the ice stream, while also being in a crevasse-free area for safe surface operations. Annual cycles were observed for insoluble dust, sodium and ammonium concentrations and for electrolytic conductivity, allowing a seasonally resolved chronology covering the past 400 yr. Annual layer thicknesses averaged 0.11 m ice equivalent (i.e.) for the period 1607-2011, although accumulation varied between 0.08 and 0.14 m i.e., likely due to flow-related changes in surface topography. Tracing of RES layers from the NGRIP ice core site shows that the ice at NEGIS preserves a climatic record of at least the past 51 kyr. We demonstrate that a deep ice core drilling in this location can provide a reliable Holocene and late-glacial climate record, as well as helping to constrain the past dynamics and ice-lithosphere interactions of the Greenland Ice Sheet.

  6. Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region

    NASA Astrophysics Data System (ADS)

    Hatvani, István Gábor; Leuenberger, Markus; Kohán, Balázs; Kern, Zoltán

    2017-09-01

    Water stable isotopes preserved in ice cores provide essential information about polar precipitation. In the present study, multivariate regression and variogram analyses were conducted on 22 δ2H and 53 δ18O records from 60 ice cores covering the second half of the 20th century. Taking the multicollinearity of the explanatory variables into account, as also the model's adjusted R2 and its mean absolute error, longitude, elevation and distance from the coast were found to be the main independent geographical driving factors governing the spatial δ18O variability of firn/ice in the chosen Antarctic macro region. After diminishing the effects of these factors, using variography, the weights for interpolation with kriging were obtained and the spatial autocorrelation structure of the dataset was revealed. This indicates an average area of influence with a radius of 350 km. This allows the determination of the areas which are as yet not covered by the spatial variability of the existing network of ice cores. Finally, the regional isoscape was obtained for the study area, and this may be considered the first step towards a geostatistically improved isoscape for Antarctica.

  7. Ice cover affects the growth of a stream-dwelling fish.

    PubMed

    Watz, Johan; Bergman, Eva; Piccolo, John J; Greenberg, Larry

    2016-05-01

    Protection provided by shelter is important for survival and affects the time and energy budgets of animals. It has been suggested that in fresh waters at high latitudes and altitudes, surface ice during winter functions as overhead cover for fish, reducing the predation risk from terrestrial piscivores. We simulated ice cover by suspending plastic sheeting over five 30-m-long stream sections in a boreal forest stream and examined its effects on the growth and habitat use of brown trout (Salmo trutta) during winter. Trout that spent the winter under the artificial ice cover grew more than those in the control (uncovered) sections. Moreover, tracking of trout tagged with passive integrated transponders showed that in the absence of the artificial ice cover, habitat use during the day was restricted to the stream edges, often under undercut banks, whereas under the simulated ice cover condition, trout used the entire width of the stream. These results indicate that the presence of surface ice cover may improve the energetic status and broaden habitat use of stream fish during winter. It is therefore likely that reductions in the duration and extent of ice cover due to climate change will alter time and energy budgets, with potentially negative effects on fish production.

  8. Impacts of the Variability of Ice Types on the Decline of the Arctic Perennial Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    The observed rapid decline in the Arctic perennial ice cover is one of the most remarkable signal of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% per decade than the previous report of 8.9% per decade mainly because of abnormally low values in the last 4 years. To gain insights into this decline, the variability of the second year ice, which is the relatively thin component of the perennial ice cover, and other ice types is studied. The perennial ice cover in the 1990s was observed to be highly variable which might have led to higher production of second year ice and may in part explain the observed ice thinning during the period and triggered further decline. The passive microwave signature of second year ice is also studied and results show that while the signature is different from that of the older multiyear ice, it is surprisingly more similar to that of first year ice. This in part explains why previous estimates of the area of multiyear ice during the winter period are considerably lower than the area of the perennial ice cover during the preceding summer. Four distinct clusters representing radiometrically different types have been identified using multi-channel cluster analysis of passive microwave data. Data from two of these clusters, postulated to come from second year and older multiyear ice regions are also shown to have average thicknesses of 2.4 and 4.1 m, respectively, indicating that the passive microwave data may contain some ice thickness information that can be utilized for mass balance studies. The yearly anomaly maps indicate high gains of first year ice cover in the Arctic during the last decade which means higher production of second year ice and fraction of this type in the declining perennial ice cover. While not the only cause, the rapid decline in the perennial ice cover is in part caused by the increasing fractional component of the thinner second year ice cover that is very vulnerable to

  9. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea

  10. The design and performance of IceCube DeepCore

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2012-05-01

    The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.

  11. The Design and Performance of IceCube DeepCore

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.

    2012-01-01

    The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking pbysics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.

  12. Paleoclimatic significance of insoluble microparticle records from Canadian Arctic and Greenland ice cores

    NASA Astrophysics Data System (ADS)

    Zdanowicz, Christian Michel

    1999-10-01

    The past and present variability of climate in the Arctic region is investigated using ice core records of atmospheric dust (microparticles) and volcanic aerosols developed from the Canadian Arctic and Greenland. A high- resolution, 10 4-year long proxy record of atmospheric dust deposition is developed from an ice core (P95) drilled through the Penny Ice Cap, Baffin Island. Snowpit studies indicate that dust deposited on the Penny Ice Cap are representative of background mineral aerosol, and demonstrate that the variability of dust fallout is preserved in the P95 core at multi-annual to longer time scales. The P95 dust record reveals a significant increase in dust deposition on the Penny Ice Cap between ca 7500-5000 yr ago. This increase was driven by early to mid-/late Holocene transformations in the Northern Hemisphere landscape (ice cover retreat, postglacial land emergence) and climate (transition to colder, drier conditions) that led to an expansion of sources and enhanced eolian activity. Comparison between dust records in the P95 and GISP2 (Greenland) ice cores shows an increasing divergence between the two records beginning ca 7500 years ago. The effects of Northern Hemisphere atmospheric circulation and snow cover extent on atmospheric dust deposition in the Arctic are evaluated by comparing the P95 dust record with observational data. Changes in dust deposition are strongly linked to modes of the Northern Hemisphere winter circulation. Most prominently, an inverse relationship between the P95 dust record and the intensity of the winter Siberian High accounts for over 50% of the interannual variance of these two parameters over the period 1899-1995. On inter- to multi- annual time scales, the P95 dust record is significantly anticorrelated with variations in spring, and to a lesser extent fall, snow cover extent in the mid-latitude interior regions of Eurasia and North America. These relationships account for an estimated 10 to 20% of variance in the P95

  13. No nitrate spikes detectable in several polar ice cores following the largest known solar events

    NASA Astrophysics Data System (ADS)

    Mekhaldi, Florian; McConnell, Joseph R.; Adolphi, Florian; Arienzo, Monica; Chellman, Nathan J.; Maselli, Olivia; Sigl, Michael; Muscheler, Raimund

    2017-04-01

    Solar energetic particle (SEP) events are a genuine and recognized threat to our modern society which is increasingly relying on satellites and technological infrastructures. However, knowledge on the frequency and on the upper limit of the intensity of major solar storms is largely limited by the relatively short direct observation period. In an effort to extend the observation period and because atmospheric ionization induced by solar particles can lead to the production of odd nitrogen, spikes in the nitrate content of ice cores have been tentatively used to reconstruct both the occurrence and intensity of past SEP events. Yet the reliability of its use as such a proxy has been long debated. This is partly due to differing chemistry-climate model outputs, equivocal detection of nitrate spikes in single ice cores for single events, and possible alternative sources to explain nitrate spikes in ice cores. Here we present nitrate measurements from several Antarctic and Greenland ice cores for time periods covering the largest known solar events. More specifically, we use new highly-resolved nitrate and biomass burning proxy species data (e.g. black carbon) from continuous flow analysis following the largest known solar events from the paleo record - the SEP events of 775 and 994 AD. We also consider the historical Carrington event of 1859 as well as contemporary events from the past 60 years which were observed by satellites. Doing so we show that i) there are no reproducible nitrate spikes in Greenland and Antarctic ice cores following any of these major events and that ii) most nitrate spikes found in ice cores are related to biomass burning plumes. Our analysis thus suggests that ice-core nitrate data is not a reliable proxy for atmospheric ionization by SEP events. In light of our results, we advocate that nitrate spikes so far identified from single ice cores should not be used to assess the intensity and occurrence rate of extreme solar events.

  14. Impact of wave mixing on the sea ice cover

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel

    2017-04-01

    As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible

  15. Chemistry of microparticles trapped in last glacial period ice of EPICA-DML deep ice core

    NASA Astrophysics Data System (ADS)

    Nedelcu, Aneta F.; Faria, Sérgio H.; Kipfstuhl, Sepp; Kuhs, Werner F.

    2010-05-01

    The EDML ice core, drilled within the framework of the European project for Ice Coring in Antarctica, (EPICA), in the interior of Dronning Maud Land, DML, Antarctica (at 75°S, 0°E), is the first deep ice core in the Atlantic sector of the Southern Ocean region that provides higher-resolution atmosphere and climate records for the last glacial period, when compared with other ice cores retrieved from the East Antarctic plateau [1]. The chemical impurities embedded in the ice matrix of an ice sheet are basic proxies for climate reconstruction, and their concentration and composition usually determine the occurrence of distinct (cloudy or clear) strata in the ice sheet structure. The easiest observable impurities in polar ice are air bubbles. But a considerable amount of the impurities trapped inside ice layers are observed as microscopic deposits of solid (soluble or insoluble) particles, not bigger than a few micra in size, called microinclusions. Layers of ice with a high content of (micro)inclusions are in general called cloudy bands and are considered to have been formed from the precipitations deposited during colder periods. Roughly, we expect that the colder the climate during the time the snow accumulated, the cloudier the ice stratum that forms afterwards [2]. Mainly by means of in-situ micro-Raman spectroscopy, it has been shown that in Antarctic glacial ice the soluble microinclusions occur mostly as sulphate and nitrate salts [3], while in Arctic ice more commonly as carbonate salts [4]. These findings could be explained in terms of different aerosol compositions determined by the specific regional environments and climatic conditions [5]. Regarding the insoluble particles that might exist in natural ice, with higher frequency in ice layers formed during glacial type stages, the general findings classify them in the (alumino)silicate mineralogical class [6]. Microinclusions existent in solid samples taken from clear and cloudy ice layers, corresponding

  16. Devon island ice cap: core stratigraphy and paleoclimate.

    PubMed

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  17. Dust Records in Ice Cores from the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, N.; Yao, T.; Thompson, L. G.

    2014-12-01

    Dust plays an important role in the Earth system, and it usually displays largely spatial and temporal variations. It is necessary for us to reconstruct the past variations of dust in different regions to better understand the interactions between dust and environments. Ice core records can reveal the history of dust variations. In this paper, we used the Guliya, Dunde, Malan and Dasuopu ice cores from the Tibetan Plateau to study the spatial distribution, the seasonal variations and the secular trends of dust. It was found that the mean dust concentration was higher by one or two order of magnitudes in the Guliya and Dunde ice cores from the northern Tibetan Plateau than in the Dasuopu ice core from the southern Tibetan Plateau. During the year, the highest dust concentration occurs in the springtime in the northern Tibetan Plateau while in the non-monsoon season in the southern Tibetan Plateau. Over the last millennium, the Dasuopu ice core record shows that the 1270s~1380s and 1870s~1990s were the two epochs with high dust concentration. However, the Malan ice core from the northern Tibetan Plateau indicates that high dust concentration occurred in the 1130s~1550s and 1770s~1940s. Interestingly, climatic and environmental records of the ice cores from the Tibetan Plateau reflected that the correlation between dust concentration and air temperature was strongly positive in the southern Plateau while negative in the northern Plateau over the last millennium. This implies that climatic and environmental changes existed considerable differences in the different parts of the Plateau. Moreover, four Asian megadroughts occurred in 1638~1641, 1756~1758, 1790~1796 and 1876~1878, which caused more than tens millions people died, were revealed clearly by dust record in the Dasuopu ice core.

  18. A Changing Arctic Sea Ice Cover and the Partitioning of Solar Radiation

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Light, B.; Polashenski, C.; Nghiem, S. V.

    2010-12-01

    Certain recent changes in the Arctic sea ice cover are well established. There has been a reduction in sea ice extent, an overall thinning of the ice cover, reduced prevalence of perennial ice with accompanying increases in seasonal ice, and a lengthening of the summer melt season. Here we explore the effects of these changes on the partitioning of solar energy between reflection to the atmosphere, absorption within the ice, and transmission to the ocean. The physical changes in the ice cover result in less light reflected and more light absorbed in the ice and transmitted to the ocean. These changes directly affect the heat and mass balance of the ice as well as the amount of light available for photosynthesis within and beneath the ice cover. The central driver is that seasonal ice covers tend to have lower albedo than perennial ice throughout the melt season, permitting more light to penetrate into the ice and ocean. The enhanced light penetration increases the amount of internal melting of the ice and the heat content of the upper ocean. The physical changes in the ice cover mentioned above have affected both the amount and the timing of the photosynthetically active radiation (PAR) transmitted into the ice and ocean, increasing transmitted PAR, particularly in the spring. A comparison of the partitioning of solar irradiance and PAR for both historical and recent ice conditions will be presented.

  19. Arctic ice cover, ice thickness and tipping points.

    PubMed

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  20. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.

    2015-05-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice

  1. Pre-cometary ice composition from hot core chemistry.

    PubMed

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  2. Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps

    NASA Astrophysics Data System (ADS)

    Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan

    2017-04-01

    The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley

  3. Variability and Anomalous Trends in the Global Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of

  4. Reconstructing lake ice cover in subarctic lakes using a diatom-based inference model

    NASA Astrophysics Data System (ADS)

    Weckström, Jan; Hanhijärvi, Sami; Forsström, Laura; Kuusisto, Esko; Korhola, Atte

    2014-03-01

    A new quantitative diatom-based lake ice cover inference model was developed to reconstruct past ice cover histories and applied to four subarctic lakes. The used ice cover model is based on a calculated melting degree day value of +130 and a freezing degree day value of -30 for each lake. The reconstructed Holocene ice cover duration histories show similar trends to the independently reconstructed regional air temperature history. The ice cover duration was around 7 days shorter than the average ice cover duration during the warmer early Holocene (approximately 10 to 6.5 calibrated kyr B.P.) and around 3-5 days longer during the cool Little Ice Age (approximately 500 to 100 calibrated yr B.P.). Although the recent climate warming is represented by only 2-3 samples in the sediment series, these show a rising trend in the prolonged ice-free periods of up to 2 days. Diatom-based ice cover inference models can provide a powerful tool to reconstruct past ice cover histories in remote and sensitive areas where no measured data are available.

  5. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Simmons, G. M. Jr; McKay, C. P.; Wharton RA, J. r. (Principal Investigator)

    1989-01-01

    Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is a perennially ice-covered lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice cover (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 years ago. The time constants for turnover of the water column and lake ice are 50 and 10 years, respectively. The turnover time for atmospheric gases in the lake is 30-60 years. Therefore, the lake environment responds to changes on a 10-100 year timescale. Because the ice cover has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the lake environment and biota.

  6. Large Decadal Decline of the Arctic Multiyear Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.

  7. Large Decadal Decline of the Arctic Multiyear Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2011-01-01

    The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.

  8. Ice-cover effects on competitive interactions between two fish species.

    PubMed

    Helland, Ingeborg P; Finstad, Anders G; Forseth, Torbjørn; Hesthagen, Trygve; Ugedal, Ola

    2011-05-01

    1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations

  9. Raman spectroscopy on ice cores from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Weikusat, C.; Kipfstuhl, S.

    2012-04-01

    Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.

  10. The isotopic composition of methane in polar ice cores

    NASA Technical Reports Server (NTRS)

    Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.

    1988-01-01

    Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.

  11. Water quality observations of ice-covered, stagnant, eutrophic water bodies and analysis of influence of ice-covered period on water quality

    NASA Astrophysics Data System (ADS)

    sugihara, K.; Nakatsugawa, M.

    2013-12-01

    The water quality characteristics of ice-covered, stagnant, eutrophic water bodies have not been clarified because of insufficient observations. It has been pointed out that climate change has been shortening the duration of ice-cover; however, the influence of climate change on water quality has not been clarified. This study clarifies the water quality characteristics of stagnant, eutrophic water bodies that freeze in winter, based on our surveys and simulations, and examines how climate change may influence those characteristics. We made fixed-point observation using self-registering equipment and vertical water sampling. Self-registering equipment measured water temperature and dissolved oxygen(DO).vertical water sampling analyzed biological oxygen demand(BOD), total nitrogen(T-N), nitrate nitrogen(NO3-N), nitrite nitrogen(NO2-N), ammonium nitrogen(NH4-N), total phosphorus(TP), orthophosphoric phosphorus(PO4-P) and chlorophyll-a(Chl-a). The survey found that climate-change-related increases in water temperature were suppressed by ice covering the water area, which also blocked oxygen supply. It was also clarified that the bottom sediment consumed oxygen and turned the water layers anaerobic beginning from the bottom layer, and that nutrient salts eluted from the bottom sediment. The eluted nutrient salts were stored in the water body until the ice melted. The ice-covered period of water bodies has been shortening, a finding based on the analysis of weather and water quality data from 1998 to 2008. Climate change was surveyed as having caused decreases in nutrient salts concentration because of the shortened ice-covered period. However, BOD in spring showed a tendency to increase because of the proliferation of phytoplankton that was promoted by the climate-change-related increase in water temperature. To forecast the water quality by using these findings, particularly the influence of climate change, we constructed a water quality simulation model that

  12. Low-latitude ice cores and freshwater availability

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie Marie

    2009-12-01

    Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of

  13. IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie

    2016-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals

  14. Reassessment of the Upper Fremont Glacier Ice-Core Chronologies by Synchronizing of Ice-Core-Water Isotopes to a Nearby Tree-Ring Chronology.

    PubMed

    Chellman, Nathan; McConnell, Joseph R; Arienzo, Monica; Pederson, Gregory T; Aarons, Sarah M; Csank, Adam

    2017-04-18

    The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.

  15. Reassessment of the Upper Fremont Glacier ice-core chronologies by synchronizing of ice-core-water isotopes to a nearby tree-ring chronology

    USGS Publications Warehouse

    Chellman, Nathan J.; McConnell, Joseph R.; Arienzo, Monica; Pederson, Gregory T.; Aarons, Sarah; Csank, Adam

    2017-01-01

    The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.

  16. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core

    NASA Astrophysics Data System (ADS)

    D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.

    2017-05-01

    continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.

  17. Aromatic acids in an Arctic ice core from Svalbard: a proxy record of biomass burning

    NASA Astrophysics Data System (ADS)

    Grieman, Mackenzie M.; Aydin, Murat; Isaksson, Elisabeth; Schwikowski, Margit; Saltzman, Eric S.

    2018-05-01

    This study presents vanillic acid and para-hydroxybenzoic acid levels in an Arctic ice core from Lomonosovfonna, Svalbard covering the past 800 years. These aromatic acids are likely derived from lignin combustion in wildfires and long-range aerosol transport. Vanillic and para-hydroxybenzoic acid are present throughout the ice core, confirming that these compounds are preserved on millennial timescales. Vanillic and para-hydroxybenzoic acid concentrations in the Lomonosovfonna ice core ranged from below the limits of detection to 0.2 and 0.07 ppb, respectively (1 ppb = 1000 ng L-1). Vanillic acid levels are high (maximum of 0.1 ppb) from 1200 to 1400 CE, then gradually decline into the twentieth century. The largest peak in the vanillic acid in the record occurs from 2000 to 2008 CE. In the para-hydrobenzoic acid record, there are three centennial-scale peaks around 1300, 1550, and 1650 CE superimposed on a long-term decline in the baseline levels throughout the record. Ten-day air mass back trajectories for a decade of fire seasons (March-November, 2006-2015) indicate that Siberia and Europe are the principle modern source regions for wildfire emissions reaching the Lomonosovfonna site. The Lomonosovfonna data are similar to those from the Eurasian Arctic Akademii Nauk ice core during the early part of the record (1220-1400 CE), but the two ice cores diverge markedly after 1400 CE. This coincides with a shift in North Atlantic climate marked by a change of the North Atlantic Oscillation from a positive to a more negative state.

  18. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Cole-Dai, Jihong; Mosley-Thompson, Ellen; Thompson, Lonnie G.

    1997-07-01

    The continuous sulfate analysis of two Antarctic ice cores, one from the Antarctic Peninsula region and one from West Antarctica, provides an annually resolved proxy history of southern semisphere volcanism since early in the 15th century. The dating is accurate within ±3 years due to the high rate of snow accumulation at both core sites and the small sample sizes used for analysis. The two sulfate records are consistent with each other. A systematic and objective method of separating outstanding sulfate events from the background sulfate flux is proposed and used to identify all volcanic signals. The resulting volcanic chronology covering 1417-1989 A.D. resolves temporal ambiguities about several recently discovered events. A number of previously unknown, moderate eruptions during late 1600s are uncovered in this chronology. The eruption of Tambora (1815) and the recently discovered eruption of Kuwae (1453) in the tropical South Pacific injected the greatest amount of sulfur dioxide into the southern hemisphere stratosphere during the last half millennium. A technique for comparing the magnitude of volcanic events preserved within different ice cores is developed using normalized sulfate flux. For the same eruptions the variability of the volcanic sulfate flux between the cores is within ±20% of the sulfate flux from the Tambora eruption.

  19. First investigations of an ice core from Eisriesenwelt cave (Austria)

    NASA Astrophysics Data System (ADS)

    May, B.; Spötl, C.; Wagenbach, D.; Dublyansky, Y.; Liebl, J.

    2010-09-01

    Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analysed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb derived tritium removing any ice accumulated, since at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses made radiocarbon dating inconclusive, though a crude estimate gave a maximum ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 4 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cyro-calcite layers, a extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.

  20. First investigations of an ice core from Eisriesenwelt cave (Austria)

    NASA Astrophysics Data System (ADS)

    May, B.; Spötl, C.; Wagenbach, D.; Dublyansky, Y.; Liebl, J.

    2011-02-01

    Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.

  1. Solving the riddle of interglacial temperatures over the last 1.5 million years with a future IPICS "Oldest Ice" ice core

    NASA Astrophysics Data System (ADS)

    Fischer, Hubertus

    2014-05-01

    The sequence of the last 8 glacial cycles is characterized by irregular 100,000 year cycles in temperature and sea level. In contrast, the time period between 1.5-1.2 million years ago is characterized by more regular cycles with an obliquity periodicity of 41,000 years. Based on a deconvolution of deep ocean temperature and ice volume contributions to benthic δ18O (Elderfield et al., Science, 2012), it is suggested that glacial sea level became progressively lower over the last 1.5 Myr, while glacial deep ocean temperatures were very similar. At the same time many interglacials prior to the Mid Brunhes event showed significantly cooler deep ocean temperatures than the Holocene, while at the same time interglacial ice volume remained essentially the same. In contrast, interglacial sea surface temperatures in the tropics changed little (Herbert et al., Science,2010) and proxy reconstructions of atmospheric CO2 using δ11B in planktic foraminifera (Hönisch et al., Science, 2009) suggest that prior to 900,000 yr before present interglacial CO2 levels did not differ substantially from those over the last 450,000 years. Accordingly, the conundrum arises how interglacials can differ in deep ocean temperature without any obvious change in ice volume or greenhouse gas forcing and what caused the change in cyclicity of glacial interglacial cycles over the Mid Pleistocene Transition. Probably the most important contribution to solve this riddle is the recovery of a 1.5 Myr old ice core from Antarctica, which among others would provide an unambiguous, high-resolution record of the greenhouse gas history over this time period. Accordingly, the international ice core community, as represented by the International Partnership for Ice Core Science (IPICS), has identified such an 'Oldest Ice' ice core as one of the most important scientific targets for the future (http://www.pages.unibe.ch/ipics/white-papers). However, finding stratigraphically undisturbed ice, which covers this

  2. An Ice Core Melter System for Continuous Major and Trace Chemical Analyses of a New Mt. Logan Summit Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Handley, M. J.; Sneed, S. D.; Mayewski, P. A.; Kreutz, K. J.; Fisher, D. A.

    2004-12-01

    The ice core melter system at the University of Maine Climate Change Institute has been recently modified and updated to allow high-resolution (<1-2 cm ice/sample), continuous and coregistered sampling of ice cores, most notably the 2001 Mt. Logan summit ice core (187 m to bedrock), for analyses of 34 trace elements (Sr, Cd, Sb, Cs, Ba, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, REE suite) by inductively coupled plasma mass spectrometry (ICP-MS), 8 major ions (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, NO3-, MSA) by ion chromatography (IC), stable water isotopes (δ 18O, δ D, d) and volcanic tephra. The UMaine continuous melter (UMCoM) system is housed in a dedicated clean room with HEPA filtered air. Standard clean room procedures are employed during melting. A Wagenbach-style continuous melter system has been modified to include a pure Nickel melthead that can be easily dismantled for thorough cleaning. The system allows melting of both ice and firn without wicking of the meltwater into unmelted core. Contrary to ice core melter systems in which the meltwater is directly channeled to online instruments for continuous flow analyses, the UMCoM system collects discrete samples for each chemical analysis under ultraclean conditions. Meltwater from the pristine innermost section of the ice core is split between one fraction collector that accumulates ICP-MS samples in acid pre-cleaned polypropylene vials under a class-100 HEPA clean bench, and a second fraction collector that accumulates IC samples. A third fraction collector accumulates isotope and tephra samples from the potentially contaminated outer portion of the core. This method is advantageous because an archive of each sample remains for subsequent analyses (including trace element isotope ratios), and ICP-MS analytes are scanned for longer intervals and in replicate. Method detection limits, calculated from de-ionized water blanks passed through the entire UMCoM system, are below 10% of average Mt

  3. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered lakes.

    PubMed

    Tran, Patricia; Ramachandran, Arthi; Khawasek, Ola; Beisner, Beatrix E; Rautio, Milla; Huot, Yannick; Walsh, David A

    2018-06-19

    Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP)

    NASA Astrophysics Data System (ADS)

    Svensson, A.; Bigler, M.; Blunier, T.; Clausen, H. B.; Dahl-Jensen, D.; Fischer, H.; Fujita, S.; Goto-Azuma, K.; Johnsen, S. J.; Kawamura, K.; Kipfstuhl, S.; Kohno, M.; Parrenin, F.; Popp, T.; Rasmussen, S. O.; Schwander, J.; Seierstad, I.; Severi, M.; Steffensen, J. P.; Udisti, R.; Uemura, R.; Vallelonga, P.; Vinther, B. M.; Wegner, A.; Wilhelms, F.; Winstrup, M.

    2013-03-01

    The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic

  5. Estimation of composite hydraulic resistance in ice-covered alluvial streams

    NASA Astrophysics Data System (ADS)

    Ghareh Aghaji Zare, Soheil; Moore, Stephanie A.; Rennie, Colin D.; Seidou, Ousmane; Ahmari, Habib; Malenchak, Jarrod

    2016-02-01

    Formation, propagation, and recession of ice cover introduce a dynamic boundary layer to the top of rivers during northern winters. Ice cover affects water velocity magnitude and distribution, water level and consequently conveyance capacity of the river. In this research, total resistance, i.e., "composite resistance," is studied for a 4 month period including stable ice cover, breakup, and open water stages in Lower Nelson River (LNR), northern Manitoba, Canada. Flow and ice characteristics such as water velocity and depth and ice thickness and condition were measured continuously using acoustic techniques. An Acoustic Doppler Current Profiler (ADCP) and Shallow Water Ice Profiling Sonar (SWIPS) were installed simultaneously on a bottom mount and deployed for this purpose. Total resistance to the flow and boundary roughness are estimated using measured bulk hydraulic parameters. A novel method is developed to calculate composite resistance directly from measured under ice velocity profiles. The results of this method are compared to the measured total resistance and to the calculated composite resistance using formulae available in literature. The new technique is demonstrated to compare favorably to measured total resistance and to outperform previously available methods.

  6. Observations of the Sea Ice Cover Using Satellite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    1995-01-01

    The fringes observed in repeat pass interferograms are expressions of surface relief and relative displacements. The limiting condition in the application of spaceborne radar interferometry to the remote sensing of the sea ice cover is the large magnitude of motion between repeat passes. The translation and rotation of ice floes tend to decorrelate the observations rendering radar interferometry ineffective. In our study, we have located three images in the high Arctic during a period when there was negligible motion between repeat observations. The fringes obtained from these images show a wealth of information about the sea ice cover which is important in atmosphere-ice interactions and sea ice mechanics. These measurements provide the first detailed remote sensing view of the sea ice cover. Ridges can be observed and their heights estimated if the interferometric baseline allows. We have observed ridges with heights greater than 4m. The variability in the phase measurements over an area provides an indication of the large scale roughness. Relative centimetric displacements between rigid ice floes have been observed. We illustrate these observations with examples extracted from the interferograms formed from this set of ERS-1 SAR images.

  7. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  8. Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1978-01-01

    The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.

  9. Establishing a Reliable Depth-Age Relationship for the Denali Ice Core

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Osterberg, E. C.; Winski, D.; Ferris, D.; Kreutz, K. J.; Introne, D.; Dalton, M.

    2015-12-01

    Reliable climate reconstruction from ice core records requires the development of a reliable depth-age relationship. We have established a sub-annual resolution depth-age relationship for the upper 198 meters of a 208 m ice core recovered in 2013 from Mt. Hunter (3,900 m asl), Denali National Park, central Alaska. The dating of the ice core was accomplished via annual layer counting of glaciochemical time-series combined with identification of reference horizons from volcanic eruptions and atmospheric nuclear weapons testing. Using the continuous ice core melter system at Dartmouth College, sub-seasonal samples have been collected and analyzed for major ions, liquid conductivity, particle size and concentration, and stable isotope ratios. Annual signals are apparent in several of the chemical species measured in the ice core samples. Calcium and magnesium peak in the spring, ammonium peaks in the summer, methanesulfonic acid (MSA) peaks in the autumn, and stable isotopes display a strong seasonal cycle with the most depleted values occurring during the winter. Thin ice layers representing infrequent summertime melt were also used to identify summer layers in the core. Analysis of approximately one meter sections of the core via nondestructive gamma spectrometry over depths from 84 to 124 m identified a strong radioactive cesium-137 peak at 89 m which corresponds to the 1963 layer deposited during extensive atmospheric nuclear weapons testing. Peaks in the sulfate and chloride record have been used for the preliminary identification of volcanic signals preserved in the ice core, including ten events since 1883. We are confident that the combination of robust annual layers combined with reference horizons provides a timescale for the 20th century that has an error of less than 0.5 years, making calibrations between ice core records and the instrumental climate data particularly robust. Initial annual layer counting through the entire 198 m suggests the Denali Ice

  10. Microshear in the deep EDML ice core analyzed using cryogenic EBSD

    NASA Astrophysics Data System (ADS)

    Kuiper, Ernst-Jan; Pennock, Gill; Drury, Martyn; Kipfstuhl, Sepp; Faria, Sérgio; Weikusat, Ilka

    2017-04-01

    Ice sheets play an important role in sea level evolution by storing large amounts of fresh water on land. The ice in an ice sheet flows from the interior of the ice sheet to the edges where it either melts or calves into the ocean. This flow of ice results from internal deformation of the ice aggregate. Dislocation creep is assumed to be the dominant deformation mechanism for polar ice and is grain size insensitive. Recently, a different deformation mechanism was identified in the deeper part of the EDML ice core (Antarctica) where, at a depth of 2385 meters, the grain size strongly decreases, the grain aspect ratio increase and, the inclination of the grain elongation changes (Faria et al., 2006; Weikusat et al., 2017). At this depth the borehole displacement increases strongly (Weikusat et al., 2017), which indicates a relatively high strain rate. Part of this EDML ice core section was studied using cryogenic electron backscattered diffraction (cryo-EBSD) (Weikusat et al, 2011). EBSD produces high resolution, full crystallographic (a-axis and c-axis) maps of the ice core samples. EBSD samples were taken from an ice core section at 2392.2 meter depth. This section was chosen for its very small grain size and the strongly aligned grain boundaries. The EBSD maps show a very low orientation gradient of <0.3° per millimetre inside the grains, which is 5-10 times lower than the orientation gradients found in other parts of the ice core. Furthermore, close to some grain boundaries, a relatively strong orientation gradient of 1°-2° per millimetre was found. The subgrain boundaries developed such that they elongate the sliding boundaries in order to accommodate the incompatibilities and maintain the strongly aligned grain boundary network. We identify the dominant deformation mechanism in this part of the ice core as grain boundary sliding accommodated by localized dislocation creep, which is a process similar to microshear (Drury and Humpreys, 1988). The existence of

  11. Initial Continuous Chemistry Results From The Roosevelt Island Ice Core (RICE)

    NASA Astrophysics Data System (ADS)

    Kjær, H. A.; Vallelonga, P. T.; Simonsen, M. F.; Neff, P. D.; Bertler, N. A. N.; Svensson, A.; Dahl-Jensen, D.

    2014-12-01

    The Roosevelt Island ice core (79.36° S, -161.71° W) was drilled in 2011-13 at the top of the Roosevelt Island ice dome, a location surrounded by the Ross ice shelf. The RICE ice core provides a unique opportunity to look into the past evolution of the West Antarctic Ice sheet. Further the site has high accumulation; 0.26 m of ice equivalent is deposited annually allowing annual layer determination for many chemical parameters. The RICE core was drilled to bedrock and has a total length of 763 metres. Preliminary results derived from water isotopes suggest that the oldest ice reaches back to the Eemian, with the last glacial being compressed in the bottom 60 metres. We present preliminary results from the RICE ice core including continuous measurements of acidity using an optical dye method, insoluble dust particles, conductivity and calcium. The core was analyzed at the New Zealand National Ice Core Research Facility at GNS Science in Wellington. The analytical set up used to determine climate proxies in the ice core was a modified version of the Copenhagen CFA system (Bigler et al., 2011). Key volcanic layers have been matched to those from the WAIS record (Sigl et al., 2013). A significant anti-correlation between acidity and calcium was seen in the Holocene part of the record. Due to the proximity to the ocean a large fraction of the calcium originates from sea salt and is in phase with total conductivity and sodium. In combination with the insoluble dust record, calcium has been apportioned into ocean-related and dust-related sources. Variability over the Holocene is presented and attributed to changing inputs of marine and dust aerosols.

  12. The seasonal cycle of snow cover, sea ice and surface albedo

    NASA Technical Reports Server (NTRS)

    Robock, A.

    1980-01-01

    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  13. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  14. Two-dimensional ice mapping of molecular cores

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Fraser, H. J.; Pontoppidan, K. M.; Craigon, A. M.

    2017-06-01

    We present maps of the column densities of H2O, CO2 and CO ices towards the molecular cores B 35A, DC 274.2-00.4, BHR 59 and DC 300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200 au, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C18O towards B 35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of 'small-scale' chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.

  15. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters.

    PubMed

    Solberg, Ingrid; Kaartvedt, Stein

    2014-01-01

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat ( Sprattus sprattus ) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day -1 . The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established.

  16. IceChrono v1: a probabilistic model to compute a common and optimal chronology for several ice cores

    NASA Astrophysics Data System (ADS)

    Parrenin, Frédéric

    2015-04-01

    Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores is essential to interpret the paleo records that they contain, but it is a complicated problem since it involves different dating methods. Here I present IceChrono v1, a new probabilistic model to combine different kinds of chronological information to obtain a common and optimized chronology for several ice cores, as well as its uncertainty. It is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the vertical thinning function. The chronological information used are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and gas dated horizons, ice and gas dated depth intervals, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air), stratigraphic links in between ice cores (ice-ice, air-air or mix ice-air and air-ice links). The optimization problem is formulated as a least squares problems, that is, all densities of probabilities are assumed gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono is similar in scope to the Datice model, but has differences from the mathematical, numerical and programming point of views. I apply IceChrono on an AICC2012-like experiment and I find similar results than Datice within a few centuries, which is a confirmation of both IceChrono and Datice codes. IceChrono v1 is freely available under the GPL v3 open source license.

  17. Abrupt Decline in the Arctic Winter Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2007-01-01

    Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.

  18. Automated detection of ice cliffs within supraglacial debris cover

    NASA Astrophysics Data System (ADS)

    Herreid, Sam; Pellicciotti, Francesca

    2018-05-01

    Ice cliffs within a supraglacial debris cover have been identified as a source for high ablation relative to the surrounding debris-covered area. Due to their small relative size and steep orientation, ice cliffs are difficult to detect using nadir-looking space borne sensors. The method presented here uses surface slopes calculated from digital elevation model (DEM) data to map ice cliff geometry and produce an ice cliff probability map. Surface slope thresholds, which can be sensitive to geographic location and/or data quality, are selected automatically. The method also attempts to include area at the (often narrowing) ends of ice cliffs which could otherwise be neglected due to signal saturation in surface slope data. The method was calibrated in the eastern Alaska Range, Alaska, USA, against a control ice cliff dataset derived from high-resolution visible and thermal data. Using the same input parameter set that performed best in Alaska, the method was tested against ice cliffs manually mapped in the Khumbu Himal, Nepal. Our results suggest the method can accommodate different glaciological settings and different DEM data sources without a data intensive (high-resolution, multi-data source) recalibration.

  19. Eemian interglacial reconstructed from a Greenland folded ice core.

    PubMed

    2013-01-24

    Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

  20. On the use of δ18Oatm for ice core dating

    NASA Astrophysics Data System (ADS)

    Extier, Thomas; Landais, Amaelle; Bréant, Camille; Prié, Frédéric; Bazin, Lucie; Dreyfus, Gabrielle; Roche, Didier M.; Leuenberger, Markus

    2018-04-01

    Deep ice core chronologies have been improved over the past years through the addition of new age constraints. However, dating methods are still associated with large uncertainties for ice cores from the East Antarctic plateau where layer counting is not possible. Indeed, an uncertainty up to 6 ka is associated with AICC2012 chronology of EPICA Dome C (EDC) ice core, which mostly arises from uncertainty on the delay between changes recorded in δ18Oatm and in June 21st insolation variations at 65°N used for ice core orbital dating. Consequently, we need to enhance the knowledge of this delay to improve ice core chronologies. We present new high-resolution EDC δ18Oatm record (153-374 ka) and δO2/N2 measurements (163-332 ka) performed on well-stored ice to provide continuous records of δ18Oatm and δO2/N2 between 100 and 800 ka. The comparison of δ18Oatm with the δ18Ocalcite from East Asian speleothems shows that both signals present similar orbital and millennial variabilities, which may represent shifts in the InterTropical Convergence Zone position, themselves associated with Heinrich events. We thus propose to use the δ18Ocalcite as target for δ18Oatm orbital dating. Such a tuning method improves the ice core chronology of the last glacial inception compared to AICC2012 by reconciling NGRIP and mid-latitude climatic records. It is especially marked during Dansgaard-Oeschger 25 where the proposed chronology is 2.2 ka older than AICC2012. This δ18Oatm - δ18Ocalcite alignment method applied between 100 and 640 ka improves the EDC ice core chronology, especially over MIS 11, and leads to lower ice age uncertainties compared to AICC2012.

  1. Variability and trends in the Arctic Sea ice cover: Results from different techniques

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-08-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span>, especially in the summer, has been the center of attention in recent years. Reports on the sea <span class="hlt">ice</span> <span class="hlt">cover</span> have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394397','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1394397"><span>Historic CH4 Records from Antarctic and Greenland <span class="hlt">Ice</span> <span class="hlt">Cores</span>, Antarctic Firn Data, and Archived Air Samples from Cape Grim, Tasmania</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Etheridge, D. M. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia; Steele, L. P. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia; Francey, R. J. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia; Langenfelds, R. L. [Division of Atmospheric Research, CSIRO, Aspendale, Victoria, Australia</p> <p>2002-01-01</p> <p>The Antarctic CH4 records presented here are derived from three <span class="hlt">ice</span> <span class="hlt">cores</span> obtained at Law Dome, East Antarctica (66°44'S, 112°50'E, 1390 meters above mean sea level). Law Dome has many qualities of an ideal <span class="hlt">ice</span> <span class="hlt">core</span> site for the reconstruction of past concentrations of atmospheric gases; these qualities include: negligible melting of the <span class="hlt">ice</span> sheet surface, low concentrations of impurities, regular stratigraphic layering undisturbed by wind stress at the surface or differential <span class="hlt">ice</span> flow at depth, and a high snow accumulation rate. Further details on the site, drilling, and <span class="hlt">cores</span> are provided by Etheridge et al. (1998), Etheridge et al. (1996), Etheridge and Wookey (1989), and Morgan et al. (1997). The two Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> are from the Summit region (72°34' N, 37°37' W, 3200 meters above mean sea level). Lower snow accumulation rate there results in lower air-age resolution, and measurements presented here <span class="hlt">cover</span> only the pre-industrial period (until 1885). More details about these measurements are presented in Etheridge et al. (1998). Additionally, this site contains firn data from <span class="hlt">Core</span> DE08-2, and archived air samples from Cape Grim, Tasmania, for comparison.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27580680','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27580680"><span>An Optical Dye Method for Continuous Determination of Acidity in <span class="hlt">Ice</span> <span class="hlt">Cores</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kjær, Helle Astrid; Vallelonga, Paul; Svensson, Anders; Elleskov L Kristensen, Magnus; Tibuleac, Catalin; Winstrup, Mai; Kipfstuhl, Sepp</p> <p>2016-10-04</p> <p>The pH of polar <span class="hlt">ice</span> is important for the stability and mobility of impurities in <span class="hlt">ice</span> <span class="hlt">cores</span> and can be strongly influenced by volcanic eruptions or anthropogenic emissions. We present a simple optical method for continuous determination of acidity in <span class="hlt">ice</span> <span class="hlt">cores</span> based on spectroscopically determined color changes of two common pH-indicator dyes, bromophenol blue, and chlorophenol red. The sealed-system method described here is not equilibrated with CO 2 , making it simpler than existing methods for pH determination in <span class="hlt">ice</span> <span class="hlt">cores</span> and offering a 10-90% peak response time of 45 s and a combined uncertainty of 9%. The method is applied to Holocene <span class="hlt">ice</span> <span class="hlt">core</span> sections from Greenland and Antarctica and compared to standard techniques such as electrical conductivity measurement (ECM) conducted on the solid <span class="hlt">ice</span>, and electrolytic meltwater conductivity, EMWC. Acidity measured in the Greenland NGRIP <span class="hlt">ice</span> <span class="hlt">core</span> shows good agreement with acidity calculated from ion chromatography. Conductivity and dye-based acidity H dye + are found to be highly correlated in the Greenland NEGIS firn <span class="hlt">core</span> (75.38° N, 35.56° W), with all signals greater than 3σ variability coinciding with either volcanic eruptions or possible wild fire activity. In contrast, the Antarctic Roosevelt Island <span class="hlt">ice</span> <span class="hlt">core</span> (79.36° S, 161.71° W) features an anticorrelation between conductivity and H dye + , likely due to strong influence of marine salts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41C0419C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41C0419C"><span>High permafrost <span class="hlt">ice</span> contents in Holocene slope deposits as observed from shallow geophysics and a <span class="hlt">coring</span> program in Pangnirtung, Nunavut, Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbonneau, A.; Allard, M.; L'Hérault, E.; LeBlanc, A.</p> <p>2011-12-01</p> <p>A study of permafrost conditions was undertaken in the Hamlet of Pangnirtung, Nunavut, by the Geological Survey of Canada (GSC) and Université Laval's Centre d'études nordiques (CEN) to support decision makers in their community planning work. The methods used for this project were based on geophysical and geomorphological approaches, including permafrost <span class="hlt">cores</span> drilled in surficial deposits and ground penetrating radar surveys using a GPR Pulse EKKO 100 extending to the complete community area and to its projected expansion sector. Laboratory analysis allowed a detailed characterization of permafrost in terms of water contents, salinity and grain size. Cryostratigraphic analysis was done via CT-Scan imagery of frozen <span class="hlt">cores</span> using medical imaging softwares such as Osiris. This non destructive method allows a 3D imaging of the entire <span class="hlt">core</span> in order to locate the amount of the excess <span class="hlt">ice</span>, determine the volumetric <span class="hlt">ice</span> content and also interpret the <span class="hlt">ice</span>-formation processes that took place during freezing of the permafrost. Our new map of the permafrost conditions in Pangnirtung illustrates that the dominant mapping unit consist of <span class="hlt">ice</span>-rich colluvial deposits. Aggradationnal <span class="hlt">ice</span> formed syngenitically with slope sedimentation. Buried soils were found imbedded in this colluvial layer and demonstrates that colluviation associated with overland-flow during snowmelt occurred almost continuously since 7080 cal. BP. In the eastern sector of town, the 1 to 4 meters thick colluviums <span class="hlt">cover</span> till and a network of <span class="hlt">ice</span> wedges that were revealed as spaced hyperbolic reflectors on GPR profiles. The colluviums also <span class="hlt">cover</span> <span class="hlt">ice</span>-rich marine silt and bedrock in the western sector of the hamlet; marine shells found in a permafrost <span class="hlt">core</span> yielded a radiocarbon date of 9553 cal. BP which provides a revised age for the local deglaciation and also a revised marine submergence limit. Among the applied methods, shallow drilling in coarse grained permafrost, <span class="hlt">core</span> recovery and CT-Scan allowed the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41A0440W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41A0440W"><span>Cosmogenic 10Be Depth Profile in top 560 m of West Antarctic <span class="hlt">Ice</span> Sheet Divide <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Welten, K. C.; Woodruff, T. E.; Caffee, M. W.; Edwards, R.; McConnell, J. R.; Bisiaux, M. M.; Nishiizumi, K.</p> <p>2009-12-01</p> <p>Concentrations of cosmogenic 10Be in polar <span class="hlt">ice</span> samples are a function of variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. The 10Be depth profile in <span class="hlt">ice</span> <span class="hlt">cores</span> also provides independent chronological markers to tie Antarctic to Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> and to tie Holocene <span class="hlt">ice</span> <span class="hlt">cores</span> to the 14C dendrochronology record. We measured 10Be concentrations in 187 samples from depths of 0-560 m of the main WAIS Divide <span class="hlt">core</span>, WDC06A. The <span class="hlt">ice</span> samples are typically 1-2 kg and represent 2-4 m of <span class="hlt">ice</span>, equivalent to an average temporal resolution of ~12 years, based on the preliminary age-depth scale proposed for the WDC <span class="hlt">core</span>, (McConnell et al., in prep). Be, Al and Cl were separated using ion exchange chromatography techniques and the 10Be concentrations were measured by accelerator mass spectrometry (AMS) at PRIME lab. The 10Be concentrations range from 8.1 to 19.1 x 10^3 at/g, yielding an average of (13.1±2.1) x 10^3 at/g. Adopting an average snow accumulation rate of 20.9 cm weq/yr, as derived from the age-depth scale, this value corresponds to an average 10Be flux of (2.7±0.5) x 10^5 atoms/yr/cm2. This flux is similar to that of the Holocene part of the Siple Dome (Nishiizumi and Finkel, 2007) and Dome Fuji (Horiuchi et al. 2008) <span class="hlt">ice</span> <span class="hlt">cores</span>, but ~30% lower than the value of 4.0 x 10^5 atoms/yr/cm2 for GISP2 (Finkel and Nishiizumi, 1997). The periods of low solar activity, known as Oort, Wolf, Spörer, Maunder and Dalton minima, show ~20% higher 10Be concentrations/fluxes than the periods of average solar activity in the last millennium. The maximum 10Be fluxes during some of these periods of low solar activity are up to ~50% higher than average 10Be fluxes, as seen in other polar <span class="hlt">ice</span> <span class="hlt">cores</span>, which makes these peaks suitable as chronologic markers. We will compare the 10Be record in the WAIS Divide <span class="hlt">ice</span> <span class="hlt">core</span> with that in other Antarctic as well as Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> and with the 14C treering record. Acknowledgment. This</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0669O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0669O"><span>Recent Increases in Snow Accumulation and Decreases in Sea-<span class="hlt">Ice</span> Concentration Recorded in a Coastal NW Greenland <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.</p> <p>2013-12-01</p> <p>A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland <span class="hlt">Ice</span> Sheet (GIS) margin and surrounding sea <span class="hlt">ice</span>. Recent observations from geodetic stations and GRACE show that <span class="hlt">ice</span> mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-<span class="hlt">ice</span> concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future <span class="hlt">ice</span> loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment <span class="hlt">cores</span>, <span class="hlt">ice</span> <span class="hlt">cores</span>, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length <span class="hlt">ice</span> <span class="hlt">core</span> paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn <span class="hlt">cores</span> (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North <span class="hlt">Ice</span> Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel <span class="hlt">ice</span> <span class="hlt">core</span> was sampled using a continuous <span class="hlt">ice</span> <span class="hlt">core</span> melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel <span class="hlt">ice</span> <span class="hlt">core</span> spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-<span class="hlt">ice</span> concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C43D..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C43D..01R"><span>NASA <span class="hlt">Ice</span>Bridge: Scientific Insights from Airborne Surveys of the Polar Sea <span class="hlt">Ice</span> <span class="hlt">Covers</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richter-Menge, J.; Farrell, S. L.</p> <p>2015-12-01</p> <p>The NASA Operation <span class="hlt">Ice</span>Bridge (OIB) airborne sea <span class="hlt">ice</span> surveys are designed to continue a valuable series of sea <span class="hlt">ice</span> thickness measurements by bridging the gap between NASA's <span class="hlt">Ice</span>, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea <span class="hlt">ice</span> <span class="hlt">cover</span> is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea <span class="hlt">ice</span> processes across all length scales. Key scientific insights gained on the state of the sea <span class="hlt">ice</span> <span class="hlt">cover</span> will be highlighted, including snow depth, <span class="hlt">ice</span> thickness, surface roughness and morphology, and melt pond evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.125..257S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.125..257S"><span>Anomalously high arsenic concentration in a West Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> and its relationship to copper mining in Chile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.</p> <p>2016-01-01</p> <p>Arsenic variability records are preserved in snow and <span class="hlt">ice</span> <span class="hlt">cores</span> and can be utilized to reconstruct air pollution history. The Mount Johns <span class="hlt">ice</span> <span class="hlt">core</span> (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic <span class="hlt">Ice</span> Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this <span class="hlt">core</span> using ICP-SFMS (CCI, University of Maine, USA). The record <span class="hlt">covers</span> approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the <span class="hlt">core</span> follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ <span class="hlt">core</span>, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns <span class="hlt">ice</span> <span class="hlt">core</span>. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915895C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915895C"><span>POLLiCE (POLLen in the <span class="hlt">iCE</span>): climate history from Adamello <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cristofori, Antonella; Festi, Daniela; Maggi, Valter; Casarotto, Christian; Bertoni, Elena; Vernesi, Cristiano</p> <p>2017-04-01</p> <p>Glaciers can be viewed as the most complete and effective past climate and environment archives severely threatened by climate change. These threats are particularly dramatic across European Alps. The Adamello glacier is the largest, 16.4 km2, and deepest, 270 m, Italian glacier. We aim at estimating biodiversity changes over the last centuries in relation to climate and human activities in the Adamello catchment area. We, therefore, recently launched the POLLiCE project (pollice.fmach.it) for specifically targeting the biological component (e.g. pollen, leaves, plant remains) trapped in <span class="hlt">ice</span> <span class="hlt">cores</span>. Classical morphological pollen analysis will be accompanied by DNA metabarcoding. This approach has the potential to provide a detailed taxonomical identification - at least genus level- thus circumventing the limitations of microscopic analysis such as time-consuming procedures and shared features of pollen grains among different taxa. Moreover, <span class="hlt">ice</span> <span class="hlt">cores</span> are subjected to chemical and physical analyses - stable isotopes, ions, hyperspectral imaging, etc.- for stratigraphic and climatic determination of seasonality. A pilot drilling was conducted on March 2015 and the resulting 5 m <span class="hlt">core</span> has been analysed in terms of pollen spectrum, stable isotopes and ions in order to demonstrate the feasibility of the study. The first encouraging results showed that even in this superficial <span class="hlt">core</span> a stratigraphy is evident with indication of seasonality as highlighted by both by pollen taxa and stable isotopes. Finally, DNA has been successfully extracted and amplified with specific DNA barcodes. A medium drilling was performed on April 2016 with the extraction of a 45 m <span class="hlt">ice</span> <span class="hlt">core</span>. The analysis of this <span class="hlt">core</span> constitutes the subject of a specific research project, CALICE*, just funded by Euregio Science Fund (IPN57). The entire depth, 270 m, of the Adamello glacier is scheduled to be drilled in 2018 winter to secure the unique memory archived by the <span class="hlt">ice</span>. * See EGU2017 poster by Festi et al</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11E..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11E..07M"><span>Global Climate Change: Valuable Insights from Concordant and Discordant <span class="hlt">Ice</span> <span class="hlt">Core</span> Histories</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.</p> <p>2014-12-01</p> <p>Earth's <span class="hlt">ice</span> <span class="hlt">cover</span> is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical <span class="hlt">ice</span> fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many <span class="hlt">ice</span> fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected <span class="hlt">ice</span> fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other <span class="hlt">cores</span> recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan <span class="hlt">ice</span> <span class="hlt">cores</span> from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these <span class="hlt">cores</span> located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea <span class="hlt">ice</span> extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CliPa..13..473K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CliPa..13..473K"><span>Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozachek, Anna; Mikhalenko, Vladimir; Masson-Delmotte, Valérie; Ekaykin, Alexey; Ginot, Patrick; Kutuzov, Stanislav; Legrand, Michel; Lipenkov, Vladimir; Preunkert, Susanne</p> <p>2017-05-01</p> <p>A 181.8 m <span class="hlt">ice</span> <span class="hlt">core</span> was recovered from a borehole drilled into bedrock on the western plateau of Mt El'brus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009 (Mikhalenko et al., 2015). Here, we report on the results of the water stable isotope composition from this <span class="hlt">ice</span> <span class="hlt">core</span> with additional data from the shallow <span class="hlt">cores</span>. The distinct seasonal cycle of the isotopic composition allows dating by annual layer counting. Dating has been performed for the upper 126 m of the deep <span class="hlt">core</span> combined with 20 m from the shallow <span class="hlt">cores</span>. The whole record <span class="hlt">covers</span> 100 years, from 2013 back to 1914. Due to the high accumulation rate (1380 mm w.e. year-1) and limited melting, we obtained isotopic composition and accumulation rate records with seasonal resolution. These values were compared with available meteorological data from 13 weather stations in the region and also with atmosphere circulation indices, back-trajectory calculations, and Global Network of Isotopes in Precipitation (GNIP) data in order to decipher the drivers of accumulation and <span class="hlt">ice</span> <span class="hlt">core</span> isotopic composition in the Caucasus region. In the warm season (May-October) the isotopic composition depends on local temperatures, but the correlation is not persistent over time, while in the cold season (November-April), atmospheric circulation is the predominant driver of the <span class="hlt">ice</span> <span class="hlt">core</span>'s isotopic composition. The snow accumulation rate correlates well with the precipitation rate in the region all year round, which made it possible to reconstruct and expand the precipitation record at the Caucasus highlands from 1914 until 1966, when reliable meteorological observations of precipitation at high elevation began.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080045474','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080045474"><span>Physical and Radiative Characteristic and Long-term Variability of the Okhotsk Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nishio, Fumihiko; Comiso, Josefino C.; Gersten, Robert; Nakayama, Masashige; Ukita, Jinro; Gasiewski, Al; Stanko, Boba; Naoki, Kazuhiro</p> <p>2008-01-01</p> <p>Much of what we know about the large scale characteristics of the Okhotsk Sea <span class="hlt">ice</span> <span class="hlt">cover</span> has been provided by <span class="hlt">ice</span> concentration maps derived from passive microwave data. To understand what satellite data represent in a highly divergent and rapidly changing environment like the Okhotsk Sea, we take advantage of concurrent satellite, aircraft, and ship data acquired on 7 February and characterized the sea <span class="hlt">ice</span> <span class="hlt">cover</span> at different scales from meters to hundreds of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated the general radiative and physical characteristics of the <span class="hlt">ice</span> <span class="hlt">cover</span> as well as quantify the distribution of different <span class="hlt">ice</span> types in the region. <span class="hlt">Ice</span> concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the <span class="hlt">ice</span> <span class="hlt">cover</span>. Analysis of MODIS data reveals that thick <span class="hlt">ice</span> types represents about 37% of the <span class="hlt">ice</span> <span class="hlt">cover</span> indicating that young and new <span class="hlt">ice</span> types represent a large fraction of the <span class="hlt">ice</span> <span class="hlt">cover</span> that averages about 90% <span class="hlt">ice</span> concentration according to passive microwave data. These results are used to interpret historical data that indicate that the Okhotsk Sea <span class="hlt">ice</span> extent and area are declining at a rapid rate of about -9% and -12 % per decade, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51C1087J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51C1087J"><span>First Results of Nitrate and its Stable Isotopic Composition in an <span class="hlt">Ice</span> <span class="hlt">Core</span> from Dome A, East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, S.</p> <p>2017-12-01</p> <p>During the 21st Chinese Antarctic Research Expedition in 2004/2005 austral summer, a 109.91 m <span class="hlt">ice</span> <span class="hlt">core</span> (hereafter DA2005 <span class="hlt">core</span>) was recovered at the site about 300 m away from the summit of Dome A. The top 100.42 m was analyzed for major chemical impurities and isotopic composition of nitrate. Dating was based on the volcanic stratigraphy and average annual accumulation rate. Results showed that the analyzed 100.42 m part of the <span class="hlt">core</span> <span class="hlt">covers</span> the last 2840 years before present, from 840 BC to AD 1998. Nitrate concentration in the DA2005 <span class="hlt">core</span> varies between 2.86 μg kg-1 and 30.75 μg kg-1 throughout the 2840 years, with the mean concentration of 11.84 µg kg-1. Comparisons with previous Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> nitrate records show that the DA2005 <span class="hlt">core</span> has the lowest mean concentration of nitrate, which is consistent with the lowest accumulation rate at Dome A among these sampling sites. Decreased nitrate concentration during the period of Little <span class="hlt">Ice</span> Age (AD 1500-1900) is observed in the DA2005 <span class="hlt">core</span>. The δ15N(NO3-) values vary between 235.4 ‰ and 279.4 ‰, which suggest strong 15N enrichment in the DA2005 <span class="hlt">core</span>. The sample <span class="hlt">covering</span> the most recent time period (AD 1695-1838) has the lowest δ15N(NO3-) value. The Δ17O(NO3-) values span from 28.9 ‰ to 31.4 ‰, which is among the range ever observed. An increasing trend is seen during the period of AD 1225-1838, which corresponds to the time period when nitrate concentration remains low. The maximum Δ17O(NO3-) value occurs in the period AD 1695-1838, and the minimum value occurs in the period AD 62-166.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.C41C0990P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.C41C0990P"><span>Assessing, understanding, and conveying the state of the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perovich, D. K.; Richter-Menge, J. A.; Rigor, I.; Parkinson, C. L.; Weatherly, J. W.; Nghiem, S. V.; Proshutinsky, A.; Overland, J. E.</p> <p>2003-12-01</p> <p>Recent studies indicate that the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> is undergoing significant climate-induced changes, affecting both its extent and thickness. Satellite-derived estimates of Arctic sea <span class="hlt">ice</span> extent suggest a reduction of about 3% per decade since 1978. <span class="hlt">Ice</span> thickness data from submarines suggest a net thinning of the sea <span class="hlt">ice</span> <span class="hlt">cover</span> since 1958. Changes (including oscillatory changes) in atmospheric circulation and the thermohaline properties of the upper ocean have also been observed. These changes impact not only the Arctic, but the global climate system and are likely accelerated by such processes as the <span class="hlt">ice</span>-albedo feedback. It is important to continue and expand long-term observations of these changes to (a) improve the fundamental understanding of the role of the sea <span class="hlt">ice</span> <span class="hlt">cover</span> in the global climate system and (b) use the changes in the sea <span class="hlt">ice</span> <span class="hlt">cover</span> as an early indicator of climate change. This is a formidable task that spans a range of temporal and spatial scales. Fortunately, there are numerous tools that can be brought to bear on this task, including satellite remote sensing, autonomous buoys, ocean moorings, field campaigns and numerical models. We suggest the integrated and coordinated use of these tools during the International Polar Year to monitor the state of the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> and investigate its governing processes. For example, satellite remote sensing provides the large-scale snapshots of such basic parameters as <span class="hlt">ice</span> distribution, melt zone, and cloud fraction at intervals of half a day to a week. Buoys and moorings can contribute high temporal resolution and can measure parameters currently unavailable from space including <span class="hlt">ice</span> thickness, internal <span class="hlt">ice</span> temperature, and ocean temperature and salinity. Field campaigns can be used to explore, in detail, the processes that govern the <span class="hlt">ice</span> <span class="hlt">cover</span>. Numerical models can be used to assess the character of the changes in the <span class="hlt">ice</span> <span class="hlt">cover</span> and predict their impacts on the rest of the climate system. This work</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910064G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910064G"><span>Multi-decadal evolution of <span class="hlt">ice</span>/snow <span class="hlt">covers</span> in the Mont-Blanc massif (France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guillet, Grégoire; Ravanel, Ludovic</p> <p>2017-04-01</p> <p>Dynamics and evolution of the major glaciers of the Mont-Blanc massif have been vastly studied since the XXth century. <span class="hlt">Ice</span>/snow <span class="hlt">covers</span> on steep rock faces as part of the cryosphere however remain poorly studied with only qualitative descriptions existing. The study of <span class="hlt">ice</span>/snow <span class="hlt">covers</span> is primordial to further understand permafrost degradation throughout the Mont-Blanc massif and to improve safety and prevention for mountain sports practitioners. This study focuses on quantifying the evolution of <span class="hlt">ice</span>/snow <span class="hlt">covers</span> surface during the past century using a specially developed monoplotting tool using Bayesian statistics and Markov Chain Monte Carlo algorithms. Combining digital elevation models and photographs <span class="hlt">covering</span> a time-span of 110 years, we calculated the <span class="hlt">ice</span>/snow <span class="hlt">cover</span> surface for 3 study sites — North faces of the Tour Ronde (3792 m a.s.l.) and the Grandes Jorasses (4208 m a.s.l.) and Triangle du Tacul (3970 m a.s.l.) — and deduced the evolution of their area throughout the XXth century. First results are showing several increase/decrease periods. The first decrease in <span class="hlt">ice</span>/snow <span class="hlt">cover</span> surface occurs between the 1940's and the 1950's. It is followed by an increase up to the 1980's. Since then, <span class="hlt">ice</span>/snow <span class="hlt">covers</span> show a general decrease in surface which is faster since the 2010's. Furthermore, the gain/loss during the increase/decrease periods varies with the considered <span class="hlt">ice</span>/snow <span class="hlt">cover</span>, making it an interesting cryospheric entity of its own.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMGC11B..08Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMGC11B..08Y"><span>Climatic Changes on Tibetan Plateau Based on <span class="hlt">Ice</span> <span class="hlt">Core</span> Records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, T.</p> <p>2008-12-01</p> <p>Climatic changes have been reconstructed for the Tibetan Plateau based on <span class="hlt">ice</span> <span class="hlt">core</span> records. The Guliya <span class="hlt">ice</span> <span class="hlt">core</span> on the Tibetan Plateau presents climatic changes in the past 100,000 years, thus is comparative with that from Vostok <span class="hlt">ice</span> <span class="hlt">core</span> in Antarctica and GISP2 record in Arctic. These three records share an important common feature, i.e., our climate is not stable. It is also evident that the major patterns of climatic changes are similar on the earth. Why does climatic change over the earth follow a same pattern? It might be attributed to solar radiation. We found that the cold periods correspond to low insolation periods, and warm periods to high insolation periods. We found abrupt climatic change in the <span class="hlt">ice</span> <span class="hlt">core</span> climatic records, which presented dramatic temperature variation of as much as 10 °C in 50 or 60 years. Our major challenge in the study of both climate and environment is that greenhouse gases such as CO2, CH4 are possibly amplifying global warming, though at what degree remains unclear. One of the ways to understand the role of greenhouse gases is to reconstruct the past greenhouse gases recorded in <span class="hlt">ice</span>. In 1997, we drilled an <span class="hlt">ice</span> <span class="hlt">core</span> from 7100 m a.s.l. in the Himalayas to reconstruct methane record. Based on the record, we found seasonal cycles in methane variation. In particular, the methane concentration is high in summer, suggestiing active methane emission from wet land in summer. Based on the seasonal cycle, we can reconstruct the methane fluctuation history in the past 500 years. The most prominent feature of the methane record in the Himalayan <span class="hlt">ice</span> <span class="hlt">core</span> is the abrupt increase since 1850 A.D.. This is closely related to the industrial revolution worldwide. We can also observe sudden decrease in methane concentration during the World War I and World War II. It implies that the industrial revolution has dominated the atmospheric greenhouse gas emission for about 100 years. Besides, the average methane concentration in the Himalayan <span class="hlt">ice</span> <span class="hlt">core</span> is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910017265','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910017265"><span><span class="hlt">Ice</span> <span class="hlt">cores</span> and SeaRISE: What we do (and don't) know</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alley, Richard B.</p> <p>1991-01-01</p> <p><span class="hlt">Ice</span> <span class="hlt">core</span> analyses are needed in SeaRISE to learn what the West Antarctic <span class="hlt">ice</span> sheet and other marine <span class="hlt">ice</span> sheets were like in the past, what climate changes led to their present states, and how they behave. The major results of interest to SeaRISE from previous <span class="hlt">ice</span> <span class="hlt">core</span> analyses in West Antarctic are that the end of the last <span class="hlt">ice</span> age caused temperature and accumulation rate increases in inland regions, leading to <span class="hlt">ice</span> sheet thickening followed by thinning to the present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..792W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..792W"><span>An automated approach for annual layer counting in <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winstrup, M.; Svensson, A.; Rasmussen, S. O.; Winther, O.; Steig, E.; Axelrod, A.</p> <p>2012-04-01</p> <p>The temporal resolution of some <span class="hlt">ice</span> <span class="hlt">cores</span> is sufficient to preserve seasonal information in the <span class="hlt">ice</span> <span class="hlt">core</span> record. In such cases, annual layer counting represents one of the most accurate methods to produce a chronology for the <span class="hlt">core</span>. Yet, manual layer counting is a tedious and sometimes ambiguous job. As reliable layer recognition becomes more difficult, a manual approach increasingly relies on human interpretation of the available data. Thus, much may be gained by an automated and therefore objective approach for annual layer identification in <span class="hlt">ice</span> <span class="hlt">cores</span>. We have developed a novel method for automated annual layer counting in <span class="hlt">ice</span> <span class="hlt">cores</span>, which relies on Bayesian statistics. It uses algorithms from the statistical framework of Hidden Markov Models (HMM), originally developed for use in machine speech recognition. The strength of this layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on purely objective criteria for annual layer identification. With this methodology, it is possible to determine the most likely position of multiple layer boundaries in an entire section of <span class="hlt">ice</span> <span class="hlt">core</span> data at once. It provides a probabilistic uncertainty estimate of the resulting layer count, hence ensuring a proper treatment of ambiguous layer boundaries in the data. Furthermore multiple data series can be incorporated to be used at once, hence allowing for a full multi-parameter annual layer counting method similar to a manual approach. In this study, the automated layer counting algorithm has been applied to data from the NGRIP <span class="hlt">ice</span> <span class="hlt">core</span>, Greenland. The NGRIP <span class="hlt">ice</span> <span class="hlt">core</span> has very high temporal resolution with depth, and hence the potential to be dated by annual layer counting far back in time. In previous studies [Andersen et al., 2006; Svensson et al., 2008], manual layer counting has been carried out back to 60 kyr BP. A comparison between the counted annual layers based on the two approaches will be presented</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070038189','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070038189"><span>Physical and Radiative Characteristics and Long Term Variability of the Okhotsk Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nishio, Fumihiko; Comiso, Josefino C.; Gersten, Robert; Nakayama, Masashige; Ukita, Jinro; Gasiewski, Al; Stanko, Boba; Naoki, Kazuhiro</p> <p>2007-01-01</p> <p>Much of what we know about the large scale characteristics of the Okhotsk Sea <span class="hlt">ice</span> <span class="hlt">cover</span> comes from <span class="hlt">ice</span> concentration maps derived from passive microwave data. To understand what these satellite data represents in a highly divergent and rapidly changing environment like the Okhotsk Sea, we analyzed concurrent satellite, aircraft, and ship data and characterized the sea <span class="hlt">ice</span> <span class="hlt">cover</span> at different scales from meters to tens of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated how the general radiative and physical characteristics of the <span class="hlt">ice</span> <span class="hlt">cover</span> changes as well as quantify the distribution of different <span class="hlt">ice</span> types in the region. <span class="hlt">Ice</span> concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the <span class="hlt">ice</span> <span class="hlt">cover</span>. Analysis of MODIS data reveals that thick <span class="hlt">ice</span> types represents about 37% of the <span class="hlt">ice</span> <span class="hlt">cover</span> indicating that young and new <span class="hlt">ice</span> represent a large fraction of the lice <span class="hlt">cover</span> that averages about 90% <span class="hlt">ice</span> concentration, according to passive microwave data. A rapid decline of -9% and -12 % per decade is observed suggesting warming signals but further studies are required because of aforementioned characteristics and because the length of the <span class="hlt">ice</span> season is decreasing by only 2 to 4 days per decade.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020502','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020502"><span>Isotopic composition of <span class="hlt">ice</span> <span class="hlt">cores</span> and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.</p> <p>1998-01-01</p> <p> early 1960s during peak weapons testing fallout for this isotope was 360 TU. One meltwater sample from the rock glacier was analyzed for 35S with a measured concentration of 5.4??1.0 millibecquerel per liter (mBeq/l). Modern precipitation in the Rocky Mountains contains 35S from 10 to 40 mBeq/L. The ??18O results in meltwater from the Galena Creek rock glacier (-17.40??0.1 to -17.98??0.1 per mil) are similar to results for modern precipitation in the Rocky Mountains. Comparison of these isotopic concentrations from the two glaciers suggest that the meltwater at the Galena Creek site is composed mostly of melted snow and rain that percolates through the rock debris that <span class="hlt">covers</span> the glacier. Additionally, this water from the rock debris is much younger (less than two years) than the reported age of about 2000 years for the subsurface <span class="hlt">ice</span> at the mid-glacier <span class="hlt">coring</span> site. Thus the meltwater from the Galena Creek rock glacier is composed primarily of melted surface snow and rain water rather than melted glacier <span class="hlt">ice</span>, supporting previous estimates of slow ablation rates beneath the surface debris of the rock glacier.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GML....37..515H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GML....37..515H"><span>Evidence for Holocene centennial variability in sea <span class="hlt">ice</span> <span class="hlt">cover</span> based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, Tanja; Stein, Rüdiger; Fahl, Kirsten</p> <p>2017-10-01</p> <p>The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea <span class="hlt">ice</span> acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea <span class="hlt">ice</span> reconstruction from the Kara Sea (<span class="hlt">core</span> BP00-07/7), <span class="hlt">covering</span> the last 8 ka. These biomarker proxies reflect conspicuous short-term sea <span class="hlt">ice</span> variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea <span class="hlt">ice</span> by means of a direct sea <span class="hlt">ice</span> indicator. Prominent peaks of extensive sea <span class="hlt">ice</span> <span class="hlt">cover</span> occurred at 3, 2, 1.3 and 0.3 ka. Spectral analysis of the IP25 record revealed 400- and 950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea <span class="hlt">ice</span> belongs to a complex system that more likely depends on multiple internal forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411229S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411229S"><span>Volcanic synchronisation of the EPICA-DC and TALDICE <span class="hlt">ice</span> <span class="hlt">cores</span> for the last 42 kyr BP</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Severi, M.; Udisti, R.; Becagli, S.; Stenni, B.; Traversi, R.</p> <p>2012-04-01</p> <p>An age scale synchronisation between the Talos Dome and the EPICA Dome C <span class="hlt">ice</span> <span class="hlt">cores</span> was carried on through the identification of several common volcanic signatures for the last 42 kyr. Using this tight stratigraphic link we transferred the EDC age scale to the Talos Dome <span class="hlt">ice</span> <span class="hlt">core</span> producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modeled TALDICE-1 age scale and the new one during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2 corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two <span class="hlt">ice</span> <span class="hlt">cores</span>. At this stage our approach does not allow us unequivocally to find out which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 years appears in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome <span class="hlt">ice</span> <span class="hlt">core</span> a new age scale (<span class="hlt">covering</span> the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.3331N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.3331N"><span>CO2 flux over young and snow-<span class="hlt">covered</span> Arctic pack <span class="hlt">ice</span> in winter and spring</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nomura, Daiki; Granskog, Mats A.; Fransson, Agneta; Chierici, Melissa; Silyakova, Anna; Ohshima, Kay I.; Cohen, Lana; Delille, Bruno; Hudson, Stephen R.; Dieckmann, Gerhard S.</p> <p>2018-06-01</p> <p>Rare CO2 flux measurements from Arctic pack <span class="hlt">ice</span> show that two types of <span class="hlt">ice</span> contribute to the release of CO2 from the <span class="hlt">ice</span> to the atmosphere during winter and spring: young, thin <span class="hlt">ice</span> with a thin layer of snow and older (several weeks), thicker <span class="hlt">ice</span> with thick snow <span class="hlt">cover</span>. Young, thin sea <span class="hlt">ice</span> is characterized by high salinity and high porosity, and snow-<span class="hlt">covered</span> thick <span class="hlt">ice</span> remains relatively warm ( > -7.5 °C) due to the insulating snow <span class="hlt">cover</span> despite air temperatures as low as -40 °C. Therefore, brine volume fractions of these two <span class="hlt">ice</span> types are high enough to provide favorable conditions for gas exchange between sea <span class="hlt">ice</span> and the atmosphere even in mid-winter. Although the potential CO2 flux from sea <span class="hlt">ice</span> decreased due to the presence of the snow, the snow surface is still a CO2 source to the atmosphere for low snow density and thin snow conditions. We found that young sea <span class="hlt">ice</span> that is formed in leads without snow <span class="hlt">cover</span> produces CO2 fluxes an order of magnitude higher than those in snow-<span class="hlt">covered</span> older <span class="hlt">ice</span> (+1.0 ± 0.6 mmol C m-2 day-1 for young <span class="hlt">ice</span> and +0.2 ± 0.2 mmol C m-2 day-1 for older <span class="hlt">ice</span>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MAR.R0002T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MAR.R0002T"><span>Earth's Climate History from Glaciers and <span class="hlt">Ice</span> <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, Lonnie</p> <p>2013-03-01</p> <p>Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in both Polar Regions and from low to mid-latitude, high-elevation <span class="hlt">ice</span> fields. Those <span class="hlt">ice</span> <span class="hlt">core</span> -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. <span class="hlt">Ice</span> <span class="hlt">cores</span> retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these <span class="hlt">ice</span> fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and <span class="hlt">ice</span> caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these <span class="hlt">ice</span> caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B"><span>Integrated approach using multi-platform sensors for enhanced high-resolution daily <span class="hlt">ice</span> <span class="hlt">cover</span> product</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean</p> <p>2016-09-01</p> <p>The ultimate objective of this work is to improve characterization of the <span class="hlt">ice</span> <span class="hlt">cover</span> distribution in the polar areas, to improve sea <span class="hlt">ice</span> mapping and to develop a new automated real-time high spatial resolution multi-sensor <span class="hlt">ice</span> extent and <span class="hlt">ice</span> edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea <span class="hlt">ice</span> extent datasets, analysts at the National <span class="hlt">Ice</span> Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated <span class="hlt">ice</span> identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the <span class="hlt">ice</span> <span class="hlt">cover</span> and rough <span class="hlt">ice</span>-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea <span class="hlt">ice</span> <span class="hlt">cover</span> from imaging instruments VIIRS and MODIS, including regions <span class="hlt">covered</span> by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify <span class="hlt">ice</span> <span class="hlt">cover</span> underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea <span class="hlt">ice</span> maps and thus more accurate and detailed delineation of the <span class="hlt">ice</span> edge. We have also developed a web-based monitoring system that allows comparison of our daily <span class="hlt">ice</span> extent product with the several other independent operational daily products.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3937D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3937D"><span>High Resolution Continuous Flow Analysis System for Polar <span class="hlt">Ice</span> <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa</p> <p>2014-05-01</p> <p>In the last decades, Continuous Flow Analysis (CFA) technology for <span class="hlt">ice</span> <span class="hlt">core</span> analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an <span class="hlt">ice-core</span> sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an <span class="hlt">ice</span> <span class="hlt">core</span> at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian <span class="hlt">Ice</span> Drilling (NEEM) <span class="hlt">ice</span> <span class="hlt">core</span>. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817868T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817868T"><span>Life under <span class="hlt">ice</span>: Investigating microbial-related biogeochemical cycles in the seasonally-<span class="hlt">covered</span> Great Lake Onego, Russia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Camille; Ariztegui, Daniel; Victor, Frossard; Emilie, Lyautey; Marie-Elodie, Perga; Life Under Ice Scientific Team</p> <p>2016-04-01</p> <p>The Great European lakes Ladoga and Onego are important resources for Russia in terms of drinking water, energy, fishing and leisure. Because their northern location (North of Saint Petersburgh), these lakes are usually <span class="hlt">ice-covered</span> during winter. Due to logistical reasons, their study has thus been limited to the <span class="hlt">ice</span>-free periods, and very few data are available for the winter season. As a matter of fact, comprehension of large lakes behaviour in winter is very limited as compared to the knowledge available from small subpolar lakes or perennially <span class="hlt">ice-covered</span> polar lakes. To tackle this issue, an international consortium of scientists has gathered around the « life under <span class="hlt">ice</span> » project to investigate physical, chemical and biogeochemical changes during winter in Lake Onego. Our team has mainly focused on the characterization and quantification of biological processes, from the water column to the sediment, with a special focus on methane cycling and trophic interactions. A first « on-<span class="hlt">ice</span> » campaign in March 2015 allowed the sampling of a 120 cm sedimentary <span class="hlt">core</span> and the collection of water samples at multiple depths. The data resulting from this expedition will be correlated to physical and chemical parameters collected simultaneously. A rapid biological activity test was applied immediately after <span class="hlt">coring</span> in order to test for microbial activity in the sediments. In situ adenosine-5'-triphosphate (ATP) measurements were carried out in the <span class="hlt">core</span> and taken as an indication of living organisms within the sediments. The presence of ATP is a marker molecule for metabolically active cells, since it is not known to form abiotically. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) were extracted from these samples, and quantified. Quantitative polymerase chain reactions (PCR) were performed on archaeal and bacterial 16S rRNA genes used to reconstruct phylogenies, as well as on their transcripts. Moreover, functional genes involved in the methane and nitrogen cycles</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70182747','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70182747"><span>An automated approach for mapping persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span> over high latitude regions</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Selkowitz, David J.; Forster, Richard R.</p> <p>2016-01-01</p> <p>We developed an automated approach for mapping persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span> (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and <span class="hlt">ice</span> <span class="hlt">covered</span> mountainous environments. Pixels from individual Landsat scenes were classified as snow/<span class="hlt">ice</span> <span class="hlt">covered</span> or snow/<span class="hlt">ice</span> free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/<span class="hlt">ice</span> <span class="hlt">covered</span> over a five-year period were classified as persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span>. The same NDSI and ratio of snow/<span class="hlt">ice-covered</span> days to total days thresholds applied consistently across eight study regions resulted in persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span> maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/<span class="hlt">ice</span> <span class="hlt">cover</span> class) of 0.92, a mean recall (producer’s accuracy of the snow/<span class="hlt">ice</span> <span class="hlt">cover</span> class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-<span class="hlt">covered</span> glacier <span class="hlt">ice</span>, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span>. In the short term, automated PISC maps can be used to rapidly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001453"><span>The 1500m South Pole <span class="hlt">Ice</span> <span class="hlt">Core</span>: Recovering a 40 Ka Environmental Record</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Casey, Kimberly Ann; Neumann, Thomas Allen; Fudge, T. J.; Neumann, T. A.; Steig, E. J.; Cavitte, M. G. P.; Blankenship, D. D.</p> <p>2014-01-01</p> <p>Supported by the US National Science Foundation, a new 1500 m, approximately 40 ka old <span class="hlt">ice</span> <span class="hlt">core</span> will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US Intermediate Depth Drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of <span class="hlt">ice</span> chemistry and trace atmospheric gases. The South Pole <span class="hlt">ice</span> <span class="hlt">core</span> will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic <span class="hlt">ice</span> sheet. The <span class="hlt">ice</span> at South Pole flows at approximately 10m a(exp-1) and the South Pole <span class="hlt">ice-core</span> site is a significant distance from an <span class="hlt">ice</span> divide. Therefore, <span class="hlt">ice</span> recovered at depth originated progressively farther upstream of the <span class="hlt">coring</span> site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past approximately 50 years or upper 15 m. Depth-age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500m near the <span class="hlt">ice-core</span> drill site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23J..05A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23J..05A"><span>Reduced Duration of <span class="hlt">Ice</span> <span class="hlt">Cover</span> in Swedish Lakes and Rivers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>AghaKouchak, A.; Hallerback, S. A. M.; Stensen, K.; David, G.; Persson, M.</p> <p>2016-12-01</p> <p>The worlds freshwater systems are one of the most altered ecosystems on earth. Climate change introduces additional stresses on such systems, and this study presents an example of such change in an investigation of <span class="hlt">ice</span> <span class="hlt">cover</span> duration in Swedish lakes and rivers. In situ observations from over 750 lakes and rivers in Sweden were analyzed, with some records dating back to the beginning of the 18th century. Results show that <span class="hlt">ice</span> duration significantly decreased over the last century. Change in <span class="hlt">ice</span> duration is affected by later freeze as well as (more dominantly) earlier breakup dates. Additionally, since the late 1980's there has been an increase of extreme events, meaning years with extremely short duration of <span class="hlt">ice</span> <span class="hlt">cover</span>. The affect of temperature on the system was also examined. Using 113 years of temperature data, we empirically show how temperature changes affect the <span class="hlt">ice</span> duration in lakes at different latitudes as well as dependent on lake area, volume and depth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160004215&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160004215&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea"><span>How Will Sea <span class="hlt">Ice</span> Loss Affect the Greenland <span class="hlt">Ice</span> Sheet? On the Puzzling Features of Greenland <span class="hlt">Ice-Core</span> Isotopic Composition</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.</p> <p>2016-01-01</p> <p>The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea <span class="hlt">ice</span>, although the underlying mechanisms are still unclear. The modern demise of Arctic sea <span class="hlt">ice</span> may, in turn, instigate abrupt changes on the Greenland <span class="hlt">Ice</span> Sheet. The Arctic Sea <span class="hlt">Ice</span> and Greenland <span class="hlt">Ice</span> Sheet Sensitivity (<span class="hlt">Ice</span>2<span class="hlt">Ice</span> Chttps://<span class="hlt">ice</span>2<span class="hlt">ice</span>.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in <span class="hlt">ice</span> <span class="hlt">cores</span>. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland <span class="hlt">Ice</span> Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in <span class="hlt">ice</span>. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in <span class="hlt">ice</span>. This feature complicates</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSPTA.37550347W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSPTA.37550347W"><span>Physical analysis of an Antarctic <span class="hlt">ice</span> <span class="hlt">core</span>-towards an integration of micro- and macrodynamics of polar <span class="hlt">ice</span>*</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H.; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas</p> <p>2017-02-01</p> <p>Microstructures from deep <span class="hlt">ice</span> <span class="hlt">cores</span> reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. <span class="hlt">Ice</span> <span class="hlt">core</span> parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep <span class="hlt">ice</span> <span class="hlt">core</span> drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML <span class="hlt">ice</span> <span class="hlt">core</span> drilling site (European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica in DML). The results suggest a division of the <span class="hlt">core</span> into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020155','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020155"><span>Diatoms in sediments of perennially <span class="hlt">ice-covered</span> Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.</p> <p>1997-01-01</p> <p>Diatom assemblages in surficial sediments, sediment <span class="hlt">cores</span>, sediment traps, and inflowing streams of perennially <span class="hlt">ice-covered</span> Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the <span class="hlt">ice</span> surface and are deposited episodically on the lake bottom. Benthic microbial mats are <span class="hlt">covered</span> in situ by the coarse episodic deposits, and the new surfaces are recolonized. <span class="hlt">Ice</span> <span class="hlt">cover</span> prevents wind-induced mixing, creating the unique depositional environment in which sediment <span class="hlt">cores</span> record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment <span class="hlt">core</span> (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment <span class="hlt">core</span> contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of <span class="hlt">core</span> contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.2501P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.2501P"><span><span class="hlt">Ice</span> <span class="hlt">core</span> evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Philippe, Morgane; Tison, Jean-Louis; Fjøsne, Karen; Hubbard, Bryn; Kjær, Helle A.; Lenaerts, Jan T. M.; Drews, Reinhard; Sheldon, Simon G.; De Bondt, Kevin; Claeys, Philippe; Pattyn, Frank</p> <p>2016-10-01</p> <p><span class="hlt">Ice</span> <span class="hlt">cores</span> provide temporal records of surface mass balance (SMB). Coastal areas of Antarctica have relatively high and variable SMB, but are under-represented in records spanning more than 100 years. Here we present SMB reconstruction from a 120 m-long <span class="hlt">ice</span> <span class="hlt">core</span> drilled in 2012 on the Derwael <span class="hlt">Ice</span> Rise, coastal Dronning Maud Land, East Antarctica. Water stable isotope (δ18O and δD) stratigraphy is supplemented by discontinuous major ion profiles and continuous electrical conductivity measurements. The base of the <span class="hlt">ice</span> <span class="hlt">core</span> is dated to AD 1759 ± 16, providing a climate proxy for the past ˜ 250 years. The <span class="hlt">core</span>'s annual layer thickness history is combined with its gravimetric density profile to reconstruct the site's SMB history, corrected for the influence of <span class="hlt">ice</span> deformation. The mean SMB for the <span class="hlt">core</span>'s entire history is 0.47 ± 0.02 m water equivalent (w.e.) a-1. The time series of reconstructed annual SMB shows high variability, but a general increase beginning in the 20th century. This increase is particularly marked during the last 50 years (1962-2011), which yields mean SMB of 0.61 ± 0.01 m w.e. a-1. This trend is compared with other reported SMB data in Antarctica, generally showing a high spatial variability. Output of the fully coupled Community Earth System Model (CESM) suggests that, although atmospheric circulation is the main factor influencing SMB, variability in sea surface temperatures and sea <span class="hlt">ice</span> <span class="hlt">cover</span> in the precipitation source region also explain part of the variability in SMB. Local snow redistribution can also influence interannual variability but is unlikely to influence long-term trends significantly. This is the first record from a coastal <span class="hlt">ice</span> <span class="hlt">core</span> in East Antarctica to show an increase in SMB beginning in the early 20th century and particularly marked during the last 50 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038174&hterms=dating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddating','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038174&hterms=dating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddating"><span>Visual-Stratigraphic Dating of the GISP2 <span class="hlt">Ice</span> <span class="hlt">Core</span>: Basis, Reproducibility, and Application</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20000038174'); toggleEditAbsImage('author_20000038174_show'); toggleEditAbsImage('author_20000038174_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20000038174_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20000038174_hide"></p> <p>1997-01-01</p> <p>Annual layers are visible in the Greenland <span class="hlt">Ice</span> Sheet Project 2 <span class="hlt">ice</span> <span class="hlt">core</span> from central Greenland, allowing rapid dating of the <span class="hlt">core</span>. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the <span class="hlt">ice</span> correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene <span class="hlt">ice</span>. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan <span class="hlt">ice</span>-age <span class="hlt">ice</span> and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for <span class="hlt">ice</span> older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle <span class="hlt">ice</span>" or many other <span class="hlt">core</span>-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the <span class="hlt">core</span> by dedicated observers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JGR...10226367A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JGR...10226367A"><span>Visual-stratigraphic dating of the GISP2 <span class="hlt">ice</span> <span class="hlt">core</span>: Basis, reproducibility, and application</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; Spinelli, G.; Elder, B.</p> <p>1997-11-01</p> <p>Annual layers are visible in the Greenland <span class="hlt">Ice</span> Sheet Project 2 <span class="hlt">ice</span> <span class="hlt">core</span> from central Greenland, allowing rapid dating of the <span class="hlt">core</span>. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the <span class="hlt">ice</span> correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene <span class="hlt">ice</span>. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan <span class="hlt">ice</span>-age <span class="hlt">ice</span> and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for <span class="hlt">ice</span> older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle <span class="hlt">ice</span>" or many other <span class="hlt">core</span>-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the <span class="hlt">core</span> by dedicated observers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....10735B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....10735B"><span>Eemian and penultimate transition reflected in the chemical <span class="hlt">ice</span> <span class="hlt">core</span> record from Dome C</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bigler, M.; Lambert, F.; Stauffer, B.; Röthlisberger, R.; Wolff, E. W.</p> <p>2003-04-01</p> <p>Within the scope of the European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica (EPICA) chemical analyses have been done along the Dome C <span class="hlt">ice</span> <span class="hlt">core</span>. Among other substances, Ca2+, dust, Na+, NH_4{}+, NO_3{}- and electrolytical melt water conductivity have been measured at 1 cm resolution with the Bern Continuous Flow Analysis (CFA) system. Here we present new data from the Eemian and the preceding transition <span class="hlt">covering</span> an age interval from approximately 180 kyr to 110 kyr before present. This sequence is compared with the Holocene and the last transition, mainly with emphasis on terrestrial and marine tracers. Concentration levels for the two periods compare quite well, but the general shape differs considerably. The changes in dust input to Dome C seemed to have been much more abrupt during the penultimate transition than during the last transition (18 to 15 kyr BP). This may reflect different conditions and/or processes in the dust source region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43J..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43J..05S"><span>Integrating Observations and Models to Better Understand a Changing Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, J. C.</p> <p>2017-12-01</p> <p>TThe loss of the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> has captured the world's attention. While much attention has been paid to the summer <span class="hlt">ice</span> loss, changes are not limited to summer. The last few winters have seen record low sea <span class="hlt">ice</span> extents, with 2017 marking the 3rdyear in a row with a new record low for the winter maximum extent. More surprising is the number of consecutive months between January 2016 through April 2017 with <span class="hlt">ice</span> extent anomalies more than 2 standard deviations below the 1981-2010 mean. Additionally, October 2016 through April 2017 saw 7 consecutive months with record low extents, something that had not happened before in the last 4 decades of satellite observations. As larger parts of the Arctic Ocean become <span class="hlt">ice</span>-free in summer, regional seas gradually transition from a perennial to a seasonal <span class="hlt">ice</span> <span class="hlt">cover</span>. The Barents Sea is already only seasonally <span class="hlt">ice</span> <span class="hlt">covered</span>, whereas the Kara Sea has recently lost most of its summer <span class="hlt">ice</span> and is thereby starting to become a seasonally <span class="hlt">ice</span> <span class="hlt">covered</span> region. These changes serve as harbinger for what's to come for other Arctic seas. Given the rapid pace of change, there is an urgent need to improve our understanding of the drivers behind Arctic sea <span class="hlt">ice</span> loss, the implications of this <span class="hlt">ice</span> loss and to predict future changes to better inform policy makers. Climate models play a fundamental role in helping us synthesize the complex elements of the Arctic sea <span class="hlt">ice</span> system yet generally fail to simulate key features of the sea <span class="hlt">ice</span> system and the pace of sea <span class="hlt">ice</span> loss. Nevertheless, modeling advances continue to provide better means of diagnosing sea <span class="hlt">ice</span> change, and new insights are likely to be gained with model output from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The CMIP6 Sea-<span class="hlt">Ice</span> Model Intercomparison Project (SIMIP) aim is to better understand biases and errors in sea <span class="hlt">ice</span> simulations so that we can improve our understanding of the likely future evolution of the sea <span class="hlt">ice</span> <span class="hlt">cover</span> and its impacts on global climate. To</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394913','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1394913"><span>Historical Isotopic Temperature Record from the Vostok <span class="hlt">Ice</span> <span class="hlt">Core</span> (420,000 years BP-present)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Petit, J. R. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Raynaud, D. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Lorius, C. [Laboratoire de Glaciogie et Geophysique de l'Environnement; Jouzel, J. [Laboratoire des Sciences du Climat et de l'Environnement; Delaygue, G. [Laboratoire des Sciences du Climat et de l'Environnement; Barkov, N. I. [Arctic and Antarctic Research Inst. (AARI), St. Petersburg (Russian Federation); Kotlyakov, V. M. [Institute of Geography, Russia</p> <p>2000-01-01</p> <p>Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic ratio (18O or δD) of precipitation, it is possible to derive <span class="hlt">ice-core</span> climate records. The record presented by Jouzel et al. (1987) was the first <span class="hlt">ice</span> <span class="hlt">core</span> record to span a full glacial-interglacial cycle. That record was based on an <span class="hlt">ice</span> <span class="hlt">core</span> drilled at the Russian Vostok station in central east Antarctica. The 2083-m <span class="hlt">ice</span> <span class="hlt">core</span> was obtained during a series of drillings in the early 1970s and 1980s and was the result of collaboration between French and former-Soviet scientists. Drilling continued at Vostok and was completed in January 1998, reaching a depth of 3623 m, the deepest <span class="hlt">ice</span> <span class="hlt">core</span> ever recovered (Petit et al. 1997, 1999). The resulting <span class="hlt">core</span> allows the <span class="hlt">ice</span> <span class="hlt">core</span> record of climate properties at Vostok to be extended to ~420 kyr BP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CliPa...8..509S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CliPa...8..509S"><span>Volcanic synchronisation of the EPICA-DC and TALDICE <span class="hlt">ice</span> <span class="hlt">cores</span> for the last 42 kyr BP</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Severi, M.; Udisti, R.; Becagli, S.; Stenni, B.; Traversi, R.</p> <p>2012-03-01</p> <p>The age scale synchronisation between the Talos Dome and the EPICA Dome C <span class="hlt">ice</span> <span class="hlt">cores</span> was carried on through the identification of several common volcanic signatures. This paper describes the rigorous method, using the signature of volcanic sulphate, which was employed for the last 42 kyr of the record. Using this tight stratigraphic link, we transferred the EDC age scale to the Talos Dome <span class="hlt">ice</span> <span class="hlt">core</span>, producing a new age scale for the last 12 kyr. We estimated the discrepancies between the modelled TALDICE-1 age scale and the new scale during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. Except for a very few cases, R ranges between 0.8 and 1.2, corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two <span class="hlt">ice</span> <span class="hlt">cores</span>. At this stage our approach does not allow us to unequivocally identify which of the models is affected by errors, but, taking into account only the historically known volcanic events, we found that discrepancies up to 200 yr appear in the last two millennia in the TALDICE-1 model, while our new age scale shows a much better agreement with the volcanic absolute horizons. Thus, we propose for the Talos Dome <span class="hlt">ice</span> <span class="hlt">core</span> a new age scale (<span class="hlt">covering</span> the whole Holocene) obtained by a direct transfer, via our stratigraphic link, from the EDC modelled age scale by Lemieux-Dudon et al. (2010).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840066094&hterms=growth+pole&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgrowth%2Bpole','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840066094&hterms=growth+pole&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgrowth%2Bpole"><span>Concentration gradients and growth/decay characteristics of the seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, J. C.; Zwally, H. J.</p> <p>1984-01-01</p> <p>The characteristics of sea <span class="hlt">ice</span> <span class="hlt">cover</span> in both hemispheres are analyzed and compared. The areal sea <span class="hlt">ice</span> <span class="hlt">cover</span> in the entire polar regions and in various geographical sectors is quantified for various concentration intervals and is analyzed in a consistent manner. Radial profiles of brightness temperatures from the poles across the marginal zone are also evaluated at different transects along regular longitudinal intervals during different times of the year. These radial profiles provide statistical information about the <span class="hlt">ice</span> concentration gradients and the rates at which the <span class="hlt">ice</span> edge advances or retreats during a complete annual cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1203F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1203F"><span>Fragmentation and melting of the seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feltham, D. L.; Bateson, A.; Schroeder, D.; Ridley, J. K.; Aksenov, Y.</p> <p>2017-12-01</p> <p>Recent years have seen a rapid reduction in the summer extent of Arctic sea <span class="hlt">ice</span>. This trend has implications for navigation, oil exploration, wildlife, and local communities. Furthermore the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> impacts the exchange of heat and momentum between the ocean and atmosphere with significant teleconnections across the climate system, particularly mid to low latitudes in the Northern Hemisphere. The treatment of melting and break-up processes of the seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span> within climate models is currently limited. In particular floes are assumed to have a uniform size which does not evolve with time. Observations suggest however that floe sizes can be modelled as truncated power law distributions, with different exponents for smaller and larger floes. This study aims to examine factors controlling the floe size distribution in the seasonal and marginal <span class="hlt">ice</span> zone. This includes lateral melting, wave induced break-up of floes, and the feedback between floe size and the mixed ocean layer. These results are then used to quantify the proximate mechanisms of seasonal sea <span class="hlt">ice</span> reduction in a sea ice—ocean mixed layer model. Observations are used to assess and calibrate the model. The impacts of introducing these processes to the model will be discussed and the preliminary results of sensitivity and feedback studies will also be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28025296','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28025296"><span>Physical analysis of an Antarctic <span class="hlt">ice</span> <span class="hlt">core</span>-towards an integration of micro- and macrodynamics of polar <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas</p> <p>2017-02-13</p> <p>Microstructures from deep <span class="hlt">ice</span> <span class="hlt">cores</span> reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. <span class="hlt">Ice</span> <span class="hlt">core</span> parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep <span class="hlt">ice</span> <span class="hlt">core</span> drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML <span class="hlt">ice</span> <span class="hlt">core</span> drilling site (European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica in DML). The results suggest a division of the <span class="hlt">core</span> into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.C41C0992L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.C41C0992L"><span>The Role of Laboratory-Based Studies of the Physical and Biological Properties of Sea <span class="hlt">Ice</span> in Supporting the Observation and Modeling of <span class="hlt">Ice</span> <span class="hlt">Covered</span> Seas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Light, B.; Krembs, C.</p> <p>2003-12-01</p> <p>Laboratory-based studies of the physical and biological properties of sea <span class="hlt">ice</span> are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on sea <span class="hlt">ice</span> and the structure of <span class="hlt">ice</span>-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between sea <span class="hlt">ice</span> and the atmosphere and sea <span class="hlt">ice</span> and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of sea <span class="hlt">ice</span> under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural sea <span class="hlt">ice</span> <span class="hlt">core</span> samples and laboratory-grown <span class="hlt">ice</span>. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of sea <span class="hlt">ice</span> microstructure to changes in temperature, assessment of the relationships between <span class="hlt">ice</span> structure and the partitioning of solar radiation by first-year sea <span class="hlt">ice</span> <span class="hlt">covers</span>, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC11F..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC11F..01T"><span>Climate Changes Documented in <span class="hlt">Ice</span> <span class="hlt">Core</span> Records from Third Pole Glaciers, with Emphasis on the Guliya <span class="hlt">Ice</span> Cap in the Western Kunlun Mountains over the Last 100 Years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, L. G.; Yao, T.; Beaudon, E.; Mosley-Thompson, E.; Davis, M. E.; Kenny, D. V.; Lin, P. N.</p> <p>2016-12-01</p> <p>The Third Pole (TP) is a rapidly warming region containing 100,000 km2 of <span class="hlt">ice</span> <span class="hlt">cover</span> that collectively holds one of Earth's largest stores of freshwater that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming in the region, its impact on the glaciers and subsequently on future water resources is urgently needed to guide mitigation and adaptation policies. <span class="hlt">Ice</span> <span class="hlt">core</span> histories collected over the last three decades across the TP demonstrate its climatic complexity and diversity. Here we present preliminary results from the flagship project of the Third Pole Environment Program, the 2015 Sino-American cooperative <span class="hlt">ice</span> <span class="hlt">core</span> drilling of the Guliya <span class="hlt">ice</span> cap in the Kunlun Mountains in the western TP near the northern limit of the region influenced by the southwest monsoon. Three <span class="hlt">ice</span> <span class="hlt">cores</span>, each 51 meters in length, were recovered from the summit ( 6700 masl) while two deeper <span class="hlt">cores</span>, one to bedrock ( 310 meters), were recovered from the plateau ( 6200 masl). Across the <span class="hlt">ice</span> cap the net balance (accumulation) has increased annually by 2.3 cm of water equivalent from 1963-1992 to 1992-2015, and average oxygen isotopic ratios (δ18O) have enriched by 2‰. This contrasts with the recent ablation on the Naimona'nyi glacier located 540 km south of Guliya in the western Himalaya. Borehole temperatures in 2015 on the Guliya plateau have warmed substantially in the upper 30 meters of the <span class="hlt">ice</span> compared to temperatures in 1992, when the first deep-drilling of the Guliya plateau was conducted. Compared with glaciers in the northern and western TP, the Himalayan <span class="hlt">ice</span> fields are more sensitive to both fluctuations in the South Asian Monsoon and rising temperatures in the region. We examine the climatic changes of the last century preserved in <span class="hlt">ice</span> <span class="hlt">core</span> records from sites throughout the TP and compare them with those reconstructed for earlier warm epochs, such as the Medieval Climate Anomaly ( 950-1250 AD), the early Holocene "Hypsithermal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013QSRv...79..122D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013QSRv...79..122D"><span>Reconstructing past sea <span class="hlt">ice</span> <span class="hlt">cover</span> of the Northern Hemisphere from dinocyst assemblages: status of the approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Vernal, Anne; Rochon, André; Fréchette, Bianca; Henry, Maryse; Radi, Taoufik; Solignac, Sandrine</p> <p>2013-11-01</p> <p>Dinocysts occur in a wide range of environmental conditions, including polar areas. We review here their use for the reconstruction of paleo sea <span class="hlt">ice</span> <span class="hlt">cover</span> in such environments. In the Arctic Ocean and subarctic seas characterized by dense sea <span class="hlt">ice</span> <span class="hlt">cover</span>, Islandinium minutum, Islandinium? cezare, Echinidinium karaense, Polykrikos sp. var. Arctic, Spiniferites elongatus-frigidus and Impagidinium pallidum are common and often occur with more cosmopolitan taxa such as Operculodinium centrocarpum sensu Wall & Dale, cyst of Pentapharsodinium dalei and Brigantedinium spp. Canonical correspondence analyses conducted on dinocyst assemblages illustrate relationships with sea surface parameters such as salinity, temperature, and sea <span class="hlt">ice</span> <span class="hlt">cover</span>. The application of the modern analogue technique permits quantitative reconstruction of past sea <span class="hlt">ice</span> <span class="hlt">cover</span>, which is expressed in terms of seasonal extent of sea <span class="hlt">ice</span> <span class="hlt">cover</span> (months per year with more than 50% of sea <span class="hlt">ice</span> concentration) or mean annual sea <span class="hlt">ice</span> concentration (in tenths). The accuracy of reconstructions or root mean square error of prediction (RMSEP) is ±1.1 over 10, which corresponds to perennial sea <span class="hlt">ice</span>. Such an error is close to the interannual variability (standard deviation) of observed sea <span class="hlt">ice</span> <span class="hlt">cover</span>. Mismatch between the time interval of instrumental data used as reference (1953-2000) and the time interval represented by dinocyst populations in surface sediment samples, which may <span class="hlt">cover</span> decades if not centuries, is another source of error. Despite uncertainties, dinocyst assemblages are useful for making quantitative reconstruction of seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11E..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11E..05F"><span>Eastern Ross <span class="hlt">Ice</span> Sheet Deglacial History inferred from the Roosevelt Island <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>The Ross <span class="hlt">Ice</span> Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross <span class="hlt">Ice</span> Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross <span class="hlt">Ice</span> Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old <span class="hlt">ice</span>, can be used to infer the establishment of grounded <span class="hlt">ice</span> and be used to infer past <span class="hlt">ice</span> thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an <span class="hlt">ice</span> <span class="hlt">core</span> to bedrock. Using <span class="hlt">ice</span>-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer <span class="hlt">ice</span> thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active <span class="hlt">ice</span> streams throughout the Ross <span class="hlt">Ice</span> Sheet advance during the LGM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41A0425S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41A0425S"><span>Precipitation Impacts of a Shrinking Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.</p> <p>2009-12-01</p> <p>Since the beginning of the modern satellite record in October 1978, the extent of Arctic sea <span class="hlt">ice</span> has declined in all months, with the strongest downward trend at the end of the melt season in September. Recently the September trends have accelerated. Through 2001, the extent of September sea <span class="hlt">ice</span> was decreasing at a rate of -7 per cent per decade. By 2006, the rate of decrease had risen to -8.9 per cent per decade. In September 2007, Arctic sea <span class="hlt">ice</span> extent fell to its lowest level recorded, 23 per cent below the previous record set in 2005, boosting the downward trend to -10.7 per cent per decade. <span class="hlt">Ice</span> extent in September 2008 was the second lowest in the satellite record. Including 2008, the trend in September sea <span class="hlt">ice</span> extent stands at -11.8 percent per decade. Compared to the 1970s, September <span class="hlt">ice</span> extent has retreated by 40 per cent. Summer 2009 looks to repeat the anomalously low <span class="hlt">ice</span> conditions that characterized the last couple of years. Scientists have long expected that a shrinking Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> will lead to strong warming of the overlying atmosphere, and as a result, affect atmospheric circulation and precipitation patterns. Recent results show clear evidence of Arctic warming linked to declining <span class="hlt">ice</span> extent, yet observational evidence for responses of atmospheric circulation and precipitation patterns is just beginning to emerge. Rising air temperatures should lead to an increase in the moisture holding capacity of the atmosphere, with the potential to impact autumn precipitation. Although climate models predict a hemispheric wide decrease in snow <span class="hlt">cover</span> as atmospheric concentrations of GHGs increase, increased precipitation, particular in autumn and winter may result as the Arctic transitions towards a seasonally <span class="hlt">ice</span> free state. In this study we use atmospheric reanalysis data and a cyclone tracking algorithm to investigate the influence of recent extreme <span class="hlt">ice</span> loss years on precipitation patterns in the Arctic and the Northern Hemisphere. Results show</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187343','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187343"><span>Physical properties of the WAIS Divide <span class="hlt">ice</span> <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.</p> <p>2014-01-01</p> <p>The WAIS (West Antarctic <span class="hlt">Ice</span> Sheet) Divide deep <span class="hlt">ice</span> <span class="hlt">core</span> was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the <span class="hlt">ice</span> column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this <span class="hlt">core</span> is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly <span class="hlt">ice</span>. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest <span class="hlt">ice</span>. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP51E..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP51E..03B"><span>High-resolution Sulfur Isotopes in <span class="hlt">Ice</span> <span class="hlt">Cores</span> Identify Large Stratospheric Eruptions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burke, A.; Sigl, M.; Moore, K.; Nita, D. C.; Adkins, J. F.; Paris, G.; McConnell, J.</p> <p>2016-12-01</p> <p>The record of the volcanic forcing of climate over the past 2500 years is reconstructed primarily from sulfate concentrations in <span class="hlt">ice</span> <span class="hlt">cores</span>. Of particular interest are stratospheric eruptions, as these afford sulfate aerosols the longest residence time and largest dispersion in the atmosphere, and thus the greatest impact on radiative forcing. Identification of stratospheric eruptions currently relies on the successful matching of the same volcanic sulfate peak in <span class="hlt">ice</span> <span class="hlt">cores</span> from both the Northern and Southern hemispheres (a "bipolar event"). These are interpreted to reflect the global distribution of sulfur aerosols by the stratospheric winds. Despite its recent success, this method relies on precise and accurate dating of <span class="hlt">ice</span> <span class="hlt">cores</span>, in order to distinguish between a true `bipolar event' and two separate eruptions that occurred in close temporal succession. Sulfur isotopes can been used to distinguish between these two scenarios since stratospheric sulfur aerosols are exposed to UV radiation which imparts a mass independent fractionation (Baroni et al., 2007). Mass independent fractionation of sulfate in <span class="hlt">ice</span> <span class="hlt">cores</span> thus offers a novel method of fingerprinting stratospheric eruptions, and thus refining the historic record of explosive volcanism and its forcing of climate. Here we present new high-resolution (sub-annual) sulfur isotope data from the Tunu <span class="hlt">Ice</span> <span class="hlt">core</span> in Greenland over seven eruptions. Sulfur isotopes were measured by MC-ICP-MS, which substantially reduces sample size requirements and allows high temporal resolution from a single <span class="hlt">ice</span> <span class="hlt">core</span>. We demonstrate the efficacy of the method on recent, well-known eruptions (including Pinatubo and Katmai/Novarupta), and then apply it to unidentified sulfate peaks, allowing us to identify new stratospheric eruptions. Baroni, M., Thiemens, M. H., Delmas, R. J., & Savarino, J. (2007). Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science, 315(5808), 84-87. http://doi.org/10</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B13D0226D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B13D0226D"><span>In-lake carbon dioxide concentration patterns in four distinct phases in relation to <span class="hlt">ice</span> <span class="hlt">cover</span> dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.</p> <p>2014-12-01</p> <p>Global carbon dioxide (CO2) emission estimates from inland waters include emissions at <span class="hlt">ice</span> melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below <span class="hlt">ice</span> and potential emissions into the atmosphere at <span class="hlt">ice</span> melt we combined continuous CO2 concentrations with spatial CO2 sampling in an <span class="hlt">ice-covered</span> small boreal lake. From early <span class="hlt">ice</span> <span class="hlt">cover</span> to <span class="hlt">ice</span> melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below <span class="hlt">ice</span>, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below <span class="hlt">ice</span>, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As <span class="hlt">ice</span> melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during <span class="hlt">ice</span> <span class="hlt">cover</span> left the lake at <span class="hlt">ice</span> melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at <span class="hlt">ice</span> melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under <span class="hlt">ice</span> and at <span class="hlt">ice</span> melt all CO2 accumulated during <span class="hlt">ice</span> <span class="hlt">cover</span> period leaves the lake again, present estimates may overestimate CO2 emissions from small <span class="hlt">ice</span> <span class="hlt">covered</span> lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small <span class="hlt">ice</span> <span class="hlt">covered</span> lakes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237537','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237537"><span>Spatial Distribution of Trends and Seasonality in the Hemispheric Sea <span class="hlt">Ice</span> <span class="hlt">Covers</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Parkinson, C. L.; Cavalieri, D. J.; Cosmiso, J. C.; Zwally, H. J.</p> <p>1998-01-01</p> <p>We extend earlier analyses of a 9-year sea <span class="hlt">ice</span> data set that described the local seasonal and trend variations in each of the hemispheric sea <span class="hlt">ice</span> <span class="hlt">covers</span> to the recently merged 18.2-year sea <span class="hlt">ice</span> record from four satellite instruments. The seasonal cycle characteristics remain essentially the same as for the shorter time series, but the local trends are markedly different, in some cases reversing sign. The sign reversal reflects the lack of a consistent long-term trend and could be the result of localized long-term oscillations in the hemispheric sea <span class="hlt">ice</span> <span class="hlt">covers</span>. By combining the separate hemispheric sea <span class="hlt">ice</span> records into a global one, we have shown that there are statistically significant net decreases in the sea <span class="hlt">ice</span> coverage on a global scale. The change in the global sea <span class="hlt">ice</span> extent, is -0.01 +/- 0.003 x 10(exp 6) sq km per decade. The decrease in the areal coverage of the sea <span class="hlt">ice</span> is only slightly smaller, so that the difference in the two, the open water within the packs, has no statistically significant change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43D2912W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43D2912W"><span>Detection of Organic Matter in Greenland <span class="hlt">Ice</span> <span class="hlt">Cores</span> by Deep-UV Fluorescence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willis, M.; Malaska, M.; Wanger, G.; Bhartia, R.; Eshelman, E.; Abbey, W.; Priscu, J. C.</p> <p>2017-12-01</p> <p>The Greenland <span class="hlt">Ice</span> Sheet is an Earthly analog for icy ocean worlds in the outer Solar System. Future missions to such worlds including Europa, Enceladus, and Titan may potentially include spectroscopic instrumentation to examine the surface/subsurface. The primary goal of our research is to test deep UV/Raman systems for in the situ detection and localization of organics in <span class="hlt">ice</span>. As part of this effort we used a deep-UV fluorescence instrument able to detect naturally fluorescent biological materials such as aromatic molecules found in proteins and whole cells. We correlated these data with more traditional downstream analyses of organic material in natural <span class="hlt">ices</span>. Supraglacial <span class="hlt">ice</span> <span class="hlt">cores</span> (2-4 m) were collected from several sites on the southwest outlet of the Greenland <span class="hlt">Ice</span> Sheet using a 14-cm fluid-free mechanical <span class="hlt">coring</span> system. Repeat spectral mapping data were initially collected longitudinally on uncut <span class="hlt">core</span> sections. <span class="hlt">Cores</span> were then cut into 2 cm thick sections along the longitudinal axis, slowly melted and analyzed for total organic carbon (TOC), total dissolved nitrogen (TDN), and bacterial density. These data reveal a spatial correlation between organic matter concentration, cell density, and the deep UV fluorescence maps. Our results provide a profile of the organics embedded within the <span class="hlt">ice</span> from the top surface into the glacial subsurface, and the TOC:TDN data from the clean interior of the <span class="hlt">cores</span> are indicative of a biological origin. This work provides a background dataset for future work to characterize organic carbon in the Greenland <span class="hlt">Ice</span> Sheet and validation of novel instrumentation for in situ data collection on icy bodies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6357B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6357B"><span>A new 10Be record recovered from an Antarctic <span class="hlt">ice</span> <span class="hlt">core</span>: validity and limitations to record the solar activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baroni, Mélanie; Bard, Edouard; Aster Team</p> <p>2015-04-01</p> <p>Cosmogenic nuclides provide the only possibility to document solar activity over millennia. Carbon-14 (14C) and beryllium-10 (10Be) records are retrieved from tree rings and <span class="hlt">ice</span> <span class="hlt">cores</span>, respectively. Recently, 14C records have also proven to be reliable to detect two large Solar Proton Events (SPE) (Miyake et al., Nature, 2012, Miyake et al., Nat. Commun., 2013) that occurred in 774-775 A.D. and in 993-994 A.D.. The origin of these events is still under debate but it opens new perspectives for the interpretation of 10Be <span class="hlt">ice</span> <span class="hlt">core</span> records. We present a new 10Be record from an <span class="hlt">ice</span> <span class="hlt">core</span> from Dome C (Antarctica) <span class="hlt">covering</span> the last millennium. The chronology of this new <span class="hlt">ice</span> <span class="hlt">core</span> has been established by matching volcanic events on the WAIS Divide <span class="hlt">ice</span> <span class="hlt">core</span> (WDC06A) that is the best dated record in Antarctica over the Holocene (Sigl et al., JGR, 2013, Sigl et al., Nat. Clim. Change, 2014). The five minima of solar activity (Oort, Wolf, Spörer, Maunder and Dalton) are detected and characterized by a 10Be concentration increase of ca. 20% above average in agreement with previous studies of <span class="hlt">ice</span> <span class="hlt">cores</span> drilled at South Pole and Dome Fuji in Antarctica (Bard et al., EPSL, 1997; Horiuchi et al., Quat. Geochrono., 2008) and at NGRIP and Dye3 in Greenland (Berggren et al., GRL, 2009). The high resolution, on the order of a year, allows the detection of the 11-year solar cycle. Sulfate concentration, a proxy for volcanic eruptions, has also been measured in the very same samples, allowing a precise comparison of both 10Be and sulfate profiles. We confirm the systematic relationship between stratospheric eruptions and 10Be concentration increases, first evidenced by observations of the stratospheric volcanic eruptions of Agung in 1963 and Pinatubo in 1991 (Baroni et al., GCA, 2011). This relationship is due to an increase in 10Be deposition linked to the role played by the sedimentation of volcanic aerosols. In the light of these new elements, we will discuss the limitations and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1244772-neutrino-oscillation-studies-icecube-deepcore','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1244772-neutrino-oscillation-studies-icecube-deepcore"><span>Neutrino oscillation studies with <span class="hlt">IceCube-DeepCore</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aartsen, M. G.; Abraham, K.; Ackermann, M.</p> <p></p> <p><span class="hlt">Ice</span>Cube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the Deep<span class="hlt">Core</span> extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle andmore » performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of <span class="hlt">IceCube-DeepCore</span> and the next generation of neutrino experiments at the South Pole (<span class="hlt">Ice</span>Cube-Gen2, specifically the PINGU sub-detector) are briefly discussed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1244772-neutrino-oscillation-studies-icecube-deepcore','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1244772-neutrino-oscillation-studies-icecube-deepcore"><span>Neutrino oscillation studies with <span class="hlt">IceCube-DeepCore</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...</p> <p>2016-03-30</p> <p><span class="hlt">Ice</span>Cube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the Deep<span class="hlt">Core</span> extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle andmore » performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of <span class="hlt">IceCube-DeepCore</span> and the next generation of neutrino experiments at the South Pole (<span class="hlt">Ice</span>Cube-Gen2, specifically the PINGU sub-detector) are briefly discussed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916908W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916908W"><span>Towards a new common Greenland <span class="hlt">Ice</span> <span class="hlt">Core</span> Chronology for the last 5000 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winstrup, Mai; Olander Rasmussen, Sune; Møllesøe Vinther, Bo; Cook, Eliza; Svensson, Anders; McConnell, Joe; Steffensen, Jørgen Peder</p> <p>2017-04-01</p> <p>Since the development of the Greenland <span class="hlt">Ice</span> <span class="hlt">Core</span> Chronology 2005 (GICC05), it has been widely used as a reference chronology in paleoclimate research. However, recent research (Sigl et al, 2015) demonstrated that this timescale has small, but significant, issues over historical time. These discrepancies was found by counting annual layers in high-resolution chemistry records from the NEEM S1 shallow <span class="hlt">core</span>, and confirmed by linking via 10Be marker horizons to the layer-counted WAIS Divide <span class="hlt">ice</span> <span class="hlt">core</span>, Antarctica, and accurately-dated tree-ring series. This work showed that a revision of GICC05 is required prior to 1250AD. We here refine and extend this work. Layer-counting in a single <span class="hlt">core</span> will always involve some uncertainty, and we hence use data from multiple Greenland <span class="hlt">ice</span> <span class="hlt">cores</span>, for which high-resolution impurity records recently have been measured. These <span class="hlt">ice</span> <span class="hlt">cores</span> have been synchronized using volcanic marker horizons, and the layer-counting is performed automatically using the StratiCounter algorithm (Winstrup et al, 2012), while ensuring that the number of layers between volcanic horizons are the same in all <span class="hlt">cores</span>. Based on this extended multiple-<span class="hlt">core</span> data set, we are further able to extend the new Greenland timescale another few thousand years back in time. This will, among others, provide a new <span class="hlt">ice-core</span> date for the catastrophic volcanic eruption ( 1600 BC) that destroyed the Greek Minoan culture, an important time marker in Greek history.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213521L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213521L"><span>Tree ring and <span class="hlt">ice</span> <span class="hlt">core</span> time scales around the Santorini eruption</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löfroth, Elin; Muscheler, Raimund; Aldahan, Ala; Possnert, Göran; Berggren, Ann-Marie</p> <p>2010-05-01</p> <p>When studying cosmogenic radionuclides in <span class="hlt">ice</span> <span class="hlt">core</span> and tree ring archives around the Santorini eruption a ~20 year discrepancy was found between the records (Muscheler 2009). In this study a new 10Be dataset from the NGRIP <span class="hlt">ice</span> <span class="hlt">core</span> is presented. It has a resolution of 7 years and spans the period 3752-3244 BP (1803-1295 BC). The NGRIP 10Be record and the previously published 10Be GRIP record were compared to the IntCal datasets to further investigate the discrepancy between the <span class="hlt">ice</span> <span class="hlt">core</span> and tree ring chronologies. By modelling the 14C production rate based on atmospheric 14C records a comparison could be made to the 10Be flux which is assumed to represent the 10Be production rate. This showed a time shift of ~23 years between the records. The sensitivity of the results to changes in important model parameters was evaluated. Uncertainties in the carbon cycle model cannot explain a substantial part of the timing differences. Potential influences of climate and atmospheric processes on the 10Be deposition were studied using δ18O from the respective <span class="hlt">cores</span> and GISP2 <span class="hlt">ice</span> <span class="hlt">core</span> ion data. The comparison to δ18O revealed a small but significant correlation between 10Be flux and δ18O when the 14C-derived production signal was removed from the 10Be curves. The ion data, as proxies for atmospheric circulation changes, did not show any correlations to the 10Be record or the 10Be/14C difference. When including possible data uncertainties there is still a minimum discrepancy of ~10 years between the 10Be <span class="hlt">ice</span> <span class="hlt">core</span> and the 14C tree ring record. Due to lack of alternative explanations it is concluded that the <span class="hlt">ice</span> <span class="hlt">core</span> and/or the tree ring chronologies contains unaccounted errors in this range. This also reconciles the radiocarbon 1627-1600 BC (Friedrich et al., 2006) and <span class="hlt">ice</span> <span class="hlt">core</span> 1642±5 BC (Vinther et al., 2006) datings of the Santorini eruption. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., & Talamo, S., 2006: Santorini eruption radiocarbon dated to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27244483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27244483"><span>A Method for Continuous (239)Pu Determinations in Arctic and Antarctic <span class="hlt">Ice</span> <span class="hlt">Cores</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arienzo, M M; McConnell, J R; Chellman, N; Criscitiello, A S; Curran, M; Fritzsche, D; Kipfstuhl, S; Mulvaney, R; Nolan, M; Opel, T; Sigl, M; Steffensen, J P</p> <p>2016-07-05</p> <p>Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in <span class="hlt">ice</span> <span class="hlt">cores</span>, which was used to develop annual records of fallout from NWT in ten <span class="hlt">ice</span> <span class="hlt">cores</span> from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic <span class="hlt">ice</span> <span class="hlt">cores</span> reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude <span class="hlt">ice</span> <span class="hlt">cores</span>. The (239)Pu measurements in the Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional <span class="hlt">ice</span> samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005748&hterms=core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005748&hterms=core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcore"><span>Deep Radiostratigraphy of the East Antarctic Plateau: Connecting the Dome C and Vostok <span class="hlt">Ice</span> <span class="hlt">Core</span> Sites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavitte, Marie G. P.; Blankenship, Donald D.; Young, Duncan A.; Schroeder, Dustin M.; Parrenin, Frederic; Lemeur, Emmanuel; Macgregor, Joseph A.; Siegert, Martin J.</p> <p>2016-01-01</p> <p>Several airborne radar-sounding surveys are used to trace internal reflections around the European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica Dome C and Vostok <span class="hlt">ice</span> <span class="hlt">core</span> sites. Thirteen reflections, spanning the last two glacial cycles, are traced within 200 km of Dome C, a promising region for million-year-old <span class="hlt">ice</span>, using the University of Texas Institute for Geophysics High-Capacity Radar Sounder. This provides a dated stratigraphy to 2318 m depth at Dome C. Reflection age uncertainties are calculated from the radar range precision and signal-to-noise ratio of the internal reflections. The radar stratigraphy matches well with the Multichannel Coherent Radar Depth Sounder (MCoRDS) radar stratigraphy obtained independently. We show that radar sounding enables the extension of <span class="hlt">ice</span> <span class="hlt">core</span> ages through the <span class="hlt">ice</span> sheet with an additional radar-related age uncertainty of approximately 1/3-1/2 that of the <span class="hlt">ice</span> <span class="hlt">cores</span>. Reflections are extended along the Byrd-Totten Glacier divide, using University of Texas/Technical University of Denmark and MCoRDS surveys. However, <span class="hlt">core-to-core</span> connection is impeded by pervasive aeolian terranes, and Lake Vostok's influence on reflection geometry. Poor radar connection of the two <span class="hlt">ice</span> <span class="hlt">cores</span> is attributed to these effects and suboptimal survey design in affected areas. We demonstrate that, while <span class="hlt">ice</span> sheet internal radar reflections are generally isochronal and can be mapped over large distances, careful survey planning is necessary to extend <span class="hlt">ice</span> <span class="hlt">core</span> chronologies to distant regions of the East Antarctic <span class="hlt">ice</span> sheet.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzAOP..54...65I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzAOP..54...65I"><span>The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, V. V.; Repina, I. A.</p> <p>2018-01-01</p> <p>Under the influence of global warming, the sea <span class="hlt">ice</span> in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal <span class="hlt">ice</span> <span class="hlt">cover</span> by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of <span class="hlt">ice</span> <span class="hlt">cover</span> decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer <span class="hlt">ice</span> <span class="hlt">cover</span> is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the <span class="hlt">ice-cover</span> area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer <span class="hlt">ice</span> <span class="hlt">cover</span> in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the <span class="hlt">ice</span> <span class="hlt">cover</span>. This, in turn, contributes to further <span class="hlt">ice</span> thinning and a decrease in <span class="hlt">ice</span> concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced <span class="hlt">ice</span> melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea"><span>Variability and Trends in the Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span>: Results from Different Techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert</p> <p>2017-01-01</p> <p>Variability and trend studies of sea <span class="hlt">ice</span> in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea <span class="hlt">Ice</span> Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span>. All four provide generally similar <span class="hlt">ice</span> patterns but significant disagreements in <span class="hlt">ice</span> concentration distributions especially in the marginal <span class="hlt">ice</span> zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new <span class="hlt">ice</span> and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span>. Hadley and NT1 data usually provide the highest and lowest monthly <span class="hlt">ice</span> extents, respectively. The Hadley data also show the lowest trends in <span class="hlt">ice</span> extent and <span class="hlt">ice</span> area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea <span class="hlt">ice</span> has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AMT....10..617J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AMT....10..617J"><span>Improved methodologies for continuous-flow analysis of stable water isotopes in <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.</p> <p>2017-02-01</p> <p>Water isotopes in <span class="hlt">ice</span> <span class="hlt">cores</span> are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior <span class="hlt">ice</span> <span class="hlt">coring</span> projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of <span class="hlt">ice</span> <span class="hlt">cores</span>. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn <span class="hlt">core</span>, a Greenland <span class="hlt">ice</span> <span class="hlt">core</span>, and the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) Divide <span class="hlt">ice</span> <span class="hlt">core</span>. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 <span class="hlt">ice</span> sticks to a temperature-controlled melt head, where the <span class="hlt">ice</span> is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide <span class="hlt">ice</span> samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/4673840','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4673840"><span><span class="hlt">COVERING</span> A <span class="hlt">CORE</span> BY EXTRUSION</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Karnie, A.J.</p> <p>1963-07-16</p> <p>A method of <span class="hlt">covering</span> a cylindrical fuel <span class="hlt">core</span> with a cladding metal ms described. The metal is forced between dies around the <span class="hlt">core</span> from both ends in two opposing skirts, and as these meet the ends turn outward into an annular recess in the dics. By cutting off the raised portion formed by the recess, oxide impurities are eliminated. (AEC)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.nsf.gov/pubs/2005/nsf0539/nsf0539_5.pdf','USGSPUBS'); return false;" href="http://www.nsf.gov/pubs/2005/nsf0539/nsf0539_5.pdf"><span>Correlated declines in Pacific arctic snow and sea <span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon</p> <p>2005-01-01</p> <p>Simulations of future climate suggest that global warming will reduce Arctic snow and <span class="hlt">ice</span> <span class="hlt">cover</span>, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow <span class="hlt">cover</span> has decreased, and sea <span class="hlt">ice</span> has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea <span class="hlt">ice</span>, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea <span class="hlt">ice</span> also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea <span class="hlt">ice</span> <span class="hlt">cover</span> may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015207','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015207"><span>Regional Changes in the Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span> and <span class="hlt">Ice</span> Production in the Antarctic</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2011-01-01</p> <p>Coastal polynyas around the Antarctic continent have been regarded as sea <span class="hlt">ice</span> factories because of high <span class="hlt">ice</span> production rates in these regions. The observation of a positive trend in the extent of Antarctic sea <span class="hlt">ice</span> during the satellite era has been intriguing in light of the observed rapid decline of the <span class="hlt">ice</span> extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal <span class="hlt">ice</span> zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> could be caused primarily by enhanced <span class="hlt">ice</span> production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea <span class="hlt">ice</span> drift data from 1992 to 2008 yields a positive rate-of-increase in the net <span class="hlt">ice</span> export of about 30,000 km2 per year. For a characteristic <span class="hlt">ice</span> thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in <span class="hlt">ice</span> production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-<span class="hlt">ice</span> shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V11B..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V11B..01S"><span>Bipolar volcanic events in <span class="hlt">ice</span> <span class="hlt">cores</span> and the Toba eruption at 74 ka BP (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svensson, A.</p> <p>2013-12-01</p> <p>Acidity spikes in Greenland and Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> are applied as tracers of past volcanic activity. Besides providing information on the timing and magnitude of past eruptions, the acidity spikes are also widely used for synchronization of <span class="hlt">ice</span> <span class="hlt">cores</span>. All of the deep Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> are thus synchronized throughout the last glacial cycle based on volcanic markers. Volcanic matching of <span class="hlt">ice</span> <span class="hlt">cores</span> from the two Hemispheres is much more challenging but it is feasible in periods of favourable conditions. Over the last two millennia, where <span class="hlt">ice</span> <span class="hlt">cores</span> are precisely dated, some 50 bipolar volcanic events have thus been identified. In order for an eruption to express a bipolar fingerprint it generally needs to be a low latitude eruption with stratospheric injection. Sometimes tephra is associated with the <span class="hlt">ice-core</span> acidity spikes, but most often there is no tephra present in the <span class="hlt">ice</span>. As yet, an unknown eruption occurring in 1259 AD is the only event reported to have deposited tephra in both Greenland and Antarctica. During the last glacial period bipolar volcanic matching is very challenging and very little work has been done, but recent high-resolution <span class="hlt">ice</span> <span class="hlt">core</span> records have the potential to provide bipolar <span class="hlt">ice</span> <span class="hlt">core</span> matching for some periods. Recently, Greenland and Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> have been linked by acidity spikes in the time window of the most recent eruption (the YTT eruption) of the Indonesian Toba volcano that is situated close to equator in Sumatra. Ash from this Toba event is widespread over large areas in Asia and has been identified as far west as Africa, but no corresponding tephra has been found in polar <span class="hlt">ice</span> <span class="hlt">cores</span> despite several attempts. The age of the YTT eruption is well constrained by recent Ar-Ar dating to have occurred some 74 ka ago close to the Marine Isotope Stage 4/5 boundary and close to the onset of the cold Greenland Stadial 20 and the corresponding mild Antarctic Isotopic Maxima 19 and 20. Surprisingly, no single outstanding acidity spike</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2432B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2432B"><span>A new method for geochemical characterization of atmospheric mineral dust from polar <span class="hlt">ice</span> <span class="hlt">cores</span>: preliminary results from Talos Dome <span class="hlt">ice</span> <span class="hlt">core</span> (East Antarctica, Pacific-Ross Sea sector)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baccolo, Giovanni; Delmonte, Barbara; Clemenza, Massimiliano; Previtali, Ezio; Maggi, Valter</p> <p>2015-04-01</p> <p>Assessing the elemental composition of atmospheric dust entrapped in polar <span class="hlt">ice</span> <span class="hlt">cores</span> is important for the identification of the potential dust sources and thus for the reconstruction of past atmospheric circulation, at local, regional and global scale. Accurate determination of major and trace elements in the insoluble fraction of dust extracted from <span class="hlt">ice</span> <span class="hlt">cores</span> is also useful to better understand some geochemical and biogeochemical mechanisms which are linked with the climate system. The extremely reduced concentration of dust in polar <span class="hlt">ice</span> (typical Antarctic concentrations during interglacials are in the range of 10 ppb), the limited availability of such samples and the high risk of contamination make these analyses a challenge. A new method based on low background Instrumental Neutron Activation Analysis (INAA) was specifically developed for this kind of samples. The method allows the determination of the concentration of up to 35 elements in extremely reduced dust samples (20-30 μg). These elements span from major to trace and ultra-trace elements. Preliminary results from TALDICE (TALos Dome <span class="hlt">Ice</span> <span class="hlt">CorE</span>, East Antarctica, Pacific-Ross Sea Sector) <span class="hlt">ice</span> <span class="hlt">core</span> are presented along with results from potential source areas in Victoria Land. A set of 5 samples from Talos Dome, corresponding to the last termination, MIS3, MIS4 and MIS6 were prepared and analyzed by INAA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1715K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1715K"><span>Deriving micro- to macro-scale seismic velocities from <span class="hlt">ice-core</span> c axis orientations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf</p> <p>2018-05-01</p> <p>One of the great challenges in glaciology is the ability to estimate the bulk <span class="hlt">ice</span> anisotropy in <span class="hlt">ice</span> sheets and glaciers, which is needed to improve our understanding of <span class="hlt">ice</span>-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier <span class="hlt">ice</span> and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an <span class="hlt">ice-core</span> sample. We apply this approach to fabric data sets from an alpine and a polar <span class="hlt">ice</span> <span class="hlt">core</span>. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine <span class="hlt">ice</span> <span class="hlt">core</span>). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine <span class="hlt">ice</span> <span class="hlt">core</span> and 59 m s-1 for the polar <span class="hlt">ice</span> <span class="hlt">core</span>. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8068J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8068J"><span>Sea-<span class="hlt">ice</span> <span class="hlt">cover</span> in the Nordic Seas and the sensitivity to Atlantic water temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.</p> <p>2017-04-01</p> <p>Changes in the sea-<span class="hlt">ice</span> <span class="hlt">cover</span> of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-<span class="hlt">ice</span> <span class="hlt">cover</span> can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea <span class="hlt">ice</span> in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea <span class="hlt">ice</span> is present in the interior of the domain. However, the sea-<span class="hlt">ice</span> <span class="hlt">cover</span> in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea <span class="hlt">ice</span> and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully <span class="hlt">covered</span> in sea <span class="hlt">ice</span>. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea <span class="hlt">ice</span>. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-<span class="hlt">ice</span> <span class="hlt">cover</span> disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17080088','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17080088"><span>10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C <span class="hlt">ice</span> <span class="hlt">core</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raisbeck, G M; Yiou, F; Cattani, O; Jouzel, J</p> <p>2006-11-02</p> <p>An <span class="hlt">ice</span> <span class="hlt">core</span> drilled at Dome C, Antarctica, is the oldest <span class="hlt">ice</span> <span class="hlt">core</span> so far retrieved. On the basis of <span class="hlt">ice</span> flow modelling and a comparison between the deuterium signal in the <span class="hlt">ice</span> with climate records from marine sediment <span class="hlt">cores</span>, the <span class="hlt">ice</span> at a depth of 3,190 m in the Dome C <span class="hlt">core</span> is believed to have been deposited around 800,000 years ago, offering a rare opportunity to study climatic and environmental conditions over this time period. However, an independent determination of this age is important because the deuterium profile below a depth of 3,190 m depth does not show the expected correlation with the marine record. Here we present evidence for enhanced 10Be deposition in the <span class="hlt">ice</span> at 3,160-3,170 m, which we interpret as a result of the low dipole field strength during the Matuyama-Brunhes geomagnetic reversal, which occurred about 780,000 years ago. If correct, this provides a crucial tie point between <span class="hlt">ice</span> <span class="hlt">cores</span>, marine <span class="hlt">cores</span> and a radiometric timescale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29331558','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29331558"><span>High-resolution 129I bomb peak profile in an <span class="hlt">ice</span> <span class="hlt">core</span> from SE-Dome site, Greenland.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bautista, Angel T; Miyake, Yasuto; Matsuzaki, Hiroyuki; Iizuka, Yoshinori; Horiuchi, Kazuho</p> <p>2018-04-01</p> <p>129 I in natural archives, such as <span class="hlt">ice</span> <span class="hlt">cores</span>, can be used as a proxy for human nuclear activities, age marker, and environmental tracer. Currently, there is only one published record of 129 I in <span class="hlt">ice</span> <span class="hlt">core</span> (i.e., from Fiescherhorn Glacier, Swiss Alps) and its limited time resolution (1-2 years) prevents the full use of 129 I for the mentioned applications. Here we show 129 I concentrations in an <span class="hlt">ice</span> <span class="hlt">core</span> from SE-Dome, Greenland, <span class="hlt">covering</span> years 1956-1976 at a time resolution of ∼6 months, the most detailed record to date. Results revealed 129 I bomb peaks in years 1959, 1962, and 1963, associated to tests performed by the former Soviet Union, one year prior, in its Novaya Zemlya test site. All 129 I bomb peaks were observed in winter (1958.9, 1962.1, and 1963.0), while tritium bomb peaks, another prominent radionuclide associated with nuclear bomb testing, were observed in spring or summer (1959.3, and 1963.6; Iizuka et al., 2017). These results indicate that 129 I bomb peaks can be used as annual and seasonal age markers for these years. Furthermore, we found that 129 I recorded nuclear fuel reprocessing signals and that these can be potentially used to correct timing of estimated 129 I releases during years 1964-1976. Comparisons with other published records of 129 I in natural archives showed that 129 I can be used as common age marker and tracer for different types of records. Most notably, the 1963 129 I bomb peak can be used as common age marker for <span class="hlt">ice</span> and coral <span class="hlt">cores</span>, providing the means to reconcile age models and associated trends from the polar and tropical regions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11K2025R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11K2025R"><span>The Preservation and Recycling of Snow Pack Nitrate at the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) Divide <span class="hlt">Ice</span> <span class="hlt">Core</span> Site from the Present Day to the Last Glacial Period.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, J. W.; Buffen, A.; Hastings, M. G.; Schauer, A. J.; Moore, L.; Isaacs, A.; Geng, L.; Savarino, J. P.; Alexander, B.</p> <p>2017-12-01</p> <p>We use observations of the nitrogen isotopic composition of nitrate (δ15N(NO3-)) from snow and <span class="hlt">ice</span> collected at the West Antarctic <span class="hlt">ice</span> sheet (WAIS) divide <span class="hlt">ice</span> <span class="hlt">core</span> site to quantify the preservation and recycling of snow nitrate. <span class="hlt">Ice-core</span> samples <span class="hlt">cover</span> a continuous section from 36 to 52 thousand years ago and discrete samples from the Holocene, the last glacial maximum (LGM), and the glacial-Holocene transition. Higher δ15N of nitrate is consistently associated with lower temperatures with δ15N(NO3-) varying from 26 to 45 ‰ during the last glacial period and from 1 to 45 ‰ between the Holocene and glacial periods, respectively. We attribute the higher δ15N in colder periods to lower snow accumulation rates which lead to greater loss of snow nitrate via photolysis before burial beneath the snow photic zone. Modeling of nitrate preservation in snow pack was performed for modern and LGM conditions. The model is used in conjunction with observations to estimate the fraction of snow nitrate that is photolyzed, re-oxidized, and re-deposited over WAIS divide versus the fraction of primary nitrate that is deposited via long range transport. We used these estimates of fractional loss of snow nitrate in different time periods to determine the variation in the deposition flux of primary nitrate at WAIS divide with climate. Our findings have implications for the climate sensitivity of the oxidizing capacity of the polar atmosphere and the interpretation of <span class="hlt">ice-core</span> records of nitrate in terms of past atmospheric composition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815260B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815260B"><span>High-resolution sulfur isotopes in <span class="hlt">ice</span> <span class="hlt">cores</span> identify large stratospheric volcanic eruptions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burke, Andrea; Sigl, Michael; Adkins, Jess; Paris, Guillaume; McConnell, Joe</p> <p>2016-04-01</p> <p>The record of the volcanic forcing of climate over the past 2500 years is reconstructed primarily from sulfate concentrations in <span class="hlt">ice</span> <span class="hlt">cores</span>. Of particular interest are stratospheric eruptions, as these afford sulfate aerosols the longest residence time and largest dispersion in the atmosphere, and thus the greatest impact on radiative forcing. Identification of stratospheric eruptions currently relies on the successful matching of the same volcanic sulphate peak in <span class="hlt">ice</span> <span class="hlt">cores</span> from both the Northern and Southern hemispheres (a "bipolar event"). These are interpreted to reflect the global distribution of sulfur aerosols by the stratospheric winds. Despite its recent success, this method relies on precise and accurate dating of <span class="hlt">ice</span> <span class="hlt">cores</span>, in order to distinguish between a true 'bipolar event' and two separate eruptions that occurred in close temporal succession. Sulfur isotopes can been used to distinguish between these two scenarios since stratospheric sulfur aerosols are exposed to UV radiation which imparts a mass independent fractionation (Baroni et al., 2007). Mass independent fractionation of sulfate in <span class="hlt">ice</span> <span class="hlt">cores</span> thus offers a novel method of fingerprinting stratospheric eruptions, and thus refining the historic record of explosive volcanism and its forcing of climate. Here we present new high-resolution (sub-annual) sulfur isotope data from the Tunu <span class="hlt">Ice</span> <span class="hlt">core</span> in Greenland over seven eruptions. Sulfur isotopes were measured by MC-ICP-MS, which substantially reduces sample size requirements and allows high temporal resolution from a single <span class="hlt">ice</span> <span class="hlt">core</span>. We demonstrate the efficacy of the method on recent, well-known eruptions (including Pinatubo and Katmai/Novarupta), and then apply it to unidentified sulfate peaks, allowing us to identify new stratospheric eruptions. Baroni, M., Thiemens, M. H., Delmas, R. J., & Savarino, J. (2007). Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science, 315(5808), 84-87. http://doi.org/10</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17779616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17779616"><span><span class="hlt">Core</span> drilling through the ross <span class="hlt">ice</span> shelf (antarctica) confirmed Basal freezing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zotikov, I A; Zagorodnov, V S; Raikovsky, J V</p> <p>1980-03-28</p> <p>New techniques that have been used to obtain a continuous <span class="hlt">ice</span> <span class="hlt">core</span> through the whole 416-meter thickness of the Ross <span class="hlt">Ice</span> Shelf at Camp J-9 have demonstrated that the bottom 6 meters of the <span class="hlt">ice</span> shelf consists of sea <span class="hlt">ice</span>. The rate of basal freezing that is forming this <span class="hlt">ice</span> is estimated by different methods to be 2 centimeters of <span class="hlt">ice</span> per year. The sea <span class="hlt">ice</span> is composed of large vertical crystals, which form the waffle-like lower boundary of the shelf. A distinct alignment of the crystals throughout the sea <span class="hlt">ice</span> layer suggests the presence of persistent long-term currents beneath the <span class="hlt">ice</span> shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20748618-tem-analysis-nanoparticulates-polar-ice-core','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20748618-tem-analysis-nanoparticulates-polar-ice-core"><span>A TEM analysis of nanoparticulates in a Polar <span class="hlt">ice</span> <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Esquivel, E.V.; Murr, L.E</p> <p>2004-03-15</p> <p>This paper explores the prospect for analyzing nanoparticulates in age-dated <span class="hlt">ice</span> <span class="hlt">cores</span> representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative <span class="hlt">ice</span>-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland <span class="hlt">ice</span> <span class="hlt">core</span> was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..188....1T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..188....1T"><span><span class="hlt">Ice</span> <span class="hlt">core</span> records of climate variability on the Third Pole with emphasis on the Guliya <span class="hlt">ice</span> cap, western Kunlun Mountains</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, Lonnie G.; Yao, Tandong; Davis, Mary E.; Mosley-Thompson, Ellen; Wu, Guangjian; Porter, Stacy E.; Xu, Baiqing; Lin, Ping-Nan; Wang, Ninglian; Beaudon, Emilie; Duan, Keqin; Sierra-Hernández, M. Roxana; Kenny, Donald V.</p> <p>2018-05-01</p> <p>Records of recent climate from <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in 2015 on the Guliya <span class="hlt">ice</span> cap in the western Kunlun Mountains of the Tibetan Plateau, which with the Himalaya comprises the Third Pole (TP), demonstrate that this region has become warmer and moister since at least the middle of the 19th century. Decadal-scale linkages are suggested between <span class="hlt">ice</span> <span class="hlt">core</span> temperature and snowfall proxies, North Atlantic oceanic and atmospheric processes, Arctic temperatures, and Indian summer monsoon intensity. Correlations between annual-scale oxygen isotopic ratios (δ18O) and tropical western Pacific and Indian Ocean sea surface temperatures are also demonstrated. Comparisons of climate records during the last millennium from <span class="hlt">ice</span> <span class="hlt">cores</span> acquired throughout the TP illustrate centennial-scale differences between monsoon and westerlies dominated regions. Among these records, Guliya shows the highest rate of warming since the end of the Little <span class="hlt">Ice</span> Age, but δ18O data over the last millennium from TP <span class="hlt">ice</span> <span class="hlt">cores</span> support findings that elevation-dependent warming is most pronounced in the Himalaya. This, along with the decreasing precipitation rates in the Himalaya region, is having detrimental effects on the cryosphere. Although satellite monitoring of glaciers on the TP indicates changes in surface area, only a few have been directly monitored for mass balance and ablation from the surface. This type of ground-based study is essential to obtain a better understanding of the rate of <span class="hlt">ice</span> shrinkage on the TP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394153','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1394153"><span>Historical Carbon Dioxide Record from the Siple Station <span class="hlt">Ice</span> <span class="hlt">Core</span> (1734-1983)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Neftel, A. [Physics Institute, University of Bern, Bern, Switzerland; Friedli, H. [Physics Institute, University of Bern, Bern, Switzerland; Moor, E. [Physics Institute, University of Bern, Bern, Switzerland; Lotscher, H. [Physics Institute, University of Bern, Bern, Switzerland; Oeschger, H. [Physics Institute, University of Bern, Bern, Switzerland; Siegenthaler, U. [Physics Institute, University of Bern, Bern, Switzerland; Stauffer, B. [Physics Institute, University of Bern, Bern, Switzerland</p> <p>1994-09-01</p> <p>Determinations of ancient atmospheric CO2 concentrations for Siple Station, located in West Antarctica, were derived from measurements of air occluded in a 200-m <span class="hlt">core</span> drilled at Siple Station in the Antarctic summer of 1983-84. The <span class="hlt">core</span> was drilled by the Polar <span class="hlt">Ice</span> <span class="hlt">Coring</span> Office in Nebraska and the Physics Institute at the University of Bern. The <span class="hlt">ice</span> could be dated with an accuracy of approximately ±2 years to a depth of 144 m (which corresponds to the year 1834) by counting seasonal variations in electrical conductivity. Below that depth, the <span class="hlt">core</span> was dated by extrapolation (Friedli et al. 1986). The gases from <span class="hlt">ice</span> samples were extracted by a dry-extraction system, in which bubbles were crushed mechanically to release the trapped gases, and then analyzed for CO2 by infrared laser absorption spectroscopy or by gas chromatography (Neftel et al. 1985). After the <span class="hlt">ice</span> samples were crushed, the gas expanded over a cold trap, condensing the water vapor at -80°C in the absorption cell. The analytical system was calibrated for each <span class="hlt">ice</span> sample measurement with a standard mixture of CO2 in nitrogen and oxygen. For further details on the experimental and dating procedures, see Neftel et al. (1985), Friedli et al. (1986), and Schwander and Stauffer (1984).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611965L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611965L"><span>The influence of supraglacial debris <span class="hlt">cover</span> variability on de-<span class="hlt">icing</span> processes - examples from Svalbard</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lukas, Sven; Benn, Douglas I.; Boston, Clare M.; Hawkins, Jack; Lehane, Niall E.; Lovell, Harold; Rooke, Michael</p> <p>2014-05-01</p> <p>Extensive supraglacial debris <span class="hlt">covers</span> are widespread near the margins of many cold-based and polythermal surging and non-surging glaciers in Svalbard. Despite their importance for current glacier dynamics and a detailed understanding of how they will affect the de-<span class="hlt">icing</span> of <span class="hlt">ice</span>-marginal areas, little work has been carried out to shed light on the sedimentary processes operating in these debris <span class="hlt">covers</span>. We here present data from five different forelands in Svalbard. In all five cases, surfaces within the debris <span class="hlt">cover</span> can be regarded as stable where debris <span class="hlt">cover</span> thickness exceeds that of the active layer; vegetation development and absence of buried <span class="hlt">ice</span> exposures at the surface support this conclusion, although test pits and geophysical investigations have revealed the presence of buried <span class="hlt">ice</span> at greater depths (> 1-3 m). These findings imply that even seemingly stable surfaces at present will be subject to change by de-<span class="hlt">icing</span> in the future. Factors and processes that contribute towards a switch from temporarily stable to unstable conditions have been identified as: 1. The proximity to englacial or supraglacial meltwater channels. These channels enlarge due to thermo-erosion, which can lead to the eventual collapse of tunnel roofs and the sudden generation of linear instabilities in the system. Along such channels, ablation is enhanced compared to adjacent debris-<span class="hlt">covered</span> <span class="hlt">ice</span>, and continued thermo-erosion continuously exposes new areas of buried <span class="hlt">ice</span> at the surface. This works in conjunction with 2. Debris flows that occur on all sloping ground and transfer material from stable to less stable (sloping) locations within the debris <span class="hlt">cover</span> and eventually into supraglacial channels, from where material is then removed from the system. Several generations of debris flows have been identified in all five debris <span class="hlt">covers</span>, strongly suggesting that these processes are episodic and that the loci of these processes switch. This in turn indicates that transfer of material by debris flows</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGP21B0503L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGP21B0503L"><span>Polar <span class="hlt">ice</span> magnetization: Comparison of results from NorthGRIP (Greenland) and Vostok (Antarctica) <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanci, L.; Kent, D. V.</p> <p>2007-12-01</p> <p>Low temperature measurements of isothermal remanent magnetization (IRM) in Greenland <span class="hlt">ice</span> spanning the last glacial and Holocene have shown that <span class="hlt">ice</span> samples contain a measurable concentration of magnetic minerals which are part of the atmospheric aerosol. Assuming that the source materials do not change much with time, the concentration of magnetic minerals should be proportional to the measured concentration of dust in <span class="hlt">ice</span>. We have indeed found a consistent linear relationship with the contents of dust. However, the linear relationship between low temperature <span class="hlt">ice</span> magnetization vs. dust concentration has an offset, which when extrapolated to zero dust concentration would seemingly indicate that a significantly large magnetization corresponds to a null amount of dust in <span class="hlt">ice</span>. Thermal relaxation experiments have shown that magnetic grains of nanometric size carry virtually all the uncorrelated magnetization. Magnetic measurements in Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> confirm the existence of a similar nanometric-size magnetic fraction, which also appear uncorrelated with measured aerosol concentration. The magnitude of the uncorrelated magnetization from Vostok is similar to that measured in NorthGRIP <span class="hlt">ice</span>. Measurements of IRM at 250K suggest that the SP magnetic particles are in the size range of about 7-17 nm, which is compatible with the expected size of particles produced by ablation and subsequent condensation of meteorites in the atmosphere. The concentration of extraterrestrial material in NorthGRIP <span class="hlt">ice</span> was estimated from the magnetic relaxation data based on a crude estimate of chondritic Ms. The resulting concentration of 0.78±0.22 ppb for Greenland is in good agreement with the outcome based on published iridium concentrations; a virtually identical concentration of 0.53±0.18 ppb has been measured in Vostok <span class="hlt">ice</span> <span class="hlt">core</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2507K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2507K"><span>Identifying deformation mechanisms in the NEEM <span class="hlt">ice</span> <span class="hlt">core</span> using EBSD measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.</p> <p>2015-04-01</p> <p>Deformation of <span class="hlt">ice</span> in continental sized <span class="hlt">ice</span> sheets determines the flow behavior of <span class="hlt">ice</span> towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural <span class="hlt">ice</span>, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar <span class="hlt">ice</span> is critical in predicting the response of <span class="hlt">ice</span> sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic <span class="hlt">ice</span> <span class="hlt">core</span> (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) <span class="hlt">ice</span> <span class="hlt">core</span>¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM <span class="hlt">ice</span> <span class="hlt">core</span> samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML <span class="hlt">core</span>, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMTP..58..641T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMTP..58..641T"><span>Behavior of a semi-infinite <span class="hlt">ice</span> <span class="hlt">cover</span> under periodic dynamic impact</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tkacheva, L. A.</p> <p>2017-07-01</p> <p>Oscillations of a semi-infinite <span class="hlt">ice</span> <span class="hlt">cover</span> in an ideal incompressible liquid of finite depth under local time-periodic axisymmetric load are considered. The <span class="hlt">ice</span> <span class="hlt">cover</span> is simulated by a thin elastic plate of constant thickness. An analytical solution of the problem is obtained using the Wiener-Hopf method. The asymptotic behavior of the amplitudes of oscillations of the plate and the liquid in the far field is studied. It is shown that the propagation of waves in the far field is uneven: in some directions, the waves propagate with a significantly greater amplitude.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC13A1045G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC13A1045G"><span>A high altitude paleoclimate record from an <span class="hlt">ice</span> <span class="hlt">core</span> retrieved at the northern margin of the Mediterranean basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabrielli, P.; Barbante, C.; Carturan, L.; Davis, M. E.; Dalla Fontana, G.; Dreossi, G.; Dinale, R.; Draga, G.; Gabrieli, J.; Kehrwald, N. M.; Mair, V.; Mikhalenko, V.; Oeggl, K.; Schotterer, U.; Seppi, R.; Spolaor, A.; Stenni, B.; Thompson, L. G.; Tonidandel, D.</p> <p>2013-12-01</p> <p>Atmospheric temperatures in the Alps are increasing at twice the global rate and this change may be amplified at the highest elevations. There is a scarcity of paleo-climate information from high altitudes to place this current rapid climate change in a paleo-perspective. The 'Ortles Project' is an international scientific effort gathering institutes from six nations with the primary goal of obtaining a high altitude paleo-climate record in the Mediterranean area. In 2011 four <span class="hlt">ice</span> <span class="hlt">cores</span> were extracted from Alto dell'Ortles (3859 m, South Tyrol, Italy) the highest glacier in the eastern Alps. This site is located ~30 km away from where the famous ~5.2 kyr old Tyrolean <span class="hlt">Ice</span> Man was discovered emerging from an ablating <span class="hlt">ice</span> field (Hauslabjoch, 3210 m) in 1991. The good state of conservation of this mummy suggested that the current warming trend is unprecedented in South Tyrol during the late Holocene and that unique prehistoric <span class="hlt">ice</span> was still present in this region. During the <span class="hlt">ice</span> <span class="hlt">core</span> drilling operations we found that the glacier Alto dell'Ortles shows a very unusual thermic behavior as it is transitioning from a cold to a temperate state. In fact, below a 30 meter thick temperate firn portion, we observed cold <span class="hlt">ice</span> layers sitting on a frozen bedrock (-2.8 C). These represent remnants of the colder climate before ~1980 AD, when an instrumental record indicates a ~2 C lower temperature in this area during the period 1864-1980 AD. By analyzing one of the Ortles <span class="hlt">cores</span> for stable isotopes, dust and major ions, we found an annually preserved climatic signal embedded in the deep cold <span class="hlt">ice</span> of this glacier. Alto dell'Ortles is therefore the first low-accumulation (850 mm w.e. per year) alpine drilling site where both winter and summer layers can be identified. Preliminary annual layer counting and two absolute time markers suggest that the time period <span class="hlt">covered</span> by the Ortles <span class="hlt">ice</span> <span class="hlt">cores</span> spans from several centuries to a few millennia. In particular, a Larix (larch) leaf discovered at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17731883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17731883"><span><span class="hlt">Ice</span> <span class="hlt">core</span> evidence for extensive melting of the greenland <span class="hlt">ice</span> sheet in the last interglacial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koerner, R M</p> <p>1989-05-26</p> <p>Evidence from <span class="hlt">ice</span> at the bottom of <span class="hlt">ice</span> <span class="hlt">cores</span> from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland <span class="hlt">ice</span> sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal <span class="hlt">ice</span> has previously been thought to indicate that the base of the <span class="hlt">ice</span> sheets had melted and that the evidence for the time of original growth of these <span class="hlt">ice</span> masses had been destroyed. However, the particles most likely blew onto the <span class="hlt">ice</span> when the dimensions of the <span class="hlt">ice</span> caps and <span class="hlt">ice</span> sheets were much smaller. <span class="hlt">Ice</span> texture, gas content, and other evidence also suggest that the basal <span class="hlt">ice</span> at each drill site is superimposed <span class="hlt">ice</span>, a type of <span class="hlt">ice</span> typical of the early growth stages of an <span class="hlt">ice</span> cap or <span class="hlt">ice</span> sheet. If the present-day <span class="hlt">ice</span> masses began their growth during the last interglacial, the <span class="hlt">ice</span> sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic <span class="hlt">ice</span> sheet, as has been suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP11D1059Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP11D1059Y"><span>A method to precisely measure Ar isotopes and Xe/Kr ratios in air trapped in <span class="hlt">ice</span> <span class="hlt">cores</span> for simultaneous <span class="hlt">ice</span> <span class="hlt">core</span> dating and mean ocean temperature reconstruction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Y.; Ng, J.; Higgins, J. A.; Kurbatov, A.; Clifford, H.; Spaulding, N. E.; Mayewski, P. A.; Brook, E.; Bender, M. L.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>Antarctic efforts are underway to find and retrieve <span class="hlt">ice</span> <span class="hlt">cores</span> older than 800 thousand years (kyr) by both shallow drilling in "blue <span class="hlt">ice</span>" areas and classic deep <span class="hlt">ice</span> <span class="hlt">coring</span>. <span class="hlt">Ice</span> stratigraphy at "blue <span class="hlt">ice</span>" sites is typically disordered, and the high cost of deep drilling mandates rapid reconnaissance drilling (e.g. RAID) with very small sample size. Both approaches therefore require methods of absolute dating on a single piece of <span class="hlt">ice</span> without stratigraphic context. Here we present a dating method modified from Bender et al. (2008; PNAS) to precisely measure the isotopic composition of argon (36Ar, 38Ar, and 40Ar) in air bubbles trapped in the <span class="hlt">ice</span>, which changes over time in a known way. Our method has an analytical uncertainty of 110 kyr (1σ) or 10% of the age of the sample, whichever is greater. We measured Ar isotopes from the Allan Hills blue <span class="hlt">ice</span> areas, East Antarctica, where 1 Ma <span class="hlt">ice</span> was previously found by Higgins et al. (2015; PNAS). Results show <span class="hlt">ice</span> as old as 2.7±0.3 million years, but the <span class="hlt">ice</span> column is stratigraphically disturbed. Hence Allan Hills <span class="hlt">ice</span> <span class="hlt">core</span> records should be viewed as a series of "climate snapshots" rather than a continuum. Xenon-to-krypton (Xe/Kr) ratios are also measured in the same aliquot of extracted gas to reconstruct mean ocean temperature (Shackleton et al., 2016; Fall AGU). Preliminary mean ocean temperature in <span class="hlt">ice</span> older than 1 Ma ranges from -0.3 to -1.2 deg. colder than present with an uncertainty of 0.24 deg., which agrees well with other Pleistocene ocean temperature records (e.g. Rohling et al., 2014; Nature and Elderfield et al., 2012; Science). The observed range is 40% of the glacial-interglacial variability in the 100-kyr climate cycles ( 2 deg.), close to the 50% reduction in the glacial-interglacial δ18O amplitude across the Mid-Pleistocene Transition. Finally, Xe/Kr ratios are found to correlate positively with δD of the <span class="hlt">ice</span>, implying a coupling between the global ocean temperature and Antarctic temperature throughout</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9669K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9669K"><span>Continuous analysis of phosphate in a Greenland shallow <span class="hlt">ice</span> <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe</p> <p>2010-05-01</p> <p>Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in <span class="hlt">ice</span> <span class="hlt">cores</span> may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for <span class="hlt">ice</span> <span class="hlt">core</span> analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the <span class="hlt">ice</span>. Preliminary analysis of early Holocene samples from the NGRIP <span class="hlt">ice</span> <span class="hlt">core</span> show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn <span class="hlt">core</span> with an annual layer thickness of about 20 cm <span class="hlt">ice</span> equivalent. With a melt speed of 2.5 cm <span class="hlt">ice</span> per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119.2327A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119.2327A"><span>Implications of fractured Arctic perennial <span class="hlt">ice</span> <span class="hlt">cover</span> on thermodynamic and dynamic sea <span class="hlt">ice</span> processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon</p> <p>2014-04-01</p> <p>Decline of the Arctic summer minimum sea <span class="hlt">ice</span> extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack <span class="hlt">ice</span>, thereby causing flexural swell and failure of the sea <span class="hlt">ice</span>. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea <span class="hlt">ice</span> dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the <span class="hlt">ice</span> pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of <span class="hlt">ice</span> floes was identified in affected areas. The impact of this process in future Arctic sea <span class="hlt">ice</span> melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea <span class="hlt">ice</span> <span class="hlt">cover</span>. We conclude that this process is an important positive feedback to Arctic sea <span class="hlt">ice</span> loss, and timing of initiation is critical in how it affects sea <span class="hlt">ice</span> thermodynamic and dynamic processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11B0907M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11B0907M"><span>Dating of 30m <span class="hlt">ice</span> <span class="hlt">cores</span> drilled by Japanese Antarctic Research Expedition and environmental change study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.</p> <p>2017-12-01</p> <p>1. Introduction It is possible to reveal the past climate and environmental change from the <span class="hlt">ice</span> <span class="hlt">core</span> drilled in polar <span class="hlt">ice</span> sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow <span class="hlt">core</span> drillings up to 30 m depth in the inland and coastal areas of the East Antarctic <span class="hlt">ice</span> sheet. <span class="hlt">Ice</span> <span class="hlt">core</span> sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland <span class="hlt">ice</span> <span class="hlt">core</span> <span class="hlt">Ice</span> <span class="hlt">cores</span> were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of <span class="hlt">ice</span> <span class="hlt">core</span> was done as follows. Calculate water equivalent from <span class="hlt">core</span> density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest <span class="hlt">ice</span> <span class="hlt">core</span>. 3. Coastal <span class="hlt">ice</span> <span class="hlt">core</span> An <span class="hlt">ice</span> <span class="hlt">core</span> was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of <span class="hlt">ice</span> <span class="hlt">core</span> was done as follows. Calculate water equivalent from <span class="hlt">ice</span> <span class="hlt">core</span> density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027099&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmicrowaves%2Bwater%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027099&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmicrowaves%2Bwater%2Bstructure"><span>Satellite microwave and in situ observations of the Weddell Sea <span class="hlt">ice</span> <span class="hlt">cover</span> and its marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, J. C.; Sullivan, C. W.</p> <p>1986-01-01</p> <p>The radiative and physical characteristics of the Weddell Sea <span class="hlt">ice</span> <span class="hlt">cover</span> and its marginal <span class="hlt">ice</span> zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated <span class="hlt">ice</span> in winter and spring cyclic increases and decrease in brightness temperatures of consolidated <span class="hlt">ice</span> with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. <span class="hlt">Ice</span> concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the <span class="hlt">ice</span> margin structure and the mass balance of fresh water and of biological features of the marginal <span class="hlt">ice</span> zone are studied.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000316','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000316"><span><span class="hlt">Ice-Covered</span> Lakes in Gale Crater Mars: The Cold and Wet Hypothesis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kling, A. M.; Haberle, R. M.; Mckay, C. P.; Bristow, T. F.</p> <p>2016-01-01</p> <p>Recent geological discoveries from the Mars Science Laboratory provide evidence that Gale crater may have intermittently hosted a fluvio-lacustine environment during the Hesperian, with individual lakes lasting for a period of tens to hundreds of thousands of years. (Grotzinger et al., Science, 350 (6257), 2015). Estimates of the CO2 content of the atmosphere at the time the Gale sediments formed are far less than needed by any climate model to warm early Mars (Bristow et al., Geology, submitted), given the low solar energy input available at Mars 3.5 Gya. We have therefore explored the possibility that the lakes in Gale during the Hesperian were perennially <span class="hlt">covered</span> with <span class="hlt">ice</span> using the Antarctic Lakes as an analog. Using our best estimate for the annual mean surface temperature at Gale at this time (approx. 230K) we computed the thickness of an <span class="hlt">ice-covered</span> lake. These thickness range from 10-30 meters depending on the ablation rate and <span class="hlt">ice</span> transparency and would likely inhibit sediments from entering the lake. Thus, a first conclusion is that the <span class="hlt">ice</span> must not be too cold. Raising the mean temperature to 245K is challenging, but not quite as hard as reaching 273K. We found that a mean annual temperature of 245K <span class="hlt">ice</span> thicknesses range from 3-10 meters. These values are comparable to the range of those for the Antarctic lakes (3-6 m), and are not implausible. And they are not so thick that sediments cannot penetrate the <span class="hlt">ice</span>. For the <span class="hlt">ice-covered</span> lake hypothesis to work, however, a melt water source is needed. This could come from subaqueous melting of a glacial dam in contact with the lakes (as is the case for Lake Untersee) or from seasonal melt water from nearby glaciers (as is the case for the Dry Valley lakes). More work is needed to better assess these possibilities. However, the main advantage of the <span class="hlt">ice-covered</span> lake model (and the main reason we pursued it) is that it relaxes the requirement for a long-lived active hydrological cycle involving rainfall and runoff</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23770554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23770554"><span>Chronology of Pu isotopes and 236U in an Arctic <span class="hlt">ice</span> <span class="hlt">core</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wendel, C C; Oughton, D H; Lind, O C; Skipperud, L; Fifield, L K; Isaksson, E; Tims, S G; Salbu, B</p> <p>2013-09-01</p> <p>In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic <span class="hlt">ice</span> <span class="hlt">core</span> in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An <span class="hlt">ice</span> <span class="hlt">core</span> chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep <span class="hlt">ice</span> <span class="hlt">core</span> from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The <span class="hlt">ice</span> <span class="hlt">core</span> chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 μBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same <span class="hlt">ice</span> <span class="hlt">core</span>. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in <span class="hlt">ice</span> <span class="hlt">cores</span>. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917181C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917181C"><span><span class="hlt">Ice</span> <span class="hlt">cores</span> and calcite precipitates from alpine <span class="hlt">ice</span> caves as useful proxies in paleoclimate reconstructions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colucci, Renato R.; Barbante, Carlo; Bertò, Michele; Dreossi, Giuliano; Festi, Daniela; Forte, Emanuele; Gabrieli, Jacopo; Guglielmin, Mauro; Lenaz, Davide; Luetscher, Marc; Maggi, Valter; Princivalle, Francesco; Schwikowski, Margit; Stenni, Barbara; Žebre, Manja</p> <p>2017-04-01</p> <p>In the last years a growing set of research campaigns have been undertaken in the European southeastern Alps. The aim of such interest is mainly due to the peculiar climatic conditions of this area, allowing the existence of periglacial and glacial evidence at the lowest altitude in the Alps. The reason for such "anomaly" is likely ascribable to very high mean annual precipitation and local topoclimatic amplifications. In the frame of this research, in the fall 2013 a 7.8 m long <span class="hlt">ice-core</span> has been extracted from a permanent cave <span class="hlt">ice</span> deposit located in the area of Mt. Canin (2,587 masl) in the Julian Alps. The <span class="hlt">ice-core</span> has been cut and analysed in terms of: a) oxygen and hydrogen isotope composition; b); black carbon and dust concentrations; c) water conductivity; d) mineralogical analyses via X-ray powder diffraction. In the fall 2016, in the same area, a set of 1.0 m long horizontal <span class="hlt">ice</span> <span class="hlt">cores</span> have been extracted in another <span class="hlt">ice</span> cave deposit, intercepting a preserved layer of coarse cryogenic cave carbonates (CCCcoarse). Such original finding represents the first alpine evidence of in situ CCCcoarse and the first occurrence from the southern side of the Alps. A unique opportunity to better understand the processes associated with the formation of CCCcoarse and the well-preserved status of samples allow planning, besides U/Th datings, several different analyses which may be associated with the precipitation of CCC. Subglacial calcite crusts, widespread in the area, represents a further proxy able to help understanding the evolution of climate during the holocene in this alpine sector. In the light of accelerated climate change we discuss here the potential of this still untapped and fragile cryospheric archives for paleoclimatic reconstructions in high elevated areas of the Alps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......448M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......448M"><span>The Late Holocene Atmospheric Methane Budget Reconstructed from <span class="hlt">Ice</span> <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, Logan E.</p> <p></p> <p>In this thesis I used a newly developed methane measurement line to make high-resolution, high-precision measurements of methane during the late Holocene (2800 years BP to present). This new measurement line is capable of an analytical precision of < 3 ppb using ˜120 g samples. The reduced sample size requirements as well as automation of a significant portion of the analysis process have enabled me to make >1500 discrete <span class="hlt">ice</span> <span class="hlt">core</span> methane measurements and construct the highest resolution records of methane available over the late Holocene. I first used a shallow <span class="hlt">ice</span> <span class="hlt">core</span> from WAIS Divide (WDC05A) to produce a 1000 year long methane record with a ˜9 year temporal resolution. This record confirmed the existence of multidecadal scale variations that were first observed in the Law Dome, Antarctica <span class="hlt">ice</span> <span class="hlt">core</span>. I then explored a range of paleoclimate archives for possible mechanistic connections with methane concentrations on multidecadal timescales. In addition, I present a detailed description of the analytical methods used to obtain high-precision measurements of methane including the effects of solubility and a new chronology for the WDC05A <span class="hlt">ice</span> <span class="hlt">core</span>. I found that, in general, the correlations with paleoclimate proxies for temperature and precipitation were low over a range of geographic regions. Of these, the highest correlations were found from 1400-1600 C.E. during the onset of the Little <span class="hlt">Ice</span> Age and with a drought index in the headwater region of the major East Asian rivers. Large population losses in Asia and the Americas are also coincident with methane concentration decreases indicating that anthropogenic activities may have been impacting multidecadal scale methane variability. In the second component I extended the WAIS Divide record back to 2800 years B.P. and also measured methane from GISP2D over this time interval. These records allowed me to examine the methane Inter-Polar Difference (IPD) which is created by greater northern hemispheric sources. The IPD</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020842','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020842"><span>Evidence of deep circulation in two perennially <span class="hlt">ice-covered</span> Antarctic lakes</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tyler, S.W.; Cook, P.G.; Butt, A.Z.; Thomas, J.M.; Doran, P.T.; Lyons, W.B.</p> <p>1998-01-01</p> <p>The perennial <span class="hlt">ice</span> <span class="hlt">covers</span> found on many of the lakes in the McMurdo Dry Valley region of the Antarctic have been postulated to severely limit mixing and convective turnover of these unique lakes. In this work, we utilize chlorofluorocarbon (CFC) concentration profiles from Lakes Hoare and Fryxell in the McMurdo Dry Valley to determine the extent of deep vertical mixing occurring over the last 50 years. Near the <span class="hlt">ice</span>-water interface, CFC concentrations in both lakes were well above saturation, in accordance with atmospheric gas supersaturations resulting from freezing under the perennial <span class="hlt">ice</span> <span class="hlt">covers</span>. Evidence of mixing throughout the water column at Lake Hoare was confirmed by the presence of CFCs throughout the water column and suggests vertical mixing times of 20-30 years. In Lake Fryxell, CFC-11, CFC-12, and CFC-113 were found in the upper water column; however, degradation of CFC-11 and CFC-12 in the anoxic bottom waters appears to be occurring with CFC-113 only present in these bottom waters. The presence of CFC-113 in the bottom waters, in conjunction with previous work detecting tritium in these waters, strongly argues for the presence of convective mixing in Lake Fryxell. The evidence for deep mixing in these lakes may be an important, yet overlooked, phenomenon in the limnology of perennially <span class="hlt">ice-covered</span> lakes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005812&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005812&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea"><span>Bellingshausen Sea <span class="hlt">Ice</span> Extent Recorded in an Antarctic Peninsula <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Porter, Stacy E.; Parkinson, Claire L.; Mosley-Thompson, Ellen</p> <p>2016-01-01</p> <p>Annual net accumulation (A(sub n)) from the Bruce Plateau (BP) <span class="hlt">ice</span> <span class="hlt">core</span> retrieved from the Antarctic Peninsula exhibits a notable relationship with sea <span class="hlt">ice</span> extent (SIE) in the Bellingshausen Sea. Over the satellite era, both BP A(sub n) and Bellingshausen SIE are influenced by large-scale climatic factors such as the Amundsen Sea Low, Southern Annular Mode, and Southern Oscillation. In addition to the direct response of BP A(sub n) to Bellingshausen SIE (e.g., more open water as a moisture source), these large-scale climate phenomena also link the BP and the Bellingshausen Sea indirectly such that they exhibit similar responses (e.g., northerly wind anomalies advect warm, moist air to the Antarctic Peninsula and neighboring Bellingshausen Sea, which reduces SIE and increases A(sub n)). Comparison with a time series of fast <span class="hlt">ice</span> at South Orkney Islands reveals a relationship between BP A(sub n) and sea <span class="hlt">ice</span> in the northern Weddell Sea that is relatively consistent over the twentieth century, except when it is modulated by atmospheric wave patterns described by the Trans-Polar Index. The trend of increasing accumulation on the Bruce Plateau since approximately 1970 agrees with other climate records and reconstructions in the region and suggests that the current rate of sea <span class="hlt">ice</span> loss in the Bellingshausen Sea is unrivaled in the twentieth century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C13B0563F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C13B0563F"><span>Solid and gaseous inclusions in the EDML deep <span class="hlt">ice</span> <span class="hlt">core</span>: origins and implications for the physical properties of polar <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.</p> <p>2010-12-01</p> <p>The great value of polar deep <span class="hlt">ice</span> <span class="hlt">cores</span> stems mainly from two essential features of polar <span class="hlt">ice</span>: its crystalline structure and its impurities. They determine the physical properties of the <span class="hlt">ice</span> matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar <span class="hlt">ice</span> manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the <span class="hlt">ice</span> flow. Records of these interactions have been carefully investigated in samples of the EPICA deep <span class="hlt">ice</span> <span class="hlt">core</span> drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m <span class="hlt">core</span> length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with <span class="hlt">ice</span> depth and temperature, as well as the possible causes for the abrupt change in <span class="hlt">ice</span> rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the <span class="hlt">ice</span> sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP52A..04O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP52A..04O"><span>An <span class="hlt">Ice</span> <span class="hlt">Core</span> Perspective on Aleutian Low Variability over the Common Era</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S.; Introne, D.</p> <p>2016-12-01</p> <p>The Aleutian Low (ALow) is the dominant feature of atmospheric circulation in the North Pacific, strongly influencing wintertime temperature, precipitation and wind patterns in Alaska and the Yukon Territory, as well as further downstream in North America via atmospheric teleconnections. Changes in ALow strength are known to impact marine ecosystems by contributing to the multi-decadal sea-surface temperature mode in the North Pacific known as the Pacific Decadal Oscillation (PDO). Meteorological records show that in addition to distinct PDO-like variability, the ALow has intensified over the 20th century. However, ALow variability prior to the instrumental period remains unclear due to generally poor correlations among published ALow and PDO reconstructions, including the Mt. Logan <span class="hlt">ice</span> <span class="hlt">core</span> ALow record. An improved understanding of past ALow variability is critical for evaluating natural ALow forcing mechanisms, placing the 20th century intensification in context, and improving ALow projections under increased anthropogenic forcing. Here we combine ALow-sensitive time series from the new Denali <span class="hlt">ice</span> <span class="hlt">core</span> and the Mt. Logan <span class="hlt">ice</span> <span class="hlt">core</span> to develop a high-resolution (1-3 year) multi-<span class="hlt">ice-core</span> record of ALow variability over the past 1500 years. The Denali <span class="hlt">ice</span> <span class="hlt">core</span> was collected from the summit plateau (3900 m) of Mt. Hunter in 2013, and was sampled using the Dartmouth continuous melter system with discrete sampling for major ion (IC), trace element (ICP-MS), and stable isotope ratios (Picarro), as well as continuous flow analyses for dust size and concentration (Klotz Abakus). We focus here on the sea-salt sodium time series, and calibrate our record over the 20th century with reanalysis wind speed and pressure data. The Denali sodium record of ALow strength strongly resembles the Mt. Logan ALow record, with both showing a recent intensification of the ALow that started in the late 1600s and continues into the 20th century. Both records reveal that the ALow was stronger</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28851908','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28851908"><span>Arctic Ocean sea <span class="hlt">ice</span> <span class="hlt">cover</span> during the penultimate glacial and the last interglacial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit</p> <p>2017-08-29</p> <p>Coinciding with global warming, Arctic sea <span class="hlt">ice</span> has rapidly decreased during the last four decades and climate scenarios suggest that sea <span class="hlt">ice</span> may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea <span class="hlt">ice</span> biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea <span class="hlt">ice</span> existed in the central Arctic Ocean during summer, whereas sea <span class="hlt">ice</span> was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea <span class="hlt">ice</span> <span class="hlt">cover</span> is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major <span class="hlt">ice</span> sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 <span class="hlt">ice</span> shelf that <span class="hlt">covered</span> the entire Arctic Ocean.Coinciding with global warming, Arctic sea <span class="hlt">ice</span> has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea <span class="hlt">ice</span> was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H13N..09G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H13N..09G"><span>Heating the <span class="hlt">Ice-Covered</span> Lakes of the McMurdo Dry Valleys, Antarctica - Decadal Trends in Heat Content, <span class="hlt">Ice</span> Thickness, and Heat Exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.</p> <p>2014-12-01</p> <p>Lakes integrate landscape processes and climate conditions. Most of the permanently <span class="hlt">ice-covered</span> lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of <span class="hlt">ice</span> <span class="hlt">covers</span> (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, <span class="hlt">ice</span> <span class="hlt">covers</span> were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and <span class="hlt">ice</span> <span class="hlt">covers</span> have thinned (1.5 m on average). Analyses of lake <span class="hlt">ice</span> thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when <span class="hlt">ice-covers</span> form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916368J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916368J"><span>In situ-measurement of <span class="hlt">ice</span> deformation from repeated borehole logging of the EPICA Dronning Maud Land (EDML) <span class="hlt">ice</span> <span class="hlt">core</span>, East Antarctica.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jansen, Daniela; Weikusat, Ilka; Kleiner, Thomas; Wilhelms, Frank; Dahl-Jensen, Dorthe; Frenzel, Andreas; Binder, Tobias; Eichler, Jan; Faria, Sergio H.; Sheldon, Simon; Panton, Christian; Kipfstuhl, Sepp; Miller, Heinrich</p> <p>2017-04-01</p> <p>The European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica (EPICA) <span class="hlt">ice</span> <span class="hlt">core</span> was drilled between 2001 and 2006 at the Kohnen Station, Antarctica. During the drilling process the borehole was logged repeatedly. Repeated logging of the borehole shape is a means of directly measuring the deformation of the <span class="hlt">ice</span> sheet not only on the surface but also with depth, and to derive shear strain rates for the lower part, which control the volume of <span class="hlt">ice</span> transported from the inner continent towards the ocean. The logging system continuously recorded the tilt of the borehole with respect to the vertical (inclination) as well as the heading of the borehole with respect to magnetic north (azimuth) by means of a compass. This dataset provides the basis for a 3-D reconstruction of the borehole shape, which is changing over time according to the predominant deformation modes with depth. The information gained from this analysis can then be evaluated in combination with lattice preferred orientation, grain size and grain shape derived by microstructural analysis of samples from the deep <span class="hlt">ice</span> <span class="hlt">core</span>. Additionally, the diameter of the borehole, which was originally circular with a diameter of 10 cm, was measured. As the <span class="hlt">ice</span> flow velocity at the position of the EDML <span class="hlt">core</span> is relatively slow (about 0.75 m/a), the changes of borehole shape between the logs during the drilling period were very small and thus difficult to interpret. Thus, the site has been revisited in the Antarctic summer season 2016 and logged again using the same measurement system. The change of the borehole inclination during the time period of 10 years clearly reveals the transition from a pure shear dominated deformation in the upper part of the <span class="hlt">ice</span> sheet to shear deformation at the base. We will present a detailed analysis of the borehole parameters and the deduced shear strain rates in the lower part of the <span class="hlt">ice</span> sheet. The results are discussed with respect to <span class="hlt">ice</span> microstructural data derived from the EDML <span class="hlt">ice</span> <span class="hlt">core</span>. Microstructural</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CliPa..10.1659G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CliPa..10.1659G"><span>Dating a tropical <span class="hlt">ice</span> <span class="hlt">core</span> by time-frequency analysis of ion concentration depth profiles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gay, M.; De Angelis, M.; Lacoume, J.-L.</p> <p>2014-09-01</p> <p><span class="hlt">Ice</span> <span class="hlt">core</span> dating is a key parameter for the interpretation of the <span class="hlt">ice</span> archives. However, the relationship between <span class="hlt">ice</span> depth and <span class="hlt">ice</span> age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to <span class="hlt">ice</span> <span class="hlt">core</span> dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep <span class="hlt">ice</span> <span class="hlt">core</span>. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the <span class="hlt">core</span> dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean <span class="hlt">ice</span> <span class="hlt">cores</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP23B1393S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP23B1393S"><span>High-resolution record of last post-glacial variations of sea-<span class="hlt">ice</span> <span class="hlt">cover</span> and river discharge in the western Laptev Sea (Arctic Ocean)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stein, R. H.; Hörner, T.; Fahl, K.</p> <p>2014-12-01</p> <p>Here, we provide a high-resolution reconstruction of sea-<span class="hlt">ice</span> <span class="hlt">cover</span> variations in the western Laptev Sea, a crucial area in terms of sea-<span class="hlt">ice</span> production in the Arctic Ocean and a region characterized by huge river discharge. Furthermore, the shallow Laptev Sea was strongly influenced by the post-glacial sea-level rise that should also be reflected in the sedimentary records. The sea <span class="hlt">Ice</span> Proxy IP25 (Highly-branched mono-isoprenoid produced by sea-<span class="hlt">ice</span> algae; Belt et al., 2007) was measured in two sediment <span class="hlt">cores</span> from the western Laptev Sea (PS51/154, PS51/159) that offer a high-resolution composite record over the last 18 ka. In addition, sterols are applied as indicator for marine productivity (brassicasterol, dinosterol) and input of terrigenous organic matter by river discharge into the ocean (campesterol, ß-sitosterol). The sea-<span class="hlt">ice</span> <span class="hlt">cover</span> varies distinctly during the whole time period and shows a general increase in the Late Holocene. A maximum in IP25 concentration can be found during the Younger Dryas. This sharp increase can be observed in the whole circumarctic realm (Chukchi Sea, Bering Sea, Fram Strait and Laptev Sea). Interestingly, there is no correlation between elevated numbers of <span class="hlt">ice</span>-rafted debris (IRD) interpreted as local <span class="hlt">ice</span>-cap expansions (Taldenkova et al. 2010), and sea <span class="hlt">ice</span> <span class="hlt">cover</span> distribution. The transgression and flooding of the shelf sea that occurred over the last 16 ka in this region, is reflected by decreasing terrigenous (riverine) input, reflected in the strong decrease in sterol (ß-sitosterol and campesterol) concentrations. ReferencesBelt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea <span class="hlt">ice</span>: IP25. Organic Geochemistry 38 (1), 16e27. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ya, Ovsepyan, Kandiano, E., 2010. History of <span class="hlt">ice</span>-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP33A2293H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP33A2293H"><span>Sea <span class="hlt">ice</span> <span class="hlt">cover</span> variability and river run-off in the western Laptev Sea (Arctic Ocean) since the last 18 ka</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, T.; Stein, R.; Fahl, K.; Birgel, D.</p> <p>2015-12-01</p> <p>Multi-proxy biomarker measurements were performed on two sediment <span class="hlt">cores</span> (PS51/154, PS51/159) with the objective reconstructing sea <span class="hlt">ice</span> <span class="hlt">cover</span> (IP25, brassicasterol, dinosterol) and river-runoff (campesterol, β-sitosterol) in the western Laptev Sea over the last 18 ka with unprecedented temporal resolution. The sea <span class="hlt">ice</span> <span class="hlt">cover</span> varies distinctly during the whole time period. The absence of IP25 during 18 and 16 ka indicate that the western Laptev Sea was mostly <span class="hlt">covered</span> with permanent sea <span class="hlt">ice</span> (pack <span class="hlt">ice</span>). However, a period of temporary break-up of the permanent <span class="hlt">ice</span> coverage occurred at c. 17.2 ka (presence of IP25). Very little river-runoff occurred during this interval. Decreasing terrigenous (riverine) input and synchronous increase of marine produced organic matter around 16 ka until 7.5 ka indicate the gradual establishment of a marine environment in the western Laptev Sea related to the onset of the post-glacial transgression of the shelf. Strong river run-off and reduced sea <span class="hlt">ice</span> <span class="hlt">cover</span> characterized the time interval between 15.2 and 12.9 ka, including the Bølling/Allerød warm period (14.7 - 12.9 ka). Moreover, the DIP25 Index (ratio of HBI-dienes and IP25) might document the presence of Atlantic derived water at the western Laptev Sea shelf area. A sudden return to severe sea <span class="hlt">ice</span> conditions occurred during the Younger Dryas (12.9 - 11.6 ka). This abrupt climate change was observed in the whole circum-Arctic realm (Chukchi Sea, Bering Sea, Fram Strait and Laptev Sea). At the onset of the Younger Dryas, a distinct alteration of the ecosystem (deep drop in terrigenous and phytoplankton biomarkers) may document the entry of a giant freshwater plume, possibly relating to the Lake Agassiz outburst at 13 ka. IP25 concentrations increase and higher values of the PIP25 Index during the last 7 ka reflect a cooling of the Laptev Sea spring season. Moreover, a short-term variability of c. 1.5 thousand years occurred during the last 12 ka, most probably following Bond Cycles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C53A0279G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C53A0279G"><span>Rapid Access <span class="hlt">Ice</span> Drill: A New Tool for Exploration of the Deep Antarctic <span class="hlt">Ice</span> Sheets and Subglacial Geology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodge, J. W.; Severinghaus, J. P.</p> <p>2014-12-01</p> <p>The Rapid Access <span class="hlt">Ice</span> Drill (RAID) will penetrate the Antarctic <span class="hlt">ice</span> sheets in order to <span class="hlt">core</span> through deep <span class="hlt">ice</span>, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major <span class="hlt">ice</span> caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in <span class="hlt">ice</span> >1 Ma, direct observation at the base of the <span class="hlt">ice</span> sheets, and recovery of rock <span class="hlt">cores</span> from the <span class="hlt">ice-covered</span> East Antarctic craton. RAID uses a diamond rock-<span class="hlt">coring</span> system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through <span class="hlt">ice</span> using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of <span class="hlt">ice</span> cuttings. Near the bottom of the <span class="hlt">ice</span> sheet, a wireline bottom-hole assembly will enable diamond <span class="hlt">coring</span> of <span class="hlt">ice</span>, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, <span class="hlt">ice</span> chronology, and <span class="hlt">ice</span> deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of <span class="hlt">ice</span> and take sample <span class="hlt">cores</span> in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick <span class="hlt">ice</span>; take short <span class="hlt">ice</span> <span class="hlt">cores</span> for paleoclimate study; sample the glacial bed to determine <span class="hlt">ice</span>-flow conditions; take <span class="hlt">cores</span> of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the <span class="hlt">ice</span> sheets. Together, the rapid drilling capability and mobility of the drilling system, along with <span class="hlt">ice</span>-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic <span class="hlt">ice</span> sheets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......107D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......107D"><span>Dating an 800,000 year Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> record using the isotopic composition of trapped air</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dreyfus, Gabrielle Boissier</p> <p></p> <p>Here we measure the isotopic composition of air trapped in the European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica Dome C (EDC) <span class="hlt">ice</span> <span class="hlt">core</span>, and use this geochemical information to improve the <span class="hlt">ice</span> <span class="hlt">core</span> agescale and our understanding of air enclosure processes. A first result is the detection of a flow anomaly in the bottom 500m of the EDC <span class="hlt">ice</span> <span class="hlt">core</span> using the delta18O of atmospheric oxygen (noted delta18Oatm). By tuning the measured delta18Oatm to the orbital precession signal, we correct the EDC agescale over 400-800 ka for flow-induced distortions in the duration of events. Uncertainty in delta 18Oatm phasing with respect to precession limits the accuracy of the tuned agescale to +/-6 ka. We use this improved agescale to date two 10Be peaks detected in the EDC <span class="hlt">ice</span> <span class="hlt">core</span> and associated with the Matuyama-Brunhes geomagnetic boundary. While the <span class="hlt">ice</span> age of the "precursor" event agrees within uncertainty with the age of radioisotopically dated lavas, the volcanic age for the younger reversal is approximately 10 ka older than the mid-point of the 10 Be peak in the <span class="hlt">ice</span>. Since 80% of the lavas recording the Matuyama-Brunhes reversal are located in the Central Pacific, the observed age difference may indicate that the magnetic field orientation at this location changed prior to the dipole intensity minimum recorded by the <span class="hlt">ice</span> <span class="hlt">core</span> 10Be, as suggested by recent geodynamo modeling. A particular challenge for <span class="hlt">ice</span> <span class="hlt">core</span> dating is accurately accounting for the age difference between the trapped air and surrounding <span class="hlt">ice</span>. This gas age - <span class="hlt">ice</span> age difference (noted Deltaage) depends on the age of the <span class="hlt">ice</span> at the bottom of the firn. delta15N of N2 is constant in the atmosphere over the timescales considered here, so any deviation from atmospheric composition reflects fractionation processes in the firn. We show that delta15N is positively correlated with the <span class="hlt">ice</span> deuterium content, a proxy for temperature, over the entire EDC record, and propose an accumulation-permeability-convection mechanism</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23041141','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23041141"><span>Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> samples: culturable bacterial diversity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shivaji, Sisinthy; Begum, Zareena; Shiva Nageswara Rao, Singireesu Soma; Vishnu Vardhan Reddy, Puram V; Manasa, Poorna; Sailaja, Buddi; Prathiba, Mambatta S; Thamban, Meloth; Krishnan, Kottekkatu P; Singh, Shiv M; Srinivas, Tanuku N R</p> <p>2013-01-01</p> <p>Culturable bacterial abundance at 11 different depths of a 50.26 m <span class="hlt">ice</span> <span class="hlt">core</span> from the Tallaksenvarden Nunatak, Antarctica, varied from 0.02 to 5.8 × 10(3) CFU ml(-1) of the melt water. A total of 138 bacterial strains were recovered from the 11 different depths of the <span class="hlt">ice</span> <span class="hlt">core</span>. Based on 16S rRNA gene sequence analyses, the 138 isolates could be categorized into 25 phylotypes belonging to phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. All isolates had 16S rRNA sequences similar to previously determined sequences (97.2-100%). No correlation was observed in the distribution of the isolates at the various depths either at the phylum, genus or species level. The 25 phylotypes varied in growth temperature range, tolerance to NaCl, growth pH range and ability to produce eight different extracellular enzymes at either 4 or 18 °C. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a significant proportion of the total fatty acid composition. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V12C..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V12C..06P"><span>The significance of volcanic ash in Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> during the Common Era</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plunkett, G.; Pilcher, J. R.; McConnell, J. R.; Sigl, M.; Chellman, N.</p> <p>2017-12-01</p> <p>Volcanic forcing is now widely regarded as a leading natural factor in short-term climate variability. Polar <span class="hlt">ice</span> <span class="hlt">cores</span> provide an unrivalled and continuous record of past volcanism through their chemical and particulate content. With an almost annual precision for the Common Era, the <span class="hlt">ice</span> <span class="hlt">core</span> volcanic record can be combined with historical data to investigate the climate and social impacts of the eruptions. The sulfate signature in <span class="hlt">ice</span> <span class="hlt">cores</span> is critical for determining the possible climate effectiveness of an eruption, but the presence and characterization of volcanic ash (tephra) in the <span class="hlt">ice</span> is requisite for establishing the source eruption so that location and eruptive style can be better factored in to climate models. Here, we review the Greenland tephra record for the Common Era, and present the results of targeted sampling for tephra of volcanic events that are of interest either because of their suspected climate and societal impacts or because of their potential as isochrons in paleoenvironmental (including <span class="hlt">ice</span> <span class="hlt">core</span>) archives. The majority of identifiable tephras derive from Northern Hemisphere mid- to high latitude eruptions, demonstrating the significance of northern extra-tropical volcanic regions as a source of sulfates in Greenland. A number of targets are represented by sparse or no tephra, or shards that cannot be firmly correlated with a source. We consider the challenges faced in isolating and characterizing tephra from low latitude eruptions, and the implications for accurately modelling climate response to large, tropical events. Finally, we compare the <span class="hlt">ice</span> <span class="hlt">core</span> tephra record with terrestrial tephrostratigraphies in the circum-North Atlantic area to evaluate the potential for intercontinental tephra linkages and the refinement of volcanic histories.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51B0802B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51B0802B"><span>Frozen Nature - A high-alpine <span class="hlt">ice</span> <span class="hlt">core</span> record reveals fire and vegetation dynamics in Western Europe over the past millennium</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brügger, S.; Gobet, E.; Sigl, M.; Osmont, D.; Schwikowski, M.; Tinner, W.</p> <p>2017-12-01</p> <p>Wild fires are an ecological disturbance agent across ecosystems, driving vegetation dynamics and resulting in disruption of habitats (Moritz et al. 2014).We analyze pollen and spores as proxies for vegetation composition, structure and agricultural activity, microscopic charcoal as a proxy for fire activity, and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion which preserve in <span class="hlt">ice</span> <span class="hlt">cores</span> over millennia (Eichler et al. 2011).Our high-alpine <span class="hlt">ice</span> <span class="hlt">core</span> (4452 m a.s.l.) from Colle Gnifetti, Swiss Alps is located in the center of Western Europe, thus allowing to assess vegetation and societal responses to climatic change and wildfire disturbance on a subcontinental scale. The record <span class="hlt">covers</span> the last millennium with an excellent chronological control (Jenk et al. 2009, Sigl et al. 2009), particularly over the most recent 200 years - the period that experienced important climatic changes and an increasing globalization of economy.The Colle Gnifetti record reflects large scale impacts such as extreme weather, societal innovations, agricultural crises and pollution of the industrial period in Western Europe. Pollution tracers occur in the record as early as 1750 AD and coincide with the shift to large-scale maize production in Northern Italy and with increased fire activity. Our multiproxy record may allow desentagling the role of climate and humans for vegetation composition and biomass burning. The attribution of causes may significantly advance our understanding of future vegetation and fire dynamics under global change conditions. To our knowledge we present the first long-term high-resolution palynological record of a high elevation <span class="hlt">ice</span> <span class="hlt">core</span> in Europe.REFERENCESEichler et al. (2011): An <span class="hlt">ice-core</span> based history of Siberian forest fires since AD 1250. Quaternary Science Reviews, 30(9), 1027-1034.Jenk et al. (2009): A novel radiocarbon dating technique applied to an <span class="hlt">ice</span> <span class="hlt">core</span> from the Alps indicating late Pleistocene ages. Journal of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMPP23C..05T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMPP23C..05T"><span>1500 Years of Annual Climate and Environmental Variability as Recorded in Bona-Churchill (Alaska) <span class="hlt">Ice</span> <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, L. G.; Mosley-Thompson, E. S.; Zagorodnov, V.; Davis, M. E.; Mashiotta, T. A.; Lin, P.</p> <p>2004-12-01</p> <p>In 2003, six <span class="hlt">ice</span> <span class="hlt">cores</span> measuring 10.5, 11.5, 11.8, 12.4, 114 and 460 meters were recovered from the col between Mount Bona and Mount Churchill (61° 24'N; 141° 42'W; 4420 m asl). These <span class="hlt">cores</span> have been analyzed for stable isotopic ratios, insoluble dust content and concentrations of major chemical species. Total Beta radioactivity was measured in the upper sections. The 460-meter <span class="hlt">core</span>, extending to bedrock, captured the entire depositional record at this site where <span class="hlt">ice</span> temperatures ranged from -24° C at 10 meters to -19.8° C at the <span class="hlt">ice</span>/bedrock contact. The shallow <span class="hlt">cores</span> allow assessment of surface processes under modern meteorological conditions while the deep <span class="hlt">core</span> offers a ˜1500-year climate and environmental perspective. The average annual net balance is ˜~1000 mm of water equivalent and distinct annual signals in dust and calcium concentrations along with δ 18O allow annual resolution over most of the <span class="hlt">core</span>. The excess sulfate record reflects many known large volcanic eruptions such as Katmai, Krakatau, Tambora, and Laki which allow validation of the time scale in the upper part of the <span class="hlt">core</span>. The lower part of the <span class="hlt">core</span> yields a history of earlier volcanic events. The 460-m Bona-Churchill <span class="hlt">ice</span> <span class="hlt">core</span> provides a detailed history of the `Little <span class="hlt">Ice</span> Age' and medieval warm periods for southeastern Alaska. The source of the White River Ash will be discussed in light of the evidence from this <span class="hlt">core</span>. The 460-m <span class="hlt">core</span> also provides a long-term history of the dust fall that originates in north-central China. The annual <span class="hlt">ice</span> <span class="hlt">core</span>-derived climate records from southeastern Alaska will facilitate an investigation of the likelihood that the high resolution 1500-year record from the tropical Quelccaya <span class="hlt">Ice</span> Cap (Peru) preserves a history of the variability of both the PDO and the Aleutian Low.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C41B0347M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C41B0347M"><span>Multi-Decadal Comparison between Clean-<span class="hlt">Ice</span> and Debris-<span class="hlt">Covered</span> Glaciers in the Eastern Himalaya</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maurer, J. M.; Rupper, S.</p> <p>2014-12-01</p> <p>Himalayan glaciers are important natural resources and climatic indicators. Many of these glaciers have debris-<span class="hlt">covered</span> ablation zones, while others are mostly clean <span class="hlt">ice</span>. Regarding glacier dynamics, it is expected that debris-<span class="hlt">covered</span> glaciers will respond differently to atmospheric warming compared to clean <span class="hlt">ice</span> glaciers. In the Bhutanese Himalaya, there are (1) north flowing clean-<span class="hlt">ice</span> glaciers with high velocities, likely with large amounts of basal sliding, and (2) south flowing debris-<span class="hlt">covered</span> glaciers with slow velocities, thermokarst features, and influenced more by the Indian Summer Monsoon. This region, therefore, is ideal for comparing the dynamical response of clean-<span class="hlt">ice</span> versus debris-<span class="hlt">covered</span> glaciers to climatic change. In particular, previous studies have suggested the north flowing glaciers are likely adjusting more dynamically (i.e. retreating) in response to climate variations, while the south flowing glaciers are likely experiencing downwasting, with stagnant termini locations. We test this hypothesis by assessing glacier changes over three decades in the Bhutan region using a newly-developed workflow to extract DEMs and orthorectified imagery from both 1976 historical spy satellite images and 2006 ASTER images. DEM differencing for both debris-<span class="hlt">covered</span> and clean glaciers allows for quantification of glacier surface elevation changes, while orthorectified imagery allows for measuring changes in glacier termini. The same stereo-matching, denoising, and georeferencing methodology is used on both datasets to ensure consistency, while the three decade timespan allows for a better signal to noise ratio compared to studies performed on shorter timescales. The results of these analyses highlight the similarities and differences in the decadal response of clean-<span class="hlt">ice</span> and debris-<span class="hlt">covered</span> glaciers to climatic change, and provide insights into the complex dynamics of debris-<span class="hlt">covered</span> glaciers in the monsoonal Himalayas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESSD....6..367L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESSD....6..367L"><span>Sea <span class="hlt">ice</span> in the Baltic Sea - revisiting BASIS <span class="hlt">ice</span>, a historical data set <span class="hlt">covering</span> the period 1960/1961-1978/1979</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Dietze, H.</p> <p>2014-12-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice-covered</span>, marginal sea in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea <span class="hlt">ice</span>, the local weather services have been monitoring sea <span class="hlt">ice</span> conditions for decades. In the present study we revisit a historical monitoring data set, <span class="hlt">covering</span> the winters 1960/1961 to 1978/1979. This data set, dubbed Data Bank for Baltic Sea <span class="hlt">Ice</span> and Sea Surface Temperatures (BASIS) <span class="hlt">ice</span>, is based on hand-drawn maps that were collected and then digitised in 1981 in a joint project of the Finnish Institute of Marine Research (today the Finnish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS <span class="hlt">ice</span> was designed for storage on punch cards and all <span class="hlt">ice</span> information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard <span class="hlt">ice</span> quantities (including information on <span class="hlt">ice</span> types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical <span class="hlt">ice</span> models and provide easy-to-access unique historical reference material for sea <span class="hlt">ice</span> in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website http://www.baltic-ocean.org hosts the post-processed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science, PANGAEA (doi:10.1594/PANGAEA.832353).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3113J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3113J"><span>Modeling of water isotopes in polar regions and application to <span class="hlt">ice</span> <span class="hlt">core</span> studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jouzel, J.</p> <p>2012-04-01</p> <p>Willi Dansgaard spear-headed the use of the stable isotopes of water in climatology and palaeoclimatology especially as applied to deep <span class="hlt">ice</span> <span class="hlt">cores</span> for which measurements of the oxygen and hydrogen isotope ratios remain the key tools for reconstructing continuous palaeotemperature records. In the line of his pioneering work on "Stable isotopes in precipitation" published in Tellus in 1964, I will review how isotopic models, either Rayleigh type or based on the implementation of water isotopes in General Circulation Models, have developed and been used for applications in polar <span class="hlt">ice</span> <span class="hlt">core</span> studies. This will include a discussion of the conventional approach for interpreting water isotopes in <span class="hlt">ice</span> <span class="hlt">cores</span> and of additional information provided by measurements of the deuterium excess and more recently of the 17O-excess.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26342133','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26342133"><span>Winter severity determines functional trait composition of phytoplankton in seasonally <span class="hlt">ice-covered</span> lakes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita</p> <p>2016-01-01</p> <p>How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally <span class="hlt">ice-covered</span> temperate lakes which are particularly vulnerable to the presence or absence of <span class="hlt">ice</span>. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), <span class="hlt">covering</span> 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using <span class="hlt">ice</span> thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no <span class="hlt">ice</span> <span class="hlt">cover</span>; phototrophic taxa) or severe winters (i.e., thick <span class="hlt">ice</span> <span class="hlt">cover</span>; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in <span class="hlt">ice-cover</span> durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C23A0985S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C23A0985S"><span>Automated Laser-Light Scattering measurements of Impurities, Bubbles, and Imperfections in <span class="hlt">Ice</span> <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stolz, M. R.; Ram, M.</p> <p>2004-12-01</p> <p>Laser- light scattering (LLS) on polar <span class="hlt">ice</span>, or on polar <span class="hlt">ice</span> meltwater, is an accepted method for measuring the concentration of water insoluble aerosol deposits (dust) in the <span class="hlt">ice</span>. LLS on polar <span class="hlt">ice</span> can also be used to measure water soluble aerosols, as well as imperfections (air bubbles and cavities) in the <span class="hlt">ice</span>. LLS was originally proposed by Hammer (1977a, b) as a method for measuring the dust concentration in polar <span class="hlt">ice</span> meltwater. Ram et al. (1995) later advanced the method and applied it to solid <span class="hlt">ice</span>, measuring the dust concentration profile along the deep, bubble-free sections of the Greenland <span class="hlt">Ice</span> Sheet Projetct 2 (GISP2) <span class="hlt">ice</span> <span class="hlt">core</span> (Ram et al., 1995, 2000) from central Greenland. In this paper, we will put previous empirical findings (Ram et al., 1995, 2000) on a theoretical footing, and extend the usability of LLS on <span class="hlt">ice</span> into the realm of the non-transparent, bubbly polar <span class="hlt">ice</span>. For LLS on clear, bubble-free polar <span class="hlt">ice</span>, we studied numerically the scattering of light by soluble and insoluble (dust) aerosol particles embedded in the <span class="hlt">ice</span> to complement previous experimental studies (Ram et al., 2000). For air bubbles in polar <span class="hlt">ice</span>, we calculated the effects of multiple light scattering using Mie theory and Monte Carlo simulations, and found a method for determining the bubble number size and concentration using LLS on bubbly <span class="hlt">ice</span>. We also demonstrated that LLS can be used on bubbly <span class="hlt">ice</span> to measure annual layers rapidly in an objective manner. Hammer, C. U. (1977a), Dating of Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> by microparticle concentration analyses., in International Symposium on Isotopes and Impurities in Snow and <span class="hlt">Ice</span>, pp. 297-301, IAHS publ. no. 118. Hammer, C. U. (1977b), Dust studies on Greenland <span class="hlt">ice</span> <span class="hlt">cores</span>, in International Symposium on Isotopes and Impurities in Snow and <span class="hlt">Ice</span>, pp. 365-370, IAHS publ. no. 118. Ram, M., M. Illing, P. Weber, G. Koenig, and M. Kaplan (1995), Polar <span class="hlt">ice</span> stratigraphy from laser-light scattering: Scattering from <span class="hlt">ice</span>, Geophys. Res. Lett., 22(24), 3525</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612881B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612881B"><span>Application of composite flow laws to grain size distributions derived from polar <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp</p> <p>2014-05-01</p> <p>Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural <span class="hlt">ice</span> during the last decades has been to create depth-profiles of mean grain size. Several <span class="hlt">ice</span> flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the <span class="hlt">ice</span> flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar <span class="hlt">ice</span> <span class="hlt">cores</span>. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an <span class="hlt">ice</span> <span class="hlt">core</span> has become relatively easy by automatic image processing techniques [2]. The shallow <span class="hlt">ice</span> approximation is widely adopted in <span class="hlt">ice</span> sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at <span class="hlt">ice</span> divides or dome structures, where most deep <span class="hlt">ice</span> <span class="hlt">core</span> drilling sites are located. Within the upper two thirds of the <span class="hlt">ice</span> column longitudinal stresses are not negligible and <span class="hlt">ice</span> deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the <span class="hlt">ice</span> sheet, whereas in the lower <span class="hlt">ice</span> column vertical shear becomes the main driver for <span class="hlt">ice</span> deformation. We derived vertical strain rates from the upper NEEM <span class="hlt">ice</span> <span class="hlt">core</span> (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5088206','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5088206"><span>Changes of the Bacterial Abundance and Communities in Shallow <span class="hlt">Ice</span> <span class="hlt">Cores</span> from Dunde and Muztagata Glaciers, Western China</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong</p> <p>2016-01-01</p> <p>In this study, six bacterial community structures were analyzed from the Dunde <span class="hlt">ice</span> <span class="hlt">core</span> (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain <span class="hlt">ice</span> <span class="hlt">core</span> (37-m-long), the Dunde <span class="hlt">ice</span> <span class="hlt">core</span> has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested <span class="hlt">ice</span> layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde <span class="hlt">ice</span> <span class="hlt">cores</span>. The Muztagata <span class="hlt">ice</span> <span class="hlt">core</span> revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde <span class="hlt">ice</span> <span class="hlt">core</span> was not successful due to the limitations of sampling resolution. Both <span class="hlt">ice</span> <span class="hlt">cores</span> showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related <span class="hlt">ice</span> <span class="hlt">cores</span>, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12208033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12208033"><span>Influence of <span class="hlt">ice</span> and snow <span class="hlt">covers</span> on the UV exposure of terrestrial microbial communities: dosimetric studies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton</p> <p>2002-08-01</p> <p>Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats <span class="hlt">covered</span> by snow and <span class="hlt">ice</span> in Antarctica. The melting of snow <span class="hlt">covers</span> of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous <span class="hlt">ice</span> of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted <span class="hlt">ice</span> <span class="hlt">cover</span> on a pond was equivalent to 10 cm of <span class="hlt">ice</span> on a perennially <span class="hlt">ice</span> <span class="hlt">covered</span> lake. <span class="hlt">Ice</span> <span class="hlt">covers</span> also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing <span class="hlt">ice</span> and snow <span class="hlt">covers</span> cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance. Copyright 2002 Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013E%26PSL.368....9R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013E%26PSL.368....9R"><span>Continuous methane measurements from a late Holocene Greenland <span class="hlt">ice</span> <span class="hlt">core</span>: Atmospheric and in-situ signals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rhodes, Rachael H.; Faïn, Xavier; Stowasser, Christopher; Blunier, Thomas; Chappellaz, Jérôme; McConnell, Joseph R.; Romanini, Daniele; Mitchell, Logan E.; Brook, Edward J.</p> <p>2013-04-01</p> <p>Ancient air trapped inside bubbles in <span class="hlt">ice</span> <span class="hlt">cores</span> can now be analysed for methane concentration utilising a laser spectrometer coupled to a continuous melter system. We present a new ultra-high resolution record of atmospheric methane variability over the last 1800 yr obtained from continuous analysis of a shallow <span class="hlt">ice</span> <span class="hlt">core</span> from the North Greenland Eemian project (NEEM-2011-S1) during a 4-week laboratory-based measurement campaign. Our record faithfully replicates the form and amplitudes of multi-decadal oscillations previously observed in other <span class="hlt">ice</span> <span class="hlt">cores</span> and demonstrates the detailed depth resolution (5.3 cm), rapid acquisition time (30 m day-1) and good long-term reproducibility (2.6%, 2σ) of the continuous measurement technique. In addition, we report the detection of high frequency <span class="hlt">ice</span> <span class="hlt">core</span> methane signals of non-atmospheric origin. Firstly, measurements of air from the firn-<span class="hlt">ice</span> transition region and an interval of <span class="hlt">ice</span> <span class="hlt">core</span> dating from 1546-1560 AD (gas age) resolve apparently quasi-annual scale methane oscillations. Traditional gas chromatography measurements on discrete <span class="hlt">ice</span> samples confirm these signals and indicate peak-to-peak amplitudes of ca. 22 parts per billion (ppb). We hypothesise that these oscillations result from staggered bubble close-off between seasonal layers of contrasting density during time periods of sustained multi-year atmospheric methane change. Secondly, we report the detection of abrupt (20-100 cm depth interval), high amplitude (35-80 ppb excess) methane spikes in the NEEM <span class="hlt">ice</span> that are reproduced by discrete measurements. We show for the first time that methane spikes present in thin and infrequent layers in polar, glacial <span class="hlt">ice</span> are accompanied by elevated concentrations of carbon- and nitrogen-based chemical impurities, and suggest that biological in-situ production may be responsible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394139','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1394139"><span>Historical Carbon Dioxide Record from the Vostok <span class="hlt">Ice</span> <span class="hlt">Core</span> (417,160 - 2,342 years BP)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Barnola, J. M. [CNRS, Saint Martin d'Heres Cedex, France; Raynaud, D. [CNRS, Saint Martin d'Heres Cedex, France; Lorius, C. [CNRS, Saint Martin d'Heres Cedex, France; Barkov, N. I.</p> <p>2003-01-01</p> <p>In January 1998, the collaborative <span class="hlt">ice</span>-drilling project between Russia, the United States, and France at the Russian Vostok station in East Antarctica yielded the deepest <span class="hlt">ice</span> <span class="hlt">core</span> ever recovered, reaching a depth of 3,623 m (Petit et al. 1997, 1999). <span class="hlt">Ice</span> <span class="hlt">cores</span> are unique with their entrapped air inclusions enabling direct records of past changes in atmospheric trace-gas composition. Preliminary data indicate the Vostok <span class="hlt">ice-core</span> record extends through four climate cycles, with <span class="hlt">ice</span> slightly older than 400 kyr (Petit et al. 1997, 1999). Because air bubbles do not close at the surface of the <span class="hlt">ice</span> sheet but only near the firn-<span class="hlt">ice</span> transition (that is, at ~90 m below the surface at Vostok), the air extracted from the <span class="hlt">ice</span> is younger than the surrounding <span class="hlt">ice</span> (Barnola et al. 1991). Using semiempirical models of densification applied to past Vostok climate conditions, Barnola et al. (1991) reported that the age difference between air and <span class="hlt">ice</span> may be ~6000 years during the coldest periods instead of ~4000 years, as previously assumed. <span class="hlt">Ice</span> samples were cut with a bandsaw in a cold room (at about -15°C) as close as possible to the center of the <span class="hlt">core</span> in order to avoid surface contamination (Barnola et al. 1983). Gas extraction and measurements were performed with the "Grenoble analytical setup," which involved crushing the <span class="hlt">ice</span> sample (~40 g) under vacuum in a stainless steel container without melting it, expanding the gas released during the crushing in a pre-evacuated sampling loop, and analyzing the CO2 concentrations by gas chromatography (Barnola et al. 1983). The analytical system, except for the stainless steel container in which the <span class="hlt">ice</span> was crushed, was calibrated for each <span class="hlt">ice</span> sample measurement with a standard mixture of CO2 in nitrogen and oxygen. For further details on the experimental procedures and the dating of the successive <span class="hlt">ice</span> layers at Vostok, see Barnola et al. (1987, 1991), Lorius et al. (1985), and Petit et al. (1999).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29784952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29784952"><span>Vanishing river <span class="hlt">ice</span> <span class="hlt">cover</span> in the lower part of the Danube basin - signs of a changing climate.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ionita, M; Badaluta, C -A; Scholz, P; Chelcea, S</p> <p>2018-05-21</p> <p>Many of the world's largest rivers in the extra tropics are <span class="hlt">covered</span> with <span class="hlt">ice</span> during the cold season, and in the Northern Hemisphere approximately 60% of the rivers experience significant seasonal effects of river <span class="hlt">ice</span>. Here we present an observational data set of the <span class="hlt">ice</span> <span class="hlt">cover</span> regime for the lower part of the Danube River which spans over the period 1837-2016, and its the longest one on record over this area. The results in this study emphasize the strong impact of climate change on the occurrence of <span class="hlt">ice</span> regime especially in the second part of the 20 th century. The number of <span class="hlt">ice</span> <span class="hlt">cover</span> days has decreased considerably (~28days/century) mainly due to an increase in the winter mean temperature. In a long-term context, based on documentary evidences, we show that the <span class="hlt">ice</span> <span class="hlt">cover</span> occurrence rate was relatively small throughout the Medieval Warm Period (MWP), while the highest occurrence rates were found during the Maunder Minimum and Dalton Minimum periods. We conclude that the river <span class="hlt">ice</span> regime can be used as a proxy for the winter temperature over the analyzed region and as an indicator of climate-change related impacts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..11914045O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..11914045O"><span>Chemical compositions of sulfate and chloride salts over the last termination reconstructed from the Dome Fuji <span class="hlt">ice</span> <span class="hlt">core</span>, inland Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oyabu, Ikumi; Iizuka, Yoshinori; Uemura, Ryu; Miyake, Takayuki; Hirabayashi, Motohiro; Motoyama, Hideaki; Sakurai, Toshimitsu; Suzuki, Toshitaka; Hondoh, Takeo</p> <p>2014-12-01</p> <p>The flux and chemical composition of aerosols impact the climate. Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> preserve the record of past atmospheric aerosols, providing useful information about past atmospheric environments. However, few studies have directly measured the chemical composition of aerosol particles preserved in <span class="hlt">ice</span> <span class="hlt">cores</span>. Here we present the chemical compositions of sulfate and chloride salts from aerosol particles in the Dome Fuji <span class="hlt">ice</span> <span class="hlt">core</span>. The analysis method involves <span class="hlt">ice</span> sublimation, and the period <span class="hlt">covers</span> the last termination, 25.0-11.0 thousand years before present (kyr B.P.), with a 350 year resolution. The major components of the soluble particles are CaSO4, Na2SO4, and NaCl. The dominant sulfate salt changes at 16.8 kyr B.P. from CaSO4, a glacial type, to Na2SO4, an interglacial type. The sulfate salt flux (CaSO4 plus Na2SO4) inversely correlates with δ18O in Dome Fuji over millennial timescales. This correlation is consistent with the idea that sulfate salt aerosols contributed to the last deglacial warming of inland Antarctica by reducing the aerosol indirect effect. Between 16.3 and 11.0 kyr B.P., the presence of NaCl suggests that winter atmospheric aerosols are preserved. A high NaCl/Na2SO4 fraction between 12.3 and 11.0 kyr B.P. indicates that the contribution from the transport of winter atmospheric aerosols increased during this period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP33D..06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP33D..06V"><span>Forward Modeling of Oxygen Isotope Variability in Tropical Andean <span class="hlt">Ice</span> <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vuille, M. F.; Hurley, J. V.; Hardy, D. R.</p> <p>2016-12-01</p> <p><span class="hlt">Ice</span> <span class="hlt">core</span> records from the tropical Andes serve as important archives of past tropical Pacific SST variability and changes in monsoon intensity upstream over the Amazon basin. Yet the interpretation of the oxygen isotopic signal in these <span class="hlt">ice</span> <span class="hlt">cores</span> remains controversial. Based on 10 years of continuous on-site glaciologic, meteorologic and isotopic measurements at the summit of the world's largest tropical <span class="hlt">ice</span> cap, Quelccaya, in southern Peru, we developed a process-based physical forward model (proxy system model), capable of simulating intraseasonal, seasonal and interannual variability in delta-18O as observed in snow pits and short <span class="hlt">cores</span>. Our results highlight the importance of taking into account post-depositional effects (sublimation and isotopic enrichment) to properly simulate the seasonal cycle. Intraseasonal variability is underestimated in our model unless the effects of cold air incursions, triggering significant monsoonal snowfall and more negative delta-18O values, are included. A number of sensitivity test highlight the influence of changing boundary conditions on the final snow isotopic profile. Such tests also show that our model provides much more realistic data than applying direct model output of precipitation delta-18O from isotope-enabled climate models (SWING ensemble). The forward model was calibrated with and run under present-day conditions, but it can also be driven with past climate forcings to reconstruct paleo-monsoon variability and investigate the influence of changes in radiative forcings (solar, volcanic) on delta-18O variability in Andean snow. The model is transferable and may be used to render a paleoclimatic context at other <span class="hlt">ice</span> <span class="hlt">core</span> locations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110845A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110845A"><span>Atmospheric CO2 Over the Last 1000 Years: WAIS Divide <span class="hlt">Ice</span> <span class="hlt">Core</span> Record</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahn, J.; Brook, E. J.</p> <p>2009-04-01</p> <p>How atmospheric CO2 varied over the last thousands years is of great interest because we may see not only natural, but also anthropogenic variations (Ruddiman, Climatic Change, 2003). The Law Dome <span class="hlt">ice</span> <span class="hlt">cores</span> reveal decadal to centennial variations in CO2 over the last 2000 years (MacFarling Meure et al., Geophys. Res. Lett., 2006). However, these variations have not yet been well confirmed in other <span class="hlt">ice</span> <span class="hlt">core</span> records. Here we use a newly drilled WAIS Divide <span class="hlt">ice</span> <span class="hlt">core</span>, which is ideal for this purpose because WAIS Divide has relatively high snow accumulation rate and small gas age distribution that allow us to observe decadal CO2 variations with minimal damping. We have started an extensive study of CO2 in WAIS Divide <span class="hlt">core</span>. So far we have obtained data for 960-1940 A.D. from the WDC05-A <span class="hlt">core</span> drilled in 2005-2006. 344 <span class="hlt">ice</span> samples from 103 depths were analyzed and the standard error of the mean is ~0.8 ppm on average. Ancient air in 8~12 g of bubbly <span class="hlt">ice</span> is liberated by crushing with steel pins at -35 °C and trapped in stainless steel tubes at -262 °C. CO2 mixing ratio in the extracted air is precisely determined using a gas chromatographic method. Details of the high-precision methods are described in Ahn et al. (J. of Glaciology, in press). Our new results show preindustrial atmospheric CO2 variability of ~ 10 ppm. The most striking feature of the record is a rapid atmospheric CO2 decrease of 7~8 ppm within ~20 years at ~ 1600 A.D. Considering the larger smoothing of gas records in the WAIS Divide relative to Law Dome, our results confirm the atmospheric CO2 decrease of ~10 ppm in Law Dome records observed at this time. However, this event is not significant in the Dronning Maud Land <span class="hlt">ice</span> <span class="hlt">core</span> (Siegenthaler et al., Tellus, 2005), probably due to more extensive smoothing of gas records in the <span class="hlt">core</span>. Similar rapid changes of CO2 at other times in the WAIS Divide record need to be confirmed with higher resolution studies. We also found that our WAIS Divide CO2 data are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESSDD...7..419L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESSDD...7..419L"><span>Sea <span class="hlt">ice</span> in the Baltic Sea - revisiting BASIS <span class="hlt">ice</span>, a~historical data set <span class="hlt">covering</span> the period 1960/1961-1978/1979</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Dietze, H.</p> <p>2014-06-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice-covered</span>, marginal sea, situated in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea <span class="hlt">ice</span>, the local weather services have been monitoring sea <span class="hlt">ice</span> conditions for decades. In the present study we revisit a historical monitoring data set, <span class="hlt">covering</span> the winters 1960/1961. This data set, dubbed Data Bank for Baltic Sea <span class="hlt">Ice</span> and Sea Surface Temperatures (BASIS) <span class="hlt">ice</span>, is based on hand-drawn maps that were collected and then digitised 1981 in a joint project of the Finnish Institute of Marine Research (today Finish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS <span class="hlt">ice</span> was designed for storage on punch cards and all <span class="hlt">ice</span> information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard <span class="hlt">ice</span> quantities (including information on <span class="hlt">ice</span> types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical <span class="hlt">ice</span> models and provide easy-to-access unique historical reference material for sea <span class="hlt">ice</span> in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website <a href="www.baltic-ocean.org"target="_blank">www.baltic-ocean.org<a/> hosts the post-prossed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science PANGEA (<a href="http://dx.doi.org/"target="_blank">doi:10.1594/PANGEA.832353<a/>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.3301J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.3301J"><span>The interaction between sea <span class="hlt">ice</span> and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea <span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.</p> <p>2016-11-01</p> <p>Changes in the sea <span class="hlt">ice</span> <span class="hlt">cover</span> of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea <span class="hlt">ice</span> and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea <span class="hlt">ice</span> <span class="hlt">covered</span> and salinity stratified Nordic Seas, and consists of a sea <span class="hlt">ice</span> component and a two-layer ocean. The sea <span class="hlt">ice</span> thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea <span class="hlt">ice</span> export. Whether sea <span class="hlt">ice</span> stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea <span class="hlt">ice</span> acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea <span class="hlt">ice</span> acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea <span class="hlt">ice</span>. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea <span class="hlt">ice</span>. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3652B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3652B"><span>The current evolution of complex high mountain debris-<span class="hlt">covered</span> glacier systems and its relation with ground <span class="hlt">ice</span> nature and distribution: the case of Rognes and Pierre Ronde area (Mont-Blanc range, France).</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosson, Jean-Baptiste; Lambiel, Christophe</p> <p>2014-05-01</p> <p>The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on <span class="hlt">ice</span> melt is mitigated and delayed. As well, debris-<span class="hlt">covered</span> glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow <span class="hlt">cover</span>, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former <span class="hlt">ice</span>-cemented sediments, the negative mass balance may have led to the formation of <span class="hlt">ice-cored</span> rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary <span class="hlt">ice</span>, high mountain debris-<span class="hlt">covered</span> glacier systems can contain interstitial magmatic <span class="hlt">ice</span>. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead <span class="hlt">ice</span> in deglaciated areas, the current extent of debris-<span class="hlt">covered</span> glacier can be difficult to point out. Thus, the whole system, according to Little <span class="hlt">Ice</span> Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-<span class="hlt">covered</span> and only few <span class="hlt">ice</span> outcrops in the upper slopes still witness the existence of former glaciers</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060038062&hterms=flower&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dflower','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060038062&hterms=flower&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dflower"><span>(abstract) A Polarimetric Model for Effects of Brine Infiltrated Snow <span class="hlt">Cover</span> and Frost Flowers on Sea <span class="hlt">Ice</span> Backscatter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, S. V.; Kwok, R.; Yueh, S. H.</p> <p>1995-01-01</p> <p>A polarimetric scattering model is developed to study effects of snow <span class="hlt">cover</span> and frost flowers with brine infiltration on thin sea <span class="hlt">ice</span>. Leads containing thin sea <span class="hlt">ice</span> in the Artic icepack are important to heat exchange with the atmosphere and salt flux into the upper ocean. Surface characteristics of thin sea <span class="hlt">ice</span> in leads are dominated by the formation of frost flowers with high salinity. In many cases, the thin sea <span class="hlt">ice</span> layer is <span class="hlt">covered</span> by snow, which wicks up brine from sea <span class="hlt">ice</span> due to capillary force. Snow and frost flowers have a significant impact on polarimetric signatures of thin <span class="hlt">ice</span>, which needs to be studied for accessing the retrieval of geophysical parameters such as <span class="hlt">ice</span> thickness. Frost flowers or snow layer is modeled with a heterogeneous mixture consisting of randomly oriented ellipsoids and brine infiltration in an air background. <span class="hlt">Ice</span> crystals are characterized with three different axial lengths to depict the nonspherical shape. Under the <span class="hlt">covering</span> multispecies medium, the columinar sea-<span class="hlt">ice</span> layer is an inhomogeneous anisotropic medium composed of ellipsoidal brine inclusions preferentially oriented in the vertical direction in an <span class="hlt">ice</span> background. The underlying medium is homogeneous sea water. This configuration is described with layered inhomogeneous media containing multiple species of scatterers. The species are allowed to have different size, shape, and permittivity. The strong permittivity fluctuation theory is extended to account for the multispecies in the derivation of effective permittivities with distributions of scatterer orientations characterized by Eulerian rotation angles. Polarimetric backscattering coefficients are obtained consistently with the same physical description used in the effective permittivity calculation. The mulitspecies model allows the inclusion of high-permittivity species to study effects of brine infiltrated snow <span class="hlt">cover</span> and frost flowers on thin <span class="hlt">ice</span>. The results suggest that the frost <span class="hlt">cover</span> with a rough interface</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816755T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816755T"><span>eVolv2k: A new <span class="hlt">ice</span> <span class="hlt">core</span>-based volcanic forcing reconstruction for the past 2000 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toohey, Matthew; Sigl, Michael</p> <p>2016-04-01</p> <p>Radiative forcing resulting from stratospheric aerosols produced by major volcanic eruptions is a dominant driver of climate variability in the Earth's past. The ability of climate model simulations to accurately recreate past climate is tied directly to the accuracy of the volcanic forcing timeseries used in the simulations. We present here a new volcanic forcing reconstruction, based on newly updated <span class="hlt">ice</span> <span class="hlt">core</span> composites from Antarctica and Greenland. <span class="hlt">Ice</span> <span class="hlt">core</span> records are translated into stratospheric aerosol properties for use in climate models through the Easy Volcanic Aerosol (EVA) module, which provides an analytic representation of volcanic stratospheric aerosol forcing based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. The evolv2k volcanic forcing dataset <span class="hlt">covers</span> the past 2000 years, and has been provided for use in the Paleo-Modeling Intercomparison Project (PMIP), and VolMIP experiments within CMIP6. Here, we describe the construction of the eVolv2k data set, compare with prior forcing sets, and show initial simulation results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8367E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8367E"><span>RICE <span class="hlt">ice</span> <span class="hlt">core</span>: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang</p> <p>2015-04-01</p> <p>The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep <span class="hlt">ice</span> <span class="hlt">core</span> from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross <span class="hlt">Ice</span> Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross <span class="hlt">Ice</span> Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic <span class="hlt">ice</span>. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping <span class="hlt">ice</span> <span class="hlt">cores</span> (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and <span class="hlt">ice</span> <span class="hlt">core</span> records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP31A1267P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP31A1267P"><span>Denali <span class="hlt">Ice</span> <span class="hlt">Core</span> MSA: A Record of North Pacific Primary Productivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polashenski, D.; Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.</p> <p>2017-12-01</p> <p>The high nutrient, low chlorophyll region of the North Pacific is one of the most biologically productive marine ecosystems in the world and forms the basis of commercial, sport, and subsistence fisheries worth more than a billion dollars annually. Marine phytoplankton prove to be important both as the primary producers in these ecosystems and as a major source of biogenic sulfur emissions which have long been hypothesized to serve as a biological control on Earth's climate system. Despite their importance, the record of marine phytoplankton abundance and the flux of biogenic sulfur from these regions is not well constrained. In situ measurements of marine phytoplankton from oceanographic cruises over the past several decades are limited in both spatial and temporal resolution. Meanwhile, marine sediment records may provide insight on million year timescales, but lack decadal resolution due to slow sediment deposition rates and bioturbation. In this study, we aim to investigate changes in marine phytoplankton productivity of the northeastern subarctic Pacific Ocean (NSPO) over the twentieth century using the methanesulfonic acid (MSA) record from the Mt. Hunter <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in Denali National Park, Alaska. These parallel, 208 meter long <span class="hlt">ice</span> <span class="hlt">cores</span> were drilled during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 4,000 m above sea level). Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modeling is used to identify likely source areas in the NSPO for MSA being transported to the <span class="hlt">core</span> site. SeaWiFS satellite imagery allows for a direct comparison of chlorophyll a concentrations in these source areas with MSA concentrations in the <span class="hlt">core</span> record through time. Our findings suggest that the Denali <span class="hlt">ice</span> <span class="hlt">core</span> MSA record reflects changes in the biological productivity of marine phytoplankton and shows a significant decline in MSA beginning in 1961. We investigate several hypotheses for potential mechanisms driving this MSA decline</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRC..116.3007T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRC..116.3007T"><span>Trends and variability in summer sea <span class="hlt">ice</span> <span class="hlt">cover</span> in the Canadian Arctic based on the Canadian <span class="hlt">Ice</span> Service Digital Archive, 1960-2008 and 1968-2008</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tivy, Adrienne; Howell, Stephen E. L.; Alt, Bea; McCourt, Steve; Chagnon, Richard; Crocker, Greg; Carrieres, Tom; Yackel, John J.</p> <p>2011-03-01</p> <p>The Canadian <span class="hlt">Ice</span> Service Digital Archive (CISDA) is a compilation of weekly <span class="hlt">ice</span> charts <span class="hlt">covering</span> Canadian waters from the early 1960s to present. The main sources of uncertainty in the database are reviewed and the data are validated for use in climate studies before trends and variability in summer averaged sea <span class="hlt">ice</span> <span class="hlt">cover</span> are investigated. These data revealed that between 1968 and 2008, summer sea <span class="hlt">ice</span> <span class="hlt">cover</span> has decreased by 11.3% ± 2.6% decade-1 in Hudson Bay, 2.9% ± 1.2% decade-1 in the Canadian Arctic Archipelago (CAA), 8.9% ± 3.1% decade-1 in Baffin Bay, and 5.2% ± 2.4% decade-1 in the Beaufort Sea with no significant reductions in multiyear <span class="hlt">ice</span>. Reductions in sea <span class="hlt">ice</span> <span class="hlt">cover</span> are linked to increases in early summer surface air temperature (SAT); significant increases in SAT were observed in every season and they are consistently greater than the pan-Arctic change by up to ˜0.2°C decade-1. Within the CAA and Baffin Bay, the El Niño-Southern Oscillation index correlates well with multiyear <span class="hlt">ice</span> coverage (positive) and first-year <span class="hlt">ice</span> coverage (negative) suggesting that El Niño episodes precede summers with more multiyear <span class="hlt">ice</span> and less first-year <span class="hlt">ice</span>. Extending the trend calculations back to 1960 along the major shipping routes revealed significant decreases in summer sea <span class="hlt">ice</span> coverage ranging between 11% and 15% decade-1 along the route through Hudson Bay and 6% and 10% decade-1 along the southern route of the Northwest Passage, the latter is linked to increases in SAT. Between 1960 and 2008, no significant trends were found along the northern western Parry Channel route of the Northwest Passage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171595','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171595"><span>Impact Studies of a 2 C Global Warming on the Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2004-01-01</p> <p>The possible impact of an increase in global temperatures of about 2 C, as may be caused by a doubling of atmospheric CO2, is studied using historical satellite records of surface temperatures and sea <span class="hlt">ice</span> from late 1970s to 2003. Updated satellite data indicate that the perennial <span class="hlt">ice</span> continued to decline at an even faster rate of 9.2 % per decade than previously reported while concurrently, the surface temperatures have steadily been going up in most places except for some parts of northern Russia. Surface temperature is shown to be highly correlated with sea <span class="hlt">ice</span> concentration in the seasonal sea <span class="hlt">ice</span> regions. Results of regression analysis indicates that for every 1 C increase in temperature, the perennial <span class="hlt">ice</span> area decreases by about 1.48 x 10(exp 6) square kilometers with the correlation coefficient being significant but only -0.57. Arctic warming is estimated to be about 0.46 C per decade on average in the Arctic but is shown to be off center with respect to the North Pole, and is prominent mainly in the Western Arctic and North America. The length of melt has been increasing by 13 days per decade over sea <span class="hlt">ice</span> <span class="hlt">covered</span> areas suggesting a thinning in the <span class="hlt">ice</span> <span class="hlt">cover</span>. The length of melt also increased by 5 days per decade over Greenland, 7 days per decade over the permafrost areas of North America but practically no change in Eurasia. Statistically derived projections indicate that the perennial sea <span class="hlt">ice</span> <span class="hlt">cover</span> would decline considerably in 2025, 2035, and 2060 when temperatures are predicted by models to reach the 2 C global increase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TCry....6.1435G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TCry....6.1435G"><span>Ground penetrating radar detection of subsnow slush on <span class="hlt">ice-covered</span> lakes in interior Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gusmeroli, A.; Grosse, G.</p> <p>2012-12-01</p> <p>Lakes are abundant throughout the pan-Arctic region. For many of these lakes <span class="hlt">ice</span> <span class="hlt">cover</span> lasts for up to two thirds of the year. The frozen <span class="hlt">cover</span> allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the <span class="hlt">ice</span> and causes liquid water to spill through weak spots and overflow at the snow-<span class="hlt">ice</span> interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-<span class="hlt">ice</span> interfaces are at least twice as much in strength than returns from dry snow-<span class="hlt">ice</span> interface. The presence of overflow also affects the quality of radar returns from the base of the lake <span class="hlt">ice</span>. During dry conditions we were able to profile <span class="hlt">ice</span> thickness of up to 1 m, conversely, we did not retrieve any <span class="hlt">ice</span>-water returns in areas affected by overflow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160012483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160012483"><span>Modeling the Thickness of Perennial <span class="hlt">Ice</span> <span class="hlt">Covers</span> on Stratified Lakes of the Taylor Valley, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.</p> <p>2016-01-01</p> <p>A one-dimensional <span class="hlt">ice</span> <span class="hlt">cover</span> model was developed to predict and constrain drivers of long term <span class="hlt">ice</span> thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of <span class="hlt">ice</span> thickness changes for west lobe of Lake Bonney (average <span class="hlt">ice</span> thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average <span class="hlt">ice</span> thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term <span class="hlt">ice</span> thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate <span class="hlt">ice</span> thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially <span class="hlt">ice-covered</span> lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term <span class="hlt">ice</span> thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11A0352L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11A0352L"><span>Radon and radium in the <span class="hlt">ice-covered</span> Arctic Ocean, and what they reveal about gas exchange in the sea <span class="hlt">ice</span> zone.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loose, B.; Kelly, R. P.; Bigdeli, A.; Moran, S. B.</p> <p>2014-12-01</p> <p>The polar sea <span class="hlt">ice</span> zones are regions of high primary productivity and interior water mass formation. Consequently, the seasonal sea <span class="hlt">ice</span> cycle appears important to both the solubility and biological carbon pumps. To estimate net CO2 transfer in the sea <span class="hlt">ice</span> zone, we require accurate estimates of the air-sea gas transfer velocity. In the open ocean, the gas transfer velocity is driven by wind, waves and bubbles - all of which are strongly altered by the presence of sea <span class="hlt">ice</span>, making it difficult to translate open ocean estimates of gas transfer to the <span class="hlt">ice</span> zone. In this study, we present profiles of 222Rn and 226Ra throughout the mixed-layer and euphotic zone. Profiles were collected spanning a range of sea <span class="hlt">ice</span> <span class="hlt">cover</span> conditions from 40 to 100%. The profiles of Rn/Ra can be used to estimate the gas transfer velocity, but the 3.8 day half-life of 222Rn implies that mixed layer radon will have a memory of the past ~20 days of gas exchange forcing, which may include a range of sea <span class="hlt">ice</span> <span class="hlt">cover</span> conditions. Here, we compare individual estimates of the gas transfer velocity to the turbulent forcing conditions constrained from shipboard and regional reanalysis data to more appropriately capture the time history upper ocean Rn/Ra.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25712272','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25712272"><span><span class="hlt">Ice</span> <span class="hlt">cover</span> extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L</p> <p>2016-06-01</p> <p>Mid-winter limnological surveys of Lake Erie captured extremes in <span class="hlt">ice</span> extent ranging from expansive <span class="hlt">ice</span> <span class="hlt">cover</span> in 2010 and 2011 to nearly <span class="hlt">ice</span>-free waters in 2012. Consistent with a warming climate, <span class="hlt">ice</span> <span class="hlt">cover</span> on the Great Lakes is in decline, thus the <span class="hlt">ice</span>-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual <span class="hlt">ice</span> <span class="hlt">cover</span> are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive <span class="hlt">ice</span> <span class="hlt">cover</span> supported phytoplankton blooms of filamentous diatoms. By comparison, <span class="hlt">ice</span> free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of <span class="hlt">ice</span> <span class="hlt">cover</span> resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of <span class="hlt">ice</span> <span class="hlt">cover</span>. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601317','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601317"><span>Atmospheric Profiles, Clouds, and the Evolution of Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span> in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p><span class="hlt">Cover</span> in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys Axel...how changes in sea <span class="hlt">ice</span> and sea surface conditions in the SIZ affect changes in cloud properties and <span class="hlt">cover</span> . • Determine the role additional atmospheric...REPORT TYPE 3. DATES <span class="hlt">COVERED</span> 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Atmospheric Profiles, Clouds, and the Evolution of Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span> in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2000/0003/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2000/0003/report.pdf"><span>Global <span class="hlt">ice-core</span> research: Understanding and applying environmental records of the past</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cecil, L. DeWayne; Green, Jaromy R.; Naftz, David L.</p> <p>2000-01-01</p> <p>Environmental changes are of major concern at low- or mid-latitude regions of our Earth simply because this is where 80 to 90 percent of the world’s human population live. <span class="hlt">Ice</span> <span class="hlt">cores</span> collected from isolated polar regions are, at best, proxy indicators of low- and mid-latitude environmental changes. Because polar icecore research is limiting in this sense, <span class="hlt">ice</span> <span class="hlt">cores</span> from low- and mid-latitude glaciers are being used to study past environmental changes in order to better understand and predict future environmental changes that may affect the populated regions of the world.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120010622','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120010622"><span>Changes in Black Carbon Deposition to Antarctica from Two <span class="hlt">Ice</span> <span class="hlt">Core</span> Records, A.D. 1850-2000</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick</p> <p>2012-01-01</p> <p>Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter <span class="hlt">ice</span> <span class="hlt">core</span> sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the <span class="hlt">ice</span>. The melted <span class="hlt">ice</span> from the most inner part of the <span class="hlt">ice</span> stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, <span class="hlt">ice</span> density and snow accumulation rate at the <span class="hlt">ice</span> <span class="hlt">core</span> drilling site. For annual accumulation derived from the WAIS and Law Dome <span class="hlt">ice</span> <span class="hlt">cores</span>, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel <span class="hlt">ice</span> <span class="hlt">cores</span> notably from the WAIS Divide <span class="hlt">ice</span> <span class="hlt">core</span> site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC23H..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC23H..08S"><span>Correlating <span class="hlt">Ice</span> <span class="hlt">Cores</span> from Quelccaya <span class="hlt">Ice</span> Cap with Chronology from Little <span class="hlt">Ice</span> Age Glacial Extents</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroup, J. S.; Kelly, M. A.; Lowell, T. V.</p> <p>2010-12-01</p> <p>Proxy records indicate Southern Hemisphere climatic changes during the Little <span class="hlt">Ice</span> Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya <span class="hlt">Ice</span> Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD <span class="hlt">ice</span> margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little <span class="hlt">Ice</span> Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past <span class="hlt">ice</span> cap extents are correlated with <span class="hlt">ice</span> <span class="hlt">core</span> records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.U43B0854W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.U43B0854W"><span>Arrival of Sulfate Aerosols from Iceland's Laki Eruption (1783-1784 AD) to the Greenland <span class="hlt">Ice</span> Sheet: A Critical <span class="hlt">Ice</span> <span class="hlt">Core</span> Dating Tool</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, L.; Mosley-Thompson, E.</p> <p>2006-12-01</p> <p>The Laki (Iceland) volcanic event was a basaltic flood lava eruption lasting from June 8, 1783 to February 7, 1784. The timing of the arrival of the sulfate aerosols and volcanic fragments to the Greenland <span class="hlt">Ice</span> Sheet (GIS) remains uncertain, but is important to confirm as the highly conductive sulfate layer has been consistently used as a time stratigraphic marker (1783 AD) in <span class="hlt">ice</span> <span class="hlt">cores</span> collected across Greenland. However, in the GISP2 <span class="hlt">ice</span> <span class="hlt">core</span> a few glass shards were found within the annual layer lying just below that containing the sulfate aerosols from Laki suggesting that the ash arrived first, in 1783, while the aerosols arrived the following year [Fiacco et al., 1994]. Additional published <span class="hlt">ice</span> <span class="hlt">core</span> results have neither confirmed nor refuted this observation. We have taken advantage of the accurately dated, high temporal resolution <span class="hlt">ice</span> <span class="hlt">cores</span> collected by PARCA (Program for Arctic Regional Climate Assessment) to (1) determine more precisely the timing of the arrival of Laki's sulfate aerosols and (2) assess the spatial variability of the excess sulfate contributed by Laki to the GIS. Our results indicate that the sulfate emitted from the Laki eruption most likely arrived on the GIS in the late summer or early fall of 1783 AD. This is also supported by contemporary weather logs and official reports of the appearance of Laki haze [Thordarson and Self, 2003]. The flux of Laki sulfate varies significantly over the GIS, largely as a function of the regional annual accumulation rate. Laki sulfate aerosols also arrived as a single pulse in most of the PARCA <span class="hlt">cores</span>, suggesting that only a small fraction of the gases emitted from Laki reached the stratosphere. References: Fiacco, R.J.,et al., Atmospheric aerosol loading and transport due to the 1783-84 Laki eruption in Iceland, interpreted from ash particles and acidity in the GISP2 <span class="hlt">ice</span> <span class="hlt">core</span>, Quat. Res., 42, 231-240, 1994. Thordarson, T, and S. Self, Atmospheric and environmental effects of the 1783-1784 Laki eruption: A</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRD..11210208Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRD..11210208Y"><span>Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an <span class="hlt">ice</span> <span class="hlt">core</span> from Mount Wrangell, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasunari, Teppei J.; Shiraiwa, Takayuki; Kanamori, Syosaku; Fujii, Yoshiyuki; Igarashi, Makoto; Yamazaki, Koji; Benson, Carl S.; Hondoh, Takeo</p> <p>2007-05-01</p> <p>The North Pacific is subject to various seasonal climate phenomena and material circulations. Therefore intra-annual <span class="hlt">ice</span> <span class="hlt">core</span> data are necessary for an assessment of the climate variations. To assess past variations, a 50-m <span class="hlt">ice</span> <span class="hlt">core</span> was drilled at the summit of Mount Wrangell Volcano, Alaska. The dust number, tritium concentrations, and stable hydrogen isotope were analyzed. The period <span class="hlt">covered</span> was from 1992 to 2002. We found that the concentrations of both fine dust (0.52-1.00 μm), an indicator of long-range transport, and coarse dust (1.00-8.00 μm) increased together every spring. Moreover, their concentrations increased drastically after 2000, corresponding to the recent increase in Asian dust outbreaks in spring. Additionally, an increase in the spring of 2001 corresponded to the largest dust storm recorded in east Asia since 1979. Therefore our findings imply that Asian dust strongly polluted Mount Wrangell every spring. The stratospheric tracer, tritium, had late spring maxima almost every year, and we found this useful for <span class="hlt">ice</span> <span class="hlt">core</span> dating to identify late spring in the North Pacific region. We also found that a high positive annual correlation existed between the calculated tritium and fine dust fluxes from late spring to summer. We propose that an annual relationship between the stratosphere-troposphere exchange and Asian dust storm are most closely connected in late spring because their activities are weak in summer. The Mount Wrangell <span class="hlt">ice</span> <span class="hlt">core</span> is important and useful for assessing the dust and tritium circulation in the distant past around the North Pacific with probable intra-annual timescale information.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037558','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037558"><span>On the nature of the dirty <span class="hlt">ice</span> at the bottom of the GISP2 <span class="hlt">ice</span> <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.</p> <p>2010-01-01</p> <p>We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed <span class="hlt">ice</span> between 2800 and 3040m depth in the GISP2 <span class="hlt">ice</span> <span class="hlt">core</span>, and from basal dirty <span class="hlt">ice</span> from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty <span class="hlt">ice</span>. The Ar/N2 ratio of dirty basal <span class="hlt">ice</span>, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty <span class="hlt">ice</span> originate from the assimilation of clean <span class="hlt">ice</span> of the overlying glacier, which comprises most of the <span class="hlt">ice</span> in the dirty bottom layer. O2 is partly to completely depleted in basal <span class="hlt">ice</span>, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed <span class="hlt">ice</span>. In basal <span class="hlt">ice</span>, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal <span class="hlt">ice</span>, and the distribution of dirt, indicate mixing within the basal <span class="hlt">ice</span>, while various published lines of evidence indicate mixing within the overlying clean, disturbed <span class="hlt">ice</span>. Excess CH4, which reaches thousands of ppm in basal dirty <span class="hlt">ice</span> at GRIP, is virtually absent in overlying clean disturbed <span class="hlt">ice</span>, demonstrating that mixing of dirty basal <span class="hlt">ice</span> into the overlying clean <span class="hlt">ice</span>, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean <span class="hlt">ice</span> into dirty <span class="hlt">ice</span> is sufficient to maintain a steady thickness of dirty <span class="hlt">ice</span> against thinning from the mean <span class="hlt">ice</span> flow. The dirty <span class="hlt">ice</span> appears to consist of two or more basal components in addition to clean glacial <span class="hlt">ice</span>. A small amount of soil or permafrost, plus preglacial snow, lake or ground <span class="hlt">ice</span> could explain the observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026040','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026040"><span>Oxygen-18 concentrations in recent precipitation and <span class="hlt">ice</span> <span class="hlt">cores</span> on the Tibetan Plateau</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tian, L.; Yao, T.; Schuster, P.F.; White, J.W.C.; Ichiyanagi, K.; Pendall, Elise; Pu, J.; Yu, W.</p> <p>2003-01-01</p> <p>A detailed study of the climatic significance of ??18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of ??18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation "amount effect" and results in a poor ??18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects of the monsoon are diminished but continue to cause a reduced correlation of ??18O and temperature at the annual scale. At the monthly scale, however, a significant ??18O-T relationship does exist. To the north of the Tibetan Plateau beyond the extent of the effects of monsoon precipitation, ??18O in precipitation shows a strong temperature dependence. ??18O records from two shallow <span class="hlt">ice</span> <span class="hlt">cores</span> and historic air temperature data were compared to verify the modern ??18O-T relationship. ??18O in Dunde <span class="hlt">ice</span> <span class="hlt">core</span> was positively correlated with air temperature from a nearby meteorological station in the north of the plateau. The ??18O variation in an <span class="hlt">ice</span> <span class="hlt">core</span> from the southern Plateau, however, was inversely correlated with precipitation amount at a nearby meteorological station and also the accumulation record in the <span class="hlt">ice</span> <span class="hlt">core</span>. The long-term variation of ??18O in the <span class="hlt">ice</span> <span class="hlt">core</span> record in the monsoon regions of the southern Tibetan Plateau suggest past monsoon seasons were probably more expansive. It is still unclear, however, how changes in large-scale atmosphere circulation might influence summer monsoon precipitation on the Tibetan Plateau.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1745C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1745C"><span>Archival processes of the water stable isotope signal in East Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean</p> <p>2018-05-01</p> <p>The oldest <span class="hlt">ice</span> <span class="hlt">core</span> records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the <span class="hlt">ice</span> sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an <span class="hlt">ice</span> <span class="hlt">core</span>'s isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep <span class="hlt">ice</span> <span class="hlt">core</span> site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting <span class="hlt">ice</span> <span class="hlt">core</span> records in low-accumulation areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P43C2117H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P43C2117H"><span><span class="hlt">Ice</span> under <span class="hlt">cover</span>: Using bulk spatial and physical properties of probable ground <span class="hlt">ice</span> driven mass wasting features on Ceres to better understand its surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughson, K.; Russell, C.; Schmidt, B. E.; Chilton, H.; Scully, J. E. C.; Castillo, J. C.; Combe, J. P.; Ammannito, E.; Sizemore, H.; Platz, T.; Byrne, S.; Nathues, A.; Raymond, C. A.</p> <p>2016-12-01</p> <p>NASA's Dawn spacecraft arrived at Ceres on March 6, 2015, and has been studying the dwarf planet through a series of successively lower orbits, obtaining morphological and topographical image, mineralogical, elemental composition, and gravity data (Russell et al., 2016). Images taken by Dawn's Framing Camera show a multitude of flow features that were broadly interpreted as ground <span class="hlt">ice</span> related structures either similar to <span class="hlt">ice</span> <span class="hlt">cored/ice</span> cemented flows (as seen on Earth and Mars), long run-out landslides, or fluidized ejecta (as seen on Mars) by Schmidt et al. (2016a and 2016b) and Buczkowski et al. (2016). The aforementioned <span class="hlt">ice</span> <span class="hlt">cored/ice</span> cemented-like flows are present only at high latitudes. Results from Dawn's Gamma Ray and Neutron Detector (GRaND) indicate a shallow <span class="hlt">ice</span> table on Ceres above 45-50°N/S, which supports the interpretation that these flows are <span class="hlt">ice</span>-rich (Prettyman et al., 2016). A near coincident spectral detection of H2O <span class="hlt">ice</span> with one of these <span class="hlt">ice</span> <span class="hlt">cored/ice</span> cemented-like flows in Oxo crater by Dawn's Visual and Infrared spectrometer (VIR) further bolsters this claim (Combe et al., 2016). We use aggregate spatial and physical properties of these <span class="hlt">ice</span> attributed cerean flows, such as flow orientation, inclination, preference for north or south facing slopes, drop height to run-out length ratio, geographical location, and areal number density to better understand the rheology and distribution of ground <span class="hlt">ice</span> in Ceres' uppermost layer. By combining these data with local spectroscopic, global elemental abundance, experimentally derived physical properties of cerean analogue material, and other morphological information (such as the morphologies of flow hosting craters) we intend to further test the ground <span class="hlt">ice</span> hypothesis for the formation of these flows and constrain the global distribution of near surface ground <span class="hlt">ice</span> on Ceres to a higher fidelity than what would be possible using GRaND and VIR observations alone. References: Buczkowski et al., (2016) Science</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..711K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..711K"><span>cm-scale variations of crystal orientation fabric in cold Alpine <span class="hlt">ice</span> <span class="hlt">core</span> from Colle Gnifetti</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias</p> <p>2015-04-01</p> <p>Analysis of the microstructural parameters of <span class="hlt">ice</span> has been an important part of <span class="hlt">ice</span> <span class="hlt">core</span> analyses so far mainly in polar <span class="hlt">cores</span> in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an <span class="hlt">ice</span> body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the <span class="hlt">ice</span> matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of <span class="hlt">ice</span> dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of <span class="hlt">ice</span> crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an <span class="hlt">ice</span> <span class="hlt">core</span>. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the <span class="hlt">ice</span> matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine <span class="hlt">ice</span> <span class="hlt">core</span> (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14..601F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14..601F"><span>Particle shape accounts for instrumental discrepancy in <span class="hlt">ice</span> <span class="hlt">core</span> dust size distributions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Folden Simonsen, Marius; Cremonesi, Llorenç; Baccolo, Giovanni; Bosch, Samuel; Delmonte, Barbara; Erhardt, Tobias; Kjær, Helle Astrid; Potenza, Marco; Svensson, Anders; Vallelonga, Paul</p> <p>2018-05-01</p> <p>The Klotz Abakus laser sensor and the Coulter counter are both used for measuring the size distribution of insoluble mineral dust particles in <span class="hlt">ice</span> <span class="hlt">cores</span>. While the Coulter counter measures particle volume accurately, the equivalent Abakus instrument measurement deviates substantially from the Coulter counter. We show that the difference between the Abakus and the Coulter counter measurements is mainly caused by the irregular shape of dust particles in <span class="hlt">ice</span> <span class="hlt">core</span> samples. The irregular shape means that a new calibration routine based on standard spheres is necessary for obtaining fully comparable data. This new calibration routine gives an increased accuracy to Abakus measurements, which may improve future <span class="hlt">ice</span> <span class="hlt">core</span> record intercomparisons. We derived an analytical model for extracting the aspect ratio of dust particles from the difference between Abakus and Coulter counter data. For verification, we measured the aspect ratio of the same samples directly using a single-particle extinction and scattering instrument. The results demonstrate that the model is accurate enough to discern between samples of aspect ratio 0.3 and 0.4 using only the comparison of Abakus and Coulter counter data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.C51A0109L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.C51A0109L"><span><span class="hlt">Ice</span> <span class="hlt">Cores</span> Dating With a New Inverse Method Taking Account of the Flow Modeling Errors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.</p> <p>2007-12-01</p> <p>Deep <span class="hlt">ice</span> <span class="hlt">cores</span> extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now <span class="hlt">ice</span> chronologies for deep <span class="hlt">ice</span> <span class="hlt">cores</span> estimated with inverse approaches are based on quite simplified <span class="hlt">ice</span>-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the <span class="hlt">ice</span> thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common <span class="hlt">ice</span> chronology for several <span class="hlt">cores</span> at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three <span class="hlt">cores</span> simultaneously (the two EPICA <span class="hlt">cores</span> : DC and DML and the Vostok <span class="hlt">core</span>) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..433P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..433P"><span>The Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> of 2016: a year of record-low highs and higher-than-expected lows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.</p> <p>2018-02-01</p> <p>The Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> of 2016 was highly noteworthy, as it featured record low monthly sea <span class="hlt">ice</span> extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea <span class="hlt">ice</span> state in terms of its monthly sea <span class="hlt">ice</span> <span class="hlt">cover</span>, placing this in the context of the sea <span class="hlt">ice</span> conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea <span class="hlt">ice</span> extent and area estimates, in terms of their magnitude and annual rankings, to the <span class="hlt">ice</span> concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea <span class="hlt">ice</span> area over sea <span class="hlt">ice</span> extent to analyse the relative "compactness" of the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span>, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September <span class="hlt">ice</span> extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness <span class="hlt">ice</span> <span class="hlt">cover</span> but were not sufficient to cause more widespread melt-out and a new record-low September <span class="hlt">ice</span> extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid <span class="hlt">ice</span> intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer <span class="hlt">ice</span> compactness for seasonal forecasting, suggesting that sea <span class="hlt">ice</span> area could be a more reliable</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP14B..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP14B..01G"><span>Low latitude <span class="hlt">ice</span> <span class="hlt">core</span> evidence for dust deposition on high altitude glaciers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabrielli, P.; Thompson, L. G.</p> <p>2017-12-01</p> <p>Polar <span class="hlt">ice</span> <span class="hlt">cores</span> from Antarctica and Greenland have provided a wealth of information on dust emission, transport and deposition over glacial to interglacial timescales. These <span class="hlt">ice</span> <span class="hlt">cores</span> mainly entrap dust transported long distances from source areas such as Asia for Greenland and South America for Antarctica. Thus, these dust records provide paleo-information about the environmental conditions at the source and the strength/pathways of atmospheric circulation at continental scales. <span class="hlt">Ice</span> <span class="hlt">cores</span> have also been extracted from high altitude glaciers in the mid- and low-latitudes and provide dust records generally extending back several centuries and in a few cases back to the last glacial period. For these glaciers the potential sources of dust emission include areas that are close or adjacent to the drilling site which facilitates the potential for a strong imprinting of local dust in the records. In addition, only a few high altitude glaciers allow the reconstruction of past snow accumulation and hence the expression of the dust records in terms of fluxes. Due to their extreme elevation, a few of these high altitude <span class="hlt">ice</span> <span class="hlt">cores</span> offer dust histories with the potential to record environmental conditions at remote sources. Dust records (in terms of dust concentration/size, crustal trace elements and terrigenous cations) from Africa, the European Alps, South America and the Himalayas are examined over the last millennium. The interplay of the seasonal atmospheric circulation (e.g. westerlies, monsoons and vertical convection) is shown to play a major role in determining the intensity and origin of dust fallout to the high altitude glaciers around the world.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26064653','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26064653"><span>Extreme ecological response of a seabird community to unprecedented sea <span class="hlt">ice</span> <span class="hlt">cover</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barbraud, Christophe; Delord, Karine; Weimerskirch, Henri</p> <p>2015-05-01</p> <p>Climate change has been predicted to reduce Antarctic sea <span class="hlt">ice</span> but, instead, sea <span class="hlt">ice</span> surrounding Antarctica has expanded over the past 30 years, albeit with contrasted regional changes. Here we report a recent extreme event in sea <span class="hlt">ice</span> conditions in East Antarctica and investigate its consequences on a seabird community. In early 2014, the Dumont d'Urville Sea experienced the highest magnitude sea <span class="hlt">ice</span> <span class="hlt">cover</span> (76.8%) event on record (1982-2013: range 11.3-65.3%; mean±95% confidence interval: 27.7% (23.1-32.2%)). Catastrophic effects were detected in the breeding output of all sympatric seabird species, with a total failure for two species. These results provide a new view crucial to predictive models of species abundance and distribution as to how extreme sea <span class="hlt">ice</span> events might impact an entire community of top predators in polar marine ecosystems in a context of expanding sea <span class="hlt">ice</span> in eastern Antarctica.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24450335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24450335"><span>Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland <span class="hlt">ice</span> <span class="hlt">core</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean</p> <p>2014-08-01</p> <p>Demonstrating that the detected microbial diversity in nonaseptically drilled deep <span class="hlt">ice</span> <span class="hlt">cores</span> is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland <span class="hlt">ice</span> <span class="hlt">core</span> project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated <span class="hlt">ice</span> <span class="hlt">core</span> samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated <span class="hlt">ice</span>, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial <span class="hlt">ice</span> microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or <span class="hlt">ice</span>. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the <span class="hlt">ice</span> were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM <span class="hlt">cores</span> and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial <span class="hlt">ice</span>. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070034825','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070034825"><span>Trends in the Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span> Using Enhanced and Compatible AMSR-E, SSM/I and SMMR Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Nishio, Fumihiko</p> <p>2007-01-01</p> <p>Arguably, the most remarkable manifestation of change in the polar regions is the rapid decline (of about -10 %/decade) in the Arctic perennial <span class="hlt">ice</span> <span class="hlt">cover</span>. Changes in the global sea <span class="hlt">ice</span> <span class="hlt">cover</span>, however, are more modest, being slightly positive in the Southern Hemisphere and slightly negative in the Northern Hemisphere, the significance of which has not been adequately assessed because of unknown errors in the satellite historical data. We take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea <span class="hlt">ice</span> <span class="hlt">cover</span>, assess the accuracy of historical data, and determine the real trend. Consistently derived <span class="hlt">ice</span> concentrations from AMSR-E, SSM/I, and SMMR data were analyzed and a slight bias is observed between AMSR-E and SSM/I data mainly because of differences in resolution. Analysis of the combine SMMR, SSM/I and AMSR-E data set, with the bias corrected, shows that the trends in extent and area of sea <span class="hlt">ice</span> in the Arctic region is -3.4 +/- 0.2 and -4.0 +/- 0.2 % per decade, respectively, while the corresponding values for the Antarctic region is 0.9 +/- 0.2 and 1.7 .+/- 0.3 % per decade. The higher resolution of the AMSR-E provides an improved determination of the location of the <span class="hlt">ice</span> edge while the SSM/I data show an <span class="hlt">ice</span> edge about 6 to 12 km further away from the <span class="hlt">ice</span> pack. Although the current record of AMSR-E is less than 5 years, the data can be utilized in combination with historical data for more accurate determination of the variability and trends in the <span class="hlt">ice</span> <span class="hlt">cover</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM...B42B12S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM...B42B12S"><span>A 270-year <span class="hlt">Ice</span> <span class="hlt">Core</span> Record of Atmospheric Mercury Deposition to Western North America</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schuster, P. F.; Krabbenhoft, D. P.; Naftz, D. L.; Cecil, L. D.; Olson, M. L.; DeWild, J. F.; Susong, D. D.; Green, J. R.</p> <p>2001-05-01</p> <p>The Upper Fremont Glacier (UFG), a mid-latitude glacier in the Wind River Range, Wyoming, U.S.A., contains a record of atmospheric mercury deposition. Although some polar <span class="hlt">ice-core</span> studies have provided a limited record of past mercury deposition, polar <span class="hlt">cores</span> are, at best, proxy indicators of historic mercury deposition in the mid-latitudes. Two <span class="hlt">ice</span> <span class="hlt">cores</span> removed from the UFG in 1991 and 1998 (totaling 160 meters in length) provided a chronology and paleoenvironmental framework. This aids in the interpretation of the mercury deposition record. For the first time reported from a mid-latitude <span class="hlt">ice</span> <span class="hlt">core</span>, using low-level procedures, 97 <span class="hlt">ice</span> <span class="hlt">core</span> samples were analyzed to reconstruct a 270-year atmospheric mercury deposition record based in the western United States. Trends in mercury concentration from the UFG record major releases to the atmosphere of both natural and anthropogenic mercury from regional and global sources. We find that mercury concentrations are significantly, but for relatively short time intervals, elevated during periods corresponding to volcanic eruptions with global impact. This indicates that these natural events "punctuate" the record. Anthropogenic activities such as industrialization (global scale), gold mining and war-time manufacturing (regional scale), indicate that chronic levels of elevated mercury emissions have a greater influence on the historical atmospheric deposition record from the UFG. In terms of total mercury deposition recorded by the UFG during approximately the past 270 years: anthropogenic inputs contributed 52 percent; volcanic events contributed 6 percent; and pre-industrialization or background accounted for 42 percent of the total input. More significantly, during the last 100 years, anthropogenic sources contributed 70 percent of the total mercury input. A declining trend in mercury concentrations is obvious during the past 20 years. Declining mercury concentrations in the upper section of the <span class="hlt">ice</span> <span class="hlt">core</span> are corroborated by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=67183&Lab=NCER&keyword=climate+AND+change+AND+colorado+AND+effects&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=67183&Lab=NCER&keyword=climate+AND+change+AND+colorado+AND+effects&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>POTENTIAL CLIMATE WARMING EFFECTS ON <span class="hlt">ICE</span> <span class="hlt">COVERS</span> OF SMALL LAKES IN THE CONTIGUOUS U.S. (R824801)</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><h2>Abstract</h2><p>To simulate effects of projected climate change on <span class="hlt">ice</span> <span class="hlt">covers</span> of small lakes in the northern contiguous U.S., a process-based simulation model is applied. This winter <span class="hlt">ice</span>/snow <span class="hlt">cover</span> model is associated with a deterministic, one-dimensional year-round water tem...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168450','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168450"><span>Evidence for an <span class="hlt">ice</span> shelf <span class="hlt">covering</span> the central Arctic Ocean during the penultimate glaciation</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jakobsson, Martin; Nilsson, Johan; Anderson, Leif G.; Backman, Jan; Bjork, Goran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Macho, Natalia Barrientos; Cherniykh, Dennis; Coxall, Helen; Eriksson, Bjorn; Floden, Tom; Gemery, Laura; Gustafsson, Orjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor</p> <p>2016-01-01</p> <p>The hypothesis of a km-thick <span class="hlt">ice</span> shelf <span class="hlt">covering</span> the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating <span class="hlt">ice</span> shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of <span class="hlt">ice</span> shelves should, however, exist where <span class="hlt">ice</span> grounded along their flow paths. Here we present new evidence of <span class="hlt">ice</span>-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an <span class="hlt">ice</span> shelf extending over the entire central Arctic Ocean during at least one previous <span class="hlt">ice</span> age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean <span class="hlt">ice</span> shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the <span class="hlt">ice</span>-shelf development by acting as pinning points where stabilizing <span class="hlt">ice</span> rises formed, thereby providing sufficient back stress to allow <span class="hlt">ice</span> shelf thickening.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4735638','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4735638"><span>Evidence for an <span class="hlt">ice</span> shelf <span class="hlt">covering</span> the central Arctic Ocean during the penultimate glaciation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor</p> <p>2016-01-01</p> <p>The hypothesis of a km-thick <span class="hlt">ice</span> shelf <span class="hlt">covering</span> the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating <span class="hlt">ice</span> shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of <span class="hlt">ice</span> shelves should, however, exist where <span class="hlt">ice</span> grounded along their flow paths. Here we present new evidence of <span class="hlt">ice</span>-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an <span class="hlt">ice</span> shelf extending over the entire central Arctic Ocean during at least one previous <span class="hlt">ice</span> age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean <span class="hlt">ice</span> shelf dated to marine isotope stage 6 (∼140 ka). Bathymetric highs were likely critical in the <span class="hlt">ice</span>-shelf development by acting as pinning points where stabilizing <span class="hlt">ice</span> rises formed, thereby providing sufficient back stress to allow <span class="hlt">ice</span> shelf thickening. PMID:26778247</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMPP42B0529A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMPP42B0529A"><span><span class="hlt">Ice</span> <span class="hlt">Core</span> Reconnaissance in Siberian Altai for Mid-Latitudes Paleo-Climatic and Environmental Reconstruction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aizen, V.; Aizen, E.; Kreutz, K.; Nikitin, S.; Fujita, K.; Cecil, D.</p> <p>2001-12-01</p> <p>Investigations in Siberian Altai permits to expand our scope from Tibet, Himalayas, Tien Shan and Pamir to the area located at the northeastern edge of the Central Asia Mountain System. Altai forms a natural barrier to the northern and western air masses and therefore affords an opportunity to develop modern paleo-climate records relating to the westerly jet stream, the Siberian High and Pacific monsoon. Moreover, Altai alpine snowice accumulation areas are appropriative for studying air pollution dynamics at the center of Eurasia, eastward from the major Former USSR air pollutants in Kazakhstan, South Siberia and Ural Mountains. During the last century Altai Mountains became extremely contaminated region by heavy metal mining, metallurgy, nuclear test in Semipalatinsk polygon and Baikonur rocket site. Our first field reconnaissance on the West Belukha snow/firn plateau at the Central Altai was carried out in July 2001. Dispute of the large Alatai Mountains glaciation, the West Belukha Plateau (49o48' N, 86o32'E, 4000-4100 m a.s.l.) is only one suitable snow accumulation site in Altai to recover <span class="hlt">ice-core</span> paleo-climatic and environmental records that is not affected by meltwater percolation. The objective of our first reconnaissance was to find an appropriate deep drilling site by radio-echo sounding survey, to recover shallow <span class="hlt">ice-core</span>, to identify the annual snow accumulation rate, major ions, heavy metals, radio nuclides and oxygen isotopes level distribution. During 6 days of work on the Plateau, a 22 m shallow firn/<span class="hlt">ice</span> <span class="hlt">core</span> has been recovered by PICO hand auger at elevation 4050 m where the results of radio-echo sounding suggests about 150 m <span class="hlt">ice</span> thickness. In addition to the firn/<span class="hlt">ice</span> <span class="hlt">core</span> recovery, five 2.5 meter snow pits were sampled for physical statigraphy, major ions, trace element, and heavy metals analysis to assess spatial variability of the environmental impact in this region. Four automatic snow gauges were installed near proposed deep <span class="hlt">ice</span> <span class="hlt">coring</span> site</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A43L..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A43L..01A"><span>Carbonyl sulfide during the late Holocene from measurements in Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aydin, M.; Fudge, T. J.; Verhulst, K. R.; Waddington, E. D.; Saltzman, E. S.</p> <p>2013-12-01</p> <p>Carbonyl sulfide (COS) is the most abundant sulfur gas in the troposphere with a global average mixing ratio of about 500 parts per trillion (ppt) and a lifetime of 3 years. It is produced by a variety of natural and anthropogenic sources. Oceans are the largest source, emitting COS and precursors carbon disulfide and dimethyl sulfide. The most important removal process of COS is uptake by terrestrial plants during photosynthesis. Interest in the atmospheric variability of COS is primarily due to its potential value as a proxy for changes in gross primary productivity of the land biosphere. <span class="hlt">Ice</span> <span class="hlt">core</span> COS records may provide the long term observational basis needed to explore climate driven changes in terrestrial productivity and the resulting impacts, for example, on atmospheric CO2 levels. Previous measurements in a South Pole <span class="hlt">ice</span> <span class="hlt">core</span> established the preindustrial COS levels at ~30% of the modern atmosphere and revealed that atmospheric COS increased at an average rate of 1.8 ppt per 100 years over the last 2,000 years [Aydin et al., 2008]. We have since measured COS in 5 additional <span class="hlt">ice</span> <span class="hlt">cores</span> from 4 different sites in Antarctica. These measurements display a site-dependent downcore decline in COS, apparently driven by in situ hydrolysis. The reaction is strongly temperature dependent, with the hydrolysis lifetimes (e-folding) ranging from thousands to hundreds of thousands of years. We implement a novel technique that uses <span class="hlt">ice</span> and heat flow models to predict temperature histories for the <span class="hlt">ice</span> <span class="hlt">core</span> samples from different sites and correct for the COS lost to in situ hydrolysis assuming first order kinetics. The 'corrected' COS records confirm the trend observed previously in the COS record from the South Pole <span class="hlt">ice</span> <span class="hlt">core</span>. The new, longer record suggests the slow increase in atmospheric COS may have started about 5,000 years ago and continued for 4,500 years until levels stabilized about 500 years ago. Atmospheric CO2 was also rising during this time period, suggesting</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3654H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3654H"><span>Post-glacial variations of sea <span class="hlt">ice</span> <span class="hlt">cover</span> and river discharge in the western Laptev Sea (Arctic Ocean) - a high-resolution study over the last 18 ka</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten</p> <p>2015-04-01</p> <p>Here, we provide a high-resolution reconstruction of sea-<span class="hlt">ice</span> <span class="hlt">cover</span> variations in the western Laptev Sea, a crucial area in terms of sea-<span class="hlt">ice</span> production in the Arctic Ocean and a region characterized by huge river discharge. Furthermore, the shallow Laptev Sea was strongly influenced by the post-glacial sea-level rise that should also be reflected in the sedimentary records. The sea <span class="hlt">Ice</span> Proxy IP25 (Highly-branched mono-isoprenoid produced by sea-<span class="hlt">ice</span> algae; Belt et al., 2007) was measured in two sediment <span class="hlt">cores</span> from the western Laptev Sea (PS51/154, PS51/159) that offer a high-resolution composite record over the last 18 ka. In addition, sterols are applied as indicator for marine productivity (brassicasterol, dinosterol) and input of terrigenous organic matter by river discharge into the ocean (campesterol, ß-sitosterol). The sea-<span class="hlt">ice</span> <span class="hlt">cover</span> varies distinctly during the whole time period and shows a general increase in the Late Holocene. A maximum in IP25 concentration can be found during the Younger Dryas. This sharp increase can be observed in the whole circumarctic realm (Chukchi Sea, Bering Sea, Fram Strait and Laptev Sea). Interestingly, there is no correlation between elevated numbers of <span class="hlt">ice</span>-rafted debris (IRD) interpreted as local <span class="hlt">ice</span>-cap expansions (Taldenkova et al. 2010), and sea <span class="hlt">ice</span> <span class="hlt">cover</span> distribution. The transgression and flooding of the shelf sea that occurred over the last 16 ka in this region, is reflected by decreasing terrigenous (riverine) input, reflected in the strong decrease in sterol (ß-sitosterol and campesterol) concentrations. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea <span class="hlt">ice</span>: IP25. Organic Geochemistry 38 (1), 16e27. Taldenkova, E., Bauch, H.A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ya, Ovsepyan, Kandiano, E., 2010. History of <span class="hlt">ice</span>-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP54A..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP54A..05P"><span>Denali <span class="hlt">Ice</span> <span class="hlt">Core</span> Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.</p> <p>2016-12-01</p> <p>Chemical analyses of precipitation preserved in glacial <span class="hlt">ice</span> <span class="hlt">cores</span> provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in Denali National Park, Alaska. These parallel, 208 m-long <span class="hlt">ice</span> <span class="hlt">cores</span> were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The <span class="hlt">cores</span> were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the <span class="hlt">core</span> site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the <span class="hlt">core</span> record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter <span class="hlt">ice</span> <span class="hlt">cores</span> reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (p<0.05) between d-excess and MSA in the <span class="hlt">ice</span> record and sea surface temperatures in the Bering Sea and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6395N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6395N"><span>Measured and Modelled Tidal Circulation Under <span class="hlt">Ice</span> <span class="hlt">Covered</span> Van Mijenforden</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsen, F.</p> <p></p> <p>The observation and model area Van Mijenfjorden is situated at the west coast of Spits- bergen. An area of 533 km2 makes it the second largest fjord on Spitsbergen and the distance from the head to the mouth of the fjord is approximately 70 km. An 8.5km long and 1km wide island, Akseløya, is lying across the fjord mouth and blocking exchanges between the fjord and the coastal water masses outside. The sound Aksel- sundet on the northern side of the island is 1km wide and has a sill at 34m depth. On the southern side an islet, Mariaholmen, is between two sounds that are 200m wide and 2m deep, and 500m wide and 12m deep. Strong tidal currents exist in these sounds. Van Mijenfjorden has special <span class="hlt">ice</span> conditions in that Akseløya almost closes the fjord, and comparatively little <span class="hlt">ice</span> comes in from west. On the other hand, there are periods with fast <span class="hlt">ice</span> in the fjord inside Akseløya longer than in other places, as the sea waves have little chance to break up fast <span class="hlt">ice</span> here, or delay <span class="hlt">ice</span> formation in autumn/winter. Van Mijenfjorden is often separated into two basins by a sill at 30m depth. The inner basin is typical 5km wide and has a maximum depth of 80m, while the outer basin is on average 10 km wide and has a maximum depth of 115m. Hydrographic measurements have been conducted since 1958 and up to the present. Through the last decade, The University Courses on Svalbard (UNIS) has used this fjord as a laboratory for their student excursions, in connection to courses in air-<span class="hlt">ice</span>- ocean interaction and master programs, and build up an oceanographic data base. In this work, focus is put on the wintertime situation and the circulation under an <span class="hlt">ice</span> <span class="hlt">covered</span> fjord. Measurements show a mean cyclonic circulation pattern in the outer basin with tidal oscillation (mainly M2) superposed on this mean vector. A three- dimensional sigma layered numerical model called Bergen Ocean Model (BOM) was used to simulate the circulation in Van Mijenfjorden with only tidal forcing. The four most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914345V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914345V"><span>Reconstruction of Aerosol Concentration and Composition from Glacier <span class="hlt">Ice</span> <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, Alexander; Dällenbach, Kaspar; El-Haddad, Imad; Wendl, Isabel; Eichler, Anja; Schwikowski, Margit</p> <p>2017-04-01</p> <p>Reconstruction of the concentration and composition of natural aerosol in an undisturbed atmosphere enables the evaluation of the understanding of aerosol-climate effects, which is currently based on highly uncertain emission inventories of the biosphere under pre-industrial conditions. Understanding of the natural state of the pre-industrial atmosphere and evaluating the atmospheric perturbations by anthropogenic emissions, and their potential feedbacks, is essential for accurate model predictions of the future climate (Boucher et al., 2013). Here, we present a new approach for the chemical characterization of the organic fraction preserved in cold-glacier <span class="hlt">ice</span> <span class="hlt">cores</span>. From this analysis historic trends of atmospheric organic aerosols are reconstructed, allowing new insights on organic aerosol composition and mass in the pre-industrial atmosphere, which can help to improve climate models through evaluation of our current understanding of aerosol radiative effects. We present results from a proof-of-principal study, analyzing an 800 year <span class="hlt">ice</span> <span class="hlt">core</span> record from the Lomonosovfonna glacier <span class="hlt">ice</span> <span class="hlt">core</span>, drilled in 2009 in Svalbard, Norway, using a setup that has until then only been applied on offline measurements of aerosol filter extracts (Dällenbach et al., 2016): The melted <span class="hlt">ice</span> was nebulized and dried, such that aerosols are formed from the soluble and insoluble organic and inorganic compounds that are preserved in the <span class="hlt">ice</span>. To improve the sensitivity, the aerosol stream was then enriched by the application of an online aerosol concentrator, before the aerosol was analyzed by electron ionization within a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We were able to demonstrate that this setup is a quantitative method toward nitrate and sulfate when internal inorganic standards of NH415NO3 and (NH4)234SO4 are added to the sample. Comparison between AMS and IC measurements of nitrate and sulfate resulted in an excellent agreement. The analysis of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9548T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9548T"><span>Biogeochemical Impact of Snow <span class="hlt">Cover</span> and Cyclonic Intrusions on the Winter Weddell Sea <span class="hlt">Ice</span> Pack</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.</p> <p>2017-12-01</p> <p>Sea <span class="hlt">ice</span> is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack <span class="hlt">ice</span> in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea <span class="hlt">ice</span> <span class="hlt">cover</span> due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high <span class="hlt">ice</span> permeability and cyclic events of brine movements within the sea <span class="hlt">ice</span> <span class="hlt">cover</span> (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea <span class="hlt">ice</span> model simulations also suggest a context of increasingly deep snow, warm <span class="hlt">ice</span>, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea <span class="hlt">ice</span> conditions, characterized by a longer <span class="hlt">ice</span> season, thicker, and more concentrated <span class="hlt">ice</span> are sufficient to increase the snow depth and, somehow counterintuitively, to warm the <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1383D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1383D"><span>The Ortles <span class="hlt">ice</span> <span class="hlt">cores</span>: uncovering an extended climate archive from the Eastern Alps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dreossi, Giuliano; Barbante, Carlo; Bertò, Michele; Carturan, Luca; De Blasi, Fabrizio; Gabrieli, Jacopo; Gabrielli, Paolo; Seppi, Roberto; Spolaor, Andrea; Stenni, Barbara; Zanoner, Thomas</p> <p>2017-04-01</p> <p>During the last half century, oxygen and hydrogen stable isotope content of <span class="hlt">ice</span> <span class="hlt">cores</span> has been extensively used for air temperature reconstructions. The most suitable glaciers of the Alpine area, most exclusively in the Western Alps, have been utilized for <span class="hlt">ice</span> <span class="hlt">coring</span> for more than four decades. The paleoclimatic potential of the Eastern Alps is still largely unexploited and was scarcely utilized in the past mainly because of the lower elevation (compared to Western Alps) and hence the difficulty to find glaciers in cold conditions. The warming temperature trend appears to be particularly pronounced in the Alps, threatening the preservation of the glaciated areas and creating a sense of urgency in retrieving climatic archives before it is too late. In autumn 2011, four deep <span class="hlt">cores</span> were drilled on Mt Ortles, South Tyrol, Italy, at 3859 m a.s.l. An extensive reconstructed temperature record for the Ortles summit, based on the surrounding meteorological station data, is available for the last 150 years, while an automatic weather station had been operating from 2011 to 2015 in proximity of the drilling site. The new <span class="hlt">ice</span> <span class="hlt">core</span> chronology, based on 210Pb, tritium, beta emissions analysis and 14C measurements of the particulate organic carbon, indicates that the bottom <span class="hlt">ice</span> is 7000 years old, making it the second most extended glaciological archive ever retrieved in the Alps. The three equally long <span class="hlt">ice</span> <span class="hlt">cores</span> have been analyzed for oxygen and hydrogen stable isotopes throughout their length, and the goal is to create an Ortles stacked record for d18O and dD and compare the isotopic data to instrumental temperatures and to other Alpine records. Since 2008, several snow pits were dug in proximity of the drilling site during summer, when the temperature can often exceed the melting point. The isotopic profiles of the 2015 snow pit, dug at the end of an exceptionally warm summer, show how the isotope signal is now affected by the post-depositional processes that have occurred</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.U13C0068D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.U13C0068D"><span>Reemergence of sea <span class="hlt">ice</span> <span class="hlt">cover</span> anomalies and the role of the sea <span class="hlt">ice</span>-albedo feedback in CCSM simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deweaver, E. T.</p> <p>2008-12-01</p> <p>The dramatic sea <span class="hlt">ice</span> decline of 2007 and lack of recovery in 2008 raise the question of a "tipping point" for Arctic sea <span class="hlt">ice</span>, beyond which the transition to a seasonal sea <span class="hlt">ice</span> state becomes abrupt and irreversible. The tipping point is essentially a "memory catastrophe", in which a dramatic loss of sea <span class="hlt">ice</span> in one summer is "remembered" in reduced <span class="hlt">ice</span> thickness over the winter season and leads to a comparably dramatic loss the following summer. The dominant contributor to this memory is presumably the sea <span class="hlt">ice</span> - albedo feedback (SIAF), in which excess insolation absorbed due to low summer <span class="hlt">ice</span> <span class="hlt">cover</span> leads to a shorter <span class="hlt">ice</span> growth season and hence thinner <span class="hlt">ice</span>. While these dynamics are clearly important, they are difficult to quantify given the lack of long-term observations in the Arctic and the suddenness of the recent loss. Alternatively, we attempt to quantify the contribution of the SIAF to the year-to-year memory of sea <span class="hlt">ice</span> <span class="hlt">cover</span> anomalies in simulations of the NCAR Community Climate System Model (CCSM) under 20th century conditions. Lagged autocorrelation plots of sea <span class="hlt">ice</span> area anomalies show that anomalies in one year tend to "reemerge" in the following year. Further experiments using a slab ocean model (SOM) are used to assess the contribution of oceanic processes to the year-to-year reemergence. This contribution is substantial, particularly in the winter season, and includes memory due to the standard mixed layer reemergence mechanism and low-frequency ocean heat transport anomalies. The contribution of the SIAF to persistence in the SOM experiment is determined through additional experiments in which the SIAF is disabled by fixing surface albedo to its climatological value regardless of sea <span class="hlt">ice</span> concentration anomalies. SIAF causes a 50% increase in the magnitude of the anomalies but a relatively small increase in their persistence. Persistence is not dramatically increased because the enhancement of shortwave flux anomalies by SIAF is compensated by stronger</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11E..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11E..04S"><span>Long-term Glacial History of the West Antarctic <span class="hlt">Ice</span> Sheet from Cosmogenic Nuclides in a Subglacial Bedrock <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spector, P. E.; Stone, J.; Hillebrand, T.; Gombiner, J. H.</p> <p>2017-12-01</p> <p>To investigate the response of the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) to climatic conditions warmer than present, we are analyzing cosmogenic nuclides in a bedrock <span class="hlt">core</span> from beneath 150 m of <span class="hlt">ice</span> at a site near the Pirrit Hills. Our aim is to determine whether the WAIS has thinned in the past, exposing bedrock at this site, and if so, when. This will help to determine the vulnerability of the <span class="hlt">ice</span> sheet to future warming, and identify climatic thresholds capable of inducing WAIS collapse. We selected a site where the <span class="hlt">ice</span>-sheet surface lies at 1300 m, approximately halfway from the <span class="hlt">ice</span>-sheet divide to the grounding line. We expect <span class="hlt">ice</span> thickness at the site to reflect WAIS dynamics, rather than local meteorology or topography. <span class="hlt">Ice</span> flow speeds are moderate and <span class="hlt">ice</span> above the <span class="hlt">core</span> site is thin enough to remain cold-based, limiting the possibility of subglacial erosion which would compromise the cosmogenic nuclide record. We targeted a subglacial ridge adjacent to an exposed granite nunatak. This lithology provides minerals suitable for analysis of multiple cosmogenic nuclides with different half-lives. Although we aimed to collect two <span class="hlt">cores</span> from different depths to compare exposure histories, hydrofracture of the basal <span class="hlt">ice</span> prevented us from reaching the bed at the first drill site. The second hole produced 5.5 m of discontinuous <span class="hlt">ice</span> <span class="hlt">core</span> above 8 m of bedrock <span class="hlt">core</span>. Initial analyses of quartz from the bedrock show low levels of Be-10. Further analyses of Be-10, Al-26, Cl-36 and Ne-21 from the full length of the <span class="hlt">core</span> will be required to determine whether this is because the surface has never been exposed, or because the cosmogenic nuclide profile has been truncated by glacial erosion. We will present comprehensive cosmogenic nuclide data, and discuss implications for WAIS deglaciation history, at the meeting. Supported by US National Science Foundation awards ANT-1142162 and PLR-1341728.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C53A0646Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C53A0646Y"><span>Temperature reconstruction for the Tibetan Plateau in the past 2ka years from <span class="hlt">ice</span> <span class="hlt">cores</span> and human documentary record</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, X.</p> <p>2011-12-01</p> <p>Temperature variation in the past 2000 years on the plateau is reconstructed from Puruogangri <span class="hlt">ice</span> <span class="hlt">core</span> d18O, and compared before compositing with other three <span class="hlt">ice</span> <span class="hlt">core</span> records as the Dunde <span class="hlt">ice</span> <span class="hlt">core</span> (northeast Plateau), Guliya <span class="hlt">ice</span> <span class="hlt">core</span> (northwest Plateau) and Dasuopu <span class="hlt">ice</span> <span class="hlt">core</span> (south Plateau). The comparison reveals the synchroneity of large-scale climate events, and the composition highlights the warming in the 7th century and 12-13th centuries, and the cold in the 19th century. We searched for historical documentary about Tibet since A.D. 620, extracting record of human activities and social development directly determined or indirectly influenced by climate, and categorizing it into five aspects as basic resources, economic development, military strength, national coherence, and cultural and religious development, to quantify Tibetan development till A.D. 1900. Curve based upon the sum of the five aspects shows Tibetan national strength variation in the past 2000 years. The composited <span class="hlt">ice</span> <span class="hlt">core</span> record and Tibetan national strength variation shows consistency, especially during the Songtsen Gampo reign, medieval warm period and the 19th century cold period, thus suggesting the dominative role of climate change in Tibetan civilization before modern ages, as well as proposing the potential application of historical record in paleoclimate reconstruction on the Tibetan Plateau.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..118.3869G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..118.3869G"><span>Major 20th century changes of water-soluble humic-like substances (HULISWS) aerosol over Europe inferred from Alpine <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guilhermet, J.; Preunkert, S.; Voisin, D.; Baduel, C.; Legrand, M.</p> <p>2013-05-01</p> <p>Using a newly developed method dedicated to measurements of water-soluble humic-like substances (HULISWS) in atmospheric aerosol samples, the carbon mass quantification of HULISWS in an Alpine <span class="hlt">ice</span> <span class="hlt">core</span> is achieved for the first time. The method is based on the extraction of HULISWS with a weak anion-exchanger resin and the subsequent quantification of the extracted carbon fraction with a total organic carbon (TOC) analyzer. Measurements were performed along a Col du Dôme (4250 m above sea level, French Alps) <span class="hlt">ice</span> <span class="hlt">core</span> <span class="hlt">covering</span> the 1920-2004 time period. The HULISWS concentrations exhibit a well-marked seasonal cycle with winter minima close to 7 ppbC and summer maxima ranging between 10 and 50 ppbC. Whereas the winter HULISWS concentrations remained unchanged over the twentieth century, the summer concentrations increased from 20 ppbC prior to the Second World War to 35 ppbC in the 1970-1990s. These different trends reflect the different types of HULISWS sources in winter and summer. HULISWS are mainly primarily emitted by domestic wood burning in winter and secondary in summer being produced from biogenic precursors. For unknown reason, the HULISWS signal is found to be unusual in <span class="hlt">ice</span> samples corresponding to World War II.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C53D0704N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C53D0704N"><span>An <span class="hlt">ice</span> <span class="hlt">core</span> record of net snow accumulation and seasonal snow chemistry at Mt. Waddington, southwest British Columbia, Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neff, P. D.; Steig, E. J.; Clark, D. H.; McConnell, J. R.; Pettit, E. C.; Menounos, B.</p> <p>2011-12-01</p> <p>We recovered a 141 m <span class="hlt">ice</span> <span class="hlt">core</span> from Combatant Col (51.39°N, 125.22°W, 3000 m asl) on the flank of Mt. Waddington, southern Coast Mountains, British Columbia, Canada. Aerosols and other impurities in the <span class="hlt">ice</span> show unambiguous seasonal variations, allowing for annual dating of the <span class="hlt">core</span>. Clustered melt layers, originating from summer surface heating, also aid in the dating of the <span class="hlt">core</span>. Seasonality in water stable isotopes is preserved throughout the record, showing little evidence of diffusion at depth, and serves as an independent verification of the timescale. The annual signal of deuterium excess is especially well preserved. The record of lead deposition in the <span class="hlt">core</span> agrees with those of <span class="hlt">ice</span> <span class="hlt">cores</span> from Mt. Logan and from Greenland, with a sharp drop-off in concentration in the 1970s and early 1980s, further validating the timescales. Despite significant summertime melt at this mid-latitude site, these data collectively reveal a continuous and annually resolved 36-year record of snow accumulation. We derived an accumulation time series from the Mt. Waddington <span class="hlt">ice</span> <span class="hlt">core</span>, after correcting for <span class="hlt">ice</span> flow. Years of anomalously high or low snow accumulation in the <span class="hlt">core</span> correspond with extremes in precipitation data and geopotential height anomalies from reanalysis data that make physical sense. Specifically, anomalously high accumulation years at Mt. Waddington correlate with years where "Pineapple Express" atmospheric river events bring large amounts of moisture from the tropical Pacific to western North America. The Mt. Waddington accumulation record thus reflects regional-scale climate. These results demonstrate the potential of <span class="hlt">ice</span> <span class="hlt">core</span> records from temperate glaciers to provide meaningful paleoclimate information. A longer <span class="hlt">core</span> to bedrock (250-300 m) at the Mt. Waddington site could yield <span class="hlt">ice</span> with an age of several hundred to 1000 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=67181&keyword=LAKE+AND+ICE&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=67181&keyword=LAKE+AND+ICE&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN <span class="hlt">ICE-COVERED</span> LAKES. (R824801)</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, <span class="hlt">ice</span> <span class="hlt">covers</span> and snow <span class="hlt">covers</span> for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..143..133H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..143..133H"><span>Post-glacial variability of sea <span class="hlt">ice</span> <span class="hlt">cover</span>, river run-off and biological production in the western Laptev Sea (Arctic Ocean) - A high-resolution biomarker study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, T.; Stein, R.; Fahl, K.; Birgel, D.</p> <p>2016-07-01</p> <p>Multi-proxy biomarker measurements were applied on two sediment <span class="hlt">cores</span> (PS51/154, PS51/159) to reconstruct sea <span class="hlt">ice</span> <span class="hlt">cover</span> (IP25), biological production (brassicasterol, dinosterol) and river run-off (campesterol, β-sitosterol) in the western Laptev Sea over the last ∼17 ka with unprecedented temporal resolution. The absence of IP25 from 17.2 to 15.5 ka, in combination with minimum concentration of phytoplankton biomarkers, suggests that the western Laptev Sea shelf was mostly <span class="hlt">covered</span> with permanent sea <span class="hlt">ice</span>. Very minor river run-off and restricted biological production occurred during this cold interval. From ∼16 ka until 7.5 ka, a long-term decrease of terrigenous (riverine) organic matter and a coeval increase of marine organic matter reflect the gradual establishment of fully marine conditions in the western Laptev Sea, caused by the onset of the post-glacial transgression. Intensified river run-off and reduced sea <span class="hlt">ice</span> <span class="hlt">cover</span> characterized the time interval between 15.2 and 12.9 ka, including the Bølling/Allerød warm period (14.7-12.9 ka). Prominent peaks of the DIP25 Index coinciding with maximum abundances of subpolar foraminifers, are interpreted as pulses of Atlantic water inflow on the western Laptev Sea shelf. After the warm period, a sudden return to severe sea <span class="hlt">ice</span> conditions with strongest <span class="hlt">ice</span>-coverage between 11.9 and 11 ka coincided with the Younger Dryas (12.9-11.6 ka). At the onset of the Younger Dryas, a distinct alteration of the ecosystem (reflected in a distinct drop in terrigenous and phytoplankton biomarkers) was detected. During the last 7 ka, the sea <span class="hlt">ice</span> proxies reflect a cooling of the Laptev Sea spring/summer season. This cooling trend was superimposed by a short-term variability in sea <span class="hlt">ice</span> coverage, probably representing Bond cycles (1500 ± 500 ka) that are related to solar activity changes. Hence, atmospheric circulation changes were apparently able to affect the sea <span class="hlt">ice</span> conditions on the Laptev Sea shelf under modern sea level</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5921Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5921Z"><span>Non-Target Analyses of organic compounds in <span class="hlt">ice</span> <span class="hlt">cores</span> using HPLC-ESI-UHRMS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zuth, Christoph; Müller-Tautges, Christina; Eichler, Anja; Schwikowski, Margit; Hoffmann, Thorsten</p> <p>2015-04-01</p> <p>To study the global climatic and environmental changes it is necessary to know the environmental and especially atmospheric conditions of the past. By analysing climate archives, such as for example <span class="hlt">ice</span> <span class="hlt">cores</span>, unique environmental information can be obtained. In contrast to the well-established analysis of inorganic species in <span class="hlt">ice</span> <span class="hlt">cores</span>, organic compounds have been analysed in <span class="hlt">ice</span> <span class="hlt">cores</span> to a much smaller extent. Because of current analytical limitations it has become commonplace to focus on 'total organic carbon' measurements or specific classes of organic molecules, as no analytical methods exist that can provide a broad characterization of the organic material present[1]. On the one hand, it is important to focus on already known atmospheric markers in <span class="hlt">ice</span> <span class="hlt">cores</span> and to quantify, where possible, in order to compare them to current conditions. On the other hand, unfortunately a wealth of information is lost when only a small fraction of the organic material is examined. However, recent developments in mass spectrometry in respect to higher mass resolution and mass accuracy enable a new approach to the analysis of complex environmental samples. The qualitative characterization of the complex mixture of water soluble organic carbon (WSOC) in the <span class="hlt">ice</span> using high-resolution mass spectrometry allows for novel insights concerning the composition and possible sources of aerosol derived WSOC deposited at glacier sites. By performing a non-target analysis of an <span class="hlt">ice</span> <span class="hlt">core</span> from the Swiss Alps using previous enrichment by solid-phase extraction (SPE) and high performance liquid chromatography coupled to electrospray ionization and ultra-high resolution mass spectrometry (HPLC-ESI-UHRMS) 475 elemental formulas distributed onto 659 different peaks were detected. The elemental formulas were classified according to their elemental composition into CHO-, CHON-, CHOS-, CHONS-containing compounds and 'others'. Several methods for the analysis of complex data sets of high resolution</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13A0811N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13A0811N"><span>Measurements of acetylene in air extracted from polar <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicewonger, M. R.; Aydin, M.; Montzka, S. A.; Saltzman, E. S.</p> <p>2016-12-01</p> <p>Acetylene (ethyne) is a non-methane hydrocarbon emitted during combustion of fossil fuels, biofuels, and biomass. The major atmospheric loss pathway of acetylene is oxidation by hydroxyl radical with a lifetime estimated at roughly two weeks. The mean annual acetylene levels over Greenland and Antarctica are 250 ppt and 20 ppt, respectively. Firn air measurements suggest atmospheric acetylene is preserved unaltered in polar snow and firn. Atmospheric reconstructions based on firn air measurements indicate acetylene levels rose significantly during the twentieth century, peaked near 1980, then declined to modern day levels. This historical trend is similar to that of other fossil fuel-derived non-methane hydrocarbons. In the preindustrial atmosphere, acetylene levels should primarily reflect emissions from biomass burning. In this study, we present the first measurements of acetylene in preindustrial air extracted from polar <span class="hlt">ice</span> <span class="hlt">cores</span>. Air from fluid and dry-drilled <span class="hlt">ice</span> <span class="hlt">cores</span> from Summit, Greenland and WAIS-Divide Antarctica is extracted using a wet-extraction technique. The <span class="hlt">ice</span> <span class="hlt">core</span> air is analyzed using gas chromatography and high-resolution mass spectrometry. Between 1400 to 1800 C.E., acetylene levels over Greenland and Antarctica varied between roughly 70-120 ppt and 10-30 ppt, respectively. The preindustrial Greenland acetylene levels are significantly lower than modern levels, reflecting the importance of northern hemisphere fossil fuel sources today. The preindustrial Antarctic acetylene levels are comparable to modern day levels, indicating similar emissions in the preindustrial atmosphere, likely from biomass burning. The implications of the preindustrial atmospheric acetylene records from both hemispheres will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PolSc..14...21W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PolSc..14...21W"><span>Rapid <span class="hlt">ice</span> drilling with continual air transport of cuttings and <span class="hlt">cores</span>: General concept</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.</p> <p>2017-12-01</p> <p>This article describes the investigation of the feasibility of rapid drilling in <span class="hlt">ice</span> sheets and glaciers to depths of up to 600 m, with cuttings and <span class="hlt">cores</span> continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and <span class="hlt">cores</span> from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long <span class="hlt">ice</span> <span class="hlt">core</span> should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and <span class="hlt">cores</span> transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through <span class="hlt">ice</span>, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrEaS...5...66S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrEaS...5...66S"><span>The relevance of grain dissection for grain size reduction in polar <span class="hlt">ice</span>: insights from numerical models and <span class="hlt">ice</span> <span class="hlt">core</span> microstructure analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka</p> <p>2017-09-01</p> <p>The flow of <span class="hlt">ice</span> depends on the properties of the aggregate of individual <span class="hlt">ice</span> crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling <span class="hlt">ice</span> micro-dynamics is needed to ultimately develop a physically based macroscopic <span class="hlt">ice</span> flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural <span class="hlt">ice</span>. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep <span class="hlt">ice-core</span> samples from the North Greenland Eemian <span class="hlt">Ice</span> Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in <span class="hlt">ice</span> is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM <span class="hlt">ice</span> <span class="hlt">core</span> samples show that grain dissection is a common mechanism during <span class="hlt">ice</span> deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar <span class="hlt">ice</span>, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814903B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814903B"><span>Linking two thousand years of European historical records with environmental change recorded in a high Alpine <span class="hlt">ice</span> <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bohleber, Pascal; Spaulding, Nicole; Mayewski, Paul; Kurbatov, Andrei; Hoffmann, Helene; Erhardt, Tobias; Fischer, Hubertus; More, Alexander; Loveluck, Christopher; Luongo, Matthew; Kabala, Jakub; McCormick, Michael</p> <p>2016-04-01</p> <p>Its extraordinary network of historical and archaeological records makes Europe exceptionally promising for investigating environmental change and human response over the last two thousand years. Among natural proxy archives, <span class="hlt">ice</span> <span class="hlt">core</span> records offer a wide range of environmental reconstructions including natural and human source histories of the chemistry of the atmosphere. To link these robust environmental records with historical evidence of past civilizations remains a great challenge, however. In central Europe the unique target for a comparison for environmental change recorded in <span class="hlt">ice</span> <span class="hlt">cores</span> and human activity is the small firn saddle of Colle Gnifetti (4550 m above sea level on the Italian-Swiss border). Its exceptionally low net accumulation make Colle Gnifetti (CG) the only feasible site in the Alps for retrieving a long-term <span class="hlt">ice</span> <span class="hlt">core</span> record beyond the last century. However, at CG rapid annual layer thinning eventually limits conventional cm-resolution analysis to multi-annual signals and hampers dating by annual layer counting beyond a few hundred years. Thereby, a crucial gap is introduced to the sub-seasonal time scale of events typically recorded in written archives. In our ongoing project we pioneer correlating the CG environmental <span class="hlt">ice</span> <span class="hlt">core</span> archive with a unique compilation of European historical records provided through the Harvard Initiative for the Science of the Human Past and the Digital Atlas of Roman and Medieval Civilization. For this purpose, state-of-the-art glacio-chemical analysis was performed on a newly recovered CG <span class="hlt">ice</span> <span class="hlt">core</span>, including continuous flow analysis chemistry and stable isotopes. A crucial contribution comes from the application of LA-ICP-MS (laser ablation ion coupled plasma mass spectrometry) to meter long sections of frozen <span class="hlt">ice</span> samples, developed and operated by the University of Maine's Climate Change Institute, offering glacio-chemical records up to 100 μm in resolution. The new methods significantly improves sampling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810332R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810332R"><span>Trends in annual minimum exposed snow and <span class="hlt">ice</span> <span class="hlt">cover</span> in High Mountain Asia from MODIS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Racoviteanu, Adina; Armstrong, Richard; Dozier, Jeff</p> <p>2016-04-01</p> <p>Though a relatively short record on climatological scales, data from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000-2014 can be used to evaluate changes in the cryosphere and provide a robust baseline for future observations from space. We use the MODIS Snow <span class="hlt">Covered</span> Area and Grain size (MODSCAG) algorithm, based on spectral mixture analysis, to estimate daily fractional snow and <span class="hlt">ice</span> <span class="hlt">cover</span> and the MODICE Persistent <span class="hlt">Ice</span> (MODICE) algorithm to estimate the annual minimum snow and <span class="hlt">ice</span> fraction (fSCA) for each year from 2000 to 2014 in High Mountain Asia. We have found that MODSCAG performs better than other algorithms, such as the Normalized Difference Index (NDSI), at detecting snow. We use MODICE because it minimizes false positives (compared to maximum extents), for example, when bright soils or clouds are incorrectly classified as snow, a common problem with optical satellite snow mapping. We analyze changes in area using the annual MODICE maps of minimum snow and <span class="hlt">ice</span> <span class="hlt">cover</span> for over 15,000 individual glaciers as defined by the Randolph Glacier Inventory (RGI) Version 5, focusing on the Amu Darya, Syr Darya, Upper Indus, Ganges, and Brahmaputra River basins. For each glacier with an area of at least 1 km2 as defined by RGI, we sum the total minimum snow and <span class="hlt">ice</span> <span class="hlt">covered</span> area for each year from 2000 to 2014 and estimate the trends in area loss or gain. We find the largest loss in annual minimum snow and <span class="hlt">ice</span> extent for 2000-2014 in the Brahmaputra and Ganges with 57% and 40%, respectively, of analyzed glaciers with significant losses (p-value<0.05). In the Upper Indus River basin, we see both gains and losses in minimum snow and <span class="hlt">ice</span> extent, but more glaciers with losses than gains. Our analysis shows that a smaller proportion of glaciers in the Amu Darya and Syr Darya are experiencing significant changes in minimum snow and <span class="hlt">ice</span> extent (3.5% and 12.2%), possibly because more of the glaciers in this region are smaller than 1 km2 than in the Indus</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17636293','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17636293"><span>The contribution of <span class="hlt">ice</span> <span class="hlt">cover</span> to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niemistö, Juha P; Horppila, Jukka</p> <p>2007-01-01</p> <p>The effect of <span class="hlt">ice</span> <span class="hlt">cover</span> on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during <span class="hlt">ice-cover</span> and <span class="hlt">ice</span>-free periods. After <span class="hlt">ice</span> break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after <span class="hlt">ice</span> break as well. Under <span class="hlt">ice</span> <span class="hlt">cover</span>, resuspension ranged from 50 to 78% of the gross sedimentation while during the <span class="hlt">ice</span>-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under <span class="hlt">ice-cover</span> to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of <span class="hlt">ice</span> <span class="hlt">cover</span> on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (<span class="hlt">ice</span> <span class="hlt">cover</span> reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713557E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713557E"><span>Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr <span class="hlt">ice</span> <span class="hlt">core</span> record of black carbon aerosol deposition to the Ross <span class="hlt">Ice</span> Shelf, West Antarctica.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad</p> <p>2015-04-01</p> <p>Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC <span class="hlt">ice</span> <span class="hlt">core</span> record spanning the past ~65 Kyr. The RICE deep <span class="hlt">ice</span> <span class="hlt">core</span> was drilled from the Roosevelt Island <span class="hlt">ice</span> dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an <span class="hlt">ice</span> <span class="hlt">core</span> melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other <span class="hlt">ice</span> <span class="hlt">core</span> climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19475938','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19475938"><span>Composition and biodegradation of a synthetic oil spilled on the perennial <span class="hlt">ice</span> <span class="hlt">cover</span> of Lake Fryxell, Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jaraula, Caroline M B; Kenig, Fabien; Doran, Peter T; Priscu, John C; Welch, Kathleen A</p> <p>2009-04-15</p> <p>A helicopter crashed in January 2003 on the 5 m-thick perennial <span class="hlt">ice</span> <span class="hlt">cover</span> of Lake Fryxell, spilling synthetic turbine oil Aeroshell 500. Molecular compositions of the oils were analyzed by gas chromatography-mass spectrometry and compared to the composition of contaminants in <span class="hlt">ice</span>, meltwater, and sediments collected a year after the accident. Aeroshell 500 is based on C20-C33 Pentaerythritol triesters (PET) with C5-C10 fatty acids susbstituents and contain a number of antioxidant additives, such as tricresyl phosphates. Biodegradation of this oil in the <span class="hlt">ice</span> <span class="hlt">cover</span> occurs when sediments are present PETs with short fatty acids substituents are preferentially degraded, whereas long chain fatty acids seem to hinder esters from hydrolysis by esterase derived from the microbial assemblage. It remains to be seen if the microbial ecosystem can degrade tricresyl phosphates. These more recalcitrant PET species and tricresyl phosphates are likely to persist and comprise the contaminants that may eventually cross the <span class="hlt">ice</span> <span class="hlt">cover</span> to reach the pristine lake water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211532P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211532P"><span>10Be in <span class="hlt">ice</span> at high resolution: Solar activity and climate signals observed and GCM-modeled in Law Dome <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pedro, Joel; Heikkilä, Ulla; van Ommen, T. D.; Smith, A. M.</p> <p>2010-05-01</p> <p>Changes in solar activity modulate the galactic cosmic ray flux, and in turn, the production rate of 10Be in the earth's atmosphere. The best archives of past changes in 10Be production rate are the polar <span class="hlt">ice</span> <span class="hlt">cores</span>. Key challenges in interpreting these archives as proxies for past solar activity lie in separating the useful solar activity (or production) signal from the interfering meteorological (or climate) signal, and furthermore, in determining the atmospheric source regions of 10Be deposited to the <span class="hlt">ice</span> <span class="hlt">core</span> site. In this study we use a new monthly resolution composite 10Be record, which spans the past decade, and a general circulation model (ECHAM5-HAM), to constrain both the production and climate signals in 10Be concentrations at the Law Dome <span class="hlt">ice</span> <span class="hlt">core</span> site, East Antarctica. This study differs from most previous work on 10Be in Antarctica due to the very high sample resolution achieved. This high resolution, through a time period where accurate instrumental measurements of solar activity and climate are available, allows us to examine the response of 10Be concentrations in <span class="hlt">ice</span> to short-term (monthly to annual) variations in solar activity, and to short-term variations in climate, including seasonality. We find a significant correlation (r2 = 0.56, P < 0.005, n = 92) between observed 10Be concentrations and solar activity (represented by the neutron counting rate). The most pervasive climate influence is a seasonal cycle, which shows maximum concentrations in mid-to-late-summer and minimum concentrations in winter. Model results show reasonable agreement with observations; both a solar activity signal and seasonal cycle in 10Be are captured. However, the modeled snow accumulation rate is too high by approximately 60%. According to the model, the main atmospheric source region of 10Be deposited to Law Dome is the 30-90°S stratosphere (~50%), followed by the 30-90°S troposphere (~30%). An enhancement in the fraction of 10Be arriving to Law Dome from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRB..108.2374D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRB..108.2374D"><span>Tephra layers in the Siple Dome and Taylor Dome <span class="hlt">ice</span> <span class="hlt">cores</span>, Antarctica: Sources and correlations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.</p> <p>2003-08-01</p> <p>Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B <span class="hlt">ice</span> <span class="hlt">cores</span>. Significant shard concentrations are found at a number of depths in all three <span class="hlt">cores</span>. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome <span class="hlt">ice</span> <span class="hlt">core</span>, and layers between 97.2 and 97.7 m depth in the Siple B <span class="hlt">core</span>. This correlation, and the highly accurate depth-age scale of the Siple B <span class="hlt">core</span> suggest that the age of this horizon in the Taylor Dome <span class="hlt">ice</span> <span class="hlt">core</span> presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AMTD....4.4073G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AMTD....4.4073G"><span>Water isotopic ratios from a continuously melted <span class="hlt">ice</span> <span class="hlt">core</span> sample</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.</p> <p>2011-06-01</p> <p>A new technique for on-line high resolution isotopic analysis of liquid water, tailored for <span class="hlt">ice</span> <span class="hlt">core</span> studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted <span class="hlt">ice</span> rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field <span class="hlt">ice</span> <span class="hlt">core</span> studies. We present data acquired in the framework of the NEEM deep <span class="hlt">ice</span> <span class="hlt">core</span> drilling project in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP31A1265K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP31A1265K"><span>Sub-annual North Pacific hydroclimate variability since 1450AD from updated St. Elias <span class="hlt">ice</span> <span class="hlt">core</span> isotope and accumulation rate records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kreutz, K. J.; Campbell, S. W.; Winski, D.; Osterberg, E. C.; Kochtitzky, W. H.; Copland, L.; Dixon, D.; Introne, D.; Medrzycka, D.; Main, B.; Bernsen, S.; Wake, C. P.</p> <p>2017-12-01</p> <p>A growing array of high-resolution paleoclimate records from the terrestrial region bordering the Gulf of Alaska (GoA) continues to reveal details about ocean-atmosphere variability in the region during the Common Era. <span class="hlt">Ice</span> <span class="hlt">core</span> records from high-elevation ranges in proximity to the GoA provide key information on extratropical hydroclimate, and potential teleconnections to low latitude regions. In particular, stable water isotope and snow accumulation reconstructions from <span class="hlt">ice</span> <span class="hlt">cores</span> collected in high precipitation locations are uniquely tied to regional water cycle changes. Here we present new data collected in 2016 and 2017 from the St. Elias Mountains (Eclipse Icefield, Yukon Territories, Canada), including a range of <span class="hlt">ice</span> <span class="hlt">core</span> and geophysical measurements. Low- and high-frequency <span class="hlt">ice</span> penetrating radar data enable detailed mapping of icefield bedrock topography and internal reflector stratigraphy. The 1911 Katmai eruption layer can be clearly traced across the icefield, and tied definitively to the coeval ash layer found in the 345 meter <span class="hlt">ice</span> <span class="hlt">core</span> drilled at Eclipse Icefield in 2002. High-resolution radar data are used to map spatial variability in 2015/16 and 2016/17 snow accumulation. <span class="hlt">Ice</span> velocity data from repeat GPS stake measurements and remote sensing feature tracking reveal a clear divide flow regime on the icefield. Shallow firn/<span class="hlt">ice</span> <span class="hlt">cores</span> (20 meters in 2017 and 65 meters in 2016) are used to update the 345 meter <span class="hlt">ice</span> <span class="hlt">core</span> drilled at Eclipse Icefield in 2002. We use new algorithm-based layer counting software to improve and provide error estimates on the new <span class="hlt">ice</span> <span class="hlt">core</span> chronology, which extends from 2017 to 1450AD. 3D finite element modeling, incorporating all available geophysical data, is used to refine the reconstructed accumulation rate record and account for vertical and horizontal <span class="hlt">ice</span> flow. Together with high-resolution stable water isotope data, the updated Eclipse record provides detailed, sub-annual resolution data on several aspects of the regional</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41B1208W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41B1208W"><span>Determining Distributed Ablation over Dirty <span class="hlt">Ice</span> Areas of Debris-<span class="hlt">covered</span> Glaciers Using a UAV-SfM Approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.</p> <p>2017-12-01</p> <p>Dirty <span class="hlt">ice</span> areas (where debris <span class="hlt">cover</span> is discontinuous) are often found on debris-<span class="hlt">covered</span> glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris <span class="hlt">cover</span>. The modelling of glacial ablation in areas of dirty <span class="hlt">ice</span> is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the <span class="hlt">ice</span>. However, in areas of dirty <span class="hlt">ice</span>, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty <span class="hlt">ice</span> ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty <span class="hlt">ice</span> characteristics with a view to informing the construction of dirty <span class="hlt">ice</span> melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty <span class="hlt">ice</span> on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris <span class="hlt">cover</span>, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3164G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3164G"><span><span class="hlt">Ice</span> <span class="hlt">Core</span> Records of West Greenland Melt and Climate Forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graeter, K. A.; Osterberg, E. C.; Ferris, D. G.; Hawley, R. L.; Marshall, H. P.; Lewis, G.; Meehan, T.; McCarthy, F.; Overly, T.; Birkel, S. D.</p> <p>2018-04-01</p> <p>Remote sensing observations and climate models indicate that the Greenland <span class="hlt">Ice</span> Sheet (GrIS) has been losing mass since the late 1990s, mostly due to enhanced surface melting from rising summer temperatures. However, in situ observational records of GrIS melt rates over recent decades are rare. Here we develop a record of frozen meltwater in the west GrIS percolation zone preserved in seven firn <span class="hlt">cores</span>. Quantifying <span class="hlt">ice</span> layer distribution as a melt feature percentage (MFP), we find significant increases in MFP in the southernmost five <span class="hlt">cores</span> over the past 50 years to unprecedented modern levels (since 1550 CE). Annual to decadal changes in summer temperatures and MFP are closely tied to changes in Greenland summer blocking activity and North Atlantic sea surface temperatures since 1870. However, summer warming of 1.2°C since 1870-1900, in addition to warming attributable to recent sea surface temperature and blocking variability, is a critical driver of high modern MFP levels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2609S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2609S"><span>Combined <span class="hlt">ice</span> <span class="hlt">core</span> and climate-model evidence for the collapse of the West Antarctic <span class="hlt">Ice</span> Sheet during Marine Isotope Stage 5e.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.</p> <p>2015-04-01</p> <p>It has been speculated that collapse of the West Antarctic <span class="hlt">Ice</span> Sheet explains the very high eustatic sea level rise during the last interglacial period, marine isotope stage (MIS) 5e, but the evidence remains equivocal. Changes in atmospheric circulation resulting from a collapse of the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) would have significant regional impacts that should be detectable in <span class="hlt">ice</span> <span class="hlt">core</span> records. We conducted simulations using general circulation models (GCMs) at varying levels of complexity: a gray-radiation aquaplanet moist GCM (GRaM), the slab ocean version of GFDL-AM2 (also as an aquaplanet), and the fully-coupled version of NCAR's CESM with realistic topography. In all the experiments, decreased elevation from the removal of the WAIS leads to greater cyclonic circulation over the West Antarctic region. This creates increased advection of relatively warm marine air from the Amundsen-Bellingshausen Seas towards the South Pole, and increased cold-air advection from the East Antarctic plateau towards the Ross Sea and coastal Marie Byrd Land. The result is anomalous warming in some areas of the East Antarctic interior, and significant cooling in Marie Byrd Land. Comparison of <span class="hlt">ice</span> <span class="hlt">core</span> records shows good agreement with the model predictions. In particular, isotope-paleotemperature records from <span class="hlt">ice</span> <span class="hlt">cores</span> in East Antarctica warmed more between the previous glacial period (MIS 6) and MIS 5e than coastal Marie Byrd Land. These results add substantial support to other evidence for WAIS collapse during the last interglacial period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930022691&hterms=lithology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlithology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930022691&hterms=lithology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlithology"><span>Lithology and chronology of <span class="hlt">ice</span>-sheet fluctuations (magnetic susceptibility of <span class="hlt">cores</span> from the western Ross Sea)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jennings, Anne E.</p> <p>1993-01-01</p> <p>The goals of the marine geology part of WAIS include reconstructing the chronology and areal extent of <span class="hlt">ice</span>-sheet fluctuations and understanding the climatic and oceanographic influences on <span class="hlt">ice</span>-sheet history. As an initial step toward attaining these goals, down-<span class="hlt">core</span> volume magnetic susceptibility (MS) logs of piston <span class="hlt">cores</span> from three N-S transects in the western Ross Sea are compared. The <span class="hlt">core</span> transects are within separate petrographic provinces based on analyses of till composition. The provinces are thought to reflect the previous locations of <span class="hlt">ice</span> streams on the shelf during the last glaciation. Magnetic susceptibility is a function of magnetic mineral composition, sediment texture, and sediment density. It is applied in the western Ross Sea for two purposes: (1) to determine whether MS data differentiates the three transects (i.e., flow lines), and thus can be used to make paleodrainage reconstructions of the late Wisconsinan <span class="hlt">ice</span> sheet; and (2) to determine whether the MS data can aid in distinguishing basal till diamictons from diamictons of glacial-marine origin and thus, aid paleoenvironmental interpretations. A comparison of the combined data of <span class="hlt">cores</span> in each transect is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51E..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51E..06K"><span>Estimating Past Temperature Change in Antarctica Based on <span class="hlt">Ice</span> <span class="hlt">Core</span> Stable Water Isotope Diffusion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.</p> <p>2017-12-01</p> <p>The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. <span class="hlt">Ice</span> <span class="hlt">core</span> proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic <span class="hlt">ice-core</span> water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, <span class="hlt">ice-core</span> data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at <span class="hlt">ice</span> <span class="hlt">core</span> locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0656M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0656M"><span>Could a new <span class="hlt">ice</span> <span class="hlt">core</span> offer an insight into the stability of the West Antarctic <span class="hlt">Ice</span> Sheet during the last interglacial?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mulvaney, R.; Hindmarsh, R. C.</p> <p>2013-12-01</p> <p>Vaughan et al., in their 2011 paper 'Potential Seaways across West Antarctica' (Geochem. Geophys. Geosyst., 12, Q10004, doi:10.1029/2011GC003688), offer the intriguing prospect that substantial <span class="hlt">ice</span> loss from the West Antarctic <span class="hlt">Ice</span> Sheet during the previous interglacial period might have resulted in the opening of a seaway between the Weddell Sea and the Amundsen Sea. One of their potential seaways passes between the south western corner of the present Ronne <span class="hlt">Ice</span> Shelf and the Pine Island Bay, through what is currently the course of the Rutford <span class="hlt">Ice</span> Stream, between the Ellsworth Mountains and the Fletcher Promontory. To investigate whether this seaway could have existed (and to recover a paleoclimate and <span class="hlt">ice</span> sheet history from the Weddell Sea), a team from the British Antarctic Survey and the Laboratoire de Glaciologie et Géophysique de l'Environnement drilled an <span class="hlt">ice</span> <span class="hlt">core</span> from a close to a topographic dome in the <span class="hlt">ice</span> surface on the Fletcher Promontory in January 2012, reaching the bedrock at 654.3m depth from the surface. The site was selected to penetrate directly through the centre of a Raymond cupola observed in internal radar reflections from the <span class="hlt">ice</span> sheet, with the intention that this would ensure we obtained the oldest <span class="hlt">ice</span> available from the Fletcher Promontory. The basal <span class="hlt">ice</span> sheet temperature measured was -18°C, implying the oldest <span class="hlt">ice</span> would not have melted away from the base, while the configuration of the Raymond cupola in the radar horizons suggested stability in the <span class="hlt">ice</span> dome topography during the majority of the Holocene. Our hypothesis is that chemical analysis of the <span class="hlt">ice</span> <span class="hlt">core</span> will reveal whether the site was ever relatively close to open sea water or <span class="hlt">ice</span> shelf in the Rutford channel 20 km distant, rather than the current 700 km distance to sea <span class="hlt">ice</span>/open water in either the Weddell Sea or the Amundsen Sea. While we do not yet have the chemistry data to test this hypothesis, in this poster we will discuss whether there is in reality any potential local</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16826993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16826993"><span>Trends in sea <span class="hlt">ice</span> <span class="hlt">cover</span> within habitats used by bowhead whales in the western Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moore, Sue E; Laidre, Kristin L</p> <p>2006-06-01</p> <p>We examined trends in sea <span class="hlt">ice</span> <span class="hlt">cover</span> between 1979 and 2002 in four months (March, June, September, and November) for four large (approximately 100,000 km2) and 12 small (approximately 10,000 km2) regions of the western Arctic in habitats used by bowhead whales (Balaena mysticetus). Variation in open water with year was significant in all months except March, but interactions between region and year were not. Open water increased in both large and small regions, but trends were weak with least-squares regression accounting for < or =34% of the total variation. In large regions, positive trends in open water were strongest in September. Linear fits were poor, however, even in the East Siberian, Chukchi, and Beaufort seas, where basin-scale analyses have emphasized dramatic sea <span class="hlt">ice</span> loss. Small regions also showed weak positive trends in open water and strong interannual variability. Open water increased consistently in five small regions where bowhead whales have been observed feeding or where oceanographic models predict prey entrainment, including: (1) June, along the northern Chukotka coast, near Wrangel Island, and along the Beaufort slope; (2) September, near Wrangel Island, the Barrow Arc, and the Chukchi Borderland; and (3) November, along the Barrow Arc. Conversely, there was very little consistent change in sea <span class="hlt">ice</span> <span class="hlt">cover</span> in four small regions considered winter refugia for bowhead whales in the northern Bering Sea, nor in two small regions that include the primary springtime migration corridor in the Chukchi Sea. The effects of sea <span class="hlt">ice</span> <span class="hlt">cover</span> on bowhead whale prey availability are unknown but can be modeled via production and advection pathways. Our conceptual model suggests that reductions in sea <span class="hlt">ice</span> <span class="hlt">cover</span> will increase prey availability along both pathways for this population. This analysis elucidates the variability inherent in the western Arctic marine ecosystem at scales relevant to bowhead whales and contrasts basin-scale depictions of extreme sea <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B41H2065D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B41H2065D"><span>Trials and Tribulations of Fluorescent Dissolved Organic Matter Chemical Interpretations: A case study of polar <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Andrilli, J.</p> <p>2017-12-01</p> <p>Excitation emission matrix fluorescence spectroscopy is widely applied for rapid dissolved organic matter (DOM) characterization in aquatic systems. Fluorescent DOM surveys are booming, not only as a central focus in aquatic environments, but also as an important addition to interdisciplinary research (e.g., DOM analysis in concert with <span class="hlt">ice</span> <span class="hlt">core</span> paleoclimate reconstructions, stream metabolism, hydrologic regimes, agricultural developments, and biological activity), opening new doors, not just for novelty, but also for more challenges with chemical interpretations. Recently, the commonly used protein- versus humic-like classifications of DOM have been ineffective at describing DOM chemistry in various systems (e.g., <span class="hlt">ice</span> <span class="hlt">cores</span>, wastewaters, incubations/engineered). Moreover, the oversimplification of such classifications used to describe fluorescing components, without further scrutiny, has become commonplace, ultimately producing vague reporting. For example, West Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> DOM was shown to contain fluorescence in the low excitation/emission wavelength region, however resolved fluorophores depicting tyrosine- and tryptophan-like DOM were not observed. At first, as literature suggested, we reported this result as protein-like, and concluded that microbial contributions were dominant in deep <span class="hlt">ice</span>. That initial interpretation would disintegrate the conservation paradigm of atmospheric composition during deposition, the crux of <span class="hlt">ice</span> <span class="hlt">core</span> research, and contradict other lines of evidence. This begged the question, "How can we describe DOM chemistry without distinct fluorophores?" Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> DOM was dominated by neither tyrosine- nor tryptophan-like fluorescence, causing "unusual" looking fluorescent components. After further examination, deep <span class="hlt">ice</span> DOM was reported to contain fluorescent species most similar to monolignols and tannin-like phenols, describing the precursors of lignin from low carbon producing environments, consistent with marine sediment</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20216299-chronological-refinement-ice-core-record-upper-fremont-glacier-south-central-north-america','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20216299-chronological-refinement-ice-core-record-upper-fremont-glacier-south-central-north-america"><span>Chronological refinement of an <span class="hlt">ice</span> <span class="hlt">core</span> record at Upper Fremont Glacier in south central North America</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schuster, Paul F.; White, David E.; Naftz, David L.</p> <p>2000-02-27</p> <p>The potential to use <span class="hlt">ice</span> <span class="hlt">cores</span> from alpine glaciers in the midlatitudes to reconstruct paleoclimatic records has not been widely recognized. Although excellent paleoclimatic records exist for the polar regions, paleoclimatic <span class="hlt">ice</span> <span class="hlt">core</span> records are not common from midlatitude locations. An <span class="hlt">ice</span> <span class="hlt">core</span> removed from the Upper Fremont Glacier in Wyoming provides evidence for abrupt climate change during the mid-1800s. Volcanic events (Krakatau and Tambora) identified from electrical conductivity measurements (ECM) and isotopic and chemical data from the Upper Fremont Glacier were reexamined to confirm and refine previous chronological estimates of the <span class="hlt">ice</span> <span class="hlt">core</span>. At a depth of 152 mmore » the refined age-depth profile shows good agreement (1736{+-}10 A.D.) with the {sup 14}C age date (1729{+-}95 A.D.). The {delta}{sup 18}O profile of the Upper Fremont Glacier (UFG) <span class="hlt">ice</span> <span class="hlt">core</span> indicates a change in climate known as the Little <span class="hlt">Ice</span> Age (LIA). However, the sampling interval for {delta}{sup 18}O is sufficiently large (20 cm) such that it is difficult to pinpoint the LIA termination on the basis of {delta}{sup 18}O data alone. Other research has shown that changes in the {delta}{sup 18}O variance are generally coincident with changes in ECM variance. The ECM data set contains over 125,000 data points at a resolution of 1 data point per millimeter of <span class="hlt">ice</span> <span class="hlt">core</span>. A 999-point running average of the ECM data set and results from f tests indicates that the variance of the ECM data decreases significantly at about 108 m. At this depth, the age-depth profile predicts an age of 1845 A.D. Results indicate the termination of the LIA was abrupt with a major climatic shift to warmer temperatures around 1845 A.D. and continuing to present day. Prediction limits (error bars) calculated for the profile ages are {+-}10 years (90% confidence level). Thus a conservative estimate for the time taken to complete the LIA climatic shift to present-day climate is about 10 years, suggesting the LIA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040101457&hterms=culture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dculture','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040101457&hterms=culture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dculture"><span>Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a greenland glacier <span class="hlt">ice</span> <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.</p> <p>2003-01-01</p> <p>The examination of microorganisms in glacial <span class="hlt">ice</span> <span class="hlt">cores</span> allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland <span class="hlt">ice</span> <span class="hlt">core</span> that had remained at -9 degrees C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the <span class="hlt">ice</span> sample contained over 6 x 10(7) cells/ml. Anaerobic enrichment cultures inoculated with melted <span class="hlt">ice</span> were grown and maintained at -2 degrees C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland <span class="hlt">ice</span> <span class="hlt">core</span> for at least 100,000 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS31B1256L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS31B1256L"><span>The Effects of Freezing, Melting and Partial <span class="hlt">Ice</span> <span class="hlt">Cover</span> on Gas Transport in Laboratory Seawater Experiments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loose, B.; McGillis, W.; Schlosser, P.; Perovich, D.; Takahashi, T.</p> <p>2008-12-01</p> <p>Sea <span class="hlt">ice</span> physico-chemical processes affect gas dynamics, which may be relevant to polar ocean budgets of climatically-active gases. We used SF6 and O2 as inert gas tracers in a tank experiment to observe the transport of gases between water, <span class="hlt">ice</span> and air during freezing/melting and partial <span class="hlt">ice</span> <span class="hlt">cover</span>. The results show that during <span class="hlt">ice</span> growth, the rejection of O2 and SF6 was greater than the rejection of salt per unit of ambient concentration in seawater. Unconsolidated <span class="hlt">ice</span> crystal growth produced an increase in dissolved O2 concentration, indicating that the water-air gradient may favor gas evasion during the early stages of sea-<span class="hlt">ice</span> formation. Measurements of the gas transfer velocity (k), using SF6 and O2 during conditions of partial <span class="hlt">ice</span> <span class="hlt">cover</span> exceed the proportionality between the fraction of open water and k determined between 0% and 100% open water conditions. At 15% open water, k equals 35% of k during <span class="hlt">ice</span>-free conditions, indicating the importance of under-<span class="hlt">ice</span> turbulence for gas exchange. In our experiments most of this turbulence was produced by pumps installed for circulation of the water in the tank to avoid density stratification. Varying the turbulent kinetic energy (TKE) delivered to the water by these pumps produced a correspondent variation in k. Measurements of TKE using particle velocimetry suggest that turbulence in the <span class="hlt">ice</span>-water boundary layer dominated the convection driven by heat loss through the open water, and the magnitude of net TKE production was similar to that measured beneath drifting <span class="hlt">ice</span> in the field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B33K0614C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B33K0614C"><span>Carbon and hydrogen isotopic systematics of dissolved methane in small seasonally <span class="hlt">ice-covered</span> lakes near the margin of the Greenland <span class="hlt">ice</span> sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cadieux, S. B.; White, J. R.; Pratt, L. M.; Peng, Y.; Young, S. A.</p> <p>2013-12-01</p> <p>Northern lakes contribute from 6-16% of annual methane inputs to Earth's atmosphere, yet little is known about the seasonal biogeochemistry of CH4 cycling, particularly for lakes in the Arctic. Studies during <span class="hlt">ice</span>-free conditions have been conducted in Alaskan, Swedish and Siberian lakes. However, there is little information on CH4 cycling under <span class="hlt">ice-covered</span> conditions, and few stable isotopic measurements, which can help elucidate production and consumption pathways. In order to better understand methane dynamics of <span class="hlt">ice-covered</span> Arctic lakes, 4 small lakes (surface area <1 km2) within a narrow valley extending from the Russells Glacier to Søndre Strømfjord in Southwestern Greenland were examined during summer stratification and winter <span class="hlt">ice-cover</span>. Lakes in the study area are <span class="hlt">ice-covered</span> from mid-September to mid-June. In both seasons, variations in the concentrations and isotopic composition of methane with depth were related to redox fluctuations. During late winter under~2 m of <span class="hlt">ice</span>, the entire water column was anoxic with wide variation in methane concentrationsand isotopic composition from lake to lake. In three of the lakes, CH4 concentrations and δ13C were relatively stable over the depth of the water column, averaging from 120 to 480μM, with δ13CH4 values from -56‰ to -66‰, respectively. Methane concentrations in the other lake increased with depth from <1 μM below the <span class="hlt">ice</span> to 800 μM at the sediment/water interface, while δ13C decreased by 30‰ from -30‰ to -70‰ over this depth. In all the lakes, δ13C of sediment porewater was lighter than the overlying water by at least 10‰. The δD-CH4 in the water column ranged from -370‰ to -50‰, exhibiting covariance with δ13C consistent with significant methanotrophic activity. In the sediment, δD-CH4 values ranged from -330‰ to -275‰, and were inversely correlated with δ13C. We will present detailed information on redox dynamics as a controlling factor in methane cycling, and explore the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..228...54F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..228...54F"><span>Formation of lobate debris aprons on Mars: Assessment of regional <span class="hlt">ice</span> sheet collapse and debris-<span class="hlt">cover</span> armoring</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fastook, James L.; Head, James W.; Marchant, David R.</p> <p>2014-01-01</p> <p>Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) <span class="hlt">ice</span>-cemented talus aprons undergoing viscous flow, (2) local debris-<span class="hlt">covered</span> alpine-like glaciers, or (3) remnants of the collapse of a regional retreating <span class="hlt">ice</span> sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional <span class="hlt">ice</span> sheet by modeling this process. We find that as a regional <span class="hlt">ice</span> sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-<span class="hlt">cover</span> armoring of the proto-LDA surface produces a surface slope and consequent <span class="hlt">ice</span> flow that carries the armoring debris away from the rock outcrops. As collapse and <span class="hlt">ice</span> retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris <span class="hlt">cover</span>. Using a simplified <span class="hlt">ice</span> flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris <span class="hlt">cover</span>) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A42B..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A42B..02P"><span>A Paleo Perspective on Arctic and Mid-latitude Linkages from a Southeast Alaska <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porter, S. E.; Mosley-Thompson, E.; Thompson, L. G.; Bolzan, J. F.</p> <p>2017-12-01</p> <p>Recent extreme weather events in the Northern Hemisphere have been linked to anomalously amplified jet stream patterns, North Pacific marine heatwaves, retreating Arctic sea <span class="hlt">ice</span> extent, and/or the combination thereof. The role of the Arctic in influencing mid-latitude weather and extreme events is a burgeoning topic of climate research that is limited primarily to the recent decades in which Arctic amplification and shrinking Arctic sea <span class="hlt">ice</span> extent are occurring. Paleo-proxy data afford an opportunity to place the changing Arctic and its far-reaching climatic consequences in the longer context of Earth's climate history and allow identification of time periods with conditions analogous to the present. <span class="hlt">Ice</span> <span class="hlt">core</span>-derived annual net accumulation from the Bona-Churchill (BC) <span class="hlt">ice</span> <span class="hlt">core</span>, retrieved in 2002 from the Wrangell-St. Elias mountain range in southeast Alaska, is used to explore the historical characteristics of the regional North Pacific climate and the further afield teleconnections. Variability of accumulation on BC is driven primarily by shifts in the position of the Aleutian Low which influences the available moisture sources for the drill site. The accumulation record is also related to sea surface temperatures in the Gulf of Alaska, defined here by the North Pacific Mode and somewhat colloquially as the North Pacific "blob". Thus due to its connection with the Aleutian Low and North Pacific sea surface temperatures, this uniquely situated <span class="hlt">ice</span> <span class="hlt">core</span> record indirectly captures the phasing of troughs and ridges in the polar jet stream over North America, and thereby facilitates examination of the atmospheric wave structure prior to the instrumental record. The relationships among the <span class="hlt">ice</span> <span class="hlt">core</span> accumulation record and various North Pacific climate features are presented along with evidence identifying specific time periods possibly characterized by persistently amplified wave patterns.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C42B..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C42B..06R"><span>Response of Debris-<span class="hlt">Covered</span> and Clean-<span class="hlt">Ice</span> Glaciers to Climate Change from Observations and Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Roe, G.; Huybers, K. M.</p> <p>2017-12-01</p> <p>Debris-<span class="hlt">covered</span> glaciers form a significant percentage of the glacier area and volume in many mountainous regions of the world, and respond differently to climatic forcings as compared to clean-<span class="hlt">ice</span> glaciers. In particular, debris-<span class="hlt">covered</span> glaciers tend to downwaste with very little retreat, while clean-<span class="hlt">ice</span> glaciers simultaneously thin and retreat. This difference has posed a significant challenge to quantifying glacier sensitivity to climate change, modeling glacier response to future climate change, and assessing the impacts of recent and future glacier changes on mountain environments and downstream populations. In this study, we evaluate observations of the geodetic mass balance and thinning profiles of 1000 glaciers across the Himalayas from 1975 to 2016. We use this large sampling of glacier changes over multiple decades to provide a robust statistical comparison of mass loss for clean-<span class="hlt">ice</span> versus debris-<span class="hlt">covered</span> glaciers over a period relevant to glacier dynamics. In addition, we force a glacier model with a series of climate change scenarios, and compare the modeled results to the observations. We essentially ask the question, "Are our theoretical expectations consistent with the observations?" Our observations show both clean-<span class="hlt">ice</span> and debris-<span class="hlt">covered</span> glaciers, regionally averaged, thinned in a similar pattern for the first 25-year observation period. For the more recent 15-year period, clean <span class="hlt">ice</span> glaciers show significantly steepened thinning gradients across the surface, while debris-<span class="hlt">covered</span> glaciers have continued to thin more uniformaly across the surface. Our preliminary model results generally agree with these observations, and suggest that both glacier types are expected to have a thinning phase followed by a retreat phase, but that the timing of the retreat phase is much later for debris-<span class="hlt">covered</span> glaciers. Thus, these early results suggest these two glacier types are dynamically very similar, but are currently in different phases of response to recent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CliPD...8.6051C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CliPD...8.6051C"><span>Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and <span class="hlt">ice</span> <span class="hlt">core</span> air-δ15N measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.</p> <p>2012-12-01</p> <p>Correct estimate of the firn lock-in depth is essential for correctly linking gas and <span class="hlt">ice</span> chronologies in <span class="hlt">ice</span> <span class="hlt">cores</span> studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: output of a firn densification model and measurements of δ15N of N2 in air trapped in <span class="hlt">ice</span> <span class="hlt">core</span>. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available δ15N measurements performed from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rate and temperature conditions. While firn densification simulations are able to correctly represent most of the δ15N trends over the last deglaciation measured in the EDC, BI, TALDICE and EDML <span class="hlt">ice</span> <span class="hlt">cores</span>, they systematically fail to capture BI and EDML δ15N glacial levels, a mismatch previously seen for Central East Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span>. Using empirical constraints of the EDML gas-<span class="hlt">ice</span> depth offset during the Laschamp event (~ 41 ka), we can rule out the existence of a large convective zone as the explanation of the glacial firn model-δ15N data mismatch for this site. The good match between modelled and measured δ15N at TALDICE as well as the lack of any clear correlation between insoluble dust concentration in snow and δ15N records in the different <span class="hlt">ice</span> <span class="hlt">cores</span> suggest that past changes in loads of impurities are not the only main driver of glacial-interglacial changes in firn lock-in depth. We conclude that firn densification dynamics may instead be driven mostly by accumulation rate changes. The mismatch between modelled and measured δ15N may be due to inaccurate reconstruction of past accumulation rate or underestimated influence of accumulation rate in firnification models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23558172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23558172"><span>Annually resolved <span class="hlt">ice</span> <span class="hlt">core</span> records of tropical climate variability over the past ~1800 years.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, L G; Mosley-Thompson, E; Davis, M E; Zagorodnov, V S; Howat, I M; Mikhalenko, V N; Lin, P-N</p> <p>2013-05-24</p> <p><span class="hlt">Ice</span> <span class="hlt">cores</span> from low latitudes can provide a wealth of unique information about past climate in the tropics, but they are difficult to recover and few exist. Here, we report annually resolved <span class="hlt">ice</span> <span class="hlt">core</span> records from the Quelccaya <span class="hlt">ice</span> cap (5670 meters above sea level) in Peru that extend back ~1800 years and provide a high-resolution record of climate variability there. Oxygen isotopic ratios (δ(18)O) are linked to sea surface temperatures in the tropical eastern Pacific, whereas concentrations of ammonium and nitrate document the dominant role played by the migration of the Intertropical Convergence Zone in the region of the tropical Andes. Quelccaya continues to retreat and thin. Radiocarbon dates on wetland plants exposed along its retreating margins indicate that it has not been smaller for at least six millennia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1218B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1218B"><span>Atmospheric depositions of black carbon, inorganic pollutants and mineral dust from the Ortles, Eastern European Alps <span class="hlt">ice</span> <span class="hlt">cores</span> during the last 3000 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertò, Michele; Barbante, Carlo; Gabrielli, Paolo; Gabrieli, Jacopo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Stenni, Barbara</p> <p>2017-04-01</p> <p>Reconstructions of the atmospheric content of black carbon, heavy metals and mineral dust <span class="hlt">covering</span> millennial time scales are rare, particularly in the European region. Evaluating the human impact on the environment through mining and industrial activities, road traffic, biomass and coal burning, and the naturally emitted aerosols atmospheric load, is important to know the degree of contaminations and the quality of melting water, the radiative effect on the glacier's radiative balance, the atmospheric aerosols' climatic impacts and the recent decades pollutions emissions policies' efficiencies. Four <span class="hlt">ice</span> <span class="hlt">cores</span> were drilled in 2011 from the "Alto dell'Ortles" (3859 m), the highest glacier of the Mt. Ortles massif (South Tirol, Italy). Three 74 m long <span class="hlt">ice</span> <span class="hlt">cores</span> were dated by mean of 210Pb, tritium, beta emissions and 14C analyses following also the new dating technique based on filtering the <span class="hlt">ice</span> for extracting the carbonaceous component of the deposited aerosols. The depth-age curve was obtained by using a Monte Carlo based empirical fitting model (COPRA). The basal <span class="hlt">ice</span> of <span class="hlt">core</span>#2 and #3 was dated back to about 7000 years b.p., whereas that of <span class="hlt">core</span>#1, about one meter shorter, to 3000 years before present. Below the firn-<span class="hlt">ice</span> transition, at a depth of about 24 m, the borehole temperature revealed the presence of well-preserved cold <span class="hlt">ice</span> (Gabrielli et al, 2012). The O and H stable isotopes profiles describe well the atmospheric warming as well as the low temperatures recorded during the Little <span class="hlt">Ice</span> Age (LIA). The proximity of the "Alto dell'Ortles" to densely industrialized areas (Po Valley) makes these <span class="hlt">ice</span> <span class="hlt">cores</span> specifically suited for reconstructing the anthropogenic impacts in the Eastern European Alpine region over the last 3 millennia. The <span class="hlt">ice</span> <span class="hlt">core</span>#1 was analyzed with a "Continuous Flow Analysis" system (CFA). The separation between internal and external parts of the <span class="hlt">core</span> prevents any kind of contamination. The <span class="hlt">core</span> was melted at about 2.5 cm min-1 and simultaneous</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4469S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4469S"><span>Pliocene-Pleistocene changes in Arctic sea-<span class="hlt">ice</span> <span class="hlt">cover</span>: New biomarker records from Fram Strait/Yermak Plateau (ODP Sites 911 and 912)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stein, Ruediger; Fahl, Kirsten</p> <p>2013-04-01</p> <p>Recently, a novel and promising biomarker proxy for reconstruction of Arctic sea-<span class="hlt">ice</span> conditions was developed and is based on the determination of a highly branched isoprenoid with 25 carbons (IP25; Belt et al., 2007). Following this pioneer IP25 study by Belt and colleagues, several IP25 studies of marine surface sediments and sediment <span class="hlt">cores</span> as well as sediment trap samples from northpolar areas were carried out successfully and allowed detailed reconstruction of modern and late Quaternary sea <span class="hlt">ice</span> variability in these regions (e.g., Massé et al., 2008; Müller et al., 2009, 2011; Vare et al., 2009; Belt et al., 2010; Fahl and Stein, 2012; for review see Stein et al., 2012). Here, we present new (low-resolution) biomarker records from Ocean Drilling Program (ODP) Sites 911 and 912, representing the Pliocene-Pleistocene time interval (including the interval of major intensification of Northern Hemisphere Glaciation near 2.7 Ma). These data indicate that sea <span class="hlt">ice</span> of variable extent was present in the Fram Strait/southern Yermak Plateau area during most of the time period under investigation. In general, an increase in sea-<span class="hlt">ice</span> <span class="hlt">cover</span> seems to correlate with phases of extended late Pliocene-Pleistocene continental <span class="hlt">ice</span>-sheets. At ODP Site 912, a significant increase in sea-<span class="hlt">ice</span> extension occurred near 1.2 Ma (Stein and Fahl, 2012). Furthermore, our data support the idea that a combination of IP25 and open water, phytoplankton biomarker data ("PIP25 index"; Müller et al., 2011) may give more reliable and quantitative estimates of past sea-<span class="hlt">ice</span> <span class="hlt">cover</span> (at least for the study area). This study reveals that the novel IP25/PIP25 biomarker approach has potential for semi-quantitative paleo-sea <span class="hlt">ice</span> studies <span class="hlt">covering</span> the entire Quaternary and motivate to carry out further detailed high-resolution research on ODP/IODP material using this proxy. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea <span class="hlt">ice</span>: IP25</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.U42A0010M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.U42A0010M"><span>The Rapidly Diminishing Arctic <span class="hlt">ice</span> <span class="hlt">Cover</span> and its Potential Impact on Navy Operational Considerations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muench, R. D.; Conlon, D.; Lamb, D.</p> <p>2001-12-01</p> <p>Observations made from U.S. Navy Fleet submarines during the 1990s have revealed a dramatic decrease in thickness, when compared to historical values, of the central Arctic Ocean pack <span class="hlt">ice</span> <span class="hlt">cover</span>. Estimates of this decrease have been as high as 40%. Remote sensing observations have shown a coincident decrease in the areal extent of the pack. The areal decrease has been especially apparent during winter. The overall loss of <span class="hlt">ice</span> appears to have accelerated over the past decade, raising the possibility that the Northwest Passage and the Northern Sea Route may become seasonally navigable on a regular basis in the coming decade. The <span class="hlt">ice</span> loss has been most evident in the peripheral seas and continental shelf areas. For example, during winter 2000-2001 the Bering Sea was effectively <span class="hlt">ice</span>-free, with strong and immediate impacts on the surrounding indigenous populations. Lessening of the peripheral pack <span class="hlt">ice</span> <span class="hlt">cover</span> will presumably, lead to accelerated development of the resource-rich regions that surround the deep, central Arctic Ocean basin. This raises potential issues with respect to national security and commercial interests, and has implicit strategic concerns for the Navy. The timeline for a significantly navigable Arctic may extend decades into the future; however, operational requirements must be identified in the nearer term to ensure that the necessary capabilities exist when future Arctic missions do present themselves. A first step is to improve the understanding of the coupled atmosphere/<span class="hlt">ice</span>/ocean system. Current environmental measurement and prediction, including Arctic weather and <span class="hlt">ice</span> prediction, shallow water acoustic performance prediction, dynamic ocean environmental changes and data to support navigation is inadequate to support sustained naval operations in the Arctic. A new focus on data collection is required in order to measure, map, monitor and model Arctic weather, <span class="hlt">ice</span> and oceanographic conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...118..154S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...118..154S"><span>Surface water mass composition changes captured by <span class="hlt">cores</span> of Arctic land-fast sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.</p> <p>2016-04-01</p> <p>In the Arctic, land-fast sea <span class="hlt">ice</span> growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea <span class="hlt">ice</span> <span class="hlt">cores</span>. To determine changes in sea water isotope composition over the course of the <span class="hlt">ice</span> growth period, the output of a sea <span class="hlt">ice</span> thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea <span class="hlt">ice</span> oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea <span class="hlt">ice</span> growth rates are used to validate the output of the sea <span class="hlt">ice</span> growth model. It is shown that for sea <span class="hlt">ice</span> formed during the 2011/2012 <span class="hlt">ice</span> growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea <span class="hlt">ice</span> isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea <span class="hlt">ice</span> growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea <span class="hlt">ice</span> <span class="hlt">cores</span> is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast <span class="hlt">ice</span> regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea <span class="hlt">ice</span> effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1012990','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1012990"><span>Variations in the Arctic's multiyear sea <span class="hlt">ice</span> <span class="hlt">cover</span>: A neural network analysis of SMMR-SSM/I data, 1979-2004</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Belchansky, G.I.; Douglas, David C.; Eremeev, V.A.; Platonov, Nikita G.</p> <p>2005-01-01</p> <p>A 26-year (1979-2004) observational record of January multiyear sea <span class="hlt">ice</span> distributions, derived from neural network analysis of SMMR-SSM/I passive microwave satellite data, reveals dense and persistent <span class="hlt">cover</span> in the central Arctic basin surrounded by expansive regions of highly fluctuating interannual <span class="hlt">cover</span>. Following a decade of quasi equilibrium, precipitous declines in multiyear <span class="hlt">ice</span> area commenced in 1989 when the Arctic Oscillation shifted to a pronounced positive phase. Although extensive survival of first-year <span class="hlt">ice</span> during autumn 1996 fully replenished the area of multiyear <span class="hlt">ice</span>, a subsequent and accelerated decline returned the depletion to record lows. The most dramatic multiyear sea <span class="hlt">ice</span> declines occurred in the East Siberian, Chukchi, and Beaufort Seas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC43C0754S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC43C0754S"><span>Trace Element Determination from the Guliya <span class="hlt">Ice</span> <span class="hlt">Core</span> to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.</p> <p>2014-12-01</p> <p>The Tibetan Plateau or Third Pole <span class="hlt">covers</span> over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya <span class="hlt">ice</span> cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) <span class="hlt">ice</span> cap in the subtropical zone. In 1992, a 308.6 m <span class="hlt">ice</span> <span class="hlt">core</span> to bedrock was recovered from the Guliya <span class="hlt">ice</span> cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya <span class="hlt">ice</span> cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya <span class="hlt">ice</span> <span class="hlt">core</span> samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri <span class="hlt">ice</span> cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0662C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0662C"><span>Holocene history of North <span class="hlt">Ice</span> Cap, northwestern Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.</p> <p>2013-12-01</p> <p>Although much research has focused on the past extents of the Greenland <span class="hlt">Ice</span> Sheet, less is known about the smaller <span class="hlt">ice</span> caps on Greenland and how they have evolved over time. These small <span class="hlt">ice</span> caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland <span class="hlt">Ice</span> Sheet margins. Here, we investigate the Holocene history of North <span class="hlt">Ice</span> Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment <span class="hlt">cores</span> from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North <span class="hlt">Ice</span> Cap ~25 m outboard of the present <span class="hlt">ice</span> margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are <span class="hlt">covered</span> with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once <span class="hlt">covered</span> by erosive Greenland <span class="hlt">Ice</span> Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North <span class="hlt">Ice</span> Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent <span class="hlt">ice</span> <span class="hlt">cover</span> has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment <span class="hlt">cores</span> collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North <span class="hlt">Ice</span> Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17513260','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17513260"><span>Methane and nitrous oxide in the <span class="hlt">ice</span> <span class="hlt">core</span> record.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolff, Eric; Spahni, Renato</p> <p>2007-07-15</p> <p>Polar <span class="hlt">ice</span> <span class="hlt">cores</span> contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the <span class="hlt">ice</span> and so far limited interpretation. In the recent past, the <span class="hlt">ice</span> <span class="hlt">cores</span> provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650,000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial-interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard-Oeschger warmings of the last glacial period, methane rose by around half its glacial-interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650,000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard-Oeschger and glacial-interglacial periodicity, but the pattern is less clear.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28378830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28378830"><span>Possible connections of the opposite trends in Arctic and Antarctic sea-<span class="hlt">ice</span> <span class="hlt">cover</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A; Zhou, Mingyu; Lenschow, Donald H; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua</p> <p>2017-04-05</p> <p>Sea <span class="hlt">ice</span> is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-<span class="hlt">ice</span> concentration is evident in recent years, whereas Antarctic sea-<span class="hlt">ice</span> concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-<span class="hlt">ice</span> concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-<span class="hlt">ice</span> <span class="hlt">cover</span> record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-<span class="hlt">ice</span> concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-<span class="hlt">ice</span> concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-<span class="hlt">ice</span> concentration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5381096','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5381096"><span>Possible connections of the opposite trends in Arctic and Antarctic sea-<span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A.; Zhou, Mingyu; Lenschow, Donald H.; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua</p> <p>2017-01-01</p> <p>Sea <span class="hlt">ice</span> is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-<span class="hlt">ice</span> concentration is evident in recent years, whereas Antarctic sea-<span class="hlt">ice</span> concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-<span class="hlt">ice</span> concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-<span class="hlt">ice</span> <span class="hlt">cover</span> record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-<span class="hlt">ice</span> concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-<span class="hlt">ice</span> concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-<span class="hlt">ice</span> concentration. PMID:28378830</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE54B1584J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE54B1584J"><span>The interaction between sea <span class="hlt">ice</span> and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea-<span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.</p> <p>2016-02-01</p> <p>In this study, we develop a simple conceptual model to examine how interactions between sea <span class="hlt">ice</span> and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-<span class="hlt">ice</span> <span class="hlt">covered</span> and salinity stratified ocean, and consists of a sea-<span class="hlt">ice</span> component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-<span class="hlt">ice</span> thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-<span class="hlt">ice</span> export. Whether sea <span class="hlt">ice</span> stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea <span class="hlt">ice</span> acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea <span class="hlt">ice</span> acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea <span class="hlt">ice</span>. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea <span class="hlt">ice</span>. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25786966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25786966"><span>Treatment of <span class="hlt">ice</span> <span class="hlt">cover</span> and other thin elastic layers with the parabolic equation method.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collins, Michael D</p> <p>2015-03-01</p> <p>The parabolic equation method is extended to handle problems involving <span class="hlt">ice</span> <span class="hlt">cover</span> and other thin elastic layers. Parabolic equation solutions are based on rational approximations that are designed using accuracy constraints to ensure that the propagating modes are handled properly and stability constrains to ensure that the non-propagating modes are annihilated. The non-propagating modes are especially problematic for problems involving thin elastic layers. It is demonstrated that stable results may be obtained for such problems by using rotated rational approximations [Milinazzo, Zala, and Brooke, J. Acoust. Soc. Am. 101, 760-766 (1997)] and generalizations of these approximations. The approach is applied to problems involving <span class="hlt">ice</span> <span class="hlt">cover</span> with variable thickness and sediment layers that taper to zero thickness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=154775','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=154775"><span>Phylogenetic Analysis of Anaerobic Psychrophilic Enrichment Cultures Obtained from a Greenland Glacier <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.</p> <p>2003-01-01</p> <p>The examination of microorganisms in glacial <span class="hlt">ice</span> <span class="hlt">cores</span> allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland <span class="hlt">ice</span> <span class="hlt">core</span> that had remained at −9°C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the <span class="hlt">ice</span> sample contained over 6 × 107 cells/ml. Anaerobic enrichment cultures inoculated with melted <span class="hlt">ice</span> were grown and maintained at −2°C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland <span class="hlt">ice</span> <span class="hlt">core</span> for at least 100,000 years. PMID:12676695</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED22A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED22A..06H"><span>Cool Science Explains a Warming World: Using <span class="hlt">Ice</span> <span class="hlt">Core</span> Science to Bridge the Gap Between Researchers and the K-12 Classroom</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huffman, L. T.</p> <p>2017-12-01</p> <p>Changing <span class="hlt">ice</span> has urgent implications for people around the world. The <span class="hlt">Ice</span> Drilling Program Office (IDPO) provides scientific leadership and oversight of <span class="hlt">ice</span> <span class="hlt">coring</span> and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between <span class="hlt">ice</span> <span class="hlt">core</span> science research and educators and their students. <span class="hlt">Ice</span> <span class="hlt">core</span> science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on <span class="hlt">ice</span> <span class="hlt">core</span> data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the <span class="hlt">ice</span>. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. <span class="hlt">Ice</span> drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of <span class="hlt">ice</span> <span class="hlt">core</span> scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting <span class="hlt">ice</span> <span class="hlt">core</span> and climate change science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740014858','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740014858"><span>Results of the US contribution to the joint US/USSR Bering Sea experiment. [atmospheric circulation and sea <span class="hlt">ice</span> <span class="hlt">cover</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, W. J.; Chang, T. C.; Fowler, M. G.; Gloersen, P.; Kuhn, P. M.; Ramseier, R. O.; Ross, D. B.; Stambach, G.; Webster, W. J., Jr.; Wilheit, T. T.</p> <p>1974-01-01</p> <p>The atmospheric circulation which occurred during the Bering Sea Experiment, 15 February to 10 March 1973, in and around the experiment area is analyzed and related to the macroscale morphology and dynamics of the sea <span class="hlt">ice</span> <span class="hlt">cover</span>. The <span class="hlt">ice</span> <span class="hlt">cover</span> was very complex in structure, being made up of five <span class="hlt">ice</span> types, and underwent strong dynamic activity. Synoptic analyses show that an optimum variety of weather situations occurred during the experiment: an initial strong anticyclonic period (6 days), followed by a period of strong cyclonic activity (6 days), followed by weak anticyclonic activity (3 days), and finally a period of weak cyclonic activity (4 days). The data of the mesoscale test areas observed on the four sea <span class="hlt">ice</span> option flights, and ship weather, and drift data give a detailed description of mesoscale <span class="hlt">ice</span> dynamics which correlates well with the macroscale view: anticyclonic activity advects the <span class="hlt">ice</span> southward with strong <span class="hlt">ice</span> divergence and a regular lead and polynya pattern; cyclonic activity advects the <span class="hlt">ice</span> northward with <span class="hlt">ice</span> convergence, or slight divergence, and a random lead and polynya pattern.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23713125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23713125"><span><span class="hlt">Ice</span> sheets and nitrogen.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolff, Eric W</p> <p>2013-07-05</p> <p>Snow and <span class="hlt">ice</span> play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar <span class="hlt">ice</span> sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic <span class="hlt">ice</span> sheet. <span class="hlt">Ice</span> <span class="hlt">cores</span> help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland <span class="hlt">ice</span> rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in <span class="hlt">ice</span> <span class="hlt">cores</span> drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland <span class="hlt">ice</span> show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-<span class="hlt">covered</span> areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3682747','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3682747"><span><span class="hlt">Ice</span> sheets and nitrogen</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wolff, Eric W.</p> <p>2013-01-01</p> <p>Snow and <span class="hlt">ice</span> play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar <span class="hlt">ice</span> sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic <span class="hlt">ice</span> sheet. <span class="hlt">Ice</span> <span class="hlt">cores</span> help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland <span class="hlt">ice</span> rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in <span class="hlt">ice</span> <span class="hlt">cores</span> drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland <span class="hlt">ice</span> show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-<span class="hlt">covered</span> areas. PMID:23713125</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023902','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023902"><span><span class="hlt">Ice</span> <span class="hlt">core</span> evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Naftz, D.L.; Susong, D.D.; Schuster, P.F.; Cecil, L.D.; Dettinger, M.D.; Michel, R.L.; Kendall, C.</p> <p>2002-01-01</p> <p>Site-specific transfer functions relating delta oxygen 18 (δ18O) values in snow to the average air temperature (TA) during storms on Upper Fremont Glacier (UFG) were used in conjunction with δ18O records from UFG <span class="hlt">ice</span> <span class="hlt">cores</span> to reconstruct long-term trends in air temperature from alpine areas in the Wind River Range, Wyoming. Transfer functions were determined by using data collected from four seasonal snowpacks (1989-1990, 1997-1998, 1998-1999, and 1999-2000). The timing and amount of each storm was determined from an automated snowpack telemetry (SNOTEL) site, 22 km northeast of UFG, and ~1060 m in elevation below UFG. Statistically significant and positive correlations between δ18O values in the snow and TA were consistently found in three of the four seasonal snowpacks. The snowpack with the poor correlation was deposited in 1997-1998 during the 1997-1998 El Nino Southern Oscillation (ENSO). An ultrasonic snow-depth sensor installed on UFG provided valuable insights into site-specific storms and postdepositional processes that occur on UFG. The timing of storms recorded at the UFG and Cold Springs SNOTEL sites were similar; however, selected storms did not correlate. Snow from storms occurring after mid-October and followed by high winds was most susceptible to redeposition of snow. This removal of lower temperature snowfall could potentially bias the δ18O values preserved in <span class="hlt">ice</span> <span class="hlt">core</span> records to environmental conditions reflecting higher air temperatures and lower wind speeds. Transfer functions derived from seasonal snow <span class="hlt">cover</span> on UFG were used to reconstruct TA values from δ18O values determined from two <span class="hlt">ice</span> <span class="hlt">cores</span> collected from UFG. Reconstructed air temperatures from the <span class="hlt">ice</span> <span class="hlt">core</span> data indicate an increase in TA of ~3.5oC from the mid-1960s to the early 1990s in the alpine areas of northwestern Wyoming. Reconstructed TA from the <span class="hlt">ice</span> <span class="hlt">core</span> records between the end of the Little <span class="hlt">Ice</span> Age (LIA), mid-1800s, and the early 1990s indicate a TA increase of ~55oC. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3633F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3633F"><span>A 62 ka record from the WAIS Divide <span class="hlt">ice</span> <span class="hlt">core</span> with annual resolution to 30 ka (so far)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fudge, T. J.; Taylor, K.; McGwire, K.; Brook, E.; Sowers, T.; Steig, E.; White, J.; Vaughn, B.; Bay, R.; McConnell, J.; Waddington, E.; Conway, H.; Clow, G.; Cuffey, K.; Cole-Dai, J.; Ferris, D.; Severinghaus, J.</p> <p>2012-04-01</p> <p>Drilling of the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) Divide <span class="hlt">ice</span> <span class="hlt">core</span> has been completed to a depth of 3400 m, about 60 meters above the bed. We present an annually resolved time scale for the most recent 30ka (to 2800 m) based on electrical conductivity measurements, called "timescale WDC06A-5". Below 2800 m the <span class="hlt">ice</span> is dated by matching isotopes, methane, and/or dust records to other <span class="hlt">ice</span> <span class="hlt">cores</span>. Optical borehole logging provides stratigraphic ties to other <span class="hlt">cores</span> for the bottom-most 75 m that was drilled in December 2011, and indicates the bottom-most <span class="hlt">ice</span> has an age of 62 ka. The relatively young <span class="hlt">ice</span> at depth is likely the result of basal melting. The inferred annual layer thickness of the deep <span class="hlt">ice</span> is >1 cm, suggesting that annual layer counting throughout the entire <span class="hlt">core</span> may be possible with continuous flow analysis of the <span class="hlt">ice</span> <span class="hlt">core</span> chemistry; however, the annual signal in the electrical measurements fades at about 30 ka. We compare the WDC06A-5 timescale through the glacial-interglacial transition with the Greenland GICC05 and GISP2 timescales via rapid variations in methane. We calculate a preliminary delta-age with: 1) accumulation rate inferred from the annual layer thicknesses and thinning functions computed with a 1-D <span class="hlt">ice</span> flow model, and 2) surface temperature inferred from the low resolution d18O record and a preliminary borehole temperature profile. The WDC06A-5 timescale agrees with the GICC05 and GISP2 timescales to within decades at the 8.2k event and the ACR termination (Younger Dryas/Preboreal transition, 11.7 ka). This is within the delta-age and correlation uncertainties. At the rapid methane drop at ~12.8 ka, the WDC06A-5 timescale is ~150 years older than GICC05 and ~90 older than GISP2; while at ~14.8 ka, the timescales once again agree within the delta-age and correlation uncertainties. The cause of the age discrepancy at 12.8 ka is unclear. We also compare the WDC06A-5 timescale at Dansgaard-Oeschger events 3 and 4 (~27.5 and 29 ka) to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B31C1123J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B31C1123J"><span>Assessment of the Relationship between Andean <span class="hlt">Ice</span> <span class="hlt">Core</span> Precipitation Indicators and Amazon River Discharge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, N.; Alsdorf, D.; Thompson, L.; Mosley-Thompson, E.; Melack, J.</p> <p>2006-12-01</p> <p>Prior to the last 100 years, there is a significant lack of hydrologic knowledge for the Amazon Basin. A 100- year record of discharge from the city of Manaus, located at the confluence of the Solimoes and Negro rivers, is the most complete record for the basin. Inundated wetlands play a key role in carbon out-gassing to the atmosphere whereas discharge from the Amazon River contributes about 20% of the total freshwater flux delivered to the world's oceans. As discharge (Q) and inundation are directly related to precipitation, we are developing a method to extend our understanding of Q and inundation into the 19^{th} century. Using proxy data preserved in Andean glaciers and <span class="hlt">ice</span> caps and recovered from <span class="hlt">ice</span> <span class="hlt">cores</span>, annually resolved histories of δ^{18)O and mass accumulation are available. The latter is a proxy for local precipitation amount whereas δ18O is influenced by continental scale processes (i.e., evaporation, convection) as well as by temperature and hence, by varying climate regimes. We have correlated the accumulation and δ18O records from <span class="hlt">Core</span> 1 drilled on the Quelccaya <span class="hlt">ice</span>-cap in the southern Andes of Peru with the Manaus discharge data. As <span class="hlt">ice</span> <span class="hlt">core</span> annual layers correspond to the thermal year (in Peru, July to June of the following year) and the discharge records are kept daily (January to December), we averaged 365 days of Q data seeking the optimal correlation for each start and end date. The best statistical relationship between δ18O and Q (r = -0.41, p = < 0.001) is attained when Q is averaged from March 16 to March 15 of the following year. We also correlated 23 years of ENSO events, which are linked to both Amazon River discharge and <span class="hlt">ice</span> <span class="hlt">core</span> δ18O (r = -0.60, p = < 0.001). These linear relationships are used to create Amazon discharge for the 20^{th} century and to extrapolate Q into the 19^{th} century. Previously developed relationships between Q and mainstem inundated area are then used to estimate inundated area along the main Amazon</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15352445','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15352445"><span>Historical record of European emissions of heavy metals to the atmosphere since the 1650s from alpine snow/<span class="hlt">ice</span> <span class="hlt">cores</span> drilled near Monte Rosa.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barbante, Carlo; Schwikowski, Margit; Döring, Thomas; Gäggeler, Heinz W; Schotterer, Ulrich; Tobler, Leo; van de Velde, Katja; Ferrari, Christophe; Cozzi, Giulio; Turetta, Andrea; Rosman, Kevin; Bolshov, Michael; Capodaglio, Gabriele; Cescon, Paolo; Boutron, Claude</p> <p>2004-08-01</p> <p>Cr, Cu, Zn, Co, Ni, Mo, Rh, Pd, Ag, Cd, Sb, Pt, Au, and U have been determined in clean room conditions by inductively coupled plasma sector field mass spectrometry and other analytical techniques, in various sections of two dated snow/<span class="hlt">ice</span> <span class="hlt">cores</span> from the high-altitude (4450 m asl) glacier saddle Colle Gnifetti, Monte Rosa massif, located in the Swiss-Italian Alps. These <span class="hlt">cores</span> <span class="hlt">cover</span> a 350-year time period, from 1650 to 1994. The results show highly enhanced concentrations for most metals in snow/<span class="hlt">ice</span> dated from the second half of the 20th century, compared with concentrations in ancient <span class="hlt">ice</span> dated from the 17th and 18th centuries. The highest increase factors from the pre-1700 period to the post-1970 period are observed for Cd (36), Zn (19), Bi (15), Cu (11), and Ni (9), confirming the importance of atmospheric pollution by heavy metals in Europe. Metal concentrations observed in Colle Gnifetti snow around 1980 appear to be quantitatively related to metal emissions from Italy, Switzerland, Germany, France, Belgium, and Austria at that time, making it possible to reconstruct past changes in metal emission in these countries during the last centuries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8557L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8557L"><span>Rollover of Apparent Wave Attenuation in <span class="hlt">Ice</span> <span class="hlt">Covered</span> Seas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jingkai; Kohout, Alison L.; Doble, Martin J.; Wadhams, Peter; Guan, Changlong; Shen, Hayley H.</p> <p>2017-11-01</p> <p>Wave attenuation from two field experiments in the <span class="hlt">ice-covered</span> Southern Ocean is examined. Instead of monotonically increasing with shorter waves, the measured apparent attenuation rate peaks at an intermediate wave period. This "rollover" phenomenon has been postulated as the result of wind input and nonlinear energy transfer between wave frequencies. Using WAVEWATCH III®, we first validate the model results with available buoy data, then use the model data to analyze the apparent wave attenuation. With the choice of source parameterizations used in this study, it is shown that rollover of the apparent attenuation exists when wind input and nonlinear transfer are present, independent of the different wave attenuation models used. The period of rollover increases with increasing distance between buoys. Furthermore, the apparent attenuation for shorter waves drops with increasing separation between buoys or increasing wind input. These phenomena are direct consequences of the wind input and nonlinear energy transfer, which offset the damping caused by the intervening <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AMT.....4.2531G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AMT.....4.2531G"><span>Water isotopic ratios from a continuously melted <span class="hlt">ice</span> <span class="hlt">core</span> sample</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.</p> <p>2011-11-01</p> <p>A new technique for on-line high resolution isotopic analysis of liquid water, tailored for <span class="hlt">ice</span> <span class="hlt">core</span> studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted <span class="hlt">ice</span> rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field <span class="hlt">ice</span> <span class="hlt">core</span> studies. We present</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C24B..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C24B..05C"><span>Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and <span class="hlt">ice</span> <span class="hlt">core</span> air-?15N measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J. A.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.</p> <p>2013-12-01</p> <p>Correct estimation of the firn lock-in depth is essential for correctly linking gas and <span class="hlt">ice</span> chronologies in <span class="hlt">ice</span> <span class="hlt">core</span> studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in <span class="hlt">ice</span> <span class="hlt">core</span>, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available <span class="hlt">ice</span> <span class="hlt">core</span> air- δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span>. New constraints of the EDML gas-<span class="hlt">ice</span> depth offset during the Laschamp event (41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model- δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411482W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411482W"><span>Snow Accumulation Variability Over the West Antarctic <span class="hlt">Ice</span> Sheet Since 1900: A Comparison of <span class="hlt">Ice</span> <span class="hlt">Core</span> Records With ERA-20C Reanalysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yetang; Thomas, Elizabeth R.; Hou, Shugui; Huai, Baojuan; Wu, Shuangye; Sun, Weijun; Qi, Shanzhong; Ding, Minghu; Zhang, Yulun</p> <p>2017-11-01</p> <p>This study uses a set of 37 firn <span class="hlt">core</span> records over the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) to test the performance of the twentieth century from the European Centre for Medium-Range Weather Forecasts (ERA-20C) reanalysis for snow accumulation and quantify temporal variability in snow accumulation since 1900. The firn <span class="hlt">cores</span> are allocated to four geographical areas demarcated by drainage divides (i.e., Antarctic Peninsula (AP), western WAIS, central WAIS, and eastern WAIS) to calculate stacked records of regional snow accumulation. Our results show that the interannual variability in ERA-20C precipitation minus evaporation (P - E) agrees well with the corresponding <span class="hlt">ice</span> <span class="hlt">core</span> snow accumulation composites in each of the four geographical regions, suggesting its skill for simulating snow accumulation changes before the modern satellite era (pre-1979). Snow accumulation experiences significantly positive trends for the AP and eastern WAIS, a negative trend for the western WAIS, and no significant trend for the central WAIS from 1900 to 2010. The contrasting trends are associated with changes in the large-scale moisture transport driven by a deepening of the low-pressure systems and anomalies of sea <span class="hlt">ice</span> in the Amundsen Sea Low region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C24A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C24A..01S"><span>Isotopic (δ18O, δD and deuterium excess) records from the TALDICE <span class="hlt">ice</span> <span class="hlt">core</span> (East Antarctica) (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stenni, B.; Buiron, D.; Masson-Delmotte, V.; Bonazza, M.; Braida, M.; Chappellaz, J.; Frezzotti, M.; Falourd, S.; Minster, B.; Selmo, E.</p> <p>2010-12-01</p> <p>Paleotemperature reconstructions from Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> rely mainly on δD and δ18O records and the main key factors controlling the observed distribution of δD and δ18O in Antarctic surface snow are mainly related to the condensation temperature of the precipitation and the origin of moisture. The deuterium excess, d = δD - 8*δ18O, contains information about climate conditions prevailing in the source regions of precipitation and can be used as an integrated tracer of past hydrological cycle changes. In the framework of the TALos Dome <span class="hlt">Ice</span> <span class="hlt">CorE</span> (TALDICE) project, a deep <span class="hlt">ice</span> <span class="hlt">core</span> (1620 m) has been drilled at Talos Dome, a peripheral dome of East Antarctica facing the Ross Sea, about 550 km north of Taylor Dome and 1100 km East from the EPICA Dome C drilling site. The TALDICE <span class="hlt">coring</span> site (159°11'E 72°49'S; 2315 m; T -41°C; www.taldice.org) is located near the dome summit and is characterised by an annual snow accumulation rate of 80 mm water equivalent. Backtrajectory analyses suggest that Talos Dome is mainly influenced by air masses arriving both from the Pacific (Ross Sea) and Indian Ocean sectors. A preliminary dating based on an <span class="hlt">ice</span> flow model and an inverse method suggests for the upper 1580 m an age of about 300,000 years BP. The full TALDICE δ18O record obtained from the bag samples as well as δD and deuterium excess data are presented here. The δ18O and δD measurements were carried out in Italy and France on a continuous basis of 1 m. These new records will be compared to the ones obtained from the EDC <span class="hlt">ice</span> <span class="hlt">core</span> as well as with other East Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> records. In particular, we will focus on the whole isotopic profiles, in good agreement with other inland deep <span class="hlt">ice</span> <span class="hlt">cores</span>, and on the last deglaciation, showing climatic changes at Talos Dome in phase with the Antarctic plateau and suggesting that the bipolar see saw with Greenland temperature is also valid for this new coastal site facing the Ross Sea sector.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP51E..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP51E..05M"><span>Reconciling radiocarbon and <span class="hlt">ice</span> <span class="hlt">core</span> timescales over the Holocene - Cosmogenic radionuclides as synchronization tools</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muscheler, R.; Adolphi, F.; Mekhaldi, F.</p> <p>2015-12-01</p> <p>The atmospheric production rates of cosmogenic radionuclides, such as 14C and 10Be, vary globally due to external processes, namely the solar and geomagnetic modulation of the galactic cosmic ray flux as well as solar proton events. This signature is recorded in various archives such as <span class="hlt">ice</span> <span class="hlt">cores</span> (10Be) and tree-rings (14C). Hence, cosmogenic radionuclides offer a means to continuously assess timescale differences between two of the most widely used timescales in paleoclimatology - the radiocarbon and the <span class="hlt">ice</span> <span class="hlt">core</span> timescales. Short lived solar proton events additionally provide distinct marker horizons that allow synchronization of discrete horizons at annual precision. We will present a cosmogenic radionuclide based synchronization of the Greenland <span class="hlt">ice</span> <span class="hlt">core</span> timescale (GICC05, Svensson et al., 2008) and the radiocarbon timescale (IntCal13, Reimer et al., 2013) over the Holocene. This synchronization allows radiocarbon dated and <span class="hlt">ice</span> <span class="hlt">core</span> paleoclimate records to be compared on a common timescale at down to sub-decadal precision. We will compare these results to independent discrete isochrones obtained from tephrochronology and solar proton events. In addition, we will discuss implications for the accuracy and uncertainty estimates of GICC05 over the Holocene. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocarbon, 55, 1869-1887, 10.2458/azu_js_rc.55.16947, 2013. Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESD.....8.1171B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESD.....8.1171B"><span>Inverse stochastic-dynamic models for high-resolution Greenland <span class="hlt">ice</span> <span class="hlt">core</span> records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael</p> <p>2017-12-01</p> <p>Proxy records from Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland <span class="hlt">Ice</span> <span class="hlt">Core</span> Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.481..316M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.481..316M"><span>Precipitation regime influence on oxygen triple-isotope distributions in Antarctic precipitation and <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Martin F.</p> <p>2018-01-01</p> <p>The relative abundance of 17O in meteoric precipitation is usually reported in terms of the 17O-excess parameter. Variations of 17O-excess in Antarctic precipitation and <span class="hlt">ice</span> <span class="hlt">cores</span> have hitherto been attributed to normalised relative humidity changes at the moisture source region, or to the influence of a temperature-dependent supersaturation-controlled kinetic isotope effect during in-cloud <span class="hlt">ice</span> formation below -20 °C. Neither mechanism, however, satisfactorily explains the large range of 17O-excess values reported from measurements. A different approach, based on the regression characteristics of 103 ln (1 +δ17 O) versus 103 ln (1 +δ18 O), is applied here to previously published isotopic data sets. The analysis indicates that clear-sky precipitation ('diamond dust'), which occurs widely in inland Antarctica, is characterised by an unusual relative abundance of 17O, distinct from that associated with cloud-derived, synoptic snowfall. Furthermore, this distinction appears to be largely preserved in the <span class="hlt">ice</span> <span class="hlt">core</span> record. The respective mass contributions to snowfall accumulation - on both temporal and spatial scales - provides the basis of a simple, first-order explanation for the observed oxygen triple-isotope ratio variations in Antarctic precipitation, surface snow and <span class="hlt">ice</span> <span class="hlt">cores</span>. Using this approach, it is shown that precipitation during the last major deglaciation, both in western Antarctica at the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) Divide and at Vostok on the eastern Antarctic plateau, consisted essentially of diamond dust only, despite a large temperature differential (and thus different water vapour supersaturation conditions) at the two locations. In contrast, synoptic snowfall events dominate the accumulation record throughout the Holocene at both sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRG..116.1019U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRG..116.1019U"><span>Evidence for propagation of cold-adapted yeast in an <span class="hlt">ice</span> <span class="hlt">core</span> from a Siberian Altai glacier</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uetake, Jun; Kohshima, Shiro; Nakazawa, Fumio; Takeuchi, Nozomu; Fujita, Koji; Miyake, Takayuki; Narita, Hideki; Aizen, Vladimir; Nakawo, Masayoshi</p> <p>2011-03-01</p> <p>Cold environments, including glacier <span class="hlt">ice</span> and snow, are known habitats for cold-adapted microorganisms. We investigated the potential for cold-adapted yeast to have propagated in the snow of the high-altitude Belukha glacier. We detected the presence of highly concentrated yeast (over 104 cells mL-1) in samples of both an <span class="hlt">ice</span> <span class="hlt">core</span> and firn snow. Increasing yeast cell concentrations in the same snow layer from July 2002 to July 2003 suggests that the yeast cells propagated in the glacier snow. A cold-adapted Rhodotorula sp. was isolated from the snow layer and found to be related to psychrophilic yeast previously found in other glacial environments (based on the D1/D2 26S rRNA domains). 26S rRNA clonal analysis directly amplified from meltwater within the <span class="hlt">ice</span> <span class="hlt">core</span> also revealed the presence of genus Rhodotorula. Analyses of the <span class="hlt">ice</span> <span class="hlt">core</span> showed that all peaks in yeast concentration corresponded to the peaks in indices of surface melting. These results support the hypothesis that occasional surface melting in an accumulation area is one of the major factors influencing cold-adapted yeast propagation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489271','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489271"><span>Decreasing cloud <span class="hlt">cover</span> drives the recent mass loss on the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.</p> <p>2017-01-01</p> <p>The Greenland <span class="hlt">Ice</span> Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased <span class="hlt">ice</span> discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud <span class="hlt">cover</span> enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud <span class="hlt">cover</span> decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud <span class="hlt">cover</span>, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud <span class="hlt">cover</span> is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28782014','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28782014"><span>Decreasing cloud <span class="hlt">cover</span> drives the recent mass loss on the Greenland <span class="hlt">Ice</span> Sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L</p> <p>2017-06-01</p> <p>The Greenland <span class="hlt">Ice</span> Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased <span class="hlt">ice</span> discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud <span class="hlt">cover</span> enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud <span class="hlt">cover</span> decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud <span class="hlt">cover</span>, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud <span class="hlt">cover</span> is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914231I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914231I"><span>Raman spectroscopy, an innovative tool to explore the mineralogy and provenance of dust (1-5 µm): Dome B <span class="hlt">ice</span> <span class="hlt">core</span>, East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ileana Paleari, Chiara; Andò, Sergio; Delmonte, Barbara; Maggi, Valter; Garzanti, Eduardo</p> <p>2017-04-01</p> <p>The polar <span class="hlt">ice</span> sheets are invaluable archives preserving information about past climate changes and atmosphere composition. Deep <span class="hlt">ice</span> <span class="hlt">cores</span> from Greenland and Antarctica provide records of several climate-dependent proxies allowing climate reconstructions at different time scales, among which greenhouse gases, atmospheric aerosol and aeolian dust. In this project, the mineralogy of dust preserved in the Dome B (77°05'S, 94°55'E, 3650 m a.s.l.) <span class="hlt">ice</span> <span class="hlt">core</span> was investigated using Raman spectroscopy. The thermal drilled <span class="hlt">ice</span> <span class="hlt">core</span>, made during the 1987-1988 Austral season by the 33rd Soviet Antarctic Expedition, <span class="hlt">covers</span> the last 30 kyr. The record thus encompasses the last glacial period, the Last Glacial Maximum (LGM), the deglaciation and the beginning of the Holocene. Four Dome B <span class="hlt">ice</span> <span class="hlt">core</span> samples from the LGM were selected, and the mineralogical fingerprint of dust particles was investigated. Dust in central Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> is clay to finest silt, the volume-size distribution of particles showing modal values around 2-2.6 µm at the Dome B site. Detrital minerals of such a fine grain-size range are exceedingly difficult to determine one by one, a task that to the best of our knowledge has never been accomplished so far. In order to meet this challenge, we have developed a new protocol for the preparation and analysis of particles between 1 and 5 µm in diameter, in a clean room at the EuroCold Lab and at the Laboratory for Provenance Studies of Milano-Bicocca University. Three slides were prepared for each sample, and 962 particles were studied overall. In total, 41 different minerals were recognized, including species derived from granitoid, metamorphic or siliciclastic rocks (e.g., quartz, feldspars and phyllosilicates), from volcanic source rocks (e.g., sanidine, anorthite, pyroxenes, zeolites) associated with biogenic marine aragonite and iron oxides probably derived from erosion of soil profiles. Our observations indicate southern South America as the most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9689F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9689F"><span>Multisite high resolution measurements of carbon monoxide along Greenland <span class="hlt">ice</span> <span class="hlt">cores</span>: evidence for in-situ production and potential for atmospheric reconstruction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faïn, Xavier; Chappellaz, Jérôme; Rhodes, Rachael; Stowasser, Christopher; Blunier, Thomas; McConnell, Joseph; Brook, Edward; Desbois, Thibault; Romanini, Daniele</p> <p>2014-05-01</p> <p>Carbon monoxide (CO) is the principal sink for hydroxyl radicals (OH) in the troposphere. Consequently, changes in atmospheric CO levels can considerably perturb the oxidizing capacity of the atmosphere, affecting mixing ratios of a host of chemical species oxidized by OH, including methane. In addition, CO variations (and changes in its stable isotopic composition) are expected to be good tracers of changes in biomass burning emissions. Investigating past mixing ratios of carbon monoxide is thus a promising approach towards reducing uncertainty related to the past oxidative capacity of the atmosphere and biogeochemical cycling of methane. Recent developments in optical spectrometry (Optical Feedback Cavity Enhanced Absorption Spectrometry, OFCEAS), combined with continuous flow analysis (CFA) systems, allow efficient, precise measurements of CO concentrations in <span class="hlt">ice</span> <span class="hlt">cores</span>. Coupling our OFCEAS spectrometer with the CFA melter operated at DRI (Reno, USA) provided the first continuous CO measurements along the NEEM (Greenland) <span class="hlt">core</span> <span class="hlt">covering</span> the last 1800 yr at an unprecedented resolution. Although the most recent section of this record (i.e., since 1700 AD) agreed with existing discrete CO measurements from the Eurocore <span class="hlt">ice</span> <span class="hlt">core</span> and the deep NEEM firn, it was difficult to interpret in terms of atmospheric CO variation due to high frequency, high amplitudes spikes related to in-situ production (Faïn et al., Climate of the Past Discussion). During a recent 8-week analytical campaign, three different <span class="hlt">ice</span> archives from Greenland were melted on the DRI CFA and analyzed continuously for CO with the OFCEAS spectrometer: (i) the D4 <span class="hlt">core</span> (spanning the last 170 yr), (ii) the NEEM <span class="hlt">core</span> (extending the existing record from 200 AD to 800 BC), and (iii) the Tunu <span class="hlt">core</span> (spanning the last 1800 yr). Although in-situ production of CO is observed at all sites, these new records reveal different CO patterns and trends. This multisite approach allows us to better characterize the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15190344','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15190344"><span>Eight glacial cycles from an Antarctic <span class="hlt">ice</span> <span class="hlt">core</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Augustin, Laurent; Barbante, Carlo; Barnes, Piers R F; Barnola, Jean Marc; Bigler, Matthias; Castellano, Emiliano; Cattani, Olivier; Chappellaz, Jerome; Dahl-Jensen, Dorthe; Delmonte, Barbara; Dreyfus, Gabrielle; Durand, Gael; Falourd, Sonia; Fischer, Hubertus; Flückiger, Jacqueline; Hansson, Margareta E; Huybrechts, Philippe; Jugie, Gérard; Johnsen, Sigfus J; Jouzel, Jean; Kaufmann, Patrik; Kipfstuhl, Josef; Lambert, Fabrice; Lipenkov, Vladimir Y; Littot, Geneviève C; Longinelli, Antonio; Lorrain, Reginald; Maggi, Valter; Masson-Delmotte, Valerie; Miller, Heinz; Mulvaney, Robert; Oerlemans, Johannes; Oerter, Hans; Orombelli, Giuseppe; Parrenin, Frederic; Peel, David A; Petit, Jean-Robert; Raynaud, Dominique; Ritz, Catherine; Ruth, Urs; Schwander, Jakob; Siegenthaler, Urs; Souchez, Roland; Stauffer, Bernhard; Steffensen, Jorgen Peder; Stenni, Barbara; Stocker, Thomas F; Tabacco, Ignazio E; Udisti, Roberto; Van De Wal, Roderik S W; Van Den Broeke, Michiel; Weiss, Jerome; Wilhelms, Frank; Winther, Jan-Gunnar; Wolff, Eric W; Zucchelli, Mario</p> <p>2004-06-10</p> <p>The Antarctic Vostok <span class="hlt">ice</span> <span class="hlt">core</span> provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep <span class="hlt">ice</span> <span class="hlt">core</span> from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long--28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25165903','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25165903"><span>Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with <span class="hlt">IceCube/DeepCore</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bartos, I; Beloborodov, A M; Hurley, K; Márka, S</p> <p>2013-06-14</p> <p>Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by <span class="hlt">Ice</span>Cube + Deep<span class="hlt">Core</span>. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if <span class="hlt">Ice</span>Cube + Deep<span class="hlt">Core</span> operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the <span class="hlt">Ice</span>Cube + Deep<span class="hlt">Core</span> observatory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C13B0554F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C13B0554F"><span>Arctic Circle Traverse 2010 (ACT-10): South East Greenland snow accumulation variability from firn <span class="hlt">coring</span> and <span class="hlt">ice</span> sounding radar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forster, R. R.; Miege, C.; Box, J. E.; McConnell, J.; Spikes, V. B.; Burgess, E. W.</p> <p>2010-12-01</p> <p>The Greenland <span class="hlt">Ice</span> Sheet plays an important role in Earth’s climate system evolution. The snow accumulation rate is the largest single mass budget term. With only 14% of the <span class="hlt">ice</span> sheet area, Southeast Greenland contains the highest accumulation rates, accounting for one third of the total snow accumulation and annual variability. The high accumulation rates have made the region less desirable for long climate record <span class="hlt">ice</span> <span class="hlt">cores</span> and therefore, contain relatively very few in situ measurements to constrain the <span class="hlt">ice</span> sheet mass budget. We present annual snow accumulation rates from the Arctic Circle Traverse 2010 (ACT-10). During April and May 2010 we acquired three 50 m firn <span class="hlt">cores</span> connected by surface-based 400 MHz ground penetrating radar (GPR) in Southeast Greenland. The traverse repeated and extended the original Arctic Circle Traverse in 2004 (Spikes et al., 2004). Dating is achieved using geochemical analysis of the <span class="hlt">cores</span> to identify isochronal layers detected by the GPR yielding annual accumulation estimates along the traverse between the <span class="hlt">core</span> sites. The 300 km ACT-10 GPR snowmobile traverse extended the ACT-04 path 80 km to the lowest elevation <span class="hlt">core</span> site at 1776 m. Meanwhile, airborne radars, operating as part of NASA’s Operation <span class="hlt">Ice</span>Bridge also acquired data over the full length of the ACT-10 path, simultaneously with a portion of the traverse and within days for the remaining segments. The <span class="hlt">Ice</span>Bridge and ACT-10 data are to be combined in a calibration effort such that snow accumulation rates may be mapped elsewhere in Greenland and even in Antarctica.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C21C0631S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C21C0631S"><span>Lake <span class="hlt">Ice</span> <span class="hlt">Cover</span> of Shallow Lakes and Climate Interactions in Arctic Regions (1950-2011): SAR Data Analysis and Numerical Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surdu, C.; Duguay, C.; Brown, L.; Fernàndez-Prieto, D.; Samuelsson, P.</p> <p>2012-12-01</p> <p>Lake <span class="hlt">ice</span> <span class="hlt">cover</span> is highly correlated with climatic conditions and has, therefore, been demonstrated to be an essential indicator of climate variability and change. Recent studies have shown that the duration of the lake <span class="hlt">ice</span> <span class="hlt">cover</span> has decreased, mainly as a consequence of earlier thaw dates in many parts of the Northern Hemisphere over the last 50 years, mainly as a feedback to increased winter and spring air temperature. In response to projected air temperature and winter precipitation changes by climate models until the end of the 21st century, the timing, duration, and thickness of <span class="hlt">ice</span> <span class="hlt">cover</span> on Arctic lakes are expected to be impacted. This, in turn, will likely alter the energy, water, and bio-geochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that fully freeze to the bottom at the time of maximum winter <span class="hlt">ice</span> thickness since thinner <span class="hlt">ice</span> <span class="hlt">covers</span> are predicted to develop. Shallow thermokarst lakes of the coastal plain of northern Alaska, and of other similar Arctic regions, have likely been experiencing changes in seasonal <span class="hlt">ice</span> phenology and thickness over the last few decades but these have not yet been comprehensively documented. Analysis of a 20-year time series of ERS-1/2 synthetic aperture radar (SAR) data and numerical lake <span class="hlt">ice</span> modeling were employed to determine the response of <span class="hlt">ice</span> <span class="hlt">cover</span> (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last three decades. New downscaled data specific to the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre Regional Atmospheric Climate Model (RCA4) was used to drive the Canadian Lake <span class="hlt">Ice</span> Model (CLIMo) for the period 1950-2011. In order to assess and integrate the SAR-derived observed changes into a longer historical context, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC54B..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC54B..01T"><span>Long-distance relationship between large-scale tropical SSTs and <span class="hlt">ice</span> <span class="hlt">core</span>-derived oxygen isotopic records in the Third Pole Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, L. G.; Yao, T.; Mosley-Thompson, E. S.; Lin, P.</p> <p>2012-12-01</p> <p>The tropical hydrological cycle is a key factor coupling isotopic records from <span class="hlt">ice</span> <span class="hlt">core</span>, speleothem and lake records with tropical SSTs and the vertical amplification of temperature in the Tropics. Stable isotopic ratios, particularly of oxygen, preserved in glacier <span class="hlt">ice</span> provide high resolution records of climate changes over long time periods. In polar <span class="hlt">ice</span> sheets the isotopic signal is driven primarily by temperature while in low-latitudes it depends on a variety of hydrologic and thermal influences in the broad geographic region that supplies moisture to the mountain glaciers. The strong correlation between <span class="hlt">ice</span> <span class="hlt">core</span>-derived isotopic records throughout the low- and mid-latitudes and tropical SSTs likely reflects the dominance of tropical evaporation in the flux of water vapor to the atmosphere and provides a possible explanation for the large-scale isotopic links among low- and mid-latitude paleoclimate records. Many low- to mid-latitude <span class="hlt">ice</span> fields provide continuous, annually-resolved proxy records of climatic and environmental variability recorded by many preserved and measurable parameters including oxygen and hydrogen isotopic ratios and net mass balance (accumulation). These records present an opportunity to examine the nature of climate variability in these regions in greater detail and to extract new information about long-distance relationships in the climate system. Understanding these relationships is essential for proper interpretation of the isotopic records archived in glaciers, lakes, speleothems and other paleo-archives in the Third Pole (TP) Region. Here we compare high resolution records from Dasuopu Glacier in the Himalaya, a speleothem record from Wanxiang Cave in Gansu Province on the TP and the annually resolved <span class="hlt">ice</span> <span class="hlt">core</span> records from the Quelccaya <span class="hlt">Ice</span> Cap in the tropical Andes of South America. The purpose is to explore the role of long-distance processes in determining the isotopic composition of paleo archives on the TP. Running correlations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5351862','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5351862"><span><span class="hlt">Ice-cover</span> is the principal driver of ecological change in High Arctic lakes and ponds</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Griffiths, Katherine; Michelutti, Neal; Sugar, Madeline; Douglas, Marianne S. V.; Smol, John P.</p> <p>2017-01-01</p> <p>Recent climate change has been especially pronounced in the High Arctic, however, the responses of aquatic biota, such as diatoms, can be modified by site-specific environmental characteristics. To assess if climate-mediated <span class="hlt">ice</span> <span class="hlt">cover</span> changes affect the diatom response to climate, we used paleolimnological techniques to examine shifts in diatom assemblages from ten High Arctic lakes and ponds from Ellesmere Island and nearby Pim Island (Nunavut, Canada). The sites were divided a priori into four groups (“warm”, “cool”, “cold”, and “oasis”) based on local elevation and microclimatic differences that result in differing lengths of the <span class="hlt">ice</span>-free season, as well as about three decades of personal observations. We characterized the species changes as a shift from Condition 1 (i.e. a generally low diversity, predominantly epipelic and epilithic diatom assemblage) to Condition 2 (i.e. a typically more diverse and ecologically complex assemblage with an increasing proportion of epiphytic species). This shift from Condition 1 to Condition 2 was a consistent pattern recorded across the sites that experienced a change in <span class="hlt">ice</span> <span class="hlt">cover</span> with warming. The “warm” sites are amongst the first to lose their <span class="hlt">ice</span> <span class="hlt">covers</span> in summer and recorded the earliest and highest magnitude changes. The “cool” sites also exhibited a shift from Condition 1 to Condition 2, but, as predicted, the timing of the response lagged the “warm” sites. Meanwhile some of the “cold” sites, which until recently still retained an <span class="hlt">ice</span> raft in summer, only exhibited this shift in the upper-most sediments. The warmer “oasis” ponds likely supported aquatic vegetation throughout their records. Consequently, the diatoms of the “oasis” sites were characterized as high-diversity, Condition 2 assemblages throughout the record. Our results support the hypothesis that the length of the <span class="hlt">ice</span>-free season is the principal driver of diatom assemblage responses to climate in the High Arctic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28296897','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28296897"><span><span class="hlt">Ice-cover</span> is the principal driver of ecological change in High Arctic lakes and ponds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Griffiths, Katherine; Michelutti, Neal; Sugar, Madeline; Douglas, Marianne S V; Smol, John P</p> <p>2017-01-01</p> <p>Recent climate change has been especially pronounced in the High Arctic, however, the responses of aquatic biota, such as diatoms, can be modified by site-specific environmental characteristics. To assess if climate-mediated <span class="hlt">ice</span> <span class="hlt">cover</span> changes affect the diatom response to climate, we used paleolimnological techniques to examine shifts in diatom assemblages from ten High Arctic lakes and ponds from Ellesmere Island and nearby Pim Island (Nunavut, Canada). The sites were divided a priori into four groups ("warm", "cool", "cold", and "oasis") based on local elevation and microclimatic differences that result in differing lengths of the <span class="hlt">ice</span>-free season, as well as about three decades of personal observations. We characterized the species changes as a shift from Condition 1 (i.e. a generally low diversity, predominantly epipelic and epilithic diatom assemblage) to Condition 2 (i.e. a typically more diverse and ecologically complex assemblage with an increasing proportion of epiphytic species). This shift from Condition 1 to Condition 2 was a consistent pattern recorded across the sites that experienced a change in <span class="hlt">ice</span> <span class="hlt">cover</span> with warming. The "warm" sites are amongst the first to lose their <span class="hlt">ice</span> <span class="hlt">covers</span> in summer and recorded the earliest and highest magnitude changes. The "cool" sites also exhibited a shift from Condition 1 to Condition 2, but, as predicted, the timing of the response lagged the "warm" sites. Meanwhile some of the "cold" sites, which until recently still retained an <span class="hlt">ice</span> raft in summer, only exhibited this shift in the upper-most sediments. The warmer "oasis" ponds likely supported aquatic vegetation throughout their records. Consequently, the diatoms of the "oasis" sites were characterized as high-diversity, Condition 2 assemblages throughout the record. Our results support the hypothesis that the length of the <span class="hlt">ice</span>-free season is the principal driver of diatom assemblage responses to climate in the High Arctic, largely driven by the establishment of new</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11543521','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11543521"><span>Sedimentology and geochemistry of a perennially <span class="hlt">ice-covered</span> epishelf lake in Bunger Hills Oasis, East Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doran, P T; Wharton, R A; Lyons, W B; Des Marais, D J; Andersen, D T</p> <p>2000-01-01</p> <p>A process-oriented study was carried out in White Smoke lake, Bunger Hills, East Antarctica, a perennially <span class="hlt">ice-covered</span> (1.8 to 2.8 m thick) epishelf (tidally-forced) lake. The lake water has a low conductivity and is relatively well mixed. Sediments are transferred from the adjacent glacier to the lake when glacier <span class="hlt">ice</span> surrounding the sediment is sublimated at the surface and replaced by accumulating <span class="hlt">ice</span> from below. The lake bottom at the west end of the lake is mostly rocky with a scant sediment <span class="hlt">cover</span>. The east end contains a thick sediment profile. Grain size and delta 13C increase with sediment depth, indicating a more proximal glacier in the past. Sedimentary 210Pb and 137Cs signals are exceptionally strong, probably a result of the focusing effect of the large glacial catchment area. The post-bomb and pre-bomb radiocarbon reservoirs are c. 725 14C yr and c. 1950 14C yr, respectively. Radiocarbon dating indicates that the east end of the lake is >3 ka BP, while photographic evidence and the absence of sediment <span class="hlt">cover</span> indicate that the west end has formed only over the last century. Our results indicate that the southern <span class="hlt">ice</span> edge of Bunger Hills has been relatively stable with only minor fluctuations (on the scale of hundreds of metres) over the last 3000 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24A2918F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24A2918F"><span>Simulating hydrodynamics and <span class="hlt">ice</span> <span class="hlt">cover</span> in Lake Erie using an unstructured grid model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujisaki-Manome, A.; Wang, J.</p> <p>2016-02-01</p> <p>An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal <span class="hlt">ice</span> <span class="hlt">cover</span>. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea <span class="hlt">Ice</span> Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the <span class="hlt">ice</span> model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed <span class="hlt">ice</span> extent, water surface temperature, <span class="hlt">ice</span> thickness, currents, and water temperature profiles. Seasonal and interannual variation of <span class="hlt">ice</span> extent and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled <span class="hlt">ice</span> thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PolSc..11...72R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PolSc..11...72R"><span>Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the <span class="hlt">ice-cover</span> to <span class="hlt">ice</span>-free period: A size spectra approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rochera, Carlos; Quesada, Antonio; Toro, Manuel; Rico, Eugenio; Camacho, Antonio</p> <p>2017-03-01</p> <p>Lakes from the Antarctic maritime region experience climate change as a main stressor capable of modifying their plankton community structure and function, essentially because summer temperatures are commonly over the freezing point and the lake's <span class="hlt">ice</span> cap thaws. This study was conducted in such seasonally <span class="hlt">ice-covered</span> lake (Lake Limnopolar, Byers Peninsula, Livingston Is., Antarctica), which exhibits a microbial dominated pelagic food web. An important feature is also the occurrence of benthic mosses (Drepanocladus longifolius) <span class="hlt">covering</span> the lake bottom. Plankton dynamics were investigated during the <span class="hlt">ice</span>-thawing transition to the summer maximum. Both bacterioplankton and viral-like particles were higher near the lake's bottom, suggesting a benthic support. When the lake was under dim conditions because of the snow-and-<span class="hlt">ice</span> <span class="hlt">cover</span>, autotrophic picoplankters dominated at deep layers. The taxa-specific photopigments indicated dominance of picocyanobacteria among them when the light availability was lower. By contrast, larger and less edible phytoplankton dominated at the onset of the <span class="hlt">ice</span> melting. The plankton size spectra were fitted to the continuous model of Pareto distribution. Spectra evolved similarly at two sampled depths, in surface and near the bottom, with slopes increasing until mid-January. However, slopes were less steep (i.e., size classes more uniformly distributed) at the bottom, thus denoting a more efficient utilization of resources. These findings suggest that microbial loop pathways in the lake are efficiently channelized during some periods to the metazoan production (mainly the copepod Boeckella poppei). Our results point to that trophic interactions may still occur in these lakes despite environmental harshness. This results of interest in a framework of increasing temperatures that may reduce the climatic restrictions and therefore stimulate biotic interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMPP31E..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMPP31E..01C"><span>Greenhouse Gas Concentration Records Extended Back to 800,000 Years From the EPICA Dome C <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chappellaz, J.; Luethi, D.; Loulergue, L.; Barnola, J.; Bereiter, B.; Blunier, T.; Jouzel, J.; Lefloch, M.; Lemieux, B.; Masson-Delmotte, V.; Raynaud, D.; Schilt, A.; Siegenthaler, U.; Spahni, R.; Stocker, T.</p> <p>2007-12-01</p> <p>The deep <span class="hlt">ice</span> <span class="hlt">core</span> recovered from Dome Concordia in the framework of EPICA, the European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica, has extended the record of Antarctic climate history back to 800,000 years [Jouzel et al., 2007]. We present the current status of measurements of CO2, CH4 and N2O on air trapped in the bubbles of the Dome C <span class="hlt">ice</span> <span class="hlt">core</span>. CO2 is measured in two laboratories using different techniques (laser absorption spectroscopy or gas chromatography on samples of 8 and 40 g of <span class="hlt">ice</span> which are mechanically crushed or milled, respectively). CH4 and N2O are extracted using a melt-refreeze technique and then measured by gas chromatography (in two laboratories for CH4). The greenhouse gas concentrations have now been measured on the lowest 200 m of the Dome C <span class="hlt">core</span>, going back to Marine Isotope Stage 20 (MIS 20) as verified by a consistent gas age/<span class="hlt">ice</span> age difference determined at termination IX [Jouzel et al., 2007]. The atmospheric CO2 concentration mostly lagged the Antarctic temperature with a rather strong correlation throughout the eight and a half glacial cycles, but with significantly lower CO2 values between 650 and 750 kyr BP. Its lowest level ever measured in <span class="hlt">ice</span> <span class="hlt">cores</span> (172 ppmv) is observed during MIS 16 (minimum centered at 667 kyr BP according to the EDC3 chronology) redetermining the natural span of CO2 to 172-300 ppmv. With 2245 individual measurements, the CH4 concentration is now reconstructed over 800,000 years from a single <span class="hlt">core</span>, with an average time resolution of 380 years. Spectral analyses of the CH4 signal show an increasing contribution of precession during the last four climatic cycles compared with the four older ones, suggesting an increasing impact of low latitudes sources/sinks. Millennial scale features in this very detailed signal allows us to compare their occurrence with <span class="hlt">ice</span> volume reconstructions and the isotopic composition of precipitation over the East Antarctic plateau. N2O is still affected by glaciological artefacts involving</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918654J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918654J"><span>The possibility of a tipping point in the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span>, and associated early-warning signals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jastamin Steene, Rebekka</p> <p>2017-04-01</p> <p>As the Arctic sea <span class="hlt">ice</span> has become one of the primer indicators of global climate change, with a seemingly accelerated loss in both <span class="hlt">ice</span> extent and volume the latest decades, the existence of a tipping point related to the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> has been widely debated. Several observed and potential abrupt transitions in the climate system may be interpreted as bifurcations in randomly driven dynamical systems. This means that a system approaching a bifurcation point shifts from one stable state to another, and we say that the system is subject to a critical transition. As the equilibrium states become unstable in the vicinity of a bifurcation point the characteristic relaxation times increases, and the system is said to experience a "critical slowing down". This makes it plausible to observe so called early-warning signals (EWS) when approaching a critical transition. In the Arctic non-linear mechanisms like the temperature response of the <span class="hlt">ice</span>-albedo feedback can potentially cause a sudden shift to an <span class="hlt">ice</span>-free Arctic Ocean. Using bifurcation theory and potential analyses we examine time series of observational data of the Arctic sea <span class="hlt">ice</span>, investigating the possibility of multiple states in the behavior of the <span class="hlt">ice</span> <span class="hlt">cover</span>. We further debate whether a shift between states is irreversible, and whether it can be preluded by early-warning signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29806697','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29806697"><span>The Arctic's sea <span class="hlt">ice</span> <span class="hlt">cover</span>: trends, variability, predictability, and comparisons to the Antarctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serreze, Mark C; Meier, Walter N</p> <p>2018-05-28</p> <p>As assessed over the period of satellite observations, October 1978 to present, there are downward linear trends in Arctic sea <span class="hlt">ice</span> extent for all months, largest at the end of the melt season in September. The <span class="hlt">ice</span> <span class="hlt">cover</span> is also thinning. Downward trends in extent and thickness have been accompanied by pronounced interannual and multiyear variability, forced by both the atmosphere and ocean. As the <span class="hlt">ice</span> thins, its response to atmospheric and oceanic forcing may be changing. In support of a busier Arctic, there is a growing need to predict <span class="hlt">ice</span> conditions on a variety of time and space scales. A major challenge to providing seasonal scale predictions is the 7-10 days limit of numerical weather prediction. While a seasonally <span class="hlt">ice</span>-free Arctic Ocean is likely well within this century, there is much uncertainty in the timing. This reflects differences in climate model structure, the unknown evolution of anthropogenic forcing, and natural climate variability. In sharp contrast to the Arctic, Antarctic sea <span class="hlt">ice</span> extent, while highly variable, has increased slightly over the period of satellite observations. The reasons for this different behavior remain to be resolved, but responses to changing atmospheric circulation patterns appear to play a strong role. © 2018 New York Academy of Sciences.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185182','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185182"><span>Atmospheric mercury deposition during the last 270 years--A glacial <span class="hlt">ice</span> <span class="hlt">core</span> record of natural and anthropogenic sources</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schuster, Paul F.; Krabbenhoft, David P.; Naftz, David L.; Cecil, L. DeWayne; Olson, Mark L.; DeWild, John F.; Susong, David D.; Green, Jaromy R.; Abbott, Michael L.</p> <p>2002-01-01</p> <p>Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation are significant environmental problems of global extent. At regional to global scales, the primary mechanism of Hg contamination is atmospheric Hg transport. Thus, a better understanding of the long-term history of atmospheric Hg cycling and quantification of the sources is critical for assessing the regional and global impact of anthropogenic Hg emissions. <span class="hlt">Ice</span> <span class="hlt">cores</span> collected from the Upper Fremont Glacier (UFG), Wyoming, contain a high-resolution record of total atmospheric Hg deposition (ca. 1720−1993). Total Hg in 97 <span class="hlt">ice-core</span> samples was determined with trace-metal clean handling methods and low-level analytical procedures to reconstruct the first and most comprehensive atmospheric Hg deposition record of its kind yet available from North America. The record indicates major atmospheric releases of both natural and anthropogenic Hg from regional and global sources. Integrated over the past 270-year <span class="hlt">ice-core</span> history, anthropogenic inputs contributed 52%, volcanic events 6%, and background sources 42%. More significantly, during the last 100 years, anthropogenic sources contributed 70% of the total Hg input. Unlike the 2−7-fold increase observed from preindustrial times (before 1840) to the mid-1980s in sediment-<span class="hlt">core</span> records, the UFG record indicates a 20-fold increase for the same period. The sediment-<span class="hlt">core</span> records, however, are in agreement with the last 10 years of this <span class="hlt">ice-core</span> record, indicating declines in atmospheric Hg deposition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPa...9..983C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPa...9..983C"><span>Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and <span class="hlt">ice</span> <span class="hlt">core</span> air-δ15N measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.</p> <p>2013-05-01</p> <p>Correct estimation of the firn lock-in depth is essential for correctly linking gas and <span class="hlt">ice</span> chronologies in <span class="hlt">ice</span> <span class="hlt">core</span> studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in <span class="hlt">ice</span> <span class="hlt">core</span>, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available <span class="hlt">ice</span> <span class="hlt">core</span> air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span>. New constraints of the EDML gas-<span class="hlt">ice</span> depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model-δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13A0810G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13A0810G"><span>Detection of Organic Compounds in <span class="hlt">Ice</span> <span class="hlt">Cores</span> for Application to Palaeoclimate Reconstruction - Methodological Development</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giorio, C.; King, A. C. F.; Wolff, E. W.; Kalberer, M.; Thomas, E. R.; Mulvaney, R.</p> <p>2016-12-01</p> <p>Records of inorganic gases and particles trapped in <span class="hlt">ice</span> <span class="hlt">core</span> layers have provided some of the most important insights to our understanding of climate of the last 800,000 years. Organic compounds within the <span class="hlt">ice</span>, however, are an un-tapped reservoir of information. In particular, two groups of compounds emitted from the terrestrial biosphere, fatty acids and terpene secondary oxidation aerosols (SOAs), display characteristics required for <span class="hlt">ice</span> <span class="hlt">core</span> paleoclimate reconstruction; emission rates depend on atmospheric states (e.g. temperature), compounds survive long-distance transport in the atmosphere to high altitudes and latitudes (Grannas et al., 2004; Fu et al., 2013 among others), and are shown to survive in <span class="hlt">ice</span> layers up to 450 yrs old for fatty acids in Greenland (Kawamura et al., 1996) and 350 yrs for SOAs in Alaska (Pokhrel et al., 2015). Here, we aim to develop a single method for quantification of all compounds of interest over longer timescales and further locations using liquid chromatography (LC) ultrahigh resolution mass spectrometry (LTQ Orbitrap). Initial quantification of compound contamination from sources such as drilling fluids and storage bags, diffusing through outer <span class="hlt">ice</span> <span class="hlt">core</span> surfaces, suggests compound contamination is limited to the outer few mm's of <span class="hlt">ice</span> over periods of a few months. Detection limits were in the order of 1-5 ppb for the compounds of interest, leading to the trial of pre-concentration methods using stir bar sorbtive extraction (SBSE) to facilitate detection of ppt concentration levels, as expected for these types of compounds based on previous analysis of snow samples (Pokhrel et al., 2015). Detection of these compounds seems highly viable, with promise for long-term records being achieved in the near future. Fu et al.(2013) Biogeosciences, 10(2), 653-667; Grannas et al.(2004) Global Biogeochem. Cycles, 18, GB1006; Kawamura et al.(1996) Geophys. Res. Lett., 23(19), 2665-2668; Pokhrel et al.(2015) Atmos. Environ., 130, 105-112.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.888a2113T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.888a2113T"><span>A search for sterile neutrinos with <span class="hlt">Ice</span>Cube Deep<span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Terliuk, Andrii; IceCube Collaboration</p> <p>2017-09-01</p> <p>The Deep<span class="hlt">Core</span> detector is a densely instrumented part of the <span class="hlt">Ice</span>Cube Neutrino Observatory that lowers the neutrino detection threshold down to approximately 10 GeV resulting in the ability to measure atmospheric neutrino oscillations. The standard three neutrino mixing scenario can be tested by searching for an additional light sterile neutrino state, which does not interact via the standard weak interaction, but mixes with the three active neutrino states. This leads to an impact on the atmospheric neutrino oscillations below 100 GeV. We present improved limits to the sterile mixing element |U τ4|2 using three years of the Deep<span class="hlt">Core</span> data taken during 2011-2013.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TMP...193.1801I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TMP...193.1801I"><span>Process of establishing a plane-wave system on <span class="hlt">ice</span> <span class="hlt">cover</span> over a dipole moving uniformly in an ideal fluid column</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Il'ichev, A. T.; Savin, A. S.</p> <p>2017-12-01</p> <p>We consider a planar evolution problem for perturbations of the <span class="hlt">ice</span> <span class="hlt">cover</span> by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-<span class="hlt">ice</span> interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The <span class="hlt">ice</span> <span class="hlt">cover</span> is modeled by the Kirchhoff-Love plate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPRS..117..126S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPRS..117..126S"><span>Automated mapping of persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span> across the western U.S. with Landsat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selkowitz, David J.; Forster, Richard R.</p> <p>2016-07-01</p> <p>We implemented an automated approach for mapping persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span> (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial <span class="hlt">ice</span> and perennial snow <span class="hlt">cover</span> for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s-1980s) or the National Land <span class="hlt">Cover</span> Database 2011 perennial <span class="hlt">ice</span> and snow <span class="hlt">cover</span> class. Our 2010-2014 Landsat-derived dataset indicates 28% less glacier and perennial snow <span class="hlt">cover</span> than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987-1988 and 2008-2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow <span class="hlt">cover</span> that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25-50 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70182762','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70182762"><span>Automated mapping of persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span> across the western U.S. with Landsat</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Selkowitz, David J.; Forster, Richard R.</p> <p>2016-01-01</p> <p>We implemented an automated approach for mapping persistent <span class="hlt">ice</span> and snow <span class="hlt">cover</span> (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial <span class="hlt">ice</span> and perennial snow <span class="hlt">cover</span> for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s–1980s) or the National Land <span class="hlt">Cover</span> Database 2011 perennial <span class="hlt">ice</span> and snow <span class="hlt">cover</span> class. Our 2010–2014 Landsat-derived dataset indicates 28% less glacier and perennial snow <span class="hlt">cover</span> than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987–1988 and 2008–2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow <span class="hlt">cover</span> that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25–50 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B52B..08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B52B..08F"><span>Species interactions and response time to climate change: <span class="hlt">ice-cover</span> and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.</p> <p>2011-12-01</p> <p>There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and <span class="hlt">ice-cover</span>, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that <span class="hlt">ice-cover</span> duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter <span class="hlt">ice-cover</span> period and decreased carbon load favored brown trout, increased <span class="hlt">ice-cover</span> period and increased carbon load favored Arctic char. Length of <span class="hlt">ice-covered</span> period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased <span class="hlt">ice-cover</span>, corresponding increase in forest and shrub <span class="hlt">cover</span> amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While <span class="hlt">ice-cover</span> will change instantaneously with increasing temperature</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1377519-all-flavour-search-neutrinos-from-dark-matter-annihilations-milky-way-icecube-deepcore','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1377519-all-flavour-search-neutrinos-from-dark-matter-annihilations-milky-way-icecube-deepcore"><span>All-flavour search for neutrinos from dark matter annihilations in the Milky Way with <span class="hlt">IceCube/DeepCore</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...</p> <p>2016-09-28</p> <p>We present the first <span class="hlt">Ice</span>Cube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the Deep<span class="hlt">Core</span> sub-detector of <span class="hlt">Ice</span>Cube, and uses the surrounding <span class="hlt">Ice</span>Cube strings as a veto region in order to select starting events in the Deep<span class="hlt">Core</span> volume. We use 329 live-days of data from <span class="hlt">Ice</span>Cube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-<span class="hlt">cored</span> dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous <span class="hlt">Ice</span>Cube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in <span class="hlt">Ice</span>Cube.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1377519','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1377519"><span>All-flavour search for neutrinos from dark matter annihilations in the Milky Way with <span class="hlt">IceCube/DeepCore</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aartsen, M. G.; Abraham, K.; Ackermann, M.</p> <p></p> <p>We present the first <span class="hlt">Ice</span>Cube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the Deep<span class="hlt">Core</span> sub-detector of <span class="hlt">Ice</span>Cube, and uses the surrounding <span class="hlt">Ice</span>Cube strings as a veto region in order to select starting events in the Deep<span class="hlt">Core</span> volume. We use 329 live-days of data from <span class="hlt">Ice</span>Cube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-<span class="hlt">cored</span> dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous <span class="hlt">Ice</span>Cube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in <span class="hlt">Ice</span>Cube.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050179461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050179461"><span>Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Cavalieri, Donald J.</p> <p>2005-01-01</p> <p>Sea <span class="hlt">ice</span> <span class="hlt">covers</span> vast areas of the polar oceans, with <span class="hlt">ice</span> extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and <span class="hlt">ice</span> extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These <span class="hlt">ice</span> <span class="hlt">covers</span> have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea <span class="hlt">ice</span> <span class="hlt">covers</span>, and many studies suggest possible connections between the <span class="hlt">ice</span> and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased <span class="hlt">ice</span> coverage in the Arctic and increased <span class="hlt">ice</span> coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic <span class="hlt">ice</span> increases following marked decreases in the Antarctic <span class="hlt">ice</span> during the 1970s. For a detailed picture of the seasonally varying <span class="hlt">ice</span> <span class="hlt">cover</span> at the start of the 21st century, this chapter includes <span class="hlt">ice</span> concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar <span class="hlt">ice</span> <span class="hlt">covers</span> from the 1970s through 2003.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..194..205B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..194..205B"><span>Circulation and fjord-shelf exchange during the <span class="hlt">ice-covered</span> period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boone, W.; Rysgaard, S.; Kirillov, S.; Dmitrenko, I.; Bendtsen, J.; Mortensen, J.; Meire, L.; Petrusevich, V.; Barber, D. G.</p> <p>2017-07-01</p> <p>Fjords around Greenland connect the Greenland <span class="hlt">Ice</span> Sheet to the ocean and their hydrography and circulation are determined by the interplay between atmospheric forcing, runoff, topography, fjord-shelf exchange, tides, waves, and seasonal growth and melt of sea <span class="hlt">ice</span>. Limited knowledge exists on circulation in high-Arctic fjords, particularly those not impacted by tidewater glaciers, and especially during winter, when they are <span class="hlt">covered</span> with sea-<span class="hlt">ice</span> and freshwater input is low. Here, we present and analyze seasonal observations of circulation, hydrography and cross-sill exchange of the Young Sound-Tyrolerfjord system (74°N) in Northeast Greenland. Distinct seasonal circulation phases are identified and related to polynya activity, meltwater and inflow of coastal water masses. Renewal of basin water in the fjord is a relatively slow process that modifies the fjord water masses on a seasonal timescale. By the end of winter, there is two-layer circulation, with outflow in the upper 45 m and inflow extending down to approximately 150 m. Tidal analysis showed that tidal currents above the sill were almost barotropic and dominated by the M2 tidal constituent (0.26 m s-1), and that residual currents (∼0.02 m s-1) were relatively small during the <span class="hlt">ice-covered</span> period. Tidal pumping, a tidally driven fjord-shelf exchange mechanism, drives a salt flux that is estimated to range between 145 kg s-1 and 603 kg s-1. Extrapolation of these values over the <span class="hlt">ice-covered</span> period indicates that tidal pumping is likely a major source of dense water and driver of fjord circulation during the <span class="hlt">ice-covered</span> period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394156','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1394156"><span>Historical CO2 Records from the Law Dome DE08, DE08-2, and DSS <span class="hlt">Ice</span> <span class="hlt">Cores</span> (1006 A.D.-1978 A.D)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Etheridge, D. M. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Barnola, J. M. [Laboratoire de Glaciologie et Géophysique de l'Environnement, Saint Martin d'Hères-Cedex, France; Morgan, V. I. [Antarctic CRC and Australian Antarctic Division, Hobart, Tasmania, Australia; Steele, L. P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Langenfelds, R. L. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Francey, R. J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Australia; Martinez, Monica [Oak Ridge National Laboratory, Oak Ridge, TN (USA)</p> <p>1998-01-01</p> <p>The CO2 records presented here are derived from three <span class="hlt">ice</span> <span class="hlt">cores</span> obtained at Law Dome, East Antarctica from 1987 to 1993. The Law Dome site satisfies many of the desirable characteristics of an ideal <span class="hlt">ice</span> <span class="hlt">core</span> site for atmospheric CO2 reconstructions including negligible melting of the <span class="hlt">ice</span> sheet surface, low concentrations of impurities, regular stratigraphic layering undisturbed at the surface by wind or at depth by <span class="hlt">ice</span> flow, and high snow accumulation rate. Further details on the site, drilling, and <span class="hlt">cores</span> are provided in Etheridge et al. (1996), Etheridge and Wookey (1989), and Morgan et al (1997).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L"><span>Temporal variatiions of Sea <span class="hlt">ice</span> <span class="hlt">cover</span> in the Baltic Sea derived from operational sea <span class="hlt">ice</span> products used in NWP.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, Martin; Paul, Gerhard; Potthast, Roland</p> <p>2014-05-01</p> <p>Sea <span class="hlt">ice</span> <span class="hlt">cover</span> is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of heat and moisture from the surface to the atmosphere and allows for cold and dry air mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and sea <span class="hlt">ice</span> <span class="hlt">cover</span> in their NWP models. To the knowledge of the author there are mainly two global sea <span class="hlt">ice</span> products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic Sea provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic Sea and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1041493','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1041493"><span>Atmospheric Profiles, Clouds and the Evolution of Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span> in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-06-04</p> <p><span class="hlt">Cover</span> in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys Axel...of the atmospheric component of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Survey project (SIZRS). Combined with oceanographic and sea <span class="hlt">ice</span> components of...indicate cumulative probabilities. Vertical lines show median errors for forecast and climatology, respectively Figure 7 Correlation coefficient</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.7657L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.7657L"><span>Optical properties of melting first-year Arctic sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica</p> <p>2015-11-01</p> <p>The albedo and transmittance of melting, first-year Arctic sea <span class="hlt">ice</span> were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded <span class="hlt">ice</span> types at a total of 19 <span class="hlt">ice</span> stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of <span class="hlt">core</span> samples, <span class="hlt">ice</span> physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea <span class="hlt">ice</span>. Ponded <span class="hlt">ice</span> was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare <span class="hlt">ice</span>. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea <span class="hlt">ice</span> are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded <span class="hlt">ice</span> depends on the physical thickness of the <span class="hlt">ice</span> and the magnitude of the scattering coefficient in the <span class="hlt">ice</span> interior. Bare <span class="hlt">ice</span> reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded <span class="hlt">ice</span> absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime <span class="hlt">ice</span> <span class="hlt">cover</span> is largely dictated by its pond coverage, and light transmittance through ponded <span class="hlt">ice</span> shows strong contrast between first-year and multiyear Arctic <span class="hlt">ice</span> <span class="hlt">covers</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13D1109M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13D1109M"><span>Isotopic composition of <span class="hlt">ice</span> <span class="hlt">core</span> air reveals abrupt Antarctic warming during and after Heinrich Event 1a</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>Antarctic temperature variations during Heinrich events, as recorded by δ18O­<span class="hlt">ice</span>­, generally show more gradual changes than the abrupt warmings seen in Greenland <span class="hlt">ice</span>. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, <span class="hlt">ice</span> <span class="hlt">cores</span> offer a second temperature proxy based on trapped gases. During times of surface warming, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the <span class="hlt">ice</span> sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the <span class="hlt">ice</span> <span class="hlt">core</span> bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide <span class="hlt">Ice</span> <span class="hlt">Core</span>, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt warming between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent warming due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29635766','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29635766"><span>Complex Coacervate <span class="hlt">Core</span> Micelles Containing Poly(vinyl alcohol) Inhibit <span class="hlt">Ice</span> Recrystallization.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sproncken, Christian C M; Surís-Valls, Romà; Cingil, Hande E; Detrembleur, Christophe; Voets, Ilja K</p> <p>2018-04-10</p> <p>Complex coacervate <span class="hlt">core</span> micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on <span class="hlt">ice</span> growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high <span class="hlt">ice</span> recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as <span class="hlt">ice</span> recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10 -3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22703237','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22703237"><span>Evidence of form II RubisCO (cbbM) in a perennially <span class="hlt">ice-covered</span> Antarctic lake.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kong, Weidong; Dolhi, Jenna M; Chiuchiolo, Amy; Priscu, John; Morgan-Kiss, Rachael M</p> <p>2012-11-01</p> <p>The permanently <span class="hlt">ice-covered</span> lakes of the McMurdo Dry Valleys, Antarctica, harbor microbially dominated food webs. These organisms are adapted to a variety of unusual environmental extremes, including low temperature, low light, and permanently stratified water columns with strong chemo- and oxy-clines. Owing to the low light levels during summer caused by thick <span class="hlt">ice</span> <span class="hlt">cover</span> as well as 6 months of darkness during the polar winter, chemolithoautotrophic microorganisms could play a key role in the production of new carbon for the lake ecosystems. We used clone library sequencing and real-time quantitative PCR of the gene encoding form II Ribulose 1, 5-bisphosphate carboxylase/oxygenase to determine spatial and seasonal changes in the chemolithoautotrophic community in Lake Bonney, a 40-m-deep lake <span class="hlt">covered</span> by c. 4 m of permanent <span class="hlt">ice</span>. Our results revealed that chemolithoautotrophs harboring the cbbM gene are restricted to layers just above the chemo- and oxi-cline (≤ 15 m) in the west lobe of Lake Bonney (WLB). Our data reveal that the WLB is inhabited by a unique chemolithoautotrophic community that resides in the suboxic layers of the lake where there are ample sources of alternative electron sources such as ammonium, reduced iron and reduced biogenic sulfur species. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP23B1398E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP23B1398E"><span>A 100-year Reconstruction of Regional Sea <span class="hlt">Ice</span> Extent in the Ross and Amundsen-Bellingshausen Seas as Derived from the RICE <span class="hlt">Ice</span> <span class="hlt">Core</span>, Coastal West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emanuelsson, D. B.; Bertler, N. A. N.; Baisden, W. T.; Keller, E. D.</p> <p>2014-12-01</p> <p>Antarctic sea <span class="hlt">ice</span> increased over the past decades. This increase is the result of an increase in the Ross Sea (RS) and along the coast of East Antarctica, whereas the Amundsen-Bellingshausen Seas (ABS) and the Antarctic Peninsula has seen a general decline. Several mechanisms have been suggested as drivers for the regional, complex sea <span class="hlt">ice</span> pattern, which include changes in ocean currents, wind pattern, as well as ocean and atmospheric temperature. As part of the Roosevelt Island Climate Evolution (RICE) project, a 763 m deep <span class="hlt">ice</span> <span class="hlt">core</span> was retrieved from Roosevelt Island (RI; W161° 21', S79°41', 560 m a.s.l.), West Antarctica. The new record provides a unique opportunity to investigate mechanism driving sea <span class="hlt">ice</span> variability in the RS and ABS sectors. Here we present the water stable isotope record (δD) from the upper part of the RICE <span class="hlt">core</span> 0-40 m, spanning the time period from 1894 to 2011 (Fig. 1a). Annual δD are correlated with Sea <span class="hlt">Ice</span> Concentration (SIC). A significant negative (r= -0.45, p≤ 0.05) correlation was found between annual δD and SIC in the eastern RS sector (boxed region in Fig. 1b) for the following months NDJFMA (austral summer and fall). During NDJFMA, RI receives local moisture input from the RS, while during the rest of the year a large extent of this local moisture source area will be <span class="hlt">covered</span> with sea <span class="hlt">ice</span> with the exception of the RS Polynya. Concurrently, we observe positive δD and SIC correlations in the ABS, showing a dipole pattern with the eastern RS. For this reason, we suggest that the RICE δD might be used as a proxy for past SIC for the RS and ABS region. There is no overall trend in δD over 100 years (r= -0.08 ‰ dec-1, p= 0.81, 1894-2011). However, we observe a strong increase from 2000-2011 of 17.7 ‰ dec-1(p≤ 0.1), yet the recent δD values and trend of the last decade are not unprecedented (Fig. 1a). We investigate changes in sea surface temperature, atmospheric temperature, inferred surface ocean currents and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C12A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C12A..01A"><span>Turbulent Surface Flux Measurements over Snow-<span class="hlt">Covered</span> Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreas, E. L.; Fairall, C. W.; Grachev, A. A.; Guest, P. S.; Jordan, R. E.; Persson, P. G.</p> <p>2006-12-01</p> <p>Our group has used eddy correlation to make over 10,000 hours of measurements of the turbulent momentum and heat fluxes over snow-<span class="hlt">covered</span> sea <span class="hlt">ice</span> in both the Arctic and the Antarctic. Polar sea <span class="hlt">ice</span> is an ideal site for studying fundamental processes for turbulent exchange over snow. Both our Arctic and Antarctic sites---in the Beaufort Gyre and deep into the Weddell Sea, respectively---were expansive, flat areas with continuous snow <span class="hlt">cover</span>; and both were at least 300 km from any topography that might have complicated the atmospheric flow. In this presentation, we will review our measurements of the turbulent fluxes of momentum and sensible and latent heat. In particular, we will describe our experiences making turbulence instruments work in the fairly harsh polar, marine boundary layer. For instance, several of our Arctic sites were remote from our main camp and ran unattended for a week at a time. Besides simply making flux measurements, we have been using the data to develop a bulk flux algorithm and to study fundamental turbulence processes in the atmospheric surface layer. The bulk flux algorithm predicts the turbulent surface fluxes from mean meteorological quantities and, thus, will find use in data analyses and models. For example, components of the algorithm are already embedded in our one- dimensional mass and energy budget model SNTHERM. Our fundamental turbulence studies have included deducing new scaling regimes in the stable boundary layer; examining the Monin-Obukhov similarity functions, especially in stable stratification; and evaluating the von Kármán constant with the largest atmospheric data set ever applied to such a study. During this presentation, we will highlight some of this work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013086','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013086"><span>PeV Neutrinos Observed by <span class="hlt">Ice</span>Cube from <span class="hlt">Cores</span> of Active Galactic Nuclei</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stecker, Floyd W.</p> <p>2013-01-01</p> <p>I show that the high energy neutrino flux predicted to arise from active galactic nuclei <span class="hlt">cores</span> can explain the PeV neutrinos detected by <span class="hlt">Ice</span>Cube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413548D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413548D"><span>Response of <span class="hlt">ice</span> <span class="hlt">cover</span> on shallow Arctic lakes to contemporary climate conditions: Numerical modeling and remote sensing data analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duguay, C.; Surdu, C.; Brown, L.; Samuelsson, P.</p> <p>2012-04-01</p> <p>Lake <span class="hlt">ice</span> <span class="hlt">cover</span> has been shown to be a robust indicator of climate variability and change. Recent studies have demonstrated that break-up dates, in particular, have been occurring earlier in many parts of the Northern Hemisphere over the last 50 years in response to warmer climatic conditions in the winter and spring seasons. The impacts of trends in air temperature and winter precipitation over the last five decades and those projected by global climate models will affect the timing and duration of <span class="hlt">ice</span> <span class="hlt">cover</span> (and <span class="hlt">ice</span> thickness) on Arctic lakes. This will likely, in turn, have an important feedback effect on energy, water, and biogeochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that freeze to their bed in winter since thinner <span class="hlt">ice</span> <span class="hlt">covers</span> are expected to develop. Shallow lakes of the coastal plain of northern Alaska, and other similar regions of the Arctic, have likely been experiencing changes in seasonal <span class="hlt">ice</span> thickness (and phenology) over the last few decades but these have not yet been documented. This paper presents results from a numerical lake <span class="hlt">ice</span> modeling experiment and the analysis of ERS-1/2 synthetic aperture radar (SAR) data to elucidate the response of <span class="hlt">ice</span> <span class="hlt">cover</span> (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA)to climate conditions over the last three decades. New downscaled data specific for the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre regional atmospheric model (RCA4) was used to force the Canadian Lake <span class="hlt">Ice</span> Model (CLIMo) for the period 1979-2010. Output from CLIMo included freeze-up and break-up dates as well as <span class="hlt">ice</span> thickness on a daily basis. ERS-1/2 data was used to map areas of shallow lakes that freeze to bed and when this happens (timing) in winter for the period 1991</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11716307G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11716307G"><span>Constraining recent lead pollution sources in the North Pacific using <span class="hlt">ice</span> <span class="hlt">core</span> stable lead isotopes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gross, B. H.; Kreutz, K. J.; Osterberg, E. C.; McConnell, J. R.; Handley, M.; Wake, C. P.; Yalcin, K.</p> <p>2012-08-01</p> <p>Trends and sources of lead (Pb) aerosol pollution in the North Pacific rim of North America from 1850 to 2001 are investigated using a high-resolution (subannual to annual) <span class="hlt">ice</span> <span class="hlt">core</span> record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Beginning in the early 1940s, increasing Pb concentration at Eclipse Icefield occurs coevally with anthropogenic Pb deposition in central Greenland, suggesting that North American Pb pollution may have been in part or wholly responsible in both regions. Isotopic ratios (208Pb/207Pb and 206Pb/207Pb) from 1970 to 2001 confirm that a portion of the Pb deposited at Eclipse Icefield is anthropogenic, and that it represents a variable mixture of East Asian (Chinese and Japanese) emissions transported eastward across the Pacific Ocean and a North American component resulting from transient meridional atmospheric flow. Based on comparison with source material Pb isotope ratios, Chinese and North American coal combustion have likely been the primary sources of Eclipse Icefield Pb over the 1970-2001 time period. The Eclipse Icefield Pb isotope composition also implies that the North Pacific mid-troposphere is not directly impacted by transpolar atmospheric flow from Europe. Annually averaged Pb concentrations in the Eclipse Icefield <span class="hlt">ice</span> <span class="hlt">core</span> record show no long-term trend during 1970-2001; however, increasing208Pb/207Pb and decreasing 206Pb/207Pb ratios reflect the progressive East Asian industrialization and increase in Asian pollutant outflow. The post-1970 decrease in North American Pb emissions is likely necessary to explain the Eclipse Icefield Pb concentration time series. When compared with low (lichen) and high (Mt. Logan <span class="hlt">ice</span> <span class="hlt">core</span>) elevation Pb data, the Eclipse <span class="hlt">ice</span> <span class="hlt">core</span> record suggests a gradual increase in pollutant deposition and stronger trans-Pacific Asian contribution with rising elevation in the mountains of the North Pacific rim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930032582&hterms=Storm+Japan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DStorm%2BJapan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930032582&hterms=Storm+Japan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DStorm%2BJapan"><span>The effect of severe storms on the <span class="hlt">ice</span> <span class="hlt">cover</span> of the northern Tatarskiy Strait</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin, Seelye; Munoz, Esther; Drucker, Robert</p> <p>1992-01-01</p> <p>Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of <span class="hlt">ice</span> and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and <span class="hlt">ice-cover</span> fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of <span class="hlt">ice</span> in the region. The <span class="hlt">ice</span> production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8..167S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8..167S"><span>Response of <span class="hlt">ice</span> <span class="hlt">cover</span> on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950-2011): radar remote-sensing and numerical modeling data analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surdu, C. M.; Duguay, C. R.; Brown, L. C.; Fernández Prieto, D.</p> <p>2014-01-01</p> <p>Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the <span class="hlt">ice</span> <span class="hlt">cover</span> on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner <span class="hlt">ice</span> <span class="hlt">covers</span> and consequently, in a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of European remote sensing satellite ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake <span class="hlt">ice</span> model were employed to determine the response of <span class="hlt">ice</span> <span class="hlt">cover</span> (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Given the large area <span class="hlt">covered</span> by these lakes, changes in the regional climate and weather are related to regime shifts in the <span class="hlt">ice</span> <span class="hlt">cover</span> of the lakes. Analysis of available SAR data from 1991 to 2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in <span class="hlt">ice</span> thickness simulated with the Canadian Lake <span class="hlt">Ice</span> Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner <span class="hlt">ice</span> <span class="hlt">cover</span>. Observed changes of the <span class="hlt">ice</span> <span class="hlt">cover</span> show a trend toward increasing floating <span class="hlt">ice</span> fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded <span class="hlt">ice</span> fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner <span class="hlt">ice</span> <span class="hlt">covers</span> by 18-22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991-2011 period and by 21-38 cm (α = 0.001) from 1950 to 2011. The longer trend analysis (1950-2011) also shows a decrease in the <span class="hlt">ice</span> <span class="hlt">cover</span> duration by ~24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7-18.6 days (α = 0.001).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022217','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022217"><span>Chlorine-36 and cesium-137 in <span class="hlt">ice-core</span> samples from mid-latitude glacial sites in the Northern Hemisphere</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Green, J.R.; Cecil, L.D.; Synal, H.-A.; Kreutz, K.J.; Wake, C.P.; Naftz, D.L.; Frape, S.K.</p> <p>2000-01-01</p> <p>Chlorine-36 (36Cl) concentrations, 36Cl/Cl ratios, and 36Cl fluxes in <span class="hlt">ice-core</span> samples collected from the Upper Fremont Glacier (UFG) in the Wind River Mountain Range, Wyoming, United States and the Nangpai Gosum Glacier (NGG) in the Himalayan Mountains, Nepal, were determined and compared with published results from the Dye-3 <span class="hlt">ice-core</span> drilling site on the Greenland <span class="hlt">Ice</span> Sheet. Cesium-137 (137Cs) concentrations in the NGG also were determined. The background fluxes for 36Cl for each glacial site were similar: (1.6??0.3)??10-2 atoms/cm2 s for the UFG samples, (0.7??0.1)??10-2 atoms/cm2 s for the NGG samples, and (0.4??0.1)??10-2 atoms/cm2 s for the Dye-3 samples. The 36Cl fluxes in <span class="hlt">ice</span> that was deposited as snow during peak atmospheric nuclear weapon test (1957-1958) were (33??1)??10-2 atoms/cm2 s for the UFG site, (291??3)??10-2 atoms/cm2 s for the NGG site, and (124??5)??10-2 atoms/ cm2 s for the Dye-3 site. A weapon test period 137Cs concentration of 0.79??0.05 Bq/kg in the NGG <span class="hlt">ice</span> <span class="hlt">core</span> also was detected in the same section of <span class="hlt">ice</span> that contained the largest 36Cl concentration. ?? 2000 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B13D1799N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B13D1799N"><span>Measuring ethane and acetylene in Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> to quantify long-term hydrocarbon emissions from tropical fires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicewonger, M. R.; Aydin, M.; Prather, M. J.; Saltzman, E. S.</p> <p>2017-12-01</p> <p>This study examines ethane (C2H6) and acetylene (C2H2) in polar <span class="hlt">ice</span> <span class="hlt">cores</span> in order to reconstruct variations in the atmospheric levels of these trace gases over the past 2,000 years. Both of these non-methane hydrocarbons are released from fossil fuel, biofuel, and biomass burning. Ethane, but not acetylene, is also emitted from natural geologic outgassing of hydrocarbons. In an earlier study, we reported ethane levels in Greenland and Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> showing roughly equal contributions from biomass burning and geologic emissions to preindustrial atmospheric ethane levels (Nicewonger et al., 2016). Here we introduce acetylene as an additional constraint to better quantify preindustrial variations in the emissions from these natural hydrocarbon sources. Here we present 30 new measurements of ethane and acetylene from the WDC-06A <span class="hlt">ice</span> <span class="hlt">core</span> from WAIS Divide and the newly drilled South Pole <span class="hlt">ice</span> <span class="hlt">core</span> (SPICECORE). Ethane results display a gradual decline from peak levels of 110 ppt at 1400 CE to a minimum of 60-80 ppt during 1700-1875 CE. Acetylene correlates with ethane (r2 > 0.4), dropping from peak levels of 35 ppt at 1400 CE to 15-20 ppt at 1875 CE. The covariance between the two trace gases implies that the observed changes are likely caused by decreasing emissions from low latitude biomass burning. We will discuss results from chemical transport modeling and sensitivity tests and the implications for the preindustrial ethane and acetylene budgets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915444D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915444D"><span>High-resolution sedimentary effects of post-Little <span class="hlt">Ice</span> Age glacial recession in Hornsund (Svalbard) - insights from chirp and <span class="hlt">core</span> data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dominiczak, Aleksander; Szczuciński, Witold; Moskalik, Mateusz; Forwick, Matthias</p> <p>2017-04-01</p> <p>As a result of global warming from the end of the Little <span class="hlt">Ice</span> Age a fast withdrawal and loss of mass of many glaciers have been observed. The retreat has been particularly rapid in case of tidewater glaciers of Spitsbergen, where in an effect a new bays were formed and serve as glaciomarine sediment accumulation areas. The new depocenters in emerging bays are characterized by high sediment accumulation rates. Analysis and quantitative assessment of the processes occurring in these bays can enhance a better understanding of the dynamics of glaciers recession and bio-geochemical processes occurring in the fjords. This is particularly important because the subpolar fjords may be important storage for organic carbon on a global scale (Smith at al. 2015). In order to obtain a detailed high-resolution record of sedimentation history in the post Little <span class="hlt">Ice</span> Age bays, 30 gravity <span class="hlt">cores</span> and 18 box <span class="hlt">cores</span> were collected along with detail seism acoustic surveys (Chirp) during three cruises on board of R/V Helmar Hansen in 2007, 2014 and 2015. The sediment <span class="hlt">cores</span> revealed two major types of sediments: subglacial till and overlying laminated glacimarine mud with abundant <span class="hlt">ice</span> rafted debris. The sediment accumulation rate of the latter is estimated to be on average in order of 1 to 5 cm per year. The periods of increase <span class="hlt">ice</span> rafting are likely related to surge events. The dense Chirp survey grid spatial changeability in the post-Little <span class="hlt">Ice</span> Age sediment <span class="hlt">cover</span>. The amount and lithology of sediments in different parts of the bays also helped to link glacier dynamics with sedimentary effect. Our results confirms that despite similarities in lithology there are significant differences in sediment accumulation rates, probably driven by changes in accommodation spaces and sediment delivery. The record is also affected by effects of glacier surges. However, analyses of historical data enhanced the interpretation of sedimentary record and provide hints to identify the specific processes and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13C..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13C..01S"><span>Coherent Sea <span class="hlt">Ice</span> Variations in the Nordic Seas and Abrupt Greenland Climate Changes over Dansgaard-Oeschger Cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadatzki, H.; Berben, S.; Dokken, T.; Stein, R.; Fahl, K.; Jansen, E.</p> <p>2016-12-01</p> <p>Rapid changes in sea <span class="hlt">ice</span> extent in the Nordic Seas may have played a crucial role in controlling the abruptness of ocean circulation and climate changes associated with Dansgaard-Oeschger (D-O) cycles during the last glacial (Li et al., 2010; Dokken et al., 2013). To investigate the role of sea <span class="hlt">ice</span> for abrupt climate changes, we produced a sea <span class="hlt">ice</span> record from the Norwegian Sea <span class="hlt">Core</span> MD99-2284 at a temporal resolution approaching that of <span class="hlt">ice</span> <span class="hlt">core</span> records, <span class="hlt">covering</span> four D-O cycles at ca. 32-41 ka. This record is based on the sea <span class="hlt">ice</span> diatom biomarker IP25, open-water phytoplankton biomarker dinosterol and semi-quantitative phytoplankton-IP25 (PIP25) estimates. A detailed tephrochronology of MD99-2284 corroborates the tuning-based age model and independently constrains the GS9/GIS8 transition, allowing for direct comparison between our sediment and <span class="hlt">ice</span> <span class="hlt">core</span> records. For cold stadials we find extremely low fluxes of total organic carbon, dinosterol and IP25, which points to a general absence of open-water phytoplankton and <span class="hlt">ice</span> algae production under a near-permanent sea <span class="hlt">ice</span> <span class="hlt">cover</span>. For the interstadials, in turn, all biomarker fluxes are strongly enhanced, reflecting a highly productive sea <span class="hlt">ice</span> edge situation and implying largely open ocean conditions for the eastern Nordic Seas. As constrained by three tephra layers, we observe that the stadial-interstadial sea <span class="hlt">ice</span> decline was rapid and may have induced a coeval abrupt northward shift in the Greenland precipitation moisture source as recorded in <span class="hlt">ice</span> <span class="hlt">cores</span>. The sea <span class="hlt">ice</span> retreat also facilitated a massive heat release through deep convection in the previously stratified Nordic Seas, generating atmospheric warming of the D-O events. We thus conclude that rapid changes in sea <span class="hlt">ice</span> extent in the Nordic Seas amplified oceanic reorganizations and were a key factor in controlling abrupt Greenland climate changes over D-O cycles. Dokken, T.M. et al., 2013. Paleoceanography 28, 491-502 Li, C. et al., 2010. Journ. Clim. 23, 5457-5475</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C13A0591U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C13A0591U"><span>The effect of acidified sample storage time on the determination of trace element concentration in <span class="hlt">ice</span> <span class="hlt">cores</span> by ICP-SFMS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.</p> <p>2012-12-01</p> <p>Trace elements in micro-particles entrapped in <span class="hlt">ice</span> <span class="hlt">cores</span> are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in <span class="hlt">ice</span> <span class="hlt">cores</span>. Usually, ICP-SFMS analyses of <span class="hlt">ice</span> <span class="hlt">core</span> samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the <span class="hlt">ice</span> matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in <span class="hlt">ice</span> <span class="hlt">core</span> samples and hamper the comparison of results obtained from <span class="hlt">ice</span> <span class="hlt">cores</span> from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted <span class="hlt">ice</span> <span class="hlt">core</span> samples during storage, a test was performed on sections from nine <span class="hlt">ice</span> <span class="hlt">cores</span> retrieved from low latitude drilling sites around the world. When compared to <span class="hlt">ice</span> <span class="hlt">cores</span> from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine <span class="hlt">ice</span> <span class="hlt">cores</span>, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25901605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25901605"><span>Comparing springtime <span class="hlt">ice</span>-algal chlorophyll a and physical properties of multi-year and first-year sea <span class="hlt">ice</span> from the Lincoln Sea.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lange, Benjamin A; Michel, Christine; Beckers, Justin F; Casey, J Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian</p> <p>2015-01-01</p> <p>With near-complete replacement of Arctic multi-year <span class="hlt">ice</span> (MYI) by first-year <span class="hlt">ice</span> (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea <span class="hlt">ice</span> associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). <span class="hlt">Cores</span> were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI <span class="hlt">cores</span> and found no significant differences in chl a concentration between the bottom first-year-<span class="hlt">ice</span> portions of MYI, upper old-<span class="hlt">ice</span> portions of MYI, and FYI <span class="hlt">cores</span>. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea <span class="hlt">ice</span> algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus <span class="hlt">ice</span>) integrated extinction coefficients; indicating a strong influence of snow <span class="hlt">cover</span> in controlling bottom <span class="hlt">ice</span> algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest <span class="hlt">ice</span> with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on <span class="hlt">ice</span>-associated production than generally assumed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014QuRes..81..520Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014QuRes..81..520Y"><span>Integration of Tibetan Plateau <span class="hlt">ice-core</span> temperature records and the influence of atmospheric circulation on isotopic signals in the past century</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiaoxin; Yao, Tandong; Joswiak, Daniel; Yao, Ping</p> <p>2014-05-01</p> <p>Temperature signals in <span class="hlt">ice-core</span> δ18O on the Tibetan Plateau (TP), particularly in the central and southern parts, continue to be debated because of the large scale of atmospheric circulation. This study presents ten <span class="hlt">ice-core</span> δ18O records at an annual resolution, with four (Malan, Muztagata, Guliya, and Dunde) in the northern, three (Puruogangri, Geladaindong, Tanggula) in the central and three (Noijin Kangsang, Dasuopu, East Rongbuk) in the southern TP. Integration shows commonly increasing trends in δ18O in the past century, featuring the largest one in the northern, a moderate one in the central and the smallest one in the southern TP, which are all consistent with ground-based measurements of temperature. The influence of atmospheric circulation on isotopic signals in the past century was discussed through the analysis of El Niño/Southern Oscillation (ENSO), and of possible connections between sea surface temperature (SST) and the different increasing trends in both <span class="hlt">ice-core</span> δ18O and temperature. Particularly, El Niño and the corresponding warm Bay of Bengal (BOB) SST enhance the TP <span class="hlt">ice-core</span> isotopic enrichment, while La Niña, or corresponding cold BOB SST, causes depletion. This thus suggests a potential for reconstructing the ENSO history from the TP <span class="hlt">ice-core</span> δ18O.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP22A..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP22A..08M"><span>Recent and past dust concentrations and fluxes from a developing array of Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McConnell, J. R.; Anschütz, H.; Baggenstos, D.; Das, S. B.; Isaksson, E. D.; Lawrence, R.; Layman, L.; Maselli, O.; Severinghaus, J. P.; Sigl, M.; Petit, J. R.; Grente, B.</p> <p>2012-12-01</p> <p>Continental dust is an important component of climate forcing, both because of its interaction with incoming solar and outgoing long wave radiation and because of its impact on albedo when deposited on bright surfaces such as fresh snow. Continental dust may also play an important role in ocean fertilization and carbon sequestration. Because the lifetime of dust aerosol in the atmosphere is only on the order of days to weeks, spatial and temporal variability in concentrations and fluxes is high and understanding of recent and long term changes is limited. Here we present and discuss detailed continuous, high depth resolution measurements of a range of dust proxies in a developing array of Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span>. Included are traditional proxies such as non-sea-salt (nss) calcium and insoluble particle number and size distribution as well as less traditional proxies such as aluminum, vanadium, manganese, rare earth elements, and nss uranium which together provide important insights into how dust sources and transport may have changed in the past. The array includes a number of new shallow <span class="hlt">ice</span> <span class="hlt">core</span> records from East and West Antarctica spanning recent centuries to millennia, as well as Last Glacial Maximum to early Holocene records from the deep WAIS Divide and Taylor Glacier Horizontal <span class="hlt">ice</span> <span class="hlt">cores</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..181...65K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..181...65K"><span>Constraining Quaternary <span class="hlt">ice</span> <span class="hlt">covers</span> and erosion rates using cosmogenic 26Al/10Be nuclide concentrations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knudsen, Mads Faurschou; Egholm, David Lundbek</p> <p>2018-02-01</p> <p>Paired cosmogenic nuclides are often used to constrain the exposure/burial history of landforms repeatedly <span class="hlt">covered</span> by <span class="hlt">ice</span> during the Quaternary, including tors, high-elevation surfaces, and steep alpine summits in the circum-Arctic regions. The approach generally exploits the different production rates and half-lives of 10Be and 26Al to infer past exposure/burial histories. However, the two-stage minimum-limiting exposure and burial model regularly used to interpret the nuclides ignores the effect of variable erosion rates, which potentially may bias the interpretation. In this study, we use a Monte Carlo model approach to investigate systematically how the exposure/burial and erosion history, including variable erosion and the timing of erosion events, influence concentrations of 10Be and 26Al. The results show that low 26Al/10Be ratios are not uniquely associated with prolonged burial under <span class="hlt">ice</span>, but may as well reflect <span class="hlt">ice</span> <span class="hlt">covers</span> that were limited to the coldest part of the late Pleistocene combined with recent exhumation of the sample, e.g. due to glacial plucking during the last glacial period. As an example, we simulate published 26Al/10Be data from Svalbard and show that it is possible that the steep alpine summits experienced <span class="hlt">ice</span>-free conditions during large parts of the late Pleistocene and varying amounts of glacial erosion. This scenario, which contrasts with the original interpretation of more-or-less continuous burial under non-erosive <span class="hlt">ice</span> over the last ∼1 Myr, thus challenge the conventional interpretation of such data. On the other hand, high 26Al/10Be ratios do not necessarily reflect limited burial under <span class="hlt">ice</span>, which is the common interpretation of high ratios. In fact, high 26Al/10Be ratios may also reflect extensive burial under <span class="hlt">ice</span>, combined with a change from burial under erosive <span class="hlt">ice</span>, which brought the sample close to the surface, to burial under non-erosive <span class="hlt">ice</span> at some point during the mid-Pleistocene. Importantly, by allowing for variable</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999GeoRL..26..871K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999GeoRL..26..871K"><span>Implication of azelaic acid in a Greenland <span class="hlt">Ice</span> <span class="hlt">Core</span> for oceanic and atmospheric changes in high latitudes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawamura, K.; Yokoyama, K.; Fujii, Y.; Watanabe, O.</p> <p></p> <p>A Greenland <span class="hlt">ice</span> <span class="hlt">core</span> (450 years) has been studied for low molecular weight dicarboxylic acids (C2-C10) using a capillary gas chromatography and mass spectrometer. Their molecular distribution generally showed a predominance of succinic acid (C4) followed by oxalic (C2), malonic (C3), glutaric (C5), adipic (C6), and azelaic (C9) acids. Azelaic acid, that is a specific photochemical reaction product of biogenic unsaturated fatty acids, gave a characteristic historical trend in the <span class="hlt">ice</span> <span class="hlt">core</span>; i.e., the concentrations are relatively low during late 16th to 19th century (Little <span class="hlt">Ice</span> Age) but become very high in late 19th to 20th century (warmer periods) with a large peak in 1940s AD. Lower concentrations of azelaic acid may have been caused by a depressed emission of unsaturated fatty acids from seawater microlayers due to enhanced sea <span class="hlt">ice</span> coverage during Little <span class="hlt">Ice</span> Age. Inversely, increased concentrations of azelaic acid in late 19th to 20th century are likely interpreted by an enhanced sea-to-air emission of the precursor unsaturated fatty acids due to a retreat of sea <span class="hlt">ice</span> and/or by the enhanced production due to a potentially increased oxidizing capability of the atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20140008940&hterms=parkinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dparkinson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20140008940&hterms=parkinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dparkinson"><span>On the 2012 Record Low Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span>: Combined Impact of Preconditioning and an August Storm</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Comiso, Josefino C.</p> <p>2013-01-01</p> <p>A new record low Arctic sea <span class="hlt">ice</span> extent for the satellite era, 3.4 x 10(exp 6) square kilometers, was reached on 13 September 2012; and a new record low sea <span class="hlt">ice</span> area, 3.01 x 10(exp 6) square kilometers was reached on the same date. Preconditioning through decades of overall <span class="hlt">ice</span> reductions made the <span class="hlt">ice</span> pack more vulnerable to a strong storm that entered the central Arctic in early August 2012. The storm caused the separation of an expanse of 0.4 x 10(exp 6) square kilometers of <span class="hlt">ice</span> that melted in total, while its removal left the main pack more exposed to wind and waves, facilitating the main pack's further decay. Future summer storms could lead to a further acceleration of the decline in the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> and should be carefully monitored.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C13C0834B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C13C0834B"><span>Analysis and Characterization of Dissolved Organic Matter in <span class="hlt">Ice</span> <span class="hlt">Cores</span> as Indicators of Past Environmental Conditions Using High Resolution FTICR-MS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boschi, V.; Grannas, A. M.; Willoughby, A. S.; Catanzano, V.; Hatcher, P.</p> <p>2015-12-01</p> <p>With rapid changes in global temperatures, research aimed at better understanding past climatic events in order to predict future trends is an area of growing importance. Carbonaceous gases stored in <span class="hlt">ice</span> <span class="hlt">cores</span> are known to correlate with temperature change and provide evidence of such events. However, more complex forms of carbon preserved in <span class="hlt">ice</span> <span class="hlt">cores</span> such as dissolved organic matter (DOM) can provide additional information relating to changes in environmental conditions over time. The examination of <span class="hlt">ice</span> <span class="hlt">core</span> samples presents unique challenges including detection of ultra-low concentrations of organic material and extremely limited sample amounts. In this study, solid phase extraction techniques combined with ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR-MS) were utilized to successfully extract, concentrate and analyze the low concentrations of DOM in only 100 mL of <span class="hlt">ice</span> <span class="hlt">core</span> samples originating from various regions of Antarctica and Greenland. We characterize the DOM composition in each sample by evaluating elemental ratios, molecular formula distribution (CHO, CHON, CHOS and CHNOS) and compound class composition (lignin, tannin, lipid, condensed aromatic, protein and unsaturated hydrocarbon content). Upon characterization, we identified molecular trends in <span class="hlt">ice</span> <span class="hlt">core</span> DOM chemistry that correlated with past climatic events in addition to observing possible photochemical and microbial influences affecting DOM chemistry. Considering these samples range in age from 350-1175 years old, thus being formed during the Medieval Warm Period and Little <span class="hlt">Ice</span> Age, we observed that DOM properties reflected anticipated changes in composition as influenced by warming and cooling events occurring during that time period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..521...46K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..521...46K"><span>Separating snow, clean and debris <span class="hlt">covered</span> <span class="hlt">ice</span> in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Asif; Naz, Bibi S.; Bowling, Laura C.</p> <p>2015-02-01</p> <p>The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier <span class="hlt">cover</span> areas, despite the fact that snow, clean <span class="hlt">ice</span> and debris <span class="hlt">covered</span> <span class="hlt">ice</span> have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-<span class="hlt">cover</span> on steep slopes, perennial snow-<span class="hlt">covered</span> <span class="hlt">ice</span>, clean and debris <span class="hlt">covered</span> <span class="hlt">ice</span>) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-<span class="hlt">covered</span> <span class="hlt">ice</span>, clean and debris <span class="hlt">covered</span> <span class="hlt">ice</span> zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier <span class="hlt">cover</span> is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier <span class="hlt">cover</span> (excluding steep slope snow-<span class="hlt">cover</span>). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150021521&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150021521&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsea"><span>An Assessment of Southern Ocean Water Masses and Sea <span class="hlt">Ice</span> During 1988-2007 in a Suite of Interannual <span class="hlt">CORE</span>-II Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Downes, Stephanie M.; Farneti, Riccardo; Uotila, Petteri; Griffies, Stephen M.; Marsland, Simon J.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150021521'); toggleEditAbsImage('author_20150021521_show'); toggleEditAbsImage('author_20150021521_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150021521_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150021521_hide"></p> <p>2015-01-01</p> <p>We characterise the representation of the Southern Ocean water mass structure and sea <span class="hlt">ice</span> within a suite of 15 global ocean-<span class="hlt">ice</span> models run with the Coordinated Ocean-<span class="hlt">ice</span> Reference Experiment Phase II (<span class="hlt">CORE</span>-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea <span class="hlt">ice</span> distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The <span class="hlt">CORE</span>-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-<span class="hlt">ice</span> extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the <span class="hlt">CORE</span>-II models consistently simulate spatially variable trends in sea-<span class="hlt">ice</span> concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-<span class="hlt">ice</span> coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea <span class="hlt">ice</span> is also influential. The models are in disagreement, despite the common <span class="hlt">CORE</span>-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-<span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790056630&hterms=interplay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dinterplay','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790056630&hterms=interplay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dinterplay"><span>Evolution of Martian polar landscapes - Interplay of long-term variations in perennial <span class="hlt">ice</span> <span class="hlt">cover</span> and dust storm intensity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cutts, J. A.; Blasius, K. R.; Roberts, W. J.</p> <p>1979-01-01</p> <p>The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial <span class="hlt">ice</span> <span class="hlt">cover</span>. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially <span class="hlt">ice-covered</span> surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial <span class="hlt">ice</span> <span class="hlt">cover</span> and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27250161','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27250161"><span>Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with <span class="hlt">ice</span> <span class="hlt">covers</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S</p> <p>2016-05-01</p> <p>Sound propagation predictions for <span class="hlt">ice-covered</span> ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the <span class="hlt">ice</span> are substantial. Effects due to elasticity in overlying <span class="hlt">ice</span> can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the <span class="hlt">ice</span> as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the <span class="hlt">ice</span> layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent <span class="hlt">ice</span> thickness and a water sound speed profile similar to those observed during the 2009 <span class="hlt">Ice</span> Exercise (ICEX) in the Beaufort Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvD..83e5012B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvD..83e5012B"><span>Dark matter at Deep<span class="hlt">Core</span> and <span class="hlt">Ice</span>Cube</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barger, V.; Gao, Y.; Marfatia, D.</p> <p>2011-03-01</p> <p>With the augmentation of <span class="hlt">Ice</span>Cube by Deep<span class="hlt">Core</span>, the prospect for detecting dark matter annihilation in the Sun is much improved. To complement this experimental development, we provide a thorough template analysis of the particle physics issues that are necessary to precisely interpret the data. Our study is about nitty-gritty and is intended as a framework for detailed work on a variety of dark matter candidates. To accurately predict the source neutrino spectrum, we account for spin-correlations of the final state particles and the helicity-dependence of their decays, and absorption effects at production. We fully treat the propagation of neutrinos through the Sun, including neutrino oscillations, energy losses and tau regeneration. We simulate the survival probability of muons produced in the Earth by using the Muon Monte Carlo program, reproduce the published <span class="hlt">Ice</span>Cube effective area, and update the parameters in the differential equation that approximates muon energy losses. To evaluate the zenith-angle dependent atmospheric background event rate, we track the Sun and determine the time it spends at each zenith-angle. Throughout, we employ neutralino dark matter as our example.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP33A2272O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP33A2272O"><span>Using Reanalysis to Provide Circulation Context for <span class="hlt">Ice</span> <span class="hlt">Cores</span> Recovered from Mt. Hunter Plateau in Denali National Park</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osterberg, E. C.; Birkel, S. D.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.; Winski, D.</p> <p>2015-12-01</p> <p>Researchers from the University of Maine, University of New Hampshire, and Dartmouth College supported by NSF recently recovered two <span class="hlt">ice</span> <span class="hlt">cores</span> from the Mt. Hunter Plateau in the Alaska Range of Denali National Park. Ongoing analyses of snow accumulation, snowmelt, stable isotopes, and chemistry within the <span class="hlt">core</span> are providing proxy information for ~1000 years of regional climate variability. Broader context to link circulation across the North Pacific and western North America can be obtained by using climate reanalysis. In this vein, we are using monthly, daily, and sub-daily meteorological fields from the NCEP Climate Forecasting System Reanalysis (CFSR) to characterize large-scale circulation associated with notable events in the <span class="hlt">ice</span> <span class="hlt">core</span> record onward from 1979. One goal is to assess the relationship between annual snow accumulation spikes and storm frequency and magnitude. A second goal is to relate these observations to events during the Little <span class="hlt">Ice</span> Age and Medieval Warm Period. Work is in progress, and results will be presented at the fall meeting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21C0702N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21C0702N"><span>The cloud-radiative processes and its modulation by sea-<span class="hlt">ice</span> <span class="hlt">cover</span> and stability as derived from a merged C3M Data product.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nag, B.</p> <p>2016-12-01</p> <p>The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-<span class="hlt">ice</span> <span class="hlt">cover</span> like ocean circulation and <span class="hlt">ice</span>-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-<span class="hlt">ice</span> and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-<span class="hlt">ice</span>, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-<span class="hlt">ice</span> <span class="hlt">cover</span> to complete sea-<span class="hlt">ice</span> <span class="hlt">cover</span> is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-<span class="hlt">ice</span> <span class="hlt">cover</span> and seasonally. The effect of the marginal sea-<span class="hlt">ice</span> <span class="hlt">cover</span> becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability <span class="hlt">cover</span> in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IzAOP..51..929R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IzAOP..51..929R"><span>Peculiarities of stochastic regime of Arctic <span class="hlt">ice</span> <span class="hlt">cover</span> time evolution over 1987-2014 from microwave satellite sounding on the basis of NASA team 2 algorithm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raev, M. D.; Sharkov, E. A.; Tikhonov, V. V.; Repina, I. A.; Komarova, N. Yu.</p> <p>2015-12-01</p> <p>The GLOBAL-RT database (DB) is composed of long-term radio heat multichannel observation data received from DMSP F08-F17 satellites; it is permanently supplemented with new data on the Earth's exploration from the space department of the Space Research Institute, Russian Academy of Sciences. Arctic <span class="hlt">ice-cover</span> areas for regions higher than 60° N latitude were calculated using the DB polar version and NASA Team 2 algorithm, which is widely used in foreign scientific literature. According to the analysis of variability of Arctic <span class="hlt">ice</span> <span class="hlt">cover</span> during 1987-2014, 2 months were selected when the Arctic <span class="hlt">ice</span> <span class="hlt">cover</span> was maximal (February) and minimal (September), and the average <span class="hlt">ice</span> <span class="hlt">cover</span> area was calculated for these months. Confidence intervals of the average values are in the 95-98% limits. Several approximations are derived for the time dependences of the <span class="hlt">ice-cover</span> maximum and minimum over the period under study. Regression dependences were calculated for polynomials from the first degree (linear) to sextic. It was ascertained that the minimal root-mean-square error of deviation from the approximated curve sharply decreased for the biquadratic polynomial and then varied insignificantly: from 0.5593 for the polynomial of third degree to 0.4560 for the biquadratic polynomial. Hence, the commonly used strictly linear regression with a negative time gradient for the September Arctic <span class="hlt">ice</span> <span class="hlt">cover</span> minimum over 30 years should be considered incorrect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013TCD.....7.3783S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013TCD.....7.3783S"><span>Response of <span class="hlt">ice</span> <span class="hlt">cover</span> on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950-2011): radar remote sensing and numerical modeling data analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surdu, C. M.; Duguay, C. R.; Brown, L. C.; Fernández Prieto, D.</p> <p>2013-07-01</p> <p>Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the <span class="hlt">ice</span> <span class="hlt">cover</span> on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner <span class="hlt">ice</span> <span class="hlt">covers</span> and consequently, to a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake <span class="hlt">ice</span> model were employed to determine the response of <span class="hlt">ice</span> <span class="hlt">cover</span> (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Analysis of available SAR data from 1991-2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in <span class="hlt">ice</span> thickness simulated with the Canadian Lake <span class="hlt">Ice</span> Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner <span class="hlt">ice</span> <span class="hlt">cover</span>. Observed changes of the <span class="hlt">ice</span> <span class="hlt">cover</span> show a trend toward increasing floating <span class="hlt">ice</span> fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded <span class="hlt">ice</span> fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner <span class="hlt">ice</span> <span class="hlt">covers</span> by 18-22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991-2011 period and by 21-38 cm (α = 0.001) from 1950-2011. The longer trend analysis (1950-2011) also shows a decrease in the <span class="hlt">ice</span> <span class="hlt">cover</span> duration by ∼24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7-18.6 days (α = 0.001).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4406449','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4406449"><span>Comparing Springtime <span class="hlt">Ice</span>-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year Sea <span class="hlt">Ice</span> from the Lincoln Sea</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lange, Benjamin A.; Michel, Christine; Beckers, Justin F.; Casey, J. Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian</p> <p>2015-01-01</p> <p>With near-complete replacement of Arctic multi-year <span class="hlt">ice</span> (MYI) by first-year <span class="hlt">ice</span> (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea <span class="hlt">ice</span> associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). <span class="hlt">Cores</span> were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI <span class="hlt">cores</span> and found no significant differences in chl a concentration between the bottom first-year-<span class="hlt">ice</span> portions of MYI, upper old-<span class="hlt">ice</span> portions of MYI, and FYI <span class="hlt">cores</span>. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea <span class="hlt">ice</span> algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus <span class="hlt">ice</span>) integrated extinction coefficients; indicating a strong influence of snow <span class="hlt">cover</span> in controlling bottom <span class="hlt">ice</span> algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest <span class="hlt">ice</span> with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice–associated production than generally assumed. PMID:25901605</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41B0664M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41B0664M"><span>Oceanographic Influences on <span class="hlt">Ice</span> Shelves and Drainage in the Amundsen Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.</p> <p>2016-12-01</p> <p>Marine sediment <span class="hlt">cores</span> collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove <span class="hlt">Ice</span> Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of <span class="hlt">cores</span>, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten <span class="hlt">Core</span>-15 suggests an episode of enhanced circulation beneath a large <span class="hlt">ice</span> shelf that <span class="hlt">covered</span> the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and <span class="hlt">ice</span> mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove <span class="hlt">Ice</span> Shelf in Ferrero Bay, despite regional warming evident from <span class="hlt">ice</span> <span class="hlt">core</span> data and <span class="hlt">ice</span> shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove <span class="hlt">Ice</span> Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove <span class="hlt">Ice</span> Shelf was a mechanism for under-melting the <span class="hlt">ice</span> shelf and destabilizing the grounding line. Major <span class="hlt">ice</span> shelf recession may also entail continental <span class="hlt">ice</span> mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic <span class="hlt">Ice</span> Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on <span class="hlt">ice</span> shelves and outlet glaciers</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12210873F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12210873F"><span>Seasonal-Scale Dating of a Shallow <span class="hlt">Ice</span> <span class="hlt">Core</span> From Greenland Using Oxygen Isotope Matching Between Data and Simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furukawa, Ryoto; Uemura, Ryu; Fujita, Koji; Sjolte, Jesper; Yoshimura, Kei; Matoba, Sumito; Iizuka, Yoshinori</p> <p>2017-10-01</p> <p>A precise age scale based on annual layer counting is essential for investigating past environmental changes from <span class="hlt">ice</span> <span class="hlt">core</span> records. However, subannual scale dating is hampered by the irregular intraannual variabilities of oxygen isotope (δ18O) records. Here we propose a dating method based on matching the δ18O variations between <span class="hlt">ice</span> <span class="hlt">core</span> records and records simulated by isotope-enabled climate models. We applied this method to a new δ18O record from an <span class="hlt">ice</span> <span class="hlt">core</span> obtained from a dome site in southeast Greenland. The close similarity between the δ18O records from the <span class="hlt">ice</span> <span class="hlt">core</span> and models enables correlation and the production of a precise age scale, with an accuracy of a few months. A missing δ18O minimum in the 1995/1996 winter is an example of an indistinct δ18O seasonal cycle. Our analysis suggests that the missing δ18O minimum is likely caused by a combination of warm air temperature, weak moisture transport, and cool ocean temperature. Based on the age scale, the average accumulation rate from 1960 to 2014 is reconstructed as 1.02 m yr-1 in water equivalent. The annual accumulation rate shows an increasing trend with a slope of 3.6 mm yr-1, which is mainly caused by the increase in the autumn accumulation rate of 2.6 mm yr-1. This increase is likely linked to the enhanced hydrological cycle caused by the decrease in Arctic sea <span class="hlt">ice</span> area. Unlike the strong seasonality of precipitation amount in the ERA reanalysis data in the southeast dome region, our reconstructed accumulation rate suggests a weak seasonality.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyDy..30..336W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyDy..30..336W"><span>Revisit submergence of <span class="hlt">ice</span> blocks in front of <span class="hlt">ice</span> cover—an experimental study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jun; Wu, Yi-fan; Sui, Jueyi</p> <p>2018-04-01</p> <p>The present paper studies the stabilities of <span class="hlt">ice</span> blocks in front of an <span class="hlt">ice</span> <span class="hlt">cover</span> based on experiments carried out in laboratory by using four types of <span class="hlt">ice</span> blocks with different dimensions. The forces acting on the <span class="hlt">ice</span> blocks in front of the <span class="hlt">ice</span> <span class="hlt">cover</span> are analyzed. The critical criteria for the entrainment of <span class="hlt">ice</span> blocks in front of the <span class="hlt">ice</span> <span class="hlt">cover</span> are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an <span class="hlt">ice</span> block will be entrained under the <span class="hlt">ice</span> <span class="hlt">cover</span> is derived. All three dimensions of the <span class="hlt">ice</span> block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of <span class="hlt">ice</span> blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC51F1065F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC51F1065F"><span>Trends in Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span>, Sea Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.</p> <p>2011-12-01</p> <p>The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea <span class="hlt">ice</span>-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span> across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea <span class="hlt">ice</span> <span class="hlt">cover</span>, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea <span class="hlt">ice</span> <span class="hlt">cover</span>, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea <span class="hlt">ice</span> <span class="hlt">cover</span> in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span> in the Chukchi Sea and Bering Strait region are due to both earlier sea</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B31I..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B31I..05S"><span>Insight into the latitudinal distribution of methane emissions throughout the Holocene from <span class="hlt">ice</span> <span class="hlt">core</span> methane records.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sowers, T. A.; Vladimirova, D.; Blunier, T.</p> <p>2017-12-01</p> <p>During the preAnthropogenic era (prior to 1600AD) the interpolar CH4 gradient (IPG) is effectively dictated by the ratio of tropical to Pan Arctic CH4 emissions. IPG records from <span class="hlt">ice</span> <span class="hlt">cores</span> in Greenland and Antarctica provide fundamental information for assessing the latitudinal distribution of CH4 emissions and their relation to global climate change. We recently constructed a high-resolution (100yr) record of IPG changes throughout the Holocene using the ReCAP (E. Greenland) and WAIS (W. Antarctica) <span class="hlt">ice</span> <span class="hlt">cores</span>. Contemporaneous samples from both <span class="hlt">cores</span> were analyzed on the same day to minimize analytical uncertainties associated with IPG reconstructions. CH4results from the WAIS <span class="hlt">core</span> were indistinguishable from previous results suggesting our analytical scheme was intact (± 3ppb). Our reconstructed IPG showed early Holocene IPG values of 65ppb declining throughout the Holocene to values approximating 45 ppb during the latest portion of the Holocene (preAnthropogenic). We then utilized an eight box atmospheric methane box model (EBAMM) to quantify emission scenarios that agree with <span class="hlt">ice</span> <span class="hlt">core</span> CH4 records (concentration, IPG and isotopic composition). Our results are consistent with the idea that early Holocene peatland development in the PanArctic regions followed glacier retreat near the end of the last glacial termination contributing an additional 20Tg of CH4/yr relative to the late Holocene. In addition, we had to invoke elevated biomass burning emissions (40Tg/yr) during the early Holocene to account for the elevated d13CH4 values.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601318','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601318"><span>Atmospheric Profiles, Clouds, and the Evolution of Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span> in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p><span class="hlt">Ice</span> <span class="hlt">Cover</span> in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Surveys Axel...temperatures. These changes in turn will affect the evolution of the SIZ. An appropriate representation of this feedback loop in models is critical if we... modeling experiments as part of the atmospheric component of the Seasonal <span class="hlt">Ice</span> Zone Reconnaissance Survey project (SIZRS). We will • Determine the role</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18566247','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18566247"><span>High-resolution Greenland <span class="hlt">ice</span> <span class="hlt">core</span> data show abrupt climate change happens in few years.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steffensen, Jørgen Peder; Andersen, Katrine K; Bigler, Matthias; Clausen, Henrik B; Dahl-Jensen, Dorthe; Fischer, Hubertus; Goto-Azuma, Kumiko; Hansson, Margareta; Johnsen, Sigfús J; Jouzel, Jean; Masson-Delmotte, Valérie; Popp, Trevor; Rasmussen, Sune O; Röthlisberger, Regine; Ruth, Urs; Stauffer, Bernhard; Siggaard-Andersen, Marie-Louise; Sveinbjörnsdóttir, Arny E; Svensson, Anders; White, James W C</p> <p>2008-08-01</p> <p>The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland <span class="hlt">Ice</span> <span class="hlt">Core</span> Project <span class="hlt">ice</span> <span class="hlt">core</span>. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.......50T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.......50T"><span>Quantitative calibration of remote mountain lake sediments as climatic recorders of <span class="hlt">ice-cover</span> duration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, R.; Price, D.</p> <p>2003-04-01</p> <p>Using a thermal degree modelling approach <span class="hlt">ice</span> <span class="hlt">cover</span> duration on European mountain lakes is found to be very sensitive to temperature change. For example our thermal degree model (which incorporates a weather generator) predicts a 100 day shortening in <span class="hlt">ice-cover</span> duration for a 3 degree Centigrade temperature rise for north facing catchments at elevations of 1200m in the southern Alps, and 1500m in the Pyrenees. 30% higher sensitivities (130d/3oC) are found for the more maritime lakes of Scotland, while lakes in NW Finland, in a more continental setting, have only half the sensitivity (50d/3oC). A pan European data set of the species abundance of 252 diatom taxa in 462 mountain and sub Arctic lakes has been compiled. Taxonomic harmonisation is based on a team effort carried out as an integral part of the AL:PE, CHILL and EMERGE projects. Transfer functions have been created relating <span class="hlt">ice-cover</span> duration to diatom species composition based on a weighted averaging - partial least squares (WA-PLS) approach. Cross validation was used to test the transfer functions. The pan European data set yields an R-squared of 0.73, an R-squared(jack) of 0.58, and an RMSEP error of 23 days. A regional, northern Scandinavian transect, (151 lakes, 122 taxa) yields an R-squared(jack) of 0.50, and an RMSEP of 9 days. The pan European database displays greatest skill when reconstructing winter or spring temperatures. This contrasts with the summer temperatures normally studied when using local elevation gradients. The northern Scandinavian transect has a remarkably low winter RMSEP of 0.73 oC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28276129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28276129"><span>Niche specialization of bacteria in permanently <span class="hlt">ice-covered</span> lakes of the McMurdo Dry Valleys, Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun</p> <p>2017-06-01</p> <p>Perennially <span class="hlt">ice-covered</span> lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five <span class="hlt">ice-covered</span> Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of <span class="hlt">ice-covered</span> lakes in the McMurdo Dry Valleys. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18804261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18804261"><span>SPME-GCMS study of the natural attenuation of aviation diesel spilled on the perennial <span class="hlt">ice</span> <span class="hlt">cover</span> of Lake Fryxell, Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jaraula, Caroline M B; Kenig, Fabien; Doran, Peter T; Priscu, John C; Welch, Kathleen A</p> <p>2008-12-15</p> <p>In January 2003, a helicopter crashed on the 5 m thick perennial <span class="hlt">ice</span> <span class="hlt">cover</span> of Lake Fryxell (McMurdo Dry Valleys, East Antarctica), spilling approximately 730 l of aviation diesel fuel (JP5-AN8 mixture). The molecular composition of the initial fuel was analyzed by solid phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS), then compared to the composition of the contaminated <span class="hlt">ice</span>, water, and sediments collected a year after the spill. Evaporation is the major agent of diesel weathering in meltpool waters and in the <span class="hlt">ice</span>. This process is facilitated by the light non-aqueous phase liquid properties of the aviation diesel and by the net upward movement of the <span class="hlt">ice</span> as a result of ablation. In contrast, in sediment-bearing <span class="hlt">ice</span>, biodegradation by both alkane- and aromatic-degraders was the prominent attenuation mechanism. The composition of the diesel contaminant in the <span class="hlt">ice</span> was also affected by the differential solubility of its constituents, some <span class="hlt">ice</span> containing water-washed diesel and some <span class="hlt">ice</span> containing exclusively relatively soluble low molecular weight aromatic hydrocarbons such as alkylbenzene and naphthalene homologues. The extent of evaporation, water washing and biodegradation between sites and at different depths in the <span class="hlt">ice</span> are evaluated on the basis of molecular ratios and the results of JP5-AN8 diesel evaporation experiment at 4 degrees C. Immediate spread of the aviation diesel was enhanced where the presence of aeolian sediments induced formations of meltpools. However, in absence of melt pools, slow spreading of the diesel is possible through the porous <span class="hlt">ice</span> and the <span class="hlt">ice</span> <span class="hlt">cover</span> aquifer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11589227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11589227"><span>[Psycrophilic organisms in snow and <span class="hlt">ice</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kohshima, S</p> <p>2000-12-01</p> <p>Psychrophilic and psycrotrophic organisms are important in global ecology as a large proportion of our planet is cold. Two-third of sea-water <span class="hlt">covering</span> more than 70% of Earth is cold deep sea water with temperature around 2 degrees C, and more than 90% of freshwater is in polar <span class="hlt">ice</span>-sheets and mountain glaciers. Though biological activity in snow and <span class="hlt">ice</span> had been believed to be extremely limited, various specialized biotic communities were recently discovered at glaciers of various part of the world. The glacier is relatively simple and closed ecosystem with special biotic community containing various psychrophilic and psycrotrophic organisms. Since psychrophilic organisms was discovered in the deep <span class="hlt">ice-core</span> recovered from the antarctic <span class="hlt">ice</span>-sheet and a lake beneath it, snow and <span class="hlt">ice</span> environments in Mars and Europa are attracting a great deal of scientific attention as possible extraterrestrial habitats of life. This paper briefly reviews the results of the studies on ecology of psychrophilic organisms living in snow and <span class="hlt">ice</span> environments and their physiological and biochemical adaptation to low temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GPC....59..236K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GPC....59..236K"><span>Estimation of net accumulation rate at a Patagonian glacier by <span class="hlt">ice</span> <span class="hlt">core</span> analyses using snow algae</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohshima, Shiro; Takeuchi, Nozomu; Uetake, Jun; Shiraiwa, Takayuki; Uemura, Ryu; Yoshida, Naohiro; Matoba, Sumito; Godoi, Maria Angelica</p> <p>2007-10-01</p> <p>Snow algae in a 45.97-m-long <span class="hlt">ice</span> <span class="hlt">core</span> from the Tyndall Glacier (50°59'05″S, 73°31'12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in <span class="hlt">ice</span> <span class="hlt">core</span> dating and estimation of the net accumulation rate. The <span class="hlt">core</span> was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes ( 18O, D), and major dissolved ions. The <span class="hlt">ice</span> <span class="hlt">core</span> contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na +, K +, Mg 2+, Ca 2+, Cl -, SO 42-) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a - 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a - 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a - 1 from fall 1998 to fall 1999 and 8.6 m a - 1 from fall to December 1999). These values are much higher than those obtained by past <span class="hlt">ice</span> <span class="hlt">core</span> studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C13B0562B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C13B0562B"><span>The WAIS Melt Monitor: An automated <span class="hlt">ice</span> <span class="hlt">core</span> melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.</p> <p>2010-12-01</p> <p>Paleoclimate data are often extracted from <span class="hlt">ice</span> <span class="hlt">cores</span> by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in <span class="hlt">ice</span> <span class="hlt">cores</span> can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based <span class="hlt">ice</span> <span class="hlt">core</span> melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the <span class="hlt">ice</span> <span class="hlt">core</span>, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep <span class="hlt">ice</span> <span class="hlt">core</span>, but many of the subsystems are applicable to more general <span class="hlt">ice</span> <span class="hlt">core</span> melting operations. Major system components include: a rotary encoder to measure <span class="hlt">ice</span> <span class="hlt">core</span> melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign <span class="hlt">core</span> depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution <span class="hlt">ice</span> <span class="hlt">core</span> density</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.481...61C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.481...61C"><span>Seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span> during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clotten, Caroline; Stein, Ruediger; Fahl, Kirsten; De Schepper, Stijn</p> <p>2018-01-01</p> <p>Sea <span class="hlt">ice</span> is a critical component in the Arctic and global climate system, yet little is known about its extent and variability during past warm intervals, such as the Pliocene (5.33-2.58 Ma). Here, we present the first multi-proxy (IP25, sterols, alkenones, palynology) sea <span class="hlt">ice</span> reconstructions for the Late Pliocene Iceland Sea (ODP Site 907). Our interpretation of a seasonal sea <span class="hlt">ice</span> <span class="hlt">cover</span> with occasional <span class="hlt">ice</span>-free intervals between 3.50-3.00 Ma is supported by reconstructed alkenone-based summer sea surface temperatures. As evidenced from brassicasterol and dinosterol, primary productivity was low between 3.50 and 3.00 Ma and the site experienced generally oligotrophic conditions. The East Greenland Current (and East Icelandic Current) may have transported sea <span class="hlt">ice</span> into the Iceland Sea and/or brought cooler and fresher waters favoring local sea <span class="hlt">ice</span> formation. Between 3.00 and 2.40 Ma, the Iceland Sea is mainly sea <span class="hlt">ice</span>-free, but seasonal sea <span class="hlt">ice</span> occurred between 2.81 and 2.74 Ma. Sea <span class="hlt">ice</span> extending into the Iceland Sea at this time may have acted as a positive feedback for the build-up of the Greenland <span class="hlt">Ice</span> Sheet (GIS), which underwent a major expansion ∼2.75 Ma. Thereafter, most likely a stable sea <span class="hlt">ice</span> edge developed close to Greenland, possibly changing together with the expansion and retreat of the GIS and affecting the productivity in the Iceland Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......190H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......190H"><span>The influence of sea <span class="hlt">ice</span> on Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> sulfur chemistry and on the future evolution of Arctic snow depth: Investigations using global models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hezel, Paul J.</p> <p></p> <p>Observational studies have examined the relationship between methanesulfonic acid (MSA) measured in Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> and sea <span class="hlt">ice</span> extent measured by satellites with the aim of producing a proxy for past sea <span class="hlt">ice</span> extent. MSA is an oxidation product of dimethylsulfide (DMS) and is potentially linked to sea <span class="hlt">ice</span> based on observations of very high surface seawater DMS in the sea <span class="hlt">ice</span> zone. Using a global chemical transport model, we present the first modeling study that specifically examines this relationship on interannual and on glacial-interglacial time scales. On interannual time scales, the model shows no robust relationship between MSA deposited in Antarctica and sea <span class="hlt">ice</span> extent. We show that lifetimes of MSA and DMS are longer in the high latitudes than in the global mean, interannual variability of sea <span class="hlt">ice</span> is small (<25%) as a fraction of sea <span class="hlt">ice</span> area, and sea <span class="hlt">ice</span> determines only a fraction of the variability (<30%) of DMS emissions from the ocean surface. A potentially larger fraction of the variability in DMS emissions is determined by surface wind speed (up to 46%) via the parameterization for ocean-to-atmosphere gas exchange. Furthermore, we find that a significant fraction (up to 74%) of MSA deposited in Antarctica originates from north of 60°S, north of the seasonal sea <span class="hlt">ice</span> zone. We then examine the deposition of MSA and non-sea-salt sulfate (nss SO2-4 ) on glacial-interglacial time scales. <span class="hlt">Ice</span> <span class="hlt">core</span> observations on the East Antarctic Plateau suggest that MSA increases much more than nss SO2-4 during the last glacial maximum (LGM) compared to the modern period. It has been suggested that high MSA during the LGM is indicative of higher primary productivity and DMS emissions in the LGM compared to the modern day. Studies have also shown that MSA is subject to post-depositional volatilization, especially during the modern period. Using the same chemical transport model driven by meteorology from a global climate model, we examine the sensitivity of MSA and nss</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS13H..02E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS13H..02E"><span>Sea-<span class="hlt">ice</span> information co-management: Planning for sustainable multiple uses of <span class="hlt">ice-covered</span> seas in a rapidly changing Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eicken, H.; Lovecraft, A. L.</p> <p>2012-12-01</p> <p>A thinner, less extensive and more mobile summer sea-<span class="hlt">ice</span> <span class="hlt">cover</span> is a major element and driver of Arctic Ocean change. Declining summer sea <span class="hlt">ice</span> presents Arctic stakeholders with substantial challenges and opportunities from the perspective of sustainable ocean use and derivation of sea-<span class="hlt">ice</span> or ecosystem services. Sea-<span class="hlt">ice</span> use by people and wildlife as well as its role as a major environmental hazard focuses the interests and concerns of indigenous hunters and Arctic coastal communities, resource managers and the maritime industry. In particular, rapid sea-<span class="hlt">ice</span> change and intensifying offshore industrial activities have raised fundamental questions as to how best to plan for and manage multiple and increasingly overlapping ocean and sea <span class="hlt">ice</span> uses. The western North American Arctic - a region that has seen some of the greatest changes in <span class="hlt">ice</span> and ocean conditions in the past three decades anywhere in the North - is the focus of our study. Specifically, we examine the important role that relevant and actionable sea-<span class="hlt">ice</span> information can play in allowing stakeholders to evaluate risks and reconcile overlapping and potentially competing interests. Our work in coastal Alaska suggests that important prerequisites to address such challenges are common values, complementary bodies of expertise (e.g., local or indigenous knowledge, engineering expertise, environmental science) and a forum for the implementation and evaluation of a sea-<span class="hlt">ice</span> data and information framework. Alongside the International Polar Year 2007-08 and an associated boost in Arctic Ocean observation programs and platforms, there has been a movement towards new governance bodies that have these qualities and can play a central role in guiding the design and optimization of Arctic observing systems. To help further the development of such forums an evaluation of the density and spatial distribution of institutions, i.e., rule sets that govern ocean use, as well as the use of scenario planning and analysis can serve as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040092777&hterms=incubation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dincubation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040092777&hterms=incubation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dincubation"><span>Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier <span class="hlt">ice</span> <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.</p> <p>2004-01-01</p> <p>We studied a sample from the GISP 2 (Greenland <span class="hlt">Ice</span> Sheet Project) <span class="hlt">ice</span> <span class="hlt">core</span> to determine the diversity and survival of microorganisms trapped in the <span class="hlt">ice</span> at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the <span class="hlt">ice</span> <span class="hlt">core</span> sample.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14..763D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14..763D"><span>Novel automated inversion algorithm for temperature reconstruction using gas isotopes from <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Döring, Michael; Leuenberger, Markus C.</p> <p>2018-06-01</p> <p>Greenland past temperature history can be reconstructed by forcing the output of a firn-densification and heat-diffusion model to fit multiple gas-isotope data (δ15N or δ40Ar or δ15Nexcess) extracted from ancient air in Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> using published accumulation-rate (Acc) datasets. We present here a novel methodology to solve this inverse problem, by designing a fully automated algorithm. To demonstrate the performance of this novel approach, we begin by intentionally constructing synthetic temperature histories and associated δ15N datasets, mimicking real Holocene data that we use as <q>true values</q> (targets) to be compared to the output of the algorithm. This allows us to quantify uncertainties originating from the algorithm itself. The presented approach is completely automated and therefore minimizes the <q>subjective</q> impact of manual parameter tuning, leading to reproducible temperature estimates. In contrast to many other <span class="hlt">ice-core</span>-based temperature reconstruction methods, the presented approach is completely independent from <span class="hlt">ice-core</span> stable-water isotopes, providing the opportunity to validate water-isotope-based reconstructions or reconstructions where water isotopes are used together with δ15N or δ40Ar. We solve the inverse problem T(δ15N, Acc) by using a combination of a Monte Carlo based iterative approach and the analysis of remaining mismatches between modelled and target data, based on cubic-spline filtering of random numbers and the laboratory-determined temperature sensitivity for nitrogen isotopes. Additionally, the presented reconstruction approach was tested by fitting measured δ40Ar and δ15Nexcess data, which led as well to a robust agreement between modelled and measured data. The obtained final mismatches follow a symmetric standard-distribution function. For the study on synthetic data, 95 % of the mismatches compared to the synthetic target data are in an envelope between 3.0 to 6.3 permeg for δ15N and 0.23 to 0.51 K</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4782H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4782H"><span>Deglacial-Holocene short-term variability in sea-<span class="hlt">ice</span> distribution on the Eurasian shelf (Arctic Ocean) - An IP25 biomarker reconstruction.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten</p> <p>2016-04-01</p> <p>Four well-dated sediment <span class="hlt">cores</span> from the Eurasian continental shelf, i.e., the Kara Sea (<span class="hlt">Cores</span> BP99/07 and BP00/07) and Laptev Sea (<span class="hlt">Cores</span> PS51/154 and PS51/159), were selected for high-resolution reconstruction of past Arctic environmental conditions during the deglacial-Holocene time interval. These marginal seas are strongly affected by the post-glacial sea-level rise of about 120m. The major focus of our study was the reconstruction of the paleo-sea-<span class="hlt">ice</span> distribution as sea-<span class="hlt">ice</span> plays a key role within the modern and past climate system. For reconstruction of paleo-sea <span class="hlt">ice</span>, the sea-<span class="hlt">ice</span> proxy IP25 in combination with open-water phytoplankton biomarkers was used (for approach see Belt et al., 2007; Müller et al., 2009, 2011). In addition, specific sterols were determined to reconstruct changes in river run-off and biological production. The post-glacial sea-level rise is especially reflected in prominent decrease in terrigenous biomarkers. Deglacial variations in sea-<span class="hlt">ice</span> <span class="hlt">cover</span> sustained for thousand of years, mostly following climatic changes like the Bølling/Allerød (14.7-12.9 ka), Younger Dryas (12.9-11.6 ka) and Holocene warm phase (10-8 ka). Superimposed on a (Late) Holocene cooling trend, short-term fluctuations in sea-<span class="hlt">ice</span> <span class="hlt">cover</span> (on centennial scale) are distinctly documented in the distal/off-shore <span class="hlt">Core</span> BP00/07 from the Kara Sea, less pronounced in the proximal/near-shore <span class="hlt">Core</span> PS99/07 and in the Laptev Sea <span class="hlt">cores</span>. Interestingly, this short-term variability in sea-<span class="hlt">ice</span> <span class="hlt">cover</span> correlates quite well to changes in Siberian river run-off (e.g., Stein et al. 2004), pointing to a direct linkage between precipitation (atmospheric circulation) and sea-<span class="hlt">ice</span> formation. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea <span class="hlt">ice</span>: IP25. Organic Geochemistry 38, 16-27. Müller, J., Masse, G., Stein, R., Belt, S.T., 2009. Variability of sea-<span class="hlt">ice</span> conditions in the Fram Strait over the past 30,000 years</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26011603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26011603"><span><span class="hlt">Ice</span> <span class="hlt">Core</span> Perspective on Mercury Pollution during the Past 600 Years.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beal, Samuel A; Osterberg, Erich C; Zdanowicz, Christian M; Fisher, David A</p> <p>2015-07-07</p> <p>Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. <span class="hlt">Ice</span> <span class="hlt">cores</span> are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an <span class="hlt">ice</span> <span class="hlt">core</span> from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11F..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11F..05G"><span>Microwave Observations of Snow-<span class="hlt">Covered</span> Freshwater Lake <span class="hlt">Ice</span> obtained during the Great Lakes Winter EXperiment (GLAWEX), 2017</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gunn, G. E.; Hall, D. K.; Nghiem, S. V.</p> <p>2017-12-01</p> <p>Studies observing lake <span class="hlt">ice</span> using active microwave acquisitions suggest that the dominant scattering mechanism in <span class="hlt">ice</span> is caused by double-bounce of the signal off vertical tubular bubble inclusions. Recent polarimetric SAR observations and target decomposition algorithms indicate single-bounce interactions may be the dominant source of returns, and in the absence of field observations, has been hypothesized to be the result of roughness at the <span class="hlt">ice</span>-water interface on the order of incident wavelengths. This study presents in-situ physical observations of snow-<span class="hlt">covered</span> lake <span class="hlt">ice</span> in western Michigan and Wisconsin acquired during the Great Lakes Winter EXperiment in 2017 (GLAWEX'17). In conjunction with NASA's SnowEx airborne snow campaign in Colorado (http://snow.nasa.gov), C- (Sentinel-1, RADARSAT-2) and X-band (TerraSAR-X) synthetic aperture radar (SAR) observations were acquired coincidently to surface physical snow and <span class="hlt">ice</span> observations. Small/large scale roughness features at the <span class="hlt">ice</span>-water interface are quantified through auger transects and used as an input variable in lake <span class="hlt">ice</span> backscatter models to assess the relative contributions from different scattering mechanisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016963','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016963"><span>Debris-<span class="hlt">Covered</span> Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clark, D.H.; Clark, M.M.; Gillespie, A.R.</p> <p>1994-01-01</p> <p><span class="hlt">Ice</span>-walled melt ponds on the surfaces of active valley-floor rock glaciers and Matthes (Little <span class="hlt">Ice</span> Age) moraines in the southern Sierra Nevada indicate that most of these landforms consist of glacier <span class="hlt">ice</span> under thin (ca. 1 - 10 m) but continuous <span class="hlt">covers</span> of rock-fall-generated debris. These debris blankets effectively insulate the underlying <span class="hlt">ice</span> and greatly reduce rates of ablation relative to that of uncovered <span class="hlt">ice</span>. Such insulation explains the observations that <span class="hlt">ice-cored</span> rock glaciers in the Sierra, actually debris-<span class="hlt">covered</span> glaciers, are apparently less sensitive to climatic warming and commonly advance to lower altitudes than do adjacent bare-<span class="hlt">ice</span> glaciers. Accumulation-area ratios and toe-to-headwall-altitude ratios used to estimate equilibrium-line altitudes (ELAs) of former glaciers may therefore yield incorrect results for cirque glaciers subject to abundant rockfall. Inadvertent lumping of deposits from former debris-<span class="hlt">covered</span> and bare-<span class="hlt">ice</span> glaciers partially explains an apparently anomalous regional ELA gradient reported for the pre-Matthes Recess Peak Neoglacial advance. Distinguishing such deposits may be important to studies that rely on paleo-ELA estimates. Moreover, Matthes and Recess Peak ELA gradients along the crest evidently depend strongly on local orographic effects rather than latitudinal climatic trends, indicating that simple linear projections and regional climatic interpretations of ELA gradients of small glaciers may be unreliable.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26048818','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26048818"><span>Determination of lead isotopes in a new Greenland deep <span class="hlt">ice</span> <span class="hlt">core</span> at the sub-picogram per gram level by thermal ionization mass spectrometry using an improved decontamination method.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Changhee; Burn-Nunes, Laurie J; Lee, Khanghyun; Chang, Chaewon; Kang, Jung-Ho; Han, Yeongcheol; Hur, Soon Do; Hong, Sungmin</p> <p>2015-08-01</p> <p>An improved decontamination method and ultraclean analytical procedures have been developed to minimize Pb contamination of processed glacial <span class="hlt">ice</span> <span class="hlt">cores</span> and to achieve reliable determination of Pb isotopes in North Greenland Eemian <span class="hlt">Ice</span> Drilling (NEEM) deep <span class="hlt">ice</span> <span class="hlt">core</span> sections with concentrations at the sub-picogram per gram level. A PL-7 (Fuso Chemical) silica-gel activator has replaced the previously used colloidal silica activator produced by Merck and has been shown to provide sufficiently enhanced ion beam intensity for Pb isotope analysis for a few tens of picograms of Pb. Considering the quantities of Pb contained in the NEEM Greenland <span class="hlt">ice</span> <span class="hlt">core</span> and a sample weight of 10 g used for the analysis, the blank contribution from the sample treatment was observed to be negligible. The decontamination and analysis of the artificial <span class="hlt">ice</span> <span class="hlt">cores</span> and selected NEEM Greenland <span class="hlt">ice</span> <span class="hlt">core</span> sections confirmed the cleanliness and effectiveness of the overall analytical process. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6251B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6251B"><span>Quantifying <span class="hlt">ice</span> cliff contribution to debris-<span class="hlt">covered</span> glacier mass balance from multiple sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brun, Fanny; Wagnon, Patrick; Berthier, Etienne; Kraaijenbrink, Philip; Immerzeel, Walter; Shea, Joseph; Vincent, Christian</p> <p>2017-04-01</p> <p><span class="hlt">Ice</span> cliffs on debris-<span class="hlt">covered</span> glaciers have been recognized as a hot spot for glacier melt. <span class="hlt">Ice</span> cliffs are steep (even sometimes overhanging) and fast evolving surface features, which make them challenging to monitor. We surveyed the topography of Changri Nup Glacier (Nepalese Himalayas, Everest region) in November 2015 and 2016 using multiple sensors: terrestrial photogrammetry, Unmanned Aerial Vehicle (UAV) photogrammetry, Pléiades stereo images and ASTER stereo images. We derived 3D point clouds and digital elevation models (DEMs) following a Structure-from-Motion (SfM) workflow for the first two sets of data to monitor surface elevation changes and calculate the associated volume loss. We derived only DEMs for the two last data sets. The derived DEMs had resolutions ranging from < 5 cm to 30 m. The derived point clouds and DEMs are used to quantify the <span class="hlt">ice</span> melt of the cliffs at different scales. The very high resolution SfM point clouds, together with the surface velocity field, will be used to calculate the volume losses of 14 individual cliffs, depending on their size, aspect or the presence of supra glacial lake. Then we will extend this analysis to the whole glacier to quantify the contribution of <span class="hlt">ice</span> cliff melt to the overall glacier mass balance, calculated with the UAV and Pléiades DEMs. This research will provide important tools to evaluate the role of <span class="hlt">ice</span> cliffs in regional mass loss.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9925S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9925S"><span>Consistently dated records from three Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> reveal regional millennial-scale isotope gradients with possible Heinrich Event imprint</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seierstad, Inger K.; Rasmussen, Sune O.</p> <p>2014-05-01</p> <p>We here present records from the NGRIP, GRIP and GISP2 <span class="hlt">ice</span> <span class="hlt">cores</span> tied to the same chronology for the past 104 ka at an unprecedented time resolution. The three <span class="hlt">ice</span> <span class="hlt">cores</span> have been linked by matching distinct peaks in volcanic proxy records and other impurity records from the three <span class="hlt">ice</span> <span class="hlt">cores</span>, assuming that these layers of elevated impurity content represent the same, instantaneous event in the past at all three sites. In total there are more than 900 identified marker horizons between the three <span class="hlt">cores</span> including previously published match points, of which we introduce a minor revision. Our matching is independently confirmed by new and existing volcanic ash layers (tephra). The depth-depth relationship from the detailed matching is used to transfer the most recent and widely used Greenland <span class="hlt">ice</span> <span class="hlt">core</span> chronology, the GICC05modelext timescale, to the two Summit <span class="hlt">cores</span>, GRIP and GISP2. Furthermore, we provide gas chronologies for the Summit <span class="hlt">cores</span> that are consistent with the GICC05modelext timescale by utilizing both existing and new unpublished gas data. A comparison of the GICC05modelext and the former GISP2 timescale reveals major discrepancies in short time intervals during the glacial section. We detect a pronounced change in the relative annual layer thickness between the two Summit sites and NGRIP across the Last Glacial termination and early-to-mid Holocene, which can be explained by a relative accumulation increase at NGRIP compared to the Summit region as response to the onset of the Holocene and the climatic optimum. Between stadials and interstadials we infer that the accumulation contrast typically was nearly 10% greater at Summit compared to at NGRIP. The δ18O temperature-proxy records from NGRIP, GRIP and GISP2 are generally very similar and display a synchronous behavior at climate transitions, but the δ18O differences between Summit and NGRIP is slowly changing over the last glacial-interglacial cycle superimposed by abrupt millennial-to centennial scale</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP51A1907U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP51A1907U"><span>Detailed history of atmospheric trace elements from the Quelccaya <span class="hlt">ice</span> <span class="hlt">core</span> (Southern Peru) during the last 1200 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uglietti, C.; Gabrielli, P.; Thompson, L. G.</p> <p>2013-12-01</p> <p>The recent increase in trace element concentrations, for example Cr, Cu, Zn, Ag, Pb, Bi, and U, in polar snow and <span class="hlt">ice</span> has provided compelling evidence of a hemispheric change in atmospheric composition since the nineteenth century. This change has been concomitant with the expansion of the Industrial Revolution and points towards an anthropogenic source of trace elements in the atmosphere. There are very few low latitude trace element <span class="hlt">ice</span> <span class="hlt">core</span> records and these are believed to be sensitive to perturbations of regional significance. To date, these records have not been used to document a preindustrial anthropogenic impact on atmospheric composition at low latitudes. <span class="hlt">Ice</span> <span class="hlt">cores</span> retrieved from the tropical Andes are particularly interesting because they have the potential to reveal detailed information about the evolution and environmental consequences of mineral exploitation related to the Pre Inca Civilizations, the Inca Empire (1438-1533 AD) and the subsequent Spanish invasion and dominance (1532-1833 AD). The chemical record preserved in the <span class="hlt">ice</span> of the Quelccaya <span class="hlt">ice</span> cap (southern Peruvian Andes) offers the exceptional opportunity to geochemically constrain the composition of the tropical atmosphere at high resolution over the last ~1200 years. Quantification of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was performed by ICP-SFMS over 105 m of the Quelccaya North Dome <span class="hlt">core</span> (5600 m asl, 128.57 m) by analyzing 2450 samples. This provides the first atmospheric trace element record in South America spanning continuously and at high resolution for the time period between 1990 and 790 AD. Ag, As, Bi, Cd, Cr, Co, Cu, Mn, Mo, Sb, Sn, Pb and Zn show increases in concentration and crustal enrichment factor starting at different times between 1450 and 1550 AD, in concomitance with the expansions of the Inca Empire and, subsequently, the Spanish Empire well before the inception of the Industrial Revolution. This</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8335G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8335G"><span>Assessment of local and regional climate signals in water stable isotopes and chemistry records from new high resolution shallow <span class="hlt">ice</span> <span class="hlt">cores</span> in Adélie Land, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goursaud, Sentia; Masson Delmotte, Valerie; Preunkert, Susanne; Legrand, Michel; Werner, Martin</p> <p>2017-04-01</p> <p>Documenting climatic variations in Antarctica is important to characterize natural climate variability and to provide a long-term context for recent changes. For this purpose, <span class="hlt">ice</span> <span class="hlt">cores</span> are unique archives providing a variety of proxy records. While water stable isotopes are commonly used to reconstruct past temperatures, their variability may also reflect changes in moisture origin and evaporation conditions. Further information on the origin of air masses can be obtained from aerosols, through the chemical analyses of <span class="hlt">ice</span> <span class="hlt">cores</span>. In high accumulation regions, such as the coastal Adélie Land area, the combination of water stable isotope and chemical records is crucial to date <span class="hlt">ice</span> <span class="hlt">cores</span> by annual layer counting and assess the associated uncertainty on annual accumulation rates, but may also help to unveil past changes in regional atmospheric circulation. In order to document accumulation in the area from Dumont d'Urville station to the central Antarctic plateau, towards Dome C, the Agence Nationale de la Recherche ASUMA project (Improving the Accuracy of the Surface Mass Balance of Antarctica, 2014-2018) initiated new field campaigns and was successful in obtaining a network of new shallow <span class="hlt">ice</span> <span class="hlt">cores</span> in a previously undocumented region. Here, we will present new results from two shallow <span class="hlt">ice</span> <span class="hlt">cores</span> drilled in Adélie Land, the S1C1 <span class="hlt">ice</span> <span class="hlt">core</span> (67.71 °S, 139.83 °E ,279 m a.s.l.) drilled in January 2007 and the TA192A <span class="hlt">ice</span> <span class="hlt">core</span> (66.78 °S, 139.56 °E, 602 m a.s.l.). We have dated the <span class="hlt">ice</span> <span class="hlt">cores</span> by combining multi-parameter annual layer counting using major ions and δ18O, as well as reference horizons. This allowed us to estimate very contrasted accumulation rates (respectively 21.8 ± 6.9 cm w.e. y-1 and 73.38±21.9 cm w.e. y-1), averaged respectively over the period from 1946 to 2006 and from 1998 to 2014 . As a result, we have reconstructed annual accumulation rates, isotopic and ion time series, and investigated their characteristics (mean values, trends and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA124508','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA124508"><span>Reservoir Bank Erosion Caused and Influenced by <span class="hlt">Ice</span> <span class="hlt">Cover</span>.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-12-01</p> <p>8 8. Bank sediment deposited on shorefast <span class="hlt">ice</span> ------------ 9 9. Sediment frozen to the bottom of <span class="hlt">ice</span> laid down onto the reservoir bed...end of November 1979 during a storm with 45-mph northwesterly winds-- 17 16. <span class="hlt">Ice</span> and shore sediment uplifted where an <span class="hlt">ice</span> pres- sure ridge intersects...restarts at breakup when the <span class="hlt">ice</span> becomes mobile; the <span class="hlt">ice</span> scrapes, shoves and scours the shore or bank, and transports sediment away. Figure 1. Narrow zone</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C13A0603O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C13A0603O"><span>Spatial Heterogeneity of <span class="hlt">Ice</span> <span class="hlt">Cover</span> Sediment and Thickness and Its Effects on Photosynthetically Active Radiation and Chlorophyll-a Distribution: Lake Bonney, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obryk, M.; Doran, P. T.; Priscu, J. C.; Morgan-Kiss, R. M.; Siebenaler, A. G.</p> <p>2012-12-01</p> <p>The perennially <span class="hlt">ice-covered</span> lakes in the McMurdo Dry Valleys, Antarctica have been extensively studied under the Long Term Ecological Research project. But sampling has been spatially restricted due to the logistical difficulty of penetrating the 3-6 m of <span class="hlt">ice</span> <span class="hlt">cover</span>. The <span class="hlt">ice</span> <span class="hlt">covers</span> restrict wind-driven turbulence and its associated mixing of water, resulting in a unique thermal stratification and a strong vertical gradient of salinity. The permanent <span class="hlt">ice</span> <span class="hlt">covers</span> also shade the underlying water column, which, in turn, controls photosynthesis. Here, we present results of a three-dimensional record of lake processes obtained with an autonomous underwater vehicle (AUV). The AUV was deployed at West Lake Bonney, located in Taylor Valley, Dry Valleys, to further understand biogeochemical and physical properties of the Dry Valley lakes. The AUV was equipped with depth, conductivity, temperature, under water photosynthetically active radiation (PAR), turbidity, chlorophyll-and-DOM fluorescence, pH, and REDOX sensors. Measurements were taken over the course of two years in a 100 x 100 meter spaced horizontal sampling grid (and 0.2 m vertical resolution). In addition, the AUV measured <span class="hlt">ice</span> thickness and collected 200 images looking up through the <span class="hlt">ice</span>, which were used to quantify sediment distribution. Comparison with high-resolution satellite QuickBird imagery demonstrates a strong correlation between aerial sediment distribution and <span class="hlt">ice</span> <span class="hlt">cover</span> thickness. Our results are the first to show the spatial heterogeneity of lacustrine ecosystems in the McMurdo Dry Valleys, significantly improving our understanding of lake processes. Surface sediment is responsible for localized thinning of <span class="hlt">ice</span> <span class="hlt">cover</span> due to absorption of solar radiation, which in turn increases total available PAR in the water column. Higher PAR values are negatively correlated with chlorophyll-a, presenting a paradox; historically, long-term studies of PAR and chlorophyll-a have shown positive trends. We hypothesized</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP11A2200A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP11A2200A"><span>TRACEing Last Glacial Period (25-80 ka b2k) tephra horizons within North Atlantic marine <span class="hlt">cores</span> and exploring links to the Greenland <span class="hlt">ice-cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbott, P. M.; Davies, S. M.; Griggs, A. J.; Bourne, A. J.; Cook, E.; Pearce, N. J. G.; Austin, W. E. N.; Chapman, M.; Hall, I. R.; Purcell, C. S.; Scourse, J. D.; Rasmussen, T. L.</p> <p>2015-12-01</p> <p>Tephrochronology is a powerful technique for the correlation and synchronisation of disparate palaeoclimatic records from different depositional environments and has considerable potential for testing climatic phasing. For example, the relative timing of atmospheric and marine changes caused by the abrupt climatic events that punctuated the last glacial period within the North Atlantic region. Here we report on efforts to establish a framework of tephra horizons within North Atlantic marine sequences that can correlate these records and if traced in the Greenland <span class="hlt">ice-cores</span> can act as isochronous tie-lines. Investigations have been conducted on a network of marine <span class="hlt">cores</span> from a number of sites across the North Atlantic. Tephra horizons have been identified using cryptotephra extraction techniques more commonly applied to the study of terrestrial sequences. There are two main challenges with assessing cryptotephras in the glacial North Atlantic; i) determining the transportation processes and ii) assessing the influence of secondary reworking processes and the stratigraphic integrity of the isochrons. These processes and their influence are investigated for each cryptotephra using shard size variations, major element heterogeneity and co-variance of IRD input for some <span class="hlt">cores</span>. Numerous Icelandic cryptophras have been successfully identified in the marine records and we will discuss the integration of a number of these with an isochronous nature into a marine tephra framework and how potential correlations to the Greenland <span class="hlt">ice-core</span> tephra framework are determined. Spatial patterns in the nature of tephra records that are emerging from the <span class="hlt">core</span> network will be highlighted to outline some of the key areas that could be explored in the future. In addition, the synchronisation of multiple North Atlantic records to the Greenland <span class="hlt">ice-cores</span> using the North Atlantic Ash Zone II to test the synchroneity of an abrupt cooling in the North Atlantic will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PEPS....2....8T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PEPS....2....8T"><span>Biogeochemistry and limnology in Antarctic subglacial weathering: molecular evidence of the linkage between subglacial silica input and primary producers in a perennially <span class="hlt">ice-covered</span> lake</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takano, Yoshinori; Kojima, Hisaya; Takeda, Eriko; Yokoyama, Yusuke; Fukui, Manabu</p> <p>2015-12-01</p> <p>We report a 6,000 years record of subglacial weathering and biogeochemical processes in two perennially <span class="hlt">ice-covered</span> glacial lakes at Rundvågshetta, on the Soya Coast of Lützow-Holm Bay, East Antarctica. The two lakes, Lake Maruwan Oike and Lake Maruwan-minami, are located in a channel that drains subglacial water from the base of the East Antarctic <span class="hlt">ice</span> sheet. Greenish-grayish organic-rich laminations in sediment <span class="hlt">cores</span> from the lakes indicate continuous primary production affected by the inflow of subglacial meltwater containing relict carbon, nitrogen, sulfur, and other essential nutrients. Biogenic silica, amorphous hydrated silica, and DNA-based molecular signatures of sedimentary facies indicate that diatom assemblages are the dominant primary producers, supported by the input of inorganic silicon (Si) from the subglacial inflow. This study highlights the significance of subglacial water-rock interactions during physical and chemical weathering processes and the importance of such interactions for the supply of bioavailable nutrients.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C24A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C24A..03K"><span>Seasonal climate information preserved within West Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> and its relation to large-scale atmospheric circulation and regional sea <span class="hlt">ice</span> variations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Küttel, M.; Steig, E. J.; Ding, Q.; Battisti, D. S.</p> <p>2010-12-01</p> <p>Recent evidence suggests that West Antarctica has been warming since at least the 1950s. With the instrumental record being limited to the mid-20th century, indirect information from stable isotopes (δ18O and δD, hereafter collectively δ) preserved within <span class="hlt">ice</span> <span class="hlt">cores</span> have commonly been used to place this warming into a long term context. Here, using a large number of δ records obtained during the International Trans-Antarctic Scientific Expedition (ITASE), past variations in West Antarctic δ are not only investigated over time but also in space. This study therefore provides an important complement to longer records from single locations as e.g. the currently being processed West Antarctic <span class="hlt">ice</span> sheet (WAIS) Divide <span class="hlt">ice</span> <span class="hlt">core</span>. Although snow accumulation rates at the ITASE sites in West Antarctica are variable, they are generally high enough to allow studies on sub-annual scale over the last 50-100 years. Here, we show that variations in δ in this region are strongly related to the state of the large-scale atmospheric circulation as well as sea <span class="hlt">ice</span> variations in the adjacent Southern Ocean, with important seasonal changes. While a strong relationship to sea <span class="hlt">ice</span> changes in the Ross and Amundsen Sea as well as to the atmospheric circulation offshore is found during austral fall (MAM) and winter (JJA), only modest correlations are found during spring (SON) and summer (DJF). Interestingly, the correlations with the atmospheric circulation in the latter two seasons have the strongest signal over the Antarctic continent, but not offshore - an important difference to MAM and JJA. These seasonal changes are in good agreement with the seasonally varying predominant circulation: meridional with more frequent storms in the Amundsen Sea during MAM and JJA and more zonal and stable during SON and DJF. The relationship to regional temperature is similarly seasonally variable with highest correlations found during MAM and JJA. Notably, the circulation pattern found to be strongest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPa...9.1733V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPa...9.1733V"><span>The Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veres, D.; Bazin, L.; Landais, A.; Toyé Mahamadou Kele, H.; Lemieux-Dudon, B.; Parrenin, F.; Martinerie, P.; Blayo, E.; Blunier, T.; Capron, E.; Chappellaz, J.; Rasmussen, S. O.; Severi, M.; Svensson, A.; Vinther, B.; Wolff, E. W.</p> <p>2013-08-01</p> <p>The deep polar <span class="hlt">ice</span> <span class="hlt">cores</span> provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between <span class="hlt">ice</span> <span class="hlt">cores</span> over the last climatic cycle. In this context, we are hereby introducing the Antarctic <span class="hlt">Ice</span> <span class="hlt">Core</span> Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span>, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and <span class="hlt">ice</span> stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAESc..98..285L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAESc..98..285L"><span>An 80-year summer temperature history from the Xiao Dongkemadi <span class="hlt">ice</span> <span class="hlt">core</span> in the central Tibetan Plateau and its association with atmospheric circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiangying; Ding, Yongjian; Yu, Zhongbo; Mika, Sillanpää; Liu, Shiyin; Shangguan, Donghui; Lu, Chengyang</p> <p>2015-02-01</p> <p>The climate significance of oxygen isotopes from the central Tibetan Plateau (cTP) <span class="hlt">ice</span> <span class="hlt">cores</span> is a debated issue because of large scale atmospheric circulation. A high-resolution δ18O record was recovered from the Xiao Dongkemadi (XD) <span class="hlt">ice</span> <span class="hlt">core</span>, which expanded the spatial coverage of δ18O data in this region. Annual average δ18O correlated significantly with nearby MJJAS air temperatures, suggesting the δ18O can be used as a proxy to reconstruct regional climate change. The reconstructed temperature anomaly is related to the regional and global warming trends, and the greater warming amplitude since 1970s is related to the elevation dependency of the warming signal. The close relationship of the warming to variations in glacier mass balances and discharge reveal that recent warming has led to obvious glacier shrinkage and runoff increase. Correlation analysis suggests that monsoon and westerly moisture substantially influence the cTP <span class="hlt">ice</span> <span class="hlt">core</span> records, along with an increase in their level of contribution to the XD <span class="hlt">core</span> accumulation in recent decades, and confirms a teleconnection of regional climate of the cTP <span class="hlt">ice</span> <span class="hlt">cores</span> with climate parameters in the Indian and North Atlantic Oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3020R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3020R"><span>Determining the <span class="hlt">ice</span> seasons severity during 1982-2015 using the <span class="hlt">ice</span> extents sum as a new characteristic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rjazin, Jevgeni; Pärn, Ove</p> <p>2016-04-01</p> <p>Sea <span class="hlt">ice</span> is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining <span class="hlt">ice</span> conditions severity and describing <span class="hlt">ice</span> <span class="hlt">cover</span> behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the <span class="hlt">ice</span> seasons severity degree basing on the <span class="hlt">ice</span> seasons 1982 to 2015. A new integrative characteristic is introduced to describe the <span class="hlt">ice</span> season severity. It is the sum of <span class="hlt">ice</span> extents of the <span class="hlt">ice</span> season id est the daily <span class="hlt">ice</span> extents of the season are summed. The commonly used procedure to determine the <span class="hlt">ice</span> season severity degree by the maximal <span class="hlt">ice</span> extent is in this research compared to the new characteristic values. The remote sensing data on the <span class="hlt">ice</span> concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The <span class="hlt">ice</span> extents are calculated on these <span class="hlt">ice</span> concentration data. Both the maximal <span class="hlt">ice</span> extent of the season and a newly introduced characteristic - the <span class="hlt">ice</span> extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the <span class="hlt">ice</span> seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive <span class="hlt">ice</span> <span class="hlt">cover</span> in these three seasons. In several winters, for example 2010/11 <span class="hlt">ice</span> <span class="hlt">cover</span> extended enough for some time, but did not endure. At few other <span class="hlt">ice</span> seasons as 2002/03 the Baltic Sea was <span class="hlt">ice-covered</span> in moderate extent, but the <span class="hlt">ice</span> <span class="hlt">cover</span> stayed long time. At 11 winters the <span class="hlt">ice</span> extents sum differed considerably (> 10%) from the maximal <span class="hlt">ice</span> extent. These winters yield one third of the studied <span class="hlt">ice</span> seasons. The maximal <span class="hlt">ice</span> extent of the season is simple to use and enables to reconstruct the <span class="hlt">ice</span> <span class="hlt">cover</span> history and to predict maximal <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900062914&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deffect%2Bglobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900062914&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deffect%2Bglobal%2Bwarming"><span>The <span class="hlt">ice-core</span> record - Climate sensitivity and future greenhouse warming</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.</p> <p>1990-01-01</p> <p>The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from <span class="hlt">cores</span> drilled in polar <span class="hlt">ice</span> sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3341045','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3341045"><span>9,400 years of cosmic radiation and solar activity from <span class="hlt">ice</span> <span class="hlt">cores</span> and tree rings</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans</p> <p>2012-01-01</p> <p>Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar <span class="hlt">ice</span> <span class="hlt">cores</span> and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be <span class="hlt">ice</span> <span class="hlt">core</span> records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22474348','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22474348"><span>9,400 years of cosmic radiation and solar activity from <span class="hlt">ice</span> <span class="hlt">cores</span> and tree rings.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank</p> <p>2012-04-17</p> <p>Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar <span class="hlt">ice</span> <span class="hlt">cores</span> and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be <span class="hlt">ice</span> <span class="hlt">core</span> records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for <span class="hlt">Ice</span> <span class="hlt">Coring</span> in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5199B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5199B"><span>Towards a novel continuous sublimation extraction/laser spectroscopy method for greenhouse gas measurements in the oldest <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bereiter, Bernhard; Maechler, Lars; Schmitt, Jochen; Walther, Remo; Tuzson, Béla; Scheidegger, Philipp; Emmenegger, Lukas; Fischer, Hubertus</p> <p>2017-04-01</p> <p><span class="hlt">Ice</span> <span class="hlt">cores</span> are unique archives of ancient air providing the only direct record of past greenhouse gases - key in reconstructing the roles of greenhouse gases in past climate changes. The European Partnership in <span class="hlt">Ice</span> <span class="hlt">Core</span> Sciences (EuroPICS) plans to drill an <span class="hlt">ice</span> <span class="hlt">core</span> extending over 1.5 Ma, nearly doubling the time span of the existing greenhouse record and <span class="hlt">covering</span> the time period of the Mid Pleistocene Transition. The <span class="hlt">ice</span> <span class="hlt">covering</span> the time interval from 1-1.5 Ma is expected to be close to the bedrock and, due to glacial flow, extremely thinned. A 10,000 yr glacial/interglacial transition can be compressed in 1 m of <span class="hlt">ice</span>. The targeted 100 yr resolution therefore constrains the sample size to 15-30 g containing only 1-2ml STP air. Within the deepSlice project we aim to unlock such atmospheric archives in extremely thinned <span class="hlt">ice</span> by developing a novel coupled semi-continuous sublimation extraction/laser spectroscopy system. Vacuum sublimation, with an infrared source, has been chosen as extraction method as it allows 100% gas extraction of all gas species from <span class="hlt">ice</span> without changing the isotopic composition of CO2. In order to reduce <span class="hlt">ice</span> waste and accelerate sample throughput, we are building a sublimation extraction system that is able to continuously sublimate an <span class="hlt">ice-core</span> section and subsequently collect discrete full air samples. For the gas analytics, we develop a custom-made mid-infrared laser spectrometer allowing simultaneous measurement of the CO2, CH4 and N2O concentrations as well as the isotopic composition of CO2 on air samples of only 1-2 ml STP. The two systems will be coupled via cryo-trapping of the sample air in dip tubes, followed by expansion of the sample air into the laser spectrometer. Due to the nondestructive laser technique, the air sample can be recollected and reused for further analytics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC23H..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC23H..03G"><span>Quelccaya <span class="hlt">Ice</span> <span class="hlt">Core</span> Evidence of Widespread Atmospheric Pollution from Colonial Metallurgy after the Spanish Conquest of South America (1532 AD)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabrielli, P.; Uglietti, C.; Cooke, C. A.; Thompson, L. G.</p> <p>2014-12-01</p> <p>A few <span class="hlt">ice</span> <span class="hlt">core</span> records recovered from remote arctic regions suggest a widespread impact of toxic trace elements (Pb, Cu, Sb, As and Bi) to the North Hemisphere atmosphere prior to the onset of the Industrial Revolution (1780s-1830s). In the Southern Hemisphere, evidence for preindustrial trace element emissions are, to date, limited to sediment <span class="hlt">cores</span> recovered from lakes located within the immediate airshed of major metallurgical centers of South America. Thus it remains unresolved whether they could have had a larger scale impact. Here, we present an annually resolved <span class="hlt">ice</span> <span class="hlt">core</span> record of anthropogenic trace element deposition from the remote drilling site of the Quelccaya <span class="hlt">Ice</span> Cap (Peru) that spans 793-1989 AD. During the pre-Inca period (i.e., prior to ~1450 AD) the deposition of trace elements was dominated by the fallout of aeolian dust from the deglaciated margins of the <span class="hlt">ice</span> cap and of ash from occasional volcanic eruptions. In contrast, the <span class="hlt">ice</span> <span class="hlt">core</span> record indicates a clear anthropogenic signal emerging after the onset of large scale colonial mining and metallurgy (1532-1820 AD), ~300 years prior to the Industrial Revolution during the last part of the Little <span class="hlt">Ice</span> Age. This shift was coincidental with a major technological transition for silver extraction (1572 AD), from lead-based smelting to mercury amalgamation, that initiated a major increase in ore mining and milling that likely resulted in an increase of metallic dust emissions. While atmospheric trace element deposition resulting from colonial metallurgy was certainly much larger than during the pre-Colonial period, trace element fallout during the Colonial era was still several factors lower than during the 20th century, when the construction of the trans-Andean railway and highways promoted a widespread societal and industrial development of South America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4184E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4184E"><span>Non-climatic signal in <span class="hlt">ice</span> <span class="hlt">core</span> records: Lessons from Antarctic mega-dunes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ekaykin, Alexey; Eberlein, Lutz; Lipenkov, Vladimir; Popov, Sergey; Schroder, Ludwig</p> <p>2015-04-01</p> <p>We present the results of glaciological investigations in the mega-dune area located 30 km to the east from Vostok Station (central East Antarctica) implemented during the 58th and 59th Russian Antarctic Expedition (January 2013 and January 2014). Snow accumulation rate and isotope content (δD and δ18O) were measured along the 2-km profile across the mega-dune ridge accompanied by precise GPS altitude measurements and GPR survey. It is shown that the spatial variability of snow accumulation and isotope content covaries with the surface slope. The accumulation rate regularly changes by 1 order of magnitude within the distance < 1 km, with the reduced accumulation at the leeward slope of the dune and increased accumulation in the hollow between the dunes. At the same time, the accumulation rate averaged over the length of a dune wave (25 mm w.e.) corresponds well with the value obtained at Vostok Station, which suggests no additional wind-driven snow sublimation in the mega-dunes comparing to the surrounding plateau. The snow isotope content is in negative correlation with the snow accumulation, which could be explained by post-depositional snow modification and/or by enhanced redistribution by wind of winter precipitation comparing to summer precipitation. Using the GPR data, we estimated the dune drift velocity (5.5 ± 1.3 m yr-1). The full cycle of the dune drift is thus about 340 years. Since the spatial anomalies of snow accumulation and isotope content are supposed to drift with the dune, an <span class="hlt">ice</span> <span class="hlt">core</span> drilled in the mega-dune area would exhibit the non-climatic 340-yr cycle of these two parameters. We made an attempt to simulate a vertical profile of isotope content with such a non-climatic variability in a virtual <span class="hlt">ice</span> <span class="hlt">core</span>, using the data on the dune size and velocity. The obtained results are discussed in terms of real <span class="hlt">ice</span> <span class="hlt">core</span> data interpretation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSCT24A0145K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSCT24A0145K"><span>210Po/210Pb Activity Ratios as a Possible `Dating Tool' of <span class="hlt">Ice</span> <span class="hlt">Cores</span> and <span class="hlt">Ice</span>-rafted Sediments from the Western Arctic Ocean - Preliminary Results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krupp, K.; Baskaran, M. M.</p> <p>2016-02-01</p> <p>We have collected and analyzed a suite of surface snow samples, <span class="hlt">ice</span> <span class="hlt">cores</span>, <span class="hlt">ice</span>-rafted sediments (IRS) and aerosol samples from the Western Arctic for Po-210 and Pb-210 to examine the extent of disequilibrium between this pair to possibly use 210Po/210Pb activity ratio to date different layers of <span class="hlt">ice</span> <span class="hlt">cores</span> and time of incorporation of <span class="hlt">ice</span>-rafted sediments into the sea <span class="hlt">ice</span>. We have earlier reported that the activity concentrations of 210Pb in IRS vary over an order of magnitude and it is 1-2 orders of magnitude higher than that of the benthic sediments (1-2 dpm/g in benthic sediments compared to 25 to 300 dpm/g in IRS). In this study, we have measured 210Po/210Pb activity ratios in aerosols from the Arctic Ocean to constrain the initial 210Po/210Pb ratio at the time of deposition during precipitation. The 210Po activity concentration in recent snow is compared to surface <span class="hlt">ice</span> samples. The `age' of IRS incorporation can be calculated as follows: [210Po]measured = [210Po]initial + [210Pb] (1 - exp(-λt)) (1) where λ is the decay constant of 210Po, 138.4 days, and `t' is the in-growth time period. From this equation, `t' can be calculated as follows: t = (-1/λ) [ln (1- ((210Po/210Pb)measured - (210Po/210Pb)initial)] (2) The assumption involved in this approach are: i) there is no preferential uptake of 210Po (highly biogenic - S group); and iii) both 210Po and 210Pb remain as closed system. The calculated age using equation (2) will be discussed and presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51A0798B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51A0798B"><span>Five millennia of frozen vegetation and fire dynamics from an <span class="hlt">ice</span> <span class="hlt">core</span> in the Mongolian Altai</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.</p> <p>2017-12-01</p> <p>The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine <span class="hlt">ice</span> record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology <span class="hlt">covering</span> the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRF..116.1011R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRF..116.1011R"><span>On the long-term memory of the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogozhina, I.; Martinec, Z.; Hagedoorn, J. M.; Thomas, M.; Fleming, K.</p> <p>2011-03-01</p> <p>In this study, the memory of the Greenland <span class="hlt">Ice</span> Sheet (GIS) with respect to its past states is analyzed. According to <span class="hlt">ice</span> <span class="hlt">core</span> reconstructions, the present-day GIS reflects former climatic conditions dating back to at least 250 thousand years before the present (kyr BP). This fact must be considered when initializing an <span class="hlt">ice</span> sheet model. The common initialization techniques are paleoclimatic simulations driven by atmospheric forcing inferred from <span class="hlt">ice</span> <span class="hlt">core</span> records and steady state simulations driven by the present-day or past climatic conditions. When paleoclimatic simulations are used, the information about the past climatic conditions is partly reflected in the resulting present-day state of the GIS. However, there are several important questions that need to be clarified. First, for how long does the model remember its initial state? Second, it is generally acknowledged that, prior to 100 kyr BP, the longest Greenland <span class="hlt">ice</span> <span class="hlt">core</span> record (GRIP) is distorted by <span class="hlt">ice</span>-flow irregularities. The question arises as to what extent do the uncertainties inherent in the GRIP-based forcing influence the resulting GIS? Finally, how is the modeled thermodynamic state affected by the choice of initialization technique (paleo or steady state)? To answer these questions, a series of paleoclimatic and steady state simulations is carried out. We conclude that (1) the choice of an <span class="hlt">ice-covered</span> initial configuration shortens the initialization simulation time to 100 kyr, (2) the uncertainties in the GRIP-based forcing affect present-day modeled <span class="hlt">ice</span>-surface topographies and temperatures only slightly, and (3) the GIS forced by present-day climatic conditions is overall warmer than that resulting from a paleoclimatic simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14...21B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14...21B"><span>Temperature and mineral dust variability recorded in two low-accumulation Alpine <span class="hlt">ice</span> <span class="hlt">cores</span> over the last millennium</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bohleber, Pascal; Erhardt, Tobias; Spaulding, Nicole; Hoffmann, Helene; Fischer, Hubertus; Mayewski, Paul</p> <p>2018-01-01</p> <p>Among <span class="hlt">ice</span> <span class="hlt">core</span> drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new <span class="hlt">core</span> drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-<span class="hlt">core</span> approach with a neighbouring <span class="hlt">ice</span> <span class="hlt">core</span>, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest <span class="hlt">ice</span> <span class="hlt">core</span> we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a <q>Little <span class="hlt">Ice</span> Age</q> cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100-1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17164851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17164851"><span>Polarization of 'water-skies' above arctic open waters: how polynyas in the <span class="hlt">ice-cover</span> can be visually detected from a distance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor</p> <p>2007-01-01</p> <p>The foggy sky above a white <span class="hlt">ice-cover</span> and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the '<span class="hlt">ice</span>-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of <span class="hlt">ice</span>-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic <span class="hlt">ice-cover</span> during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the <span class="hlt">ice</span>-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and <span class="hlt">ice</span>-skies is not higher than 10%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394914','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1394914"><span>740,000-year Deuterium Record in an <span class="hlt">Ice</span> <span class="hlt">Core</span> from Dome C, Antarctica</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Jouzel, Jean [Laboratoire des Sciences du Climat et de l'Environnement</p> <p>2004-01-01</p> <p>Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (2H) in snowfall are temperature-dependent and a strong spatial correlation exists between the annual mean temperature and the mean isotopic fraction of 18O or 2H in precipitation, it is possible to derive temperature records from the records of those isotopes in <span class="hlt">ice</span> <span class="hlt">cores</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..423C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..423C"><span>An interannual link between Arctic sea-<span class="hlt">ice</span> <span class="hlt">cover</span> and the North Atlantic Oscillation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caian, Mihaela; Koenigk, Torben; Döscher, Ralf; Devasthale, Abhay</p> <p>2018-01-01</p> <p>This work investigates links between Arctic surface variability and the phases of the winter (DJF) North Atlantic Oscillation (NAO) on interannual time-scales. The analysis is based on ERA-reanalysis and model data from the EC-Earth global climate model. Our study emphasizes a mode of sea-<span class="hlt">ice</span> <span class="hlt">cover</span> variability that leads the NAO index by 1 year. The mechanism of this leading is based on persistent surface forcing by quasi-stationary meridional thermal gradients. Associated thermal winds lead a slow adjustment of the pressure in the following winter, which in turn feeds-back on the propagation of sea-<span class="hlt">ice</span> anomalies. The pattern of the sea-<span class="hlt">ice</span> mode leading NAO has positive anomalies over key areas of South-Davis Strait-Labrador Sea, the Barents Sea and the Laptev-Ohkostsk seas, associated to a high pressure anomaly over the Canadian Archipelago-Baffin Bay and the Laptev-East-Siberian seas. These anomalies create a quasi-annular, quasi-steady, positive gradient of sea-<span class="hlt">ice</span> anomalies about coastal line (when leading the positive NAO phase) and force a cyclonic vorticity anomaly over the Arctic in the following winter. During recent decades in spite of slight shifts in the modes' spectral properties, the same leading mechanism remains valid. Encouraging, actual models appear to reproduce the same mechanism leading model's NAO, relative to model areas of persistent surface forcing. This indicates that the link between sea-<span class="hlt">ice</span> and NAO could be exploited as a potential skill-source for multi-year prediction by addressing the key problem of initializing the phase of the NAO/AO (Arctic Oscillation).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B33B0665M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B33B0665M"><span>Biological Diversity Comprising Microbial Structures of Antarctic <span class="hlt">Ice</span> <span class="hlt">Covered</span> Lakes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matys, E. D.</p> <p>2015-12-01</p> <p>Analysis of microbial membrane lipids is a rapid and non-selective method for evaluating the composition of microbial communities. To fully realise the diagnostic potential of these lipids, we must first understand their structural diversity, biological sources, physiological functions, and pathways of preservation. Particular environmental conditions likely prompt the production of different membrane lipid structures. Antarctica's McMurdo Dry Valleys host numerous <span class="hlt">ice-covered</span> lakes with sharp chemical gradients that vary in illumination, geochemical structure, and benthic mat morphologies that are structured by nutrient availability and water chemistry. The lipid contents of these benthic mats have not received extensive study nor have the communities yet been thoroughly characterized. Accordingly, a combination of lipid biomarker and nucleic acid sequence data provides the means of assessing species diversity and environmental controls on the composition and diversity of membrane lipid assemblages. We investigated the richness and diversity of benthic microbial communities and accumulated organic matter in Lake Vanda of the McMurdo Dry Valleys. We have identified diverse glycolipids, aminolipids, and phospholipids in addition to many unknown compounds that may be specific to these particular environments. Light levels fluctuate seasonally, favoring low-light-tolerant cyanobacteria and specific lipid assemblages. Adaptations to nutrient limitations are reflected in contrasting intact polar lipid assemblages. For example, under P-limiting conditions, phospholipids are subsidiary to membrane-forming lipids that do not contain P (i.e. ornithine, betaine, and sulfolipids). The bacteriohopanepolyol (BHP) composition is dominated by bacteriohopanetetrol (BHT), a ubiquitous BHP, and 2-methylhopanoids. The relative abundance of 2-methylhopanoids is unprecedented and may reflect the unusual seasonal light regime of this polar environment. By establishing correlations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914576F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914576F"><span>CALICE: Calibrating Plant Biodiversity in Glacier <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus</p> <p>2017-04-01</p> <p>The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier <span class="hlt">ice</span> by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m <span class="hlt">ice</span> <span class="hlt">core</span>. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in <span class="hlt">ice</span>, ii) the thickness of the <span class="hlt">ice</span> cap (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the <span class="hlt">coring</span> by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete <span class="hlt">ice</span> cap and retrieve a 270 m thick <span class="hlt">core</span> which has the potential to <span class="hlt">cover</span> a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED41B..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED41B..07D"><span>Life <span class="hlt">Cores</span>: A Sci-Art Collaboration Between a Snow/<span class="hlt">Ice</span> Researcher, an Artist/Educator, Students, and Street Road Artists Space</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dooley, J.; Courville, Z.; Artinian, E.</p> <p>2016-12-01</p> <p>BackgroundStreet Road Artists Space Summer 2015 show was Sailing Stones. Works presented scenarios on tension between transience and permanence, highlighting cultural constructs imposed onto landscape and place. Dooley's installation, CryoZen Garden, operated as visual metaphor, modeling cryospheric processes and explored effects of melting polar <span class="hlt">ice</span> caps on a warming world. A grant from Pennsylvania Partners in the Arts, with a focus on sharing contemporary works which were participatory, conceptual, and polar science research-based, allowed for a new project to engage community members, particularly students.MethodsIn this project students were introduced to the work of Dooley, artist/educator and Courville, snow/<span class="hlt">ice</span> researcher. Students created `Life <span class="hlt">Cores</span>', a take on <span class="hlt">ice</span> and sediment <span class="hlt">coring</span> scientists use as evidence of Earth's atmospheric and geologic changes. Students were given plastic tubes 2' long and 2" in diameter and were asked to add a daily layer of materials taken from everyday life, for a one month period. Students chose materials important to them personally, and kept journals, reflecting on items' significance, and/or relationship to life and world events. After creation of the Life <span class="hlt">Cores</span>, Courville and Dooley visited students, shared their work on polar research, what it's like to live and work on <span class="hlt">ice</span>, and ways science and art can intertwine to create better understanding of climate change issues. Students used <span class="hlt">core</span> logging sheets to make observations of each others' life <span class="hlt">cores</span>, noting layer colors, textures and deposition rates as some of the characteristics researchers use in <span class="hlt">ice</span> and sediment <span class="hlt">core</span> interpretation. Students' work was exhibited at Street Road and will remain on Street Road's website. Courville and Dooley presented to the general public during the opening. ConclusionsParticipants were better able to answer the question, How do we know what we know from <span class="hlt">coring</span>? by relating the science to something that is known and personal, such as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...586A.127F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...586A.127F"><span>Reconstructing the history of water <span class="hlt">ice</span> formation from HDO/H2O and D2O/HDO ratios in protostellar <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.</p> <p>2016-02-01</p> <p>Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water <span class="hlt">ice</span> has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO <span class="hlt">ice</span> ratio should be lower than the HDO/H2O <span class="hlt">ice</span> ratio, if HDO and D2O <span class="hlt">ices</span> are formed simultaneously with H2O <span class="hlt">ice</span>. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water <span class="hlt">ice</span> and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water <span class="hlt">ice</span> formation continues with much reduced efficiency in cold prestellar/protostellar <span class="hlt">cores</span>, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-<span class="hlt">ice</span> astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar <span class="hlt">cores</span>, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O <span class="hlt">ices</span> are likely formed in cold prestellar/protostellar <span class="hlt">cores</span> rather than in molecular clouds, where the majority of H2O <span class="hlt">ice</span> is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water <span class="hlt">ice</span> formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.2409A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.2409A"><span>Late Spring Nitrate Distributions Beneath the <span class="hlt">Ice-Covered</span> Northeastern Chukchi Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arrigo, Kevin R.; Mills, Matthew M.; van Dijken, Gert L.; Lowry, Kate E.; Pickart, Robert S.; Schlitzer, Reiner</p> <p>2017-09-01</p> <p>Measurements of late springtime nutrient concentrations in Arctic waters are relatively rare due to the extensive sea <span class="hlt">ice</span> <span class="hlt">cover</span> that makes sampling difficult. During the SUBICE (Study of Under-<span class="hlt">ice</span> Blooms In the Chukchi Ecosystem) cruise in May-June 2014, an extensive survey of hydrography and prebloom concentrations of inorganic macronutrients, oxygen, particulate organic carbon and nitrogen, and chlorophyll <fi>a</fi> was conducted in the northeastern Chukchi Sea. Cold (<-1.5°C) winter water was prevalent throughout the study area, and the water column was weakly stratified. Nitrate (NO3-) concentration averaged 12.6 ± 1.92 μ<fi>M</fi> in surface waters and 14.0 ± 1.91 μ<fi>M</fi> near the bottom and was significantly correlated with salinity. The highest NO3- concentrations were associated with winter water within the Central Channel flow path. NO3- concentrations were much reduced near the northern shelf break within the upper halocline waters of the Canada Basin and along the eastern side of the shelf near the Alaskan coast. Net community production (NCP), estimated as the difference in depth-integrated NO3- content between spring (this study) and summer (historical), varied from 28 to 38 g C m-2 a-1. This is much lower than previous NCP estimates that used NO3- concentrations from the southeastern Bering Sea as a baseline. These results demonstrate the importance of using profiles of NO3- measured as close to the beginning of the spring bloom as possible when estimating local NCP. They also show that once the snow melts in spring, increased light transmission through the sea <span class="hlt">ice</span> to the waters below the <span class="hlt">ice</span> could fuel large phytoplankton blooms over a much wider area than previously known.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..574I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..574I"><span>A 60 Year Record of Atmospheric Aerosol Depositions Preserved in a High-Accumulation Dome <span class="hlt">Ice</span> <span class="hlt">Core</span>, Southeast Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iizuka, Yoshinori; Uemura, Ryu; Fujita, Koji; Hattori, Shohei; Seki, Osamu; Miyamoto, Chihiro; Suzuki, Toshitaka; Yoshida, Naohiro; Motoyama, Hideaki; Matoba, Sumito</p> <p>2018-01-01</p> <p>The Southeastern Greenland Dome (SE-Dome) has both a high elevation and a high accumulation rate (1.01 m we yr-1), which are suitable properties for reconstructing past environmental changes with a high time resolution. For this study, we measured the major ion fluxes in a 90 m <span class="hlt">ice</span> <span class="hlt">core</span> drilled from the SE-Dome region in 2015 and present the records of annual ion fluxes from 1957 to 2014. From 1970 to 2010, the trend of nonsea-salt (nss) SO42- flux decreases, whereas that for NH4+ increases, tracking well with the anthropogenic SO<fi>x</fi> and NH3 emissions mainly from North America. The result suggests that these fluxes reflect histories of the anthropogenic SO<fi>x</fi> and NH3 emissions. In contrast, the decadal trend of NO3- flux differs from the decreasing trend of anthropogenic NO<fi>x</fi> emissions. Although the cause of this discrepancy remains unclear, it may be related to changes in particle formation processes and chemical scavenging rates caused by an increase in sea salt and dust and/or a decrease in nssSO42-. We also find a high average NO3- flux (1.13 mmol m-2 yr-1) in the <span class="hlt">ice</span> <span class="hlt">core</span>, which suggests a negligible effect from postdepositional NO3- loss. Thus, the SE-Dome region is an excellent location for reconstructing nitrate fluxes. Over a decadal time scale, our NO3- flux record is similar to those from other <span class="hlt">ice</span> <span class="hlt">cores</span> in Greenland high-elevation sites, suggesting that NO3- concentration records from these <span class="hlt">ice</span> <span class="hlt">cores</span> are reliable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.1486K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.1486K"><span>Windows in Arctic sea <span class="hlt">ice</span>: Light transmission and <span class="hlt">ice</span> algae in a refrozen lead</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.</p> <p>2017-06-01</p> <p>The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year <span class="hlt">ice</span> <span class="hlt">cover</span>, with significant consequences for radiative transfer through the <span class="hlt">ice</span> pack and light availability for algal growth. A thinner, more dynamic <span class="hlt">ice</span> <span class="hlt">cover</span> will possibly result in more frequent leads, <span class="hlt">covered</span> by newly formed <span class="hlt">ice</span> with little snow <span class="hlt">cover</span>. We studied a refrozen lead (≤0.27 m <span class="hlt">ice</span>) in drifting pack <span class="hlt">ice</span> north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea <span class="hlt">ICE</span> expedition (N-<span class="hlt">ICE</span>2015). We measured downwelling incident and <span class="hlt">ice</span>-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea <span class="hlt">ice</span> samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during <span class="hlt">ice</span> melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin <span class="hlt">ice</span> was significantly higher than that of the adjacent thicker <span class="hlt">ice</span> with deep snow <span class="hlt">cover</span>, <span class="hlt">ice</span> algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent <span class="hlt">ice</span>. <span class="hlt">Ice</span> algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24353154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24353154"><span>[The relevance of <span class="hlt">core</span> muscles in <span class="hlt">ice</span> hockey players: a feasibility study].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rogan, S; Blasimann, A; Nyffenegger, D; Zimmerli, N; Radlinger, L</p> <p>2013-12-01</p> <p>Good <span class="hlt">core</span> strength is seen as a condition for high performance in sports. In general, especially maximum voluntary contraction (MVC) and strength endurance (SE) measurements of the <span class="hlt">core</span> muscles are used. In addition, a few studies can be found that examine the <span class="hlt">core</span> muscles in terms of MVC, rate of force development (RFD) and SE. Primary aims of this feasibility study were to investigate the feasibility regarding recruiting process, compliance and safety of the testing conditions and raise the force capabilities MVC, RFD and SE of the <span class="hlt">core</span> muscles in amateur <span class="hlt">ice</span> hockey players. Secondarily, tendencies of correlations between muscle activity and either shot speed and sprint time shall be examined. In this feasibility study the recruitment process has been approved by 29 <span class="hlt">ice</span> hockey players, their adherence to the study measurements of trunk muscles, and safety of the measurements was evaluated. To determine the MVC, RFD and SE for the ventral, lateral and dorsal <span class="hlt">core</span> muscles a dynamic force measurement was performed. To determine the correlation between <span class="hlt">core</span> muscles and shot speed and 40-m sprint, respectively, the rank correlation coefficient (rho) from Spearman was used. The recruited number of eight field players and one goal-keeper was not very high. The compliance with 100 % was excellent. The players reported no adverse symptoms or injuries after the measurements. The results show median values for the ventral <span class="hlt">core</span> muscles for MVC with 46.5 kg for RFD with 2.23 m/s2 and 96 s for the SE. For lateral <span class="hlt">core</span> muscle median values of the lateral <span class="hlt">core</span> muscles for MVC with 71.10 kg, RFD with 2.59 m/s2 and for SE over 66 s were determined. The dorsal <span class="hlt">core</span> muscles shows values for MVC 69.7 kg, for RFD 3.39 m/s2 and for SE of 75 s. High correlations between MVC of the ventral <span class="hlt">core</span> muscles (rho = -0.721, p = 0.021), and between the SE of the ventral <span class="hlt">core</span> muscles (rho = 0.787, p = 0.012), and the shot velocity rate were determined. Another</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089578&hterms=Carotenoids&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DCarotenoids','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089578&hterms=Carotenoids&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DCarotenoids"><span>Lipophilic pigments from the benthos of a perennially <span class="hlt">ice-covered</span> Antarctic lake</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Palmisano, A. C.; Wharton, R. A. Jr; Cronin, S. E.; Des Marais, D. J.; Wharton RA, J. r. (Principal Investigator)</p> <p>1989-01-01</p> <p>The benthos of a perennially <span class="hlt">ice-covered</span> Antarctic lake, Lake Hoare, contained three distinct 'signatures' of lipophilic pigments. Cyanobacterial mats found in the moat at the periphery of the lake were dominated by the carotenoid myxoxanthophyll; carotenoids: chlorophyll a ratios in this high light environment ranged from 3 to 6.8. Chlorophyll c and fucoxanthin, pigments typical of golden-brown algae, were found at 10 to 20 m depths where the benthos is aerobic. Anaerobic benthic sediments at 20 to 30 m depths were characterized by a third pigment signature dominated by a carotenoid, tentatively identified as alloxanthin from planktonic cryptomonads, and by phaeophytin b from senescent green algae. Pigments were not found associated with alternating organic and sediment layers. As microzooplankton grazers are absent from this closed system and transformation rates are reduced at low temperatures, the benthos beneath the lake <span class="hlt">ice</span> appears to contain a record of past phytoplankton blooms undergoing decay.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25965023','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25965023"><span><span class="hlt">Ice</span> slurry ingestion reduces both <span class="hlt">core</span> and facial skin temperatures in a warm environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Onitsuka, Sumire; Zheng, Xinyan; Hasegawa, Hiroshi</p> <p>2015-07-01</p> <p>Internal body cooling by ingesting <span class="hlt">ice</span> slurry has recently attracted attention. Because <span class="hlt">ice</span> slurries are ingested through the mouth, it is possible that this results in conductive cooling of the facial skin and brain. However, no studies have investigated this possibility. Thus, the aim of this study was to investigate the effects of <span class="hlt">ice</span> slurry ingestion on forehead skin temperature at the point of conductive cooling between the forehead skin and brain. Eight male subjects ingested either 7.5g/kg of <span class="hlt">ice</span> slurry (-1°C; <span class="hlt">ICE</span>), a cold sports drink (4°C; COOL), or a warm sports drink (37°C; CON) for 15min in a warm environment (30°C, 80% relative humidity). Then, they remained at rest for 1h. As physiological indices, rectal temperature (Tre), mean skin temperature, forehead skin temperature (Thead), heart rate, nude body mass, and urine specific gravity were measured. Subjective thermal sensation (TS) was measured at 5-min intervals throughout the experiment. With <span class="hlt">ICE</span>, Tre and Thead were significantly reduced compared with CON and COOL conditions (p<0.05). The results of the other physiological indices were not significantly different. TS with <span class="hlt">ICE</span> was significantly lower than that with CON and COOL (p<0.05) and was correlated with Tre or Thead (p<0.05). These results indicate that <span class="hlt">ice</span> slurry ingestion may induce conductive cooling between forehead skin and brain, and reduction in <span class="hlt">core</span> and forehead skin temperature reduced thermal sensation. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CliPD...8.5963B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CliPD...8.5963B"><span>An optimized multi-proxy, multi-site Antarctic <span class="hlt">ice</span> and gas orbital chronology (AICC2012): 120-800 ka</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; Loutre, M.-F.; Raynaud, D.; Vinther, B.; Svensson, A.; Rasmussen, S. O.; Severi, M.; Blunier, T.; Leuenberger, M.; Fischer, H.; Masson-Delmotte, V.; Chappellaz, J.; Wolff, E.</p> <p>2012-11-01</p> <p>An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar <span class="hlt">ice</span> <span class="hlt">cores</span>. Until now, one common <span class="hlt">ice</span> <span class="hlt">core</span> age scale has been developed based on an inverse dating method (Datice) combining glaciological modelling with absolute and stratigraphic markers between 4 <span class="hlt">ice</span> <span class="hlt">cores</span> <span class="hlt">covering</span> the last 50 ka (thousand of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2012), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC <span class="hlt">ice</span> <span class="hlt">cores</span> using an improved version of the Datice tool. The AICC2012 (Antarctic <span class="hlt">Ice</span> <span class="hlt">Core</span> Chronology 2012) chronology includes numerous new gas and <span class="hlt">ice</span> stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this frame, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete δ18Oatm record of the TALDICE <span class="hlt">ice</span> <span class="hlt">cores</span> permit us to derive new orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology shows only small differences, well within the original uncertainty range, when compared with the previous <span class="hlt">ice</span> <span class="hlt">core</span> reference age scale EDC3. For instance, the duration of the last four interglacial periods is not affected by more than 5%. The largest deviation between AICC2012 and EDC3 (4.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6838K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6838K"><span>Late Quaternary sea-<span class="hlt">ice</span> history of northern Fram Strait/Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kremer, Anne; Stein, Rüdiger; Fahl, Kirsten; Matthießen, Jens; Forwick, Matthias; O'Regan, Matt</p> <p>2016-04-01</p> <p>One of the main characteristics of the Arctic Ocean is its seasonal to perennial sea-<span class="hlt">ice</span> <span class="hlt">cover</span>. Variations of sea-<span class="hlt">ice</span> conditions affect the Earth's albedo, primary production, rate of deep-water etc.. During the last decades, a drastic decrease in sea <span class="hlt">ice</span> has been recorded, and the causes of which, i.e., natural vs. anthropogenic forcings, and their relevance within the global climate system, are subject of intense scientific and societal debate. In this context, records of past sea-<span class="hlt">ice</span> conditions going beyond instrumental records are of major significance. These records may help to better understand the processes controlling natural sea-<span class="hlt">ice</span> variability and to improve models for forecasts of future climatic conditions. During RV Polarstern Cruise PS92 in summer 2015, a 860 cm long sediment <span class="hlt">core</span> (PS92/039-2) was recovered from the eastern flank of Yermak Plateau north of the Svalbard archipelago (Peeken, 2015). Based on a preliminary age model, this sediment <span class="hlt">core</span> probably represents the time interval from MIS 6 to MIS 1. This <span class="hlt">core</span>, located close to the modern summer <span class="hlt">ice</span> edge, has been selected for reconstruction of past Arctic sea-<span class="hlt">ice</span> variability based on specific biomarkers. In this context, we have determined the <span class="hlt">ice</span>-algae-derived sea-<span class="hlt">ice</span> proxy IP25 (Belt et al., 2007), in combination with other biomarkers indicative for open-water conditions (cf., Müller et al., 2009, 2011). Furthermore, organic carbon fluxes were differentiated using specific biomarkers indicative for marine primary production (brassicasterol, dinosterol) and terrigenous input (campesterol, β-sitosterol). In this poster, preliminary results of our organic-geochemical and sedimentological investigations are presented. Distinct fluctuations of these biomarkers indicate several major, partly abrupt changes in sea-<span class="hlt">ice</span> <span class="hlt">cover</span> in the Yermak Plateau area during the late Quaternary. These changes are probably linked to changes in the inflow of Atlantic Water along the western coastline of Svalbard into</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53C0729M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53C0729M"><span>Post-LGM grounding line and calving front translations of the West Antarctic <span class="hlt">Ice</span> Sheet in the Whales Deep paleo-<span class="hlt">ice</span>-stream trough, eastern Ross Sea, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGlannan, A. J.; Bart, P. J.; Chow, J.</p> <p>2016-12-01</p> <p>A large-area (2500 km2) multibeam survey of the Whales Deep paleo-<span class="hlt">ice</span>-stream trough, eastern Ross Sea, Antarctica was acquired during NBP1502B. This sector of the continental shelf is important as it was <span class="hlt">covered</span> by grounded and floating <span class="hlt">ice</span>, which drained the central part of an expanded West Antarctic <span class="hlt">Ice</span> Sheet (WAIS) during the last glacial cycle. The seafloor geomorphology shows a well-defined cluster of four back stepping grounding zone wedges (GZWs) that were deposited in a partly overlapping fashion on the middle continental shelf during WAIS retreat. These observations permit two end-member possibilities for how the WAIS grounding line and calving front vacated the trough. In the first scenario, each GZW represents successive landward shifts of the grounding line and calving front. In the second scenario, each GZW represents a large-scale retreat and re-advance of grounded and floating <span class="hlt">ice</span>. To determine which of these two end-member scenarios most accurately describes WAIS retreat from this sector of Ross Sea, we evaluated a grid of kasten and piston <span class="hlt">cores</span>. The <span class="hlt">core</span> stations were selected on the basis of backstepping GZWs along the trough axis. Our <span class="hlt">core</span> data analyses included an integration of visual <span class="hlt">core</span> descriptions, x-ray images, grain size, water content, total organic carbon, shear strengths, and diatom assemblage data. <span class="hlt">Core</span> data reveal a single transgressive succession from proximal diamict overlain by sub-<span class="hlt">ice</span>-shelf and/or open-marine sediments. These data strongly support the first scenario, suggesting that an <span class="hlt">ice</span> shelf remained continuously intact during the time that the grounding line successively moved from the shelf edge to the middle shelf by small-scale landward translations until the end of the fourth grounding event. Sedimentologic and diatom-assemblage data from the inner shelf show that only the last middle shelf grounding event ended with a long-distance retreat of grounded and then floating <span class="hlt">ice</span> to south of the modern calving front.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97g2009A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97g2009A"><span>Search for nonstandard neutrino interactions with <span class="hlt">Ice</span>Cube Deep<span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kirby, C.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration</p> <p>2018-04-01</p> <p>As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of <span class="hlt">Ice</span>Cube Deep<span class="hlt">Core</span> data. The best fit for the muon to tau flavor changing term is ɛμ τ=-0.0005 , with a 90% C.L. allowed range of -0.0067 <ɛμ τ<0.0081 . This result is more restrictive than recent limits from other experiments for ɛμ τ. Furthermore, our result is complementary to a recent constraint on ɛμ τ using another publicly available <span class="hlt">Ice</span>Cube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the μ -τ sector.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2539G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2539G"><span>Snow contribution to first-year and second-year Arctic sea <span class="hlt">ice</span> mass balance north of Svalbard</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granskog, Mats A.; Rösel, Anja; Dodd, Paul A.; Divine, Dmitry; Gerland, Sebastian; Martma, Tõnu; Leng, Melanie J.</p> <p>2017-03-01</p> <p>The salinity and water oxygen isotope composition (δ18O) of 29 first-year (FYI) and second-year (SYI) Arctic sea <span class="hlt">ice</span> <span class="hlt">cores</span> (total length 32.0 m) from the drifting <span class="hlt">ice</span> pack north of Svalbard were examined to quantify the contribution of snow to sea <span class="hlt">ice</span> mass. Five <span class="hlt">cores</span> (total length 6.4 m) were analyzed for their structural composition, showing variable contribution of 10-30% by granular <span class="hlt">ice</span>. In these <span class="hlt">cores</span>, snow had been entrained in 6-28% of the total <span class="hlt">ice</span> thickness. We found evidence of snow contribution in about three quarters of the sea <span class="hlt">ice</span> <span class="hlt">cores</span>, when surface granular layers had very low δ18O values. Snow contributed 7.5-9.7% to sea <span class="hlt">ice</span> mass balance on average (including also <span class="hlt">cores</span> with no snow) based on δ18O mass balance calculations. In SYI <span class="hlt">cores</span>, snow fraction by mass (12.7-16.3%) was much higher than in FYI <span class="hlt">cores</span> (3.3-4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We conclude that oxygen isotopes and salinity profiles can give information on the age of the <span class="hlt">ice</span> and enables distinction between FYI and SYI (or older) <span class="hlt">ice</span> in the area north of Svalbard.<abstract type="synopsis"><title type="main">Plain Language SummaryThe role of snow in sea <span class="hlt">ice</span> mass balance is largely two fold. Firstly, it can slow down growth and melt due to its high insulation and high reflectance, but secondly it can actually contribute to sea <span class="hlt">ice</span> growth if the snow <span class="hlt">cover</span> is turned into <span class="hlt">ice</span>. The latter is largely a consequence of high mass of snow on top of sea <span class="hlt">ice</span> that can push the surface of the sea <span class="hlt">ice</span> below sea level and seawater can flood the <span class="hlt">ice</span>. This mixture of seawater and snow can then freeze and add to the growth of sea <span class="hlt">ice</span>. This is very typical in the Antarctic but not believed to be so important in the Arctic. In this work we show, for the first time, that snow actually contributes significantly to the growth of Arctic sea <span class="hlt">ice</span>. This is likely a consequence of the thinning of the Arctic sea <span class="hlt">ice</span>. The conditions in the Arctic, with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRD..11420118G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRD..11420118G"><span>Atmospheric soluble dust records from a Tibetan <span class="hlt">ice</span> <span class="hlt">core</span>: Possible climate proxies and teleconnection with the Pacific Decadal Oscillation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grigholm, B.; Mayewski, P. A.; Kang, S.; Zhang, Y.; Kaspari, S.; Sneed, S. B.; Zhang, Q.</p> <p>2009-10-01</p> <p>In autumn 2005, a joint expedition between the University of Maine and the Institute of Tibetan Plateau Research recovered three <span class="hlt">ice</span> <span class="hlt">cores</span> from Guoqu Glacier (33°34'37.8″N, 91°10'35.3″E, 5720 m above sea level) on the northern side of Mt. Geladaindong, central Tibetan Plateau. Isotopes (δ18O), major soluble ions (Na+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-), and radionuclide (β-activity) measurements from one of the <span class="hlt">cores</span> revealed a 70-year record (1935-2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948-2004) suggest that the Mt. Geladaindong <span class="hlt">ice</span> <span class="hlt">core</span> record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976-1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first <span class="hlt">ice</span> <span class="hlt">core</span> evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer <span class="hlt">ice</span> <span class="hlt">cores</span> from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.3594W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.3594W"><span>A 400-Year <span class="hlt">Ice</span> <span class="hlt">Core</span> Melt Layer Record of Summertime Warming in the Alaska Range</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike</p> <p>2018-04-01</p> <p>Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two <span class="hlt">ice</span> <span class="hlt">cores</span> collected from Mt. Hunter in Denali National Park in the central Alaska Range. The <span class="hlt">ice</span> <span class="hlt">core</span> record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the <span class="hlt">ice</span> <span class="hlt">core</span> drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC33B1020P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC33B1020P"><span>Evidence for Pacific Climate Regime Shifts as Preserved in a Southeast Alaska <span class="hlt">Ice</span> <span class="hlt">Core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porter, S. E.; Mosley-Thompson, E. S.; Thompson, L. G.</p> <p>2012-12-01</p> <p>Climate modes emanating from the Pacific sector have far-reaching effects across the globe. The El Niño/Southern Oscillation (ENSO) reflects anomalies in the sea surface temperature and pressure fields over the tropical Pacific, but climate implications from these anomalies extend to monsoon regions of Asia to North America and even Europe. The Pacific Decadal Oscillation (PDO) explains sea surface temperature anomalies in the North Pacific sector and influences the long-term behavior of the ENSO cycle as well as the storm track over North America expressed as the Pacific/North American Pattern (PNA). The impacts of both climate change and drastically reduced Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> on these teleconnection patterns are poorly understood, and with little knowledge about their past behavior, predicting the changes in these climate modes is extremely difficult. An <span class="hlt">ice</span> <span class="hlt">core</span> from the col between Mt. Bona and Mt. Churchill in southeast Alaska provides an opportunity to examine the PDO prior to both the start of instrumental records and the more recent effects of anthropogenic climate change. The Bona-Churchill records of isotopic, dust, and chemical composition are compared to nearby meteorological station and 20th century reanalysis data to evaluate their strength as climate recorders. Climate indices such as the PDO and PNA, along with indices created to describe the strength and position of the Aleutian Low and Siberian High, are incorporated into the analysis to determine if proxy relationships are altered under different climate regimes. Satellite records of sea <span class="hlt">ice</span> extent within the Sea of Okhotsk and the Bering Sea, when compared to the Bona-Churchill data, show a distinct change in behavior in the mid-1990s possibly in response to the temporary negative shift in the PDO. This behavioral shift is explored and placed into a broader climate context to determine whether similar events have occurred in the past or if this shift is unique to a rapidly warming Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.130..105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.130..105P"><span><span class="hlt">Ice</span> <span class="hlt">core</span> records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhrel, Ambarish; Kawamura, Kimitaka; Ono, Kaori; Seki, Osamu; Fu, Pingqing; Matoba, Sumio; Shiraiwa, Takayuki</p> <p>2016-04-01</p> <p>Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan <span class="hlt">ice</span> <span class="hlt">core</span> to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the <span class="hlt">ice</span> <span class="hlt">core</span>, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with α-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C18:1) in the same <span class="hlt">ice</span> <span class="hlt">core</span>. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) in the <span class="hlt">ice</span> <span class="hlt">core</span> have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with α-dicarbonyls and fatty acids (e.g., C18:1) in the <span class="hlt">ice</span> <span class="hlt">core</span>, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the <span class="hlt">ice</span> <span class="hlt">core</span> from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea <span class="hlt">ice</span> in the Northern Hemisphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610721F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610721F"><span>The last forests in Greenland, and the age of the <span class="hlt">ice</span> sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Funder, Svend; Schmidt, Astrid M. Z.; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder; Willerslev, Eske</p> <p>2014-05-01</p> <p>Recently ancient DNA (aDNA) studies of the basal <span class="hlt">ice</span> in the Camp Century <span class="hlt">ice</span> <span class="hlt">core</span>, northern Greenland, have shown that mixed coniferous-deciduous forest grew here before the area was invaded and permanently <span class="hlt">covered</span> by the <span class="hlt">ice</span> sheet. The <span class="hlt">coring</span> site is situated only 100 km from the present <span class="hlt">ice</span> margin and more than 500 km from the <span class="hlt">ice</span> divide, indicating that since this last inception the northern part of the <span class="hlt">ice</span> sheet never receded more than 100 km from its present margin. Dating of the basal <span class="hlt">ice</span> and obtaining an age for the forest and for the beginning of the <span class="hlt">ice</span> sheet's permanency has been attempted by analyzing for optically stimulated luminescence (OSL), meteoric 10Be/36Cl cosmogenic nuclides, 234U/238U recoil. These methods all provide only minimum ages and show that the forest at Cap Century is older than 500 ka. Comparison with other Pleistocene "forest sites" in Greenland - the Kap København Formation in northernmost Greenland, the DYE-3 <span class="hlt">ice</span> <span class="hlt">core</span> in the south, the ODP boring 646 south of Greenland, as well as results from basal <span class="hlt">ice</span> in the GRIP <span class="hlt">ice</span> <span class="hlt">core</span> - extends the minimum age to c. 1 ma. The maximum age is provided by the Kap København Formation, which must be older - or contemporaneous. The formation has recently been confirmed to date within the interval 2-2.5 ma, with a preferred age of 2.3-2.4 ma. Surprisingly, application of the molecular clock of insect COI sequences on the Camp Century aDNA now seem to push the minimum age just as far back - to 2.4 ma, suggesting that the timberline boreal forest at Kap København is contemporaneous with the mixed forest at Camp Century, 600 km to the south. From this we conclude that the northern <span class="hlt">ice</span> sheet dome, which today contains 85% of the total <span class="hlt">ice</span> sheet volume, has remained within 100 km of its present margin for at least 1 ma, and possibly may go back as far as 2.4 ma. The <span class="hlt">ice</span> sheet has therefore survived both interglacials and "super interglacials" that were both warmer and longer than the present. This</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.U32A..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.U32A..03R"><span>The Milankovitch Signature of the air Content Along the EPICA DC <span class="hlt">Ice</span> Record: a Tool Towards an Absolute Dating and Implication for <span class="hlt">ice</span> Flow Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raynaud, D.; Duval, P.; Lemieux-Dudon, B.; Lipenkov, V.; Parrenin, F.</p> <p>2006-12-01</p> <p>Air content of polar <span class="hlt">ice</span>, V, depends primarily on air pressure, temperature and pore volume at close-off prevailing at the site of <span class="hlt">ice</span> formation. Here we present the recently measured V record of the EPICA DC (EDC) Antarctic <span class="hlt">ice</span> <span class="hlt">core</span> <span class="hlt">covering</span> the last 650,000 years. The first 440,000 years remarkably displays the fundamental Milankovitch orbital frequencies. The 100 kyr period, corresponding to the eccentricity of the Earth's orbit and found in the V record, likely reflects essentially the pressure/elevation signature of V. But most of the variations observed in the V record cannot be explained neither by air pressure nor by temperature changes, and then should reflect properties influencing the porosity at close-off other than temperature. A wavelet analysis indicates a dominant period around 41 kyr, the period characteristic of the obliquity variations of the Earth's axis. We propose that the local insolation, via the solar radiation absorbed by the snow, leaves its imprint on the snow structure, then affects the snow-firn transition, and therefore is one of the controlling factors for the porosity at close-off. Such mechanism could account for the observed anti-correlation between local insolation and V. We estimate the variations of the absorbed solar flux in the near-surface snow layers on the basis of a simple albedo model (Lemieux-Dudon et al., this session). We compare the dating of the <span class="hlt">ice</span> obtained using the local insolation signal deduced from the V record with a chronology based on <span class="hlt">ice</span> flow modelling. We discuss the glaciological implications of the comparison between the two chronologies, as well as the potential of local insolation markers for approaching an absolute dating of <span class="hlt">ice</span> <span class="hlt">core</span>. The latest results <span class="hlt">covering</span> the period 440-650 kyr BP will also be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113957T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113957T"><span>INTIMATE: Integration of <span class="hlt">Ice-core</span> Marine and Terrestrial records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turney, C. S. M.; Hoek, W. Z.; Intimate Group</p> <p>2009-04-01</p> <p>The principal aim of the INTIMATE Project is to synthesize high-resolution <span class="hlt">ice</span>, terrestrial and marine records spanning the period 60,000 to 8000 years ago (henceforth given as 60-8 ka) to better understand the impact and mechanisms of rapid and extreme climate change, thereby reducing the uncertainty of future predictions. The specific objectives of the INTIMATE Project are to: • lead the development of highly-precise and accurate age-depth models in <span class="hlt">ice-core</span>, marine, and terrestrial records (including identification and validation of time-stratigraphic marker horizons) over the period 60-8 ka; • promote the development of quantified climate reconstruction methods; • determine the timing, rates of change, spatial variability and climate gradients during key periods at the regional, hemispheric and global level (in collaboration with the INQUA-recognized Australasian INTIMATE Project and future regional INTIMATE projects); • determine the environmental impact of rapid and extreme climate changes in the North Atlantic region (focusing on megafauna and vegetation); and develop climate and environmental reconstructions of change that may be used in climate modeling to better determine the mechanisms of change and how signals are propagated globally. For correlation, precise dating of the records from the different realms is imperative. The development of an event-stratigraphy for the Last Glacial-Interglacial Transition (Björck et al., 1998) provided a template to compare other, independently dated, palaeoclimate records with the high-resolution Greenland oxygen isotope records. The event-stratigraphy has recently been refined and updated to the new NGRIP record using the GICC05 timescale (Lowe et al., 2008), which will be outlined in this paper. References: Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B. and INTIMATE members (1998) An event stratigraphy for the Last Termination in the North Atlantic region</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA265262','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA265262"><span>Beaufort Ambient Seismo-Acoustics Beneath <span class="hlt">Ice</span> <span class="hlt">Cover</span> (BASIC)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-05-01</p> <p>detected with a revssure trans- •-’:-r on the deep-sea floor it of sufficiently long wavelength, and also by appropriate on-<span class="hlt">ice</span> sensors . The BASIC field...exper- iment. Because of the very quiet low frequency Arctic seafloor conditions, the measurements proved to be sensor noise limited above 2 Hz. As...and tiltmeters deployed on the <span class="hlt">ice</span> (Czipott and Podney, 1989; Williams et al, 1989). These distortions of the <span class="hlt">ice</span> are either driven by the local wind</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA53B..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA53B..05S"><span>Using a Flying Thing in the Sky to See How Much Water is in the <span class="hlt">Cover</span> of Tiny <span class="hlt">Ice</span> Pieces in the High Places</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skiles, M.</p> <p>2016-12-01</p> <p>Groups of tiny <span class="hlt">ice</span> pieces fall from the sky in the cold times and <span class="hlt">cover</span> the high places. Later, the tiny <span class="hlt">ice</span> pieces become water that moves to the lower places, where people can use it for drinking and stuff. The time when the tiny <span class="hlt">ice</span> pieces turn to water is controlled by the sun. New tiny <span class="hlt">ice</span> pieces from the sky, which are very white and don't take up much sun, group up and grow tall. When they become dark from getting old and large, and from getting <span class="hlt">covered</span> in tiny dark bits from the sky, they take up more sun and turn to water. The more tiny dark bits, the faster they become water. Using a flying thing over the high places we can see how much water will come from the <span class="hlt">cover</span> of tiny <span class="hlt">ice</span> pieces by using ground looking things to see how tall it is, and and when it will become water by using picture taking things to see how much sun is taken up. The low places are happy to know how much water is in the high places.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013732','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013732"><span>Wave-<span class="hlt">Ice</span> and Air-<span class="hlt">Ice</span>-Ocean Interaction During the Chukchi Sea <span class="hlt">Ice</span> Edge Advance</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -<span class="hlt">Ice</span> and Air-<span class="hlt">Ice</span>-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing <span class="hlt">ice</span> edge. A...first) wave -<span class="hlt">ice</span> interaction field experiment that adequately documents the relationship of a growing pancake <span class="hlt">ice</span> <span class="hlt">cover</span> with a time and space varying</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003985','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003985"><span>Seafloor Control on Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.</p> <p>2011-01-01</p> <p>The seafloor has a profound role in Arctic sea <span class="hlt">ice</span> formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea <span class="hlt">ice</span> on the ocean surface. Sea <span class="hlt">ice</span> dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea <span class="hlt">ice</span> together with buoy measurements are used to reveal the bathymetric control on sea <span class="hlt">ice</span> growth and dynamics. Bathymetric effects on sea <span class="hlt">ice</span> formation are clearly observed in the conformation between sea <span class="hlt">ice</span> patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive <span class="hlt">ice</span>-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea <span class="hlt">ice</span> classes, including seasonal and perennial sea <span class="hlt">ice</span>, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea <span class="hlt">ice</span> <span class="hlt">cover</span> is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum <span class="hlt">ice</span> extent has decreased drastically. Because of the geologic control, the sea <span class="hlt">ice</span> <span class="hlt">cover</span> can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea <span class="hlt">ice</span> patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea <span class="hlt">ice</span> <span class="hlt">cover</span>. Moreover, the seafloor can indirectly influence cloud <span class="hlt">cover</span> by its control on sea <span class="hlt">ice</span> distribution, which differentially modulates the latent heat flux through <span class="hlt">ice</span> <span class="hlt">covered</span> and open water areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28246631','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28246631"><span>State dependence of climatic instability over the past 720,000 years from Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> and climate modeling.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun'ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu</p> <p>2017-02-01</p> <p>Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new <span class="hlt">ice-core</span> record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C <span class="hlt">ice</span> <span class="hlt">core</span>. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea <span class="hlt">ice</span> and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO 2 concentration via global cooling and sea <span class="hlt">ice</span> formation in the North Atlantic, in addition to extended Northern Hemisphere <span class="hlt">ice</span> sheets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5298857','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5298857"><span>State dependence of climatic instability over the past 720,000 years from Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> and climate modeling</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun’ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu</p> <p>2017-01-01</p> <p>Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new <span class="hlt">ice-core</span> record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C <span class="hlt">ice</span> <span class="hlt">core</span>. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea <span class="hlt">ice</span> and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea <span class="hlt">ice</span> formation in the North Atlantic, in addition to extended Northern Hemisphere <span class="hlt">ice</span> sheets. PMID:28246631</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26567474','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26567474"><span>Taxonomic characterization and the bio-potential of bacteria isolated from glacier <span class="hlt">ice</span> <span class="hlt">cores</span> in the High Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Purnima; Singh, Shiv Mohan; Roy, Utpal</p> <p>2016-03-01</p> <p>Glacier <span class="hlt">ice</span> and firn <span class="hlt">cores</span> have ecological and biotechnological importance. The present study is aimed at characterizing bacteria in crustal <span class="hlt">ice</span> <span class="hlt">cores</span> from Svalbard, the Arctic. Counts of viable isolates ranged from 10 to 7000 CFU/ml (mean 803 CFU/ml) while the total bacterial numbers ranged from 7.20 × 10(4) to 2.59 × 10(7)  cells ml(-1) (mean 3.12 × 10(6)  cells ml(-1) ). Based on 16S rDNA sequence data, the identified species belonged to seven species, namely Bacillus barbaricus, Pseudomonas orientalis, Pseudomonas oryzihabitans, Pseudomonas fluorescens, Pseudomonas syncyanea, Sphingomonas dokdonensis, and Sphingomonas phyllosphaerae, with a sequence similarity ranging between 93.5 and 99.9% with taxa present in the database. The isolates exhibited unique phenotypic properties, and three isolates (MLB-2, MLB-5, and MLB-9) are novel species, yet to be described. To the best of our knowledge, this is the first report on characterization of cultured bacterial communities from Svalbard <span class="hlt">ice</span> <span class="hlt">cores</span>. We conclude that high lipase, protease, cellulase, amylase, and urease activities expressed by most of the isolates provide a clue to the potential industrial applications of these organisms. These microbes, producing cold-adapted enzymes may provide an opportunity for biotechnological research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGC21B..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGC21B..04A"><span>Atmosphere aerosol/dust composition over central Asia and western Siberia derived from snow/<span class="hlt">ice</span> <span class="hlt">core</span> records and calibrated with NASA remote sensing data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.</p> <p>2007-12-01</p> <p>The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow <span class="hlt">ice-core</span> records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that <span class="hlt">ice-core</span> data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the <span class="hlt">ice-cores</span>, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the <span class="hlt">ice-core</span> aerosol depositions for the last 10-years were identified through calibrating <span class="hlt">ice-core</span> records with dust</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9913K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9913K"><span>Characteristics of Dust Deposition at High Elevation Sites in Caucasus Over the Past 190 years Recorded in <span class="hlt">Ice</span> <span class="hlt">Cores</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kutuzov, Stanislav; Ginot, Patrick; Mikhaenko, Vladimir; Krupskaya, Victoria; Legrand, Michel; Preunkert, Suzanne; Polukhov, Alexey; Khairedinova, Alexandra</p> <p>2017-04-01</p> <p>The nature and extent of both radiative and geochemical impacts of mineral dust on snow pack and glaciers depend on physical and chemical properties of dust particles and its deposition rates. <span class="hlt">Ice</span> <span class="hlt">cores</span> can provide information about amount of dust particles in the atmosphere and its characteristic and also give insights on strengths of the dust sources and its changes in the past. A series of shallow <span class="hlt">ice</span> <span class="hlt">cores</span> have been obtained in Caucasus mountains, Russia in 2004 - 2015. A 182 meter <span class="hlt">ice</span> <span class="hlt">core</span> has been recovered at the Western Plateau of Mt. Elbrus (5115 m a.s.l.) in 2009. The <span class="hlt">ice</span> <span class="hlt">cores</span> have been dated using stable isotopes, NH4+ and succinic acid data with the seasonal resolution. Samples were analysed for chemistry, concentrations of dust and black carbon, and particle size distributions. Dust mineralogy was assessed by XRD. Individual dust particles were analysed using SEM. Dust particle number concentration was measured using the Markus Klotz GmbH (Abakus) implemented into the CFA system. Abakus data were calibrated with Coulter Counter multisizer 4. Back trajectory cluster analysis was used to assess main dust source areas. It was shown that Caucasus region experiencing influx of mineral dust from the Sahara and deserts of the Middle East. Mineralogy of dust particles of desert origin was significantly different from the local debris material and contained large proportion of calcite and clay minerals (kaolinite, illite, palygorskite) associated with material of desert origin. Annual dust flux in the Caucasus Mountains was estimated as 300 µg/cm2 a-1. Particle size distribution depends on individual characteristics of dust deposition event and also on the elevation of the drilling site. The contribution of desert dust deposition was estimated as 35-40 % of the total dust flux. Average annual Ca2+ concentration over the period from 1824 to 2013 was of 150 ppb while some of the strong dust deposition events led to the Ca2+ concentrations reaching 4400 ppb. An</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5856069','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5856069"><span>First identification and characterization of Borrobol‐type tephra in the Greenland <span class="hlt">ice</span> <span class="hlt">cores</span>: new deposits and improved age estimates</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Davies, Siwan M.; Guðmundsdóttir, Esther R.; Abbott, Peter M.; Pearce, Nicholas J. G.</p> <p>2018-01-01</p> <p>ABSTRACT Contiguous sampling of <span class="hlt">ice</span> spanning key intervals of the deglaciation from the Greenland <span class="hlt">ice</span> <span class="hlt">cores</span> of NGRIP, GRIP and NEEM has revealed three new silicic cryptotephra deposits that are geochemically similar to the well‐known Borrobol Tephra (BT). The BT is complex and confounded by the younger closely timed and compositionally similar Penifiler Tephra (PT). Two of the deposits found in the <span class="hlt">ice</span> are in Greenland Interstadial 1e (GI‐1e) and an older deposit is found in Greenland Stadial 2.1 (GS‐2.1). Until now, the BT was confined to GI‐1‐equivalent lacustrine sequences in the British Isles, Sweden and Germany, and our discovery in Greenland <span class="hlt">ice</span> extends its distribution and geochemical composition. However, the two cryptotephras that fall within GI‐1e <span class="hlt">ice</span> cannot be separated on the basis of geochemistry and are dated to 14358 ± 177 a b2k and 14252 ± 173 a b2k, just 106 ± 3 years apart. The older deposit is consistent with BT age estimates derived from Scottish sites, while the younger deposit overlaps with both BT and PT age estimates. We suggest that either the BT in Northern European terrestrial sequences represents an amalgamation of tephra from both of the GI‐1e events identified in the ice‐<span class="hlt">cores</span> or that it relates to just one of the ice‐<span class="hlt">core</span> events. A firm correlation cannot be established at present due to their strong geochemical similarities. The older tephra horizon, found within all three ice‐<span class="hlt">cores</span> and dated to 17326 ± 319 a b2k, can be correlated to a known layer within marine sediment <span class="hlt">cores</span> from the North Iceland Shelf (ca. 17179‐16754 cal a BP). Despite showing similarities to the BT, this deposit can be distinguished on the basis of lower CaO and TiO2 and is a valuable new tie‐point that could eventually be used in high‐resolution marine records to compare the climate signals from the ocean and atmosphere. PMID:29576671</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21637255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21637255"><span>A dynamic early East Antarctic <span class="hlt">Ice</span> Sheet suggested by <span class="hlt">ice-covered</span> fjord landscapes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Young, Duncan A; Wright, Andrew P; Roberts, Jason L; Warner, Roland C; Young, Neal W; Greenbaum, Jamin S; Schroeder, Dustin M; Holt, John W; Sugden, David E; Blankenship, Donald D; van Ommen, Tas D; Siegert, Martin J</p> <p>2011-06-02</p> <p>The first Cenozoic <span class="hlt">ice</span> sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of <span class="hlt">ice</span>-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. <span class="hlt">Ice</span>-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of <span class="hlt">ice</span>, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from <span class="hlt">ice</span>-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of <span class="hlt">ice</span>-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic <span class="hlt">Ice</span> Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C13C0836P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C13C0836P"><span><span class="hlt">Ice</span> <span class="hlt">core</span> records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate variability in the North Pacific Rim</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhrel, A.; Kawamura, K.; Seki, O.; Ono, K.; Matoba, S.; Shiraiwa, T.</p> <p>2015-12-01</p> <p>180 m long <span class="hlt">ice</span> <span class="hlt">core</span> (ca. 343 years old) was drilled in the saddle of the Aurora Peak of Alaska, which is located southeast of Fairbanks (63.52°N; 146.54°W, elevation: 2,825 m). Samples were directly transported to the Institute of Low Temperature Science, Hokkaido University and have been analyzed for monoterpene- and isoprene-SOA tracers using gas chromatograph (GC; HP 6890) and mass spectrometry system (GC/MS; Agilent). <span class="hlt">Ice</span> <span class="hlt">core</span> collected from mountain glacier has not been explored for SOA yet. We found significantly high concentrations of these tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylrythritol), which show historical trends with good correlation with each other since 1665-2008. They show positive correlations with sugar compounds (e.g., mannitol, glucose, fructose, inositol, and sucrose), and anti-correlations with diacids (e.g., C9), w-oxocarboxylic (wC4-wC9), a-dicarbonyls and low molecular weight fatty acids (LFAs) (e.g., C18:1). LFAs show strong correlations with MSA- and nss-SO42- in the same <span class="hlt">ice</span> <span class="hlt">core</span>. These results suggest source regions of SOA tracers and <span class="hlt">ice</span> <span class="hlt">core</span> chemistry of Alaska. Concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) have increased in the <span class="hlt">ice</span> <span class="hlt">core</span> after the Great Pacific Climate Shift (late 1970's). They show positive correlations with a-dicarbonyls and LFAs (e.g., C18:1) in the <span class="hlt">ice</span> <span class="hlt">core</span>, suggesting that enhanced oceanic emissions of biogenic organic compounds through the surface microlayer are recorded in the <span class="hlt">ice</span> <span class="hlt">core</span>. Photochemical oxidation processes for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations (e.g., North Pacific Index) and we can look at a whole range of environmental parameters in parallel with the robust reconstructed temperature changes in the Northern Hemisphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..118.3879L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..118.3879L"><span>Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine <span class="hlt">ice</span> <span class="hlt">cores</span>: Implications for the long-term change of organic aerosol over Europe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Legrand, M.; Preunkert, S.; May, B.; Guilhermet, J.; Hoffman, H.; Wagenbach, D.</p> <p>2013-05-01</p> <p>Dissolved organic carbon (DOC) and an extended array of organic compounds were investigated in an Alpine <span class="hlt">ice</span> <span class="hlt">core</span> <span class="hlt">covering</span> the 1920-1988 time period. Based on this, a reconstruction was made of the long-term trends of water-soluble organic carbon (WSOC) aerosol in the European atmosphere. It is shown that light mono- and dicarboxylates, humic-like substances, and formaldehyde account together for more than half of the DOC content of <span class="hlt">ice</span>. This extended chemical speciation of DOC is used to estimate the DOC fraction present in <span class="hlt">ice</span> that is related to WSOC aerosol and its change over the past. It is suggested that after World War II, the WSOC levels have been enhanced by a factor of 2 and 3 in winter and summer, respectively. In summer, the fossil fuel contribution to the enhancement is estimated to be rather small, suggesting that it arises mainly from an increase in biogenic sources of WSOC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A43A0203K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A43A0203K"><span>Constraining recent lead pollution sources in the North Pacific using <span class="hlt">ice</span> <span class="hlt">core</span> stable lead isotopes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kreutz, K. J.; Osterberg, E. C.; Gross, B.; Handley, M.; Wake, C. P.; Yalcin, K.</p> <p>2009-12-01</p> <p>Trends and sources of lead aerosol pollution in the North Pacific boundary layer from 1970-2001 are investigated using a high-resolution <span class="hlt">ice</span> <span class="hlt">core</span> record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Average Pb concentrations in the <span class="hlt">ice</span> <span class="hlt">core</span> are enriched 31.8 times above crustal values based on ratios with five crustal reference elements (La, Ce, Pr, Al and Ti), indicating that >90% of the Pb deposited is anthropogenic. Isotopic analyses (208Pb/207Pb and 206Pb/207Pb) confirm that the Pb deposited at Eclipse Icefield is predominantly anthropogenic. Annually averaged Pb concentrations range from 25.6 ng/l to 96.7 ng/l (67.6 ng/l mean) and show no long term trend for the 1970-2001 period, contrary to other <span class="hlt">ice</span> <span class="hlt">core</span> records from the North Atlantic and the North Pacific. The stable Pb isotope ratio (208Pb/207Pb and 206Pb/207Pb) field indicates that recent Eclipse Icefield Pb pollution represents a variable mixture of North American, Central Eurasian and Asian (Chinese and Japanese) emissions transported across the Pacific basin, with Chinese coal combustion likely being the primary source. Increasing 208Pb/207Pb and 206Pb/207Pb ratios from the 1970’s through 2001 reflect the progressive East Asian industrialization concurrent with a decrease in Eurasian Pb emissions. We compare Pb isotope results from the Eclipse Icefield to data recently acquired from Denali National Park, where snowpit samples were collected from the Kahiltna Pass region (3048 masl). Pb isotope data from both sites are used to evaluate the relative importance of Asian emissions at similar altitudes yet different latitudes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27458438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27458438"><span>Unanticipated Geochemical and Microbial Community Structure under Seasonal <span class="hlt">Ice</span> <span class="hlt">Cover</span> in a Dilute, Dimictic Arctic Lake.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schütte, Ursel M E; Cadieux, Sarah B; Hemmerich, Chris; Pratt, Lisa M; White, Jeffrey R</p> <p>2016-01-01</p> <p>Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under <span class="hlt">ice</span> <span class="hlt">cover</span>. We assessed the vertical microbial community distribution and geochemical composition in early spring under <span class="hlt">ice</span> in a seasonally <span class="hlt">ice-covered</span> lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9877R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9877R"><span>Sea <span class="hlt">ice</span> proxies, marine environmental change, and human societies in Northwest Greenland over the past ca. 4500 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribeiro, Sofia; Weckström, Kaarina; Tallberg, Petra; Risager Kjøller, Marianne; Limoges, Audrey; Massé, Guillaume; Nissen, Martin; Toudal Pedersen, Leif; Mikkelsen, Naja</p> <p>2016-04-01</p> <p>Greenland has been inhabited for only ca. 4500 years, but several human colonization events and cultural transitions occurred during this period. This work is part of the <span class="hlt">ICE</span>-ARC project - <span class="hlt">Ice</span>, Climate and Economics in the Arctic (EU FP7), aimed at understanding and quantifying the multiple stresses involved in the change in the Arctic marine environment, with particular focus on the rapid retreat and collapse of the Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span>. The overall goal of the project is to assess the climatic (<span class="hlt">ice</span>, ocean, atmosphere and ecosystem), economic and social impacts of these stresses on regional and global scales. Marine sediment <span class="hlt">cores</span> were retrieved from the Inglefield Bredning fjord system in the Qaanaaq region, Northwest Greenland, and are being analysed for various climate and environmental proxies, including biological indicators (e.g. dinoflagellate cysts, diatoms), biogeochemical elements (biogenic silica, XRF scanning), and sea-<span class="hlt">ice</span> specific biomarkers (IP25). We will present the first data from this <span class="hlt">core</span> material, consisting of a spatial study of sea <span class="hlt">ice</span> and productivity proxies in 13 surface sediment samples (IP25, biogenic silica, diatoms, and dinoflagellate cysts) which will be compared with satellite-derived sea <span class="hlt">ice</span> <span class="hlt">cover</span> data for the Qaanaaq region/ northern Baffin Bay. This spatial study will serve as basis to reconstruct sea <span class="hlt">ice</span> variability in the area over the past ca. 4500 years, and will be combined with historical and archaeological data in order to identify possible links between past changes in climate and sea <span class="hlt">ice</span> conditions, and events of human migration and cultural transition in Greenland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP54A..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP54A..03P"><span>Late Holocene sea <span class="hlt">ice</span> conditions in Herald Canyon, Chukchi Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearce, C.; O'Regan, M.; Rattray, J. E.; Hutchinson, D. K.; Cronin, T. M.; Gemery, L.; Barrientos, N.; Coxall, H.; Smittenberg, R.; Semiletov, I. P.; Jakobsson, M.</p> <p>2017-12-01</p> <p>Sea <span class="hlt">ice</span> in the Arctic Ocean has been in steady decline in recent decades and, based on satellite data, the retreat is most pronounced in the Chukchi and Beaufort seas. Historical observations suggest that the recent changes were unprecedented during the last 150 years, but for a longer time perspective, we rely on the geological record. For this study, we analyzed sediment samples from two piston <span class="hlt">cores</span> from Herald Canyon in the Chukchi Sea, collected during the 2014 SWERUS-C3 Arctic Ocean Expedition. The Herald Canyon is a local depression across the Chukchi Shelf, and acts as one of the main pathways for Pacific Water to the Arctic Ocean after entering through the narrow and shallow Bering Strait. The study site lies at the modern-day seasonal sea <span class="hlt">ice</span> minimum edge, and is thus an ideal location for the reconstruction of past sea <span class="hlt">ice</span> variability. Both sediment <span class="hlt">cores</span> contain late Holocene deposits characterized by high sediment accumulation rates (100-300 cm/kyr). <span class="hlt">Core</span> 2-PC1 from the shallow canyon flank (57 m water depth) is 8 meter long and extends back to 4200 cal yrs BP, while the upper 3 meters of <span class="hlt">Core</span> 4-PC1 from the central canyon (120 mwd) <span class="hlt">cover</span> the last 3000 years. The chronologies of the <span class="hlt">cores</span> are based on radiocarbon dates and the 3.6 ka Aniakchak CFE II tephra, which is used as an absolute age marker to calculate the marine radiocarbon reservoir age. Analysis of biomarkers for sea <span class="hlt">ice</span> and surface water productivity indicate stable sea <span class="hlt">ice</span> conditions throughout the entire late Holocene, ending with an abrupt increase of phytoplankton sterols in the very top of both sediment sequences. The shift is accompanied by a sudden increase in coarse sediments (> 125 µm) and a minor change in δ13Corg. We interpret this transition in the top sediments as a community turnover in primary producers from sea <span class="hlt">ice</span> to open water biota. Most importantly, our results indicate that the ongoing rapid <span class="hlt">ice</span> retreat in the Chukchi Sea of recent decades was unprecedented during the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6364Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6364Y"><span>Isotope Reanalysis for 20th century: Reproduction of isotopic time series in corals, tree-rings, and tropical <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshimura, K.</p> <p>2012-04-01</p> <p>In the present study, an isotope-incorporated GCM simulation for AD1871 to AD2008 nudged toward the so-called "20th Century Reanalysis (20CR)" atmospheric fields is conducted. Beforehand the long-term integration, a method to downscale ensemble mean fields is proposed, since 20CR is a product of 56-member ensemble Kalman filtering data assimilation. The method applies a correction to one of the ensemble members in such a way that the seasonal mean is equal to that of the ensemble mean, and then the corrected member is inputted into the isotope-incorporated GCM (i.e., IsoGSM) with the global spectral nudging technique. Use of the method clearly improves the skill than the cases of using only a single member and of using the ensemble means; the skill becomes equivalent to when 3-6 members are directly used. By comparing with GNIP precipitation isotope database, it is confirmed that the 20C Isotope Reanalysis's performance for latter half of the 20th century is just comparable to the other latest studies. For more comparisons for older periods, proxy records including corals, tree-rings, and tropical <span class="hlt">ice</span> <span class="hlt">cores</span> are used. First for corals: the 20C Isotope Reanalysis successfully reproduced the δ18O in surface sea water recorded in the corals at many sites <span class="hlt">covering</span> large parts of global tropical oceans. The comparison suggests that coral records represent past hydrologic balance information where interannual variability in precipitation is large. Secondly for tree-rings: δ18O of cellulose extracted from the annual rings of the long-lived Bristlecone Pine from White Mountain in Southern California is well reproduced by 20C Isotope Reanalysis. Similar good performance is obtained for Cambodia, too. However, the mechanisms driving the isotopic variations are different over California and Cambodia; for California, Hadley cell's expansion and consequent meridional shift of the submerging dry zone and changes in water vapor source is the dominant control, but in Cambodia</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10..639S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10..639S"><span>Numerical simulations of the Cordilleran <span class="hlt">ice</span> sheet through the last glacial cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seguinot, Julien; Rogozhina, Irina; Stroeven, Arjen P.; Margold, Martin; Kleman, Johan</p> <p>2016-03-01</p> <p>After more than a century of geological research, the Cordilleran <span class="hlt">ice</span> sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the <span class="hlt">ice</span> sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that <span class="hlt">ice</span>-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical <span class="hlt">ice</span> sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran <span class="hlt">ice</span> sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2-56.9 ka) and 2 (23.2-16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic <span class="hlt">ice</span> <span class="hlt">cores</span> than from regional oceanic sediment <span class="hlt">cores</span>. During most of the last glacial cycle, the modelled <span class="hlt">ice</span> <span class="hlt">cover</span> is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central <span class="hlt">ice</span> dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran <span class="hlt">ice</span> until the middle Holocene (6.7 ka).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2033D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2033D"><span><span class="hlt">Ice</span> bridges and ridges in the Maxwell-EB sea <span class="hlt">ice</span> rheology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond</p> <p>2017-09-01</p> <p>This paper presents a first implementation of a new rheological model for sea <span class="hlt">ice</span> on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the <span class="hlt">ice</span> <span class="hlt">cover</span> and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea <span class="hlt">ice</span> drifting through a narrow passage. Idealized as well as realistic simulations of the flow of <span class="hlt">ice</span> through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable <span class="hlt">ice</span> bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the <span class="hlt">ice</span> <span class="hlt">cover</span> into floes, the strong spatial localization of the thickest, ridged <span class="hlt">ice</span>, the presence of landfast <span class="hlt">ice</span> in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the <span class="hlt">ice</span> <span class="hlt">cover</span> and to the shorter lifespan of <span class="hlt">ice</span> bridges, with implications in terms of increased <span class="hlt">ice</span> export through narrow outflow pathways of the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21141043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21141043"><span>Loss of sea <span class="hlt">ice</span> in the Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perovich, Donald K; Richter-Menge, Jacqueline A</p> <p>2009-01-01</p> <p>The Arctic sea <span class="hlt">ice</span> <span class="hlt">cover</span> is in decline. The areal extent of the <span class="hlt">ice</span> <span class="hlt">cover</span> has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea <span class="hlt">ice</span> thickness and a reduction in the amount of thicker perennial sea <span class="hlt">ice</span>. A general global warming trend has made the <span class="hlt">ice</span> <span class="hlt">cover</span> more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea <span class="hlt">ice</span> is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the <span class="hlt">ice</span> <span class="hlt">cover</span>, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older <span class="hlt">ice</span> out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the <span class="hlt">ice</span>-albedo feedback. The diminishing Arctic sea <span class="hlt">ice</span> is creating social, political, economic, and ecological challenges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26632967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26632967"><span>Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier <span class="hlt">Ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pavlova, Pavlina Aneva; Jenk, Theo Manuel; Schmid, Peter; Bogdal, Christian; Steinlin, Christine; Schwikowski, Margit</p> <p>2015-12-15</p> <p>In Alpine regions, glaciers act as environmental archives and can accumulate significant amounts of atmospherically derived pollutants. Due to the current climate-warming-induced accelerated melting, these pollutants are being released at correspondingly higher rates. To examine the effect of melting on the redistribution of legacy pollutants in Alpine glaciers, we analyzed polychlorinated biphenyls in an <span class="hlt">ice</span> <span class="hlt">core</span> from the temperate Silvretta glacier, located in eastern Switzerland. This glacier is affected by surface melting in summer. As a result, liquid water percolates down and particles are enriched in the current annual surface layer. Dating the <span class="hlt">ice</span> <span class="hlt">core</span> was a challenge because meltwater percolation also affects the traditionally used parameters. Instead, we counted annual layers of particulate black carbon in the <span class="hlt">ice</span> <span class="hlt">core</span>, adding the years with negative glacier mass balance, that is, years with melting and subsequent loss of the entire annual snow accumulation. The analyzed samples <span class="hlt">cover</span> the time period 1930-2011. The concentration of indicator PCBs (iPCBs) in the Silvretta <span class="hlt">ice</span> <span class="hlt">core</span> follows the emission history, peaking in the 1970s (2.5 ng/L). High PCB values in the 1990s and 1930s are attributed to meltwater-induced relocation within the glacier. The total iPCB load at the Silvretta <span class="hlt">ice</span> <span class="hlt">core</span> site is 5 ng/cm(2). A significant amount of the total PCB burden in the Silvretta glacier has been released to the environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1005076','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1005076"><span>Sunlight, Sea <span class="hlt">Ice</span>, and the <span class="hlt">Ice</span> Albedo Feedback in a Changing Artic Sea <span class="hlt">Ice</span> <span class="hlt">Cover</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-11-30</p> <p>information from the PIOMAS model [J. Zhang], melt pond coverage from MODIS [Rösel et al., 2012], and <span class="hlt">ice</span>-age estimates [Maslanik et al., 2011] to...determined from MODIS satellite data using an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc- 6-431-2012. PUBLICATIONS Carmack...from MODIS , and <span class="hlt">ice</span>-age estimates to this dataset. We have used this extented dataset to build a climatology of the partitioning of solar heat between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0700M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0700M"><span>Into the Deep Black Sea: The Icefin Modular AUV for <span class="hlt">Ice-Covered</span> Ocean Exploration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meister, M. R.; Schmidt, B. E.; West, M. E.; Walker, C. C.; Buffo, J.; Spears, A.</p> <p>2015-12-01</p> <p>The Icefin autonomous underwater vehicle (AUV) was designed to enable long-range oceanographic exploration of physical and biological ocean environments in <span class="hlt">ice-covered</span> regions. The vehicle is capable of surveying under-<span class="hlt">ice</span> geometry, <span class="hlt">ice</span> and <span class="hlt">ice</span>-ocean interface properties, as well as water column conditions beneath the <span class="hlt">ice</span> interface. It was developed with both cryospheric and planetary-analog exploration in mind. The first Icefin prototype was successfully operated in Antarctica in Austral summer 2014. The vehicle was deployed through a borehole in the McMurdo <span class="hlt">Ice</span> Shelf near Black Island and successfully collected sonar, imaging, video and water column data down to 450 m depth. Icefin was developed using a modular design. Each module is designed to perform specific tasks, dependent on the mission objective. Vehicle control and data systems can be stably developed, and power modules added or subtracted for mission flexibility. Multiple sensor bays can be developed in parallel to serve multiple science objectives. This design enables the vehicle to have greater depth capability as well as improved operational simplicity compared to larger vehicles with equivalent capabilities. As opposed to those vehicles that require greater logistics and associated costs, Icefin can be deployed through boreholes drilled in the <span class="hlt">ice</span>. Thus, Icefin satisfies the demands of achieving sub-<span class="hlt">ice</span> missions while maintaining a small form factor and easy deployment necessary for repeated, low-logistical impact field programs. The current Icefin prototype is 10.5 inches in diameter by 10 feet long and weighs 240 pounds. It is comprised of two thruster modules with hovering capabilities, an oceanographic sensing module, main control module and a forward-sensing module for obstacle avoidance. The oceanographic sensing module is fitted with a side scan sonar (SSS), CT sensor, altimetry profiler and Doplar Velocity Log (DVL) with current profiling. Icefin is depth-rated to 1500 m and is equipped with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.A21C0882Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.A21C0882Y"><span>Alaskan <span class="hlt">Ice</span> <span class="hlt">Core</span> Shows Relationship Between Asian Dust Storm And The Stratosphere Troposphere Exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.</p> <p>2005-12-01</p> <p>Atmospheric dust absorbs and scatters solar radiation, and affects global radiative balance. Dust storm in arid and semi-arid regions in East Asia is main dust source in the northern hemisphere. Asian dust has large effect on radiative balance in the northern hemisphere and its long range transport to Alaskan region frequently occurs in springtime. On the other hand, the stratosphere-troposphere exchange (STE) is a important phenomenon for material exchange among the spheres. Some parameters such as tritium, ozone and beryllium can be transferred from the stratosphere into the troposphere under some conditions such as tropopause folding outbreaks, cut-off low developing and cyclonic activities. STE has a seasonal exchange with maximum in springtime. In June 2003, a 50m <span class="hlt">ice</span> <span class="hlt">core</span> was drilled at the summit of Mount Wrangell volcano (60N, 144W, 4100 m), Alaska. Dust particle concentration, tritium content and ratio of stable hydrogen isotope were analyzed. Tritium is the stratospheric tracer recently because the effect of nuclear tests in 1960s has faded these days, and its concentration is highest north of 30th parallel. Therefore, the <span class="hlt">ice</span> <span class="hlt">core</span> drilled here is ideal to assess both the Asian dust transport and STE. The <span class="hlt">core</span> <span class="hlt">covers</span> 1992-2002 with divided four seasons (winter, spring, late-spring and summer). Fine dust less than one micro meter generally represents long range transport increased in springtime every year. The drastic fine and coarse dust flux increases after 2000 correspond to recent increase of Asian Dust outbreaks. These indicate that Asian dust storm largely affects Mount Wrangell every year. Here we show the fact that highest positive correlation between tritium and fine dust fluxes was seen in the term from late-spring to summer (also high correlation between tritium and coarse dust fluxes in this term), suggesting that the stratosphere-troposphere exchange was most intensified by Asian dust storms in this transient season from spring to summer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611594K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611594K"><span>Human and climate impacts on Holocene fire activity recorded in polar and mountain <span class="hlt">ice</span> <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kehrwald, Natalie; Zennaro, Piero; Kirchgeorg, Torben; Li, Quanlian; Wang, Ninglian; Power, Mitchell; Zangrando, Roberta; Gabrielli, Paolo; Thompson, Lonnie; Gambaro, Andrea; Barbante, Carlo</p> <p>2014-05-01</p> <p>Fire is one of the major influences of biogeochemical change on local to hemispheric scales through emitting greenhouse gases, altering atmospheric chemistry, and changing primary productivity. Levoglucosan (1,6-anhydro-β-D-glucopyranose) is a specific molecular that can only be produced by cellulose burning at temperatures > 300°C, comprises a major component of smoke plumes, and can be transported across > 1000 km distances. Levoglucosan is deposited on and archived in glaciers over glacial interglacial cycles resulting in pyrochemical evidence for exploring interactions between fire, climate and human activity. <span class="hlt">Ice</span> <span class="hlt">core</span> records provide records of past biomass burning from regions of the world with limited paleofire data including polar and low-latitude, high-altitude regions. Here, we present Holocene fire activity records from the NEEM, Greenland (77° 27'N; 51° 3'W; 2454 masl), EPICA Dome C, Antarctica (75° 06'S; 123° 21'E; 3233 masl), Kilimanjaro, Tanzania (3° 05'S, 21.2° E, 5893 masl) and the Muztagh, China (87.17° E; 36.35° N; 5780 masl <span class="hlt">ice</span> <span class="hlt">cores</span>. The NEEM <span class="hlt">ice</span> <span class="hlt">core</span> reflects boreal fire activity from both North American and Eurasian sources. Temperature is the dominant control of NEEM levoglucosan flux over decadal to millennial time scales, while droughts influence fire activity over sub-decadal timescales. Our results demonstrate the prominence of Siberian fire sources during intense multiannual droughts. Unlike the NEEM <span class="hlt">core</span>, which incorporates the largest land masses in the world as potential fire sources, EPICA Dome C is located far from any possible fire source. However, EPICA Dome C levoglucosan concentrations are consistently above detection limits and demonstrate a substantial 1000-fold increase in fire activity beginning approximately 800 years ago. This significant and sustained increase coincides with Maori arrival and dispersal in New Zealand augmented by later European arrival in Australia. The EPICA Dome C levoglucosan profile is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26494022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26494022"><span>Recovering Paleo-Records from Antarctic <span class="hlt">Ice-Cores</span> by Coupling a Continuous Melting Device and Fast Ion Chromatography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Severi, Mirko; Becagli, Silvia; Traversi, Rita; Udisti, Roberto</p> <p>2015-11-17</p> <p>Recently, the increasing interest in the understanding of global climatic changes and on natural processes related to climate yielded the development and improvement of new analytical methods for the analysis of environmental samples. The determination of trace chemical species is a useful tool in paleoclimatology, and the techniques for the analysis of <span class="hlt">ice</span> <span class="hlt">cores</span> have evolved during the past few years from laborious measurements on discrete samples to continuous techniques allowing higher temporal resolution, higher sensitivity and, above all, higher throughput. Two fast ion chromatographic (FIC) methods are presented. The first method was able to measure Cl(-), NO3(-) and SO4(2-) in a melter-based continuous flow system separating the three analytes in just 1 min. The second method (called Ultra-FIC) was able to perform a single chromatographic analysis in just 30 s and the resulting sampling resolution was 1.0 cm with a typical melting rate of 4.0 cm min(-1). Both methods combine the accuracy, precision, and low detection limits of ion chromatography with the enhanced speed and high depth resolution of continuous melting systems. Both methods have been tested and validated with the analysis of several hundred meters of different <span class="hlt">ice</span> <span class="hlt">cores</span>. In particular, the Ultra-FIC method was used to reconstruct the high-resolution SO4(2-) profile of the last 10,000 years for the EDML <span class="hlt">ice</span> <span class="hlt">core</span>, allowing the counting of the annual layers, which represents a key point in dating these kind of natural archives.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPa...9.1715B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPa...9.1715B"><span>An optimized multi-proxy, multi-site Antarctic <span class="hlt">ice</span> and gas orbital chronology (AICC2012): 120-800 ka</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; Loutre, M.-F.; Raynaud, D.; Vinther, B.; Svensson, A.; Rasmussen, S. O.; Severi, M.; Blunier, T.; Leuenberger, M.; Fischer, H.; Masson-Delmotte, V.; Chappellaz, J.; Wolff, E.</p> <p>2013-08-01</p> <p>An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar <span class="hlt">ice</span> <span class="hlt">cores</span>. Until now, one common <span class="hlt">ice</span> <span class="hlt">core</span> age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 <span class="hlt">ice</span> <span class="hlt">cores</span> <span class="hlt">covering</span> the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC <span class="hlt">ice</span> <span class="hlt">cores</span> using an improved version of the Datice tool. The AICC2012 (Antarctic <span class="hlt">Ice</span> <span class="hlt">Core</span> Chronology 2012) chronology includes numerous new gas and <span class="hlt">ice</span> stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this framework, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete δ18Oatm record of the TALDICE <span class="hlt">ice</span> <span class="hlt">cores</span> permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous <span class="hlt">ice</span> <span class="hlt">core</span> reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP24A..05X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP24A..05X"><span>Variability in Organic-Carbon Sources and Sea-<span class="hlt">Ice</span> Coverage North of Iceland (Subarctic) During the Past 15,000 Years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, X.; Zhao, M.; Knudsen, K. L.; Eiriksson, J.; Gudmundsdottir, E. R.; Jiang, H.; Guo, Z.</p> <p>2017-12-01</p> <p>Sea <span class="hlt">ice</span>, prevailing in the polar region and characterized by distinct seasonal and interannual variability, plays a pivotal role in Earth's climate system (Thomas and Dieckmann, 2010). Studies of spatial and temporal changes in modern and past sea-<span class="hlt">ice</span> occurrence may help to understand the processes controlling the recent decrease in Arctic sea-<span class="hlt">ice</span> <span class="hlt">cover</span>. Here, we determined the concentrations of sea-<span class="hlt">ice</span> diatom-derived biomarker "IP25" (monoene highly-branched isoprenoid with 25 carbon atom; Belt et al., 2007), phytoplankton-derived biomarker brassicasterol and terrigenous biomarker long-chain n-alkanols in a sediment <span class="hlt">core</span> from the North Icelandic shelf to reconstruct the high-resolution sea-<span class="hlt">ice</span> variability and the organic-matter sources during the past 15,000 years. During the Bølling/Allerød, the North Icelandic shelf was characterized by extensive spring sea-<span class="hlt">ice</span> <span class="hlt">cover</span> linked to reduced flow of warm Atlantic Water and dominant Polar water influence; the input of terrestrial and sea-<span class="hlt">ice</span> organic matters was high while the marine organic matter derived from phytoplankton productivity was low. Prolonged sea-<span class="hlt">ice</span> <span class="hlt">cover</span> with occasional occurrence of seasonal sea <span class="hlt">ice</span> prevailed during the Younger Dryas interrupted by a brief interval of enhanced Irminger Current; the organic carbon input from sea-<span class="hlt">ice</span> productivity, terrestrial matter and phytoplankton productivity all decreased. The seasonal sea <span class="hlt">ice</span> decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Therefore, the sea-<span class="hlt">ice</span> productivity decreased but the phytoplankton productivity increased during this time interval. The biomarker records from this sediment <span class="hlt">core</span> give insights into the variability in sea <span class="hlt">ice</span> and organic-carbon sources in the Arctic marginal area during the last deglacial and Holocene. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea <span class="hlt">ice</span>: IP25. Org. Geochem. 38, 16</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C11A0465M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C11A0465M"><span>Characteristics of basal <span class="hlt">ice</span> and subglacial water at Dome Fuji, Antarctica <span class="hlt">ice</span> sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.</p> <p>2008-12-01</p> <p>(Introduction): The second deep <span class="hlt">ice</span> <span class="hlt">coring</span> project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered <span class="hlt">ice</span> <span class="hlt">cores</span> contain records of global environmental changes going back about 720,000 years. (Estimation of basal <span class="hlt">ice</span> melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of <span class="hlt">ice</span> sheet. Some error was included in <span class="hlt">ice</span> temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the <span class="hlt">ice</span> sheet was calculated using the vertical temperature gradient of the <span class="hlt">ice</span> sheet and rate of heat conductivity of <span class="hlt">ice</span>. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the <span class="hlt">ice</span> sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by <span class="hlt">ice</span> sheet model (P. Huybrechts, 2006). Then the heat flux for basal <span class="hlt">ice</span> melt was about 10mW/m2. This value was equaled to melting of 1.1mm of <span class="hlt">ice</span> thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of <span class="hlt">ice</span> thickness. So the annual layer thickness and melting rate of basal <span class="hlt">ice</span> was the same in ordering way. Or <span class="hlt">ice</span> equivalent in annual layer is melting every year. The age of the deepest part of <span class="hlt">ice</span> <span class="hlt">core</span> is guessed at 720,000 years old and the <span class="hlt">ice</span> older than basal <span class="hlt">ice</span> has melted away. (The state of basal <span class="hlt">ice</span>): When the <span class="hlt">ice</span> <span class="hlt">core</span> drilling depth passed 3031.44m, amount of <span class="hlt">ice</span> chip more abundant</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C31A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C31A..01G"><span>Seasonal Changes of Arctic Sea <span class="hlt">Ice</span> Physical Properties Observed During N-<span class="hlt">ICE</span>2015: An Overview</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.</p> <p>2015-12-01</p> <p>Arctic sea <span class="hlt">ice</span> is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea <span class="hlt">ice</span> growth, change and decay. We present preliminary results from in-situ observations on sea <span class="hlt">ice</span> in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four <span class="hlt">ice</span> floes, drifting with the sea <span class="hlt">ice</span> and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal <span class="hlt">ice</span> zone and <span class="hlt">ice</span> started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition <span class="hlt">covered</span> measurements in the atmosphere, the snow and sea <span class="hlt">ice</span> system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea <span class="hlt">ice</span>. Different <span class="hlt">ice</span> types could be investigated: young <span class="hlt">ice</span> in refrozen leads, first year <span class="hlt">ice</span>, and old <span class="hlt">ice</span>. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and <span class="hlt">ice</span> thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying <span class="hlt">ice</span> physical properties and texture, <span class="hlt">ice</span> <span class="hlt">cores</span> were obtained regularly and analyzed. Optical properties of snow and <span class="hlt">ice</span> were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (<span class="hlt">ice</span> thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014QSRv..106...88B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014QSRv..106...88B"><span>Tephrochronology and the extended intimate (integration of <span class="hlt">ice-core</span>, marine and terrestrial records) event stratigraphy 8-128 ka b2k</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blockley, Simon P. E.; Bourne, Anna J.; Brauer, Achim; Davies, Siwan M.; Hardiman, Mark; Harding, Poppy R.; Lane, Christine S.; MacLeod, Alison; Matthews, Ian P.; Pyne-O'Donnell, Sean D. F.; Rasmussen, Sune O.; Wulf, Sabine; Zanchetta, Giovanni</p> <p>2014-12-01</p> <p>The comparison of palaeoclimate records on their own independent timescales is central to the work of the INTIMATE (INTegrating <span class="hlt">Ice</span> <span class="hlt">core</span>, MArine and TErrestrial records) network. For the North Atlantic region, an event stratigraphy has been established from the high-precision Greenland <span class="hlt">ice-core</span> records and the integrated GICC05 chronology. This stratotype provides a palaeoclimate signal to which the timing and nature of palaeoenvironmental change recorded in marine and terrestrial archives can be compared. To facilitate this wider comparison, without assuming synchroneity of climatic change/proxy response, INTIMATE has also focussed on the development of tools to achieve this. In particular the use of time-parallel marker horizons e.g. tephra layers (volcanic ash). Coupled with the recent temporal extension of the Greenland stratotype, as part of this special issue, we present an updated INTIMATE event stratigraphy highlighting key tephra horizons used for correlation across Europe and the North Atlantic. We discuss the advantages of such an approach, and the key challenges for the further integration of terrestrial palaeoenvironmental records with those from <span class="hlt">ice</span> <span class="hlt">cores</span> and the marine realm.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>