Sample records for ice crystal asymmetry

  1. Global statistics of microphysical properties of cloud-top ice crystals

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Fridlind, A. M.; Cairns, B.; Ackerman, A. S.; Riedi, J.

    2017-12-01

    Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to "habit". We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.

  2. Global Statistics of Microphysical Properties of Cloud-Top Ice Crystals

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Fridlind, Ann; Cairns, Brian; Ackerman, Andrew; Riedl, Jerome

    2017-01-01

    Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.

  3. On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters

    PubMed Central

    van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian

    2017-01-01

    The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture’s total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. PMID:28983127

  4. Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

    2008-01-01

    Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

  5. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  6. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  7. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  8. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  9. FAST TRACK COMMUNICATION: Growth melt asymmetry in ice crystals under the influence of spruce budworm antifreeze protein

    NASA Astrophysics Data System (ADS)

    Pertaya, Natalya; Celik, Yeliz; Di Prinzio, Carlos L.; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2007-10-01

    Here we describe studies of the crystallization behavior of ice in an aqueous solution of spruce budworm antifreeze protein (sbwAFP) at atmospheric pressure. SbwAFP is an ice binding protein with high thermal hysteresis activity, which helps protect Choristoneura fumiferana (spruce budworm) larvae from freezing as they overwinter in the spruce and fir forests of the north eastern United States and Canada. Different types of ice binding proteins have been found in many other species. They have a wide range of applications in cryomedicine and cryopreservation, as well as the potential to protect plants and vegetables from frost damage through genetic engineering. However, there is much to learn regarding the mechanism of action of ice binding proteins. In our experiments, a solution containing sbwAFP was rapidly frozen and then melted back, thereby allowing us to produce small single crystals. These maintained their hexagonal shapes during cooling within the thermal hysteresis gap. Melt-growth-melt sequences in low concentrations of sbwAFP reveal the same shape transitions as are found in pure ice crystals at low temperature (-22 °C) and high pressure (2000 bar) (Cahoon et al 2006 Phys. Rev. Lett. 96 255502) while both growth and melt shapes display faceted hexagonal morphology, they are rotated 30° relative to one another. Moreover, the initial melt shape and orientation is recovered in the sequence. To visualize the binding of sbwAFP to ice, we labeled the antifreeze protein with enhanced green fluorescent protein (eGFP) and observed the sbwAFP-GFP molecules directly on ice crystals using confocal microscopy. When cooling the ice crystals, facets form on the six primary prism planes (slowest growing planes) that are evenly decorated with sbwAFP-GFP. During melting, apparent facets form on secondary prism planes (fastest melting planes), leaving residual sbwAFP at the six corners of the hexagon. Thus, the same general growth-melt behavior of an apparently rotated

  10. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  11. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; ...

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension ( D max) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bulletmore » rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large D max, near-infrared single-scattering albedo and asymmetry parameter ( g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  12. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  13. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  14. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  15. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    PubMed

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  16. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  17. An Overview of NASA Engine Ice-Crystal Icing Research

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Veres, Joseph P.

    2011-01-01

    Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

  18. Remote Sensing of Crystal Shapes in Ice Clouds

    NASA Technical Reports Server (NTRS)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  19. Viewing Ice Crystals Using Polarized Light.

    ERIC Educational Resources Information Center

    Kinsman, E. M.

    1992-01-01

    Describes a method for identifying and examining single ice crystals by photographing a thin sheet of ice placed between two inexpensive polarizing filters. Suggests various natural and prepared sources for ice that promote students' insight into crystal structures, and yield colorful optical displays. Includes directions, precautions, and sample…

  20. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    NASA Technical Reports Server (NTRS)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  1. Large Ice Crystal Charge Transfer Studies

    DTIC Science & Technology

    1991-06-01

    knocked off by the airborne ice crystals when they make glancing collisions with the target, thus charging the ice target positively. Findeisen (1940...long when it encounters the passing ice crystals. Such a fiber is very different from the substantial frost fibers noted by Findeisen and may not be...Niederschlagselektrizitat, Phys. Z. 14, 1287-1292, 1913. Findeisen , W., Uber die Entstehung der Gewittelektrizitat, Meteor. Zeit, 57, 201, 1940. Fletcher N. H., The physics

  2. Numerical simulation of flow and melting characteristics of seawater-ice crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship

    NASA Astrophysics Data System (ADS)

    Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie

    2018-05-01

    The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.

  3. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  4. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  5. Acoustic detection of ice crystals in Antarctic waters

    NASA Astrophysics Data System (ADS)

    Penrose, John D.; Conde, M.; Pauly, T. J.

    1994-06-01

    During the voyage of the RSV Aurora Australis to the region of Prydz Bay, Antarctica in January-March 1991, ice crystals were encountered at depths from the surface to 125-m in the western area of the bay. On two occasions, crystals were retrieved by netting, and echo sounder records have been used to infer additional regions of occurrence. Acoustic target strength estimates made on the ice crystal assemblies encountered show significant spatial variation, which may relate to crystal size and/or aggregation. Data from a suite of conductivity-temperature-depth casts have been used to map regions of the study area where in situ water temperatures fell below the computed freezing point. Such regions correlate well with those selected on the basis of echogram type and imply that ice crystals occurred at depth over large areas of the bay during the cruise period. The ice crystal distribution described is consistent with that expected from a plume of supercooled water emerging from under the Amery Ice Shelf and forming part of the general circulation of the bay. The magnitude of the supercooled water plume is greater than those reported previously in the Prydz Bay region. If misinterpreted as biota on echo sounder records, ice crystals could significantly bias biomass estimates based on echo integration in this and potentially other areas.

  6. Preliminary Evaluation of Altitude Scaling for Turbofan Engine Ice Crystal Icing

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2017-01-01

    Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.

  7. Retardation of ice crystallization by short peptides

    NASA Astrophysics Data System (ADS)

    Kim, Jun Soo; Yethiraj, Arun

    2009-03-01

    The effect of short peptides on the growth of ice crystals is studied using molecular dynamics simulations. The simulations focus on two sequences (Gly-Pro-Ala-Gly and Gly-Gly-Ala-Gly) that are found in collagen hydrolysate, a substance that is known to retard crystal growth. In the absence of peptides, the growth of ice crystal in the solution with the ice/water interface is observed in at a rate comparable to the experimental data. When peptides are present in the liquid phase, the crystal growth is retarded to a significant extent compared to the pure water. It is found that Gly-Pro-Ala-Gly is more effective (crystallization is up to 5 times slower than in its absence) than Gly-Gly-Ala-Gly (up to 3 times slower) implying that the role of the proline residue is important. The mechanism can be understood in the nature of binding of the peptides to the growing crystal.

  8. Laboratory Investigation of Direct Measurement of Ice Water Content, Ice Surface Area, and Effective Radius of Ice Crystals Using a Laser-Diffraction Instrument

    NASA Technical Reports Server (NTRS)

    Gerber, H.; DeMott, P. J.; Rogers, D. C.

    1995-01-01

    The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.

  9. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  10. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  11. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  12. Large Ice Crystal Charge Transfer Studies

    DTIC Science & Technology

    1988-10-28

    electrification. However, the extra- polation using qcd 4 was completely unjustified. With corrected values of the separation probability of ice crystals...contact to leak away from the local area or become trapped in the crystal lattice . Obviously, larger initial charge transfers, with larger 6 crystals

  13. Superheating of ice crystals in antifreeze protein solutions

    PubMed Central

    Celik, Yeliz; Graham, Laurie A.; Mok, Yee-Foong; Bar, Maya; Davies, Peter L.; Braslavsky, Ido

    2010-01-01

    It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44 °C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing. PMID:20215465

  14. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  15. The effect of ice crystal shape on aircraft contrails

    NASA Astrophysics Data System (ADS)

    Meza Castillo, Omar E.

    Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in

  16. Investigating the Relative Contributions of Secondary Ice Formation Processes to Ice Crystal Number Concentrations Within Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, S.; Nenes, A.

    2015-12-01

    Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.

  17. Observed Hemispheric Asymmetry in Global Sea Ice Changes

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Gloersen, P.; Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.

    1997-01-01

    From November 1978 through December 1996, the areal extent of sea ice decreased by 2.9 +/- 0.4 percent per decade in the Arctic and increased by 1.3 +/- 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated.

  18. Ice crystals classification using airborne measurements in mixing phase

    NASA Astrophysics Data System (ADS)

    Sorin Vajaiac, Nicolae; Boscornea, Andreea

    2017-04-01

    This paper presents a case study of ice crystals classification from airborne measurements in mixed-phase clouds. Ice crystal shadow is recorded with CIP (Cloud Imaging Probe) component of CAPS (Cloud, Aerosol, and Precipitation Spectrometer) system. The analyzed flight was performed in the south-western part of Romania (between Pietrosani, Ramnicu Valcea, Craiova and Targu Jiu), with a Beechcraft C90 GTX which was specially equipped with a CAPS system. The temperature, during the fly, reached the lowest value at -35 °C. These low temperatures allow the formation of ice crystals and influence their form. For the here presented ice crystals classification a special software, OASIS (Optical Array Shadow Imaging Software), developed by DMT (Droplet Measurement Technologies), was used. The obtained results, as expected are influenced by the atmospheric and microphysical parameters. The particles recorded where classified in four groups: edge, irregular, round and small.

  19. Ice Crystal Cloud Research

    NASA Image and Video Library

    2016-07-11

    NASA Glenn’s Propulsion Systems Lab (PSL) is conducting research to characterize ice crystal clouds that can create a hazard to aircraft engines under certain conditions. The isokinetic probe (in gold) samples particles and another series of probes can measure everything from humidity to air pressure.

  20. Susceptibility of contrail ice crystal numbers to aircraft soot particle emissions

    NASA Astrophysics Data System (ADS)

    Kärcher, B.; Voigt, C.

    2017-08-01

    We develop an idealized, physically based model describing combined effects of ice nucleation and sublimation on ice crystal number during persistent contrail formation. Our study represents the first effort to predict ice numbers at the point where contrails transition into contrail cirrus—several minutes past formation—by connecting them to aircraft soot particle emissions and atmospheric supersaturation with respect to ice. Results averaged over an observed exponential distribution of ice supersaturation (mean value 15%) indicate that large reductions in soot particle numbers are needed to lower contrail ice crystal numbers significantly for soot emission indices around 1015 (kg fuel)-1, because reductions in nucleated ice number are partially compensated by sublimation losses. Variations in soot particle (-50%) and water vapor (+10%) emission indices at threefold lower soot emissions resulting from biofuel blending cause ice crystal numbers to change by -35% and <5%, respectively. The efficiency of reduction depends on ice supersaturation and the size distribution of nucleated ice crystals in jet exhaust plumes and on atmospheric ice supersaturation, making the latter another key factor in contrail mitigation. We expect our study to have important repercussions for planning airborne measurements targeting contrail formation, designing parameterization schemes for use in large-scale models, reducing uncertainties in predicting contrail cirrus, and mitigating the climate impact of aviation.

  1. Diagnosing the Ice Crystal Enhancement Factor in the Tropics

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Matsui, Toshihisa; Xie, Shaocheng; Lang, Stephen; Zhang, Minghua; Starr, David O'C; Li, Xiaowen; Simpson, Joanne

    2009-01-01

    Recent modeling studies have revealed that ice crystal number concentration is one of the dominant factors in the effect of clouds on radiation. Since the ice crystal enhancement factor and ice nuclei concentration determine the concentration, they are both important in quantifying the contribution of increased ice nuclei to global warming. In this study, long-term cloud-resolving model (CRM) simulations are compared with field observations to estimate the ice crystal enhancement factor in tropical and midlatitudinal clouds, respectively. It is found that the factor in tropical clouds is 10 3-104 times larger than that of mid-latitudinal ones, which makes physical sense because entrainment and detrainment in the Tropics are much stronger than in middle latitudes. The effect of entrainment/detrainment on the enhancement factor, especially in tropical clouds, suggests that cloud microphysical parameterizations should be coupled with subgrid turbulence parameterizations within CRMs to obtain a more accurate depiction of cloud-radiative forcing.

  2. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  3. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  4. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  5. On The Importance of Connecting Laboratory Measurements of Ice Crystal Growth with Model Parameterizations: Predicting Ice Particle Properties

    NASA Astrophysics Data System (ADS)

    Harrington, J. Y.

    2017-12-01

    Parameterizing the growth of ice particles in numerical models is at an interesting cross-roads. Most parameterizations developed in the past, including some that I have developed, parse model ice into numerous categories based primarily on the growth mode of the particle. Models routinely possess smaller ice, snow crystals, aggregates, graupel, and hail. The snow and ice categories in some models are further split into subcategories to account for the various shapes of ice. There has been a relatively recent shift towards a new class of microphysical models that predict the properties of ice particles instead of using multiple categories and subcategories. Particle property models predict the physical characteristics of ice, such as aspect ratio, maximum dimension, effective density, rime density, effective area, and so forth. These models are attractive in the sense that particle characteristics evolve naturally in time and space without the need for numerous (and somewhat artificial) transitions among pre-defined classes. However, particle property models often require fundamental parameters that are typically derived from laboratory measurements. For instance, the evolution of particle shape during vapor depositional growth requires knowledge of the growth efficiencies for the various axis of the crystals, which in turn depends on surface parameters that can only be determined in the laboratory. The evolution of particle shapes and density during riming, aggregation, and melting require data on the redistribution of mass across a crystals axis as that crystal collects water drops, ice crystals, or melts. Predicting the evolution of particle properties based on laboratory-determined parameters has a substantial influence on the evolution of some cloud systems. Radiatively-driven cirrus clouds show a broader range of competition between heterogeneous nucleation and homogeneous freezing when ice crystal properties are predicted. Even strongly convective squall

  6. Gypsum crystals observed in experimental and natural sea ice

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.

    2013-12-01

    gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.

  7. Dimensions and aspect ratios of natural ice crystals

    DOE PAGES

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; ...

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the

  8. Dimensions and aspect ratios of natural ice crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures ( T) between -87 and 0 °C. The projected maximum dimension ( D'), length ( L'), and width ( W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured.more » Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. Finally, the

  9. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  10. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William

    2011-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic

  11. Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces.

    PubMed

    Wilson, P W; Haymet, A D J

    2008-09-18

    Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.

  12. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  13. Ice crystal growth in a dynamic thermal diffusion chamber

    NASA Technical Reports Server (NTRS)

    Keller, V. W.

    1980-01-01

    Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

  14. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy

    PubMed Central

    2016-01-01

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems. PMID:27917410

  15. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy.

    PubMed

    Marcellini, Moreno; Noirjean, Cecile; Dedovets, Dmytro; Maria, Juliette; Deville, Sylvain

    2016-11-30

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.

  16. Ice crystal precipitation at Dome C site (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including ;diamond dust; (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  17. Deep Space Detection of Oriented Ice Crystals

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Varnai, T.; Kostinski, A. B.

    2017-12-01

    The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.

  18. laboratory studies on the uptake of organic compounds by ice crystals

    NASA Astrophysics Data System (ADS)

    Fries, E.; Jaeschke, W.

    2003-04-01

    Anthropogenic aerosols produced from biomass burning are known to increase the number of cloud condensation nuclei in the atmosphere at most latitudes. This reduces cloud droplet size, which prevents raindrop formation at shallower levels in the atmosphere. Vertical convection processes force particles and water vapor to rise up to the upper troposphere. At lower temperatures, ice crystals are formed via heterogeneous freezing of supercooled droplets containing particles known as ice nuclei (IN) and/or via condensation of supercooled water onto IN directly from the vapor, followed by freezing. Ice crystals grow by vapor deposition, by collision of supercooled drops with ice particles and by collision of ice crystals. The grown ice crystals melt on their way down and turn into rain. Most of the precipitation falling to the surface at midlatitudes originates as ice. The adsorption of organic gases emitted from fossil fuel combustion like BTEX may alter particle growth and sublimation rates in the atmosphere. This may also change precipitation rates, which impact the climate world-wide. Considering importance of ice in atmospheric science, laboratory studies are carried out to quantify organic vapor adsorption onto ice. At temperatures between 0 and -40^oC, organic gases at ppb gas levels are allowed to adsorb to the surface of ice crystals with surface properties similar to atmospheric ice. For the experiments, a vertical ice chamber (stainless-steel) with 10 different screen inserts (stainless-steel) was constructed. The chamber is 39 cm in length and 10,5 cm in diameter. The size of the stainless-steel mesh of the screens was chosen by the size of the ice crystals and is 0.14 cm. The ice chamber is located inside a 2x2 m walk-in cold chamber. Prior to the addition of the organic gases, the precleaned carrier gas of synthetic air is humidified to ice saturation in the walk-in cold chamber by passing the carrier stream through a 10 m long and 5 cm in diameter

  19. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  20. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  1. Stability relationship for water droplet crystallization with the NASA Lewis icing spray

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1987-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  2. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  3. Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  4. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels.

    PubMed

    Ni, Xuewen; Ke, Fan; Xiao, Man; Wu, Kao; Kuang, Ying; Corke, Harold; Jiang, Fatang

    2016-11-01

    Konjac glucomannan (KGM)-based aerogels were prepared using a combination of sol-gel and freeze-drying methods. Preparation conditions were chosen to control ice crystal growth and aerogel structure formation. The ice crystals formed during pre-freezing were observed by low temperature polarizing microscopy, and images of aerogel pores were obtained by scanning electron microscopy. The size of ice crystals were calculated and size distribution maps were drawn, and similarly for aerogel pores. Results showed that ice crystal growth and aerogel pore sizes may be controlled by varying pre-freezing temperatures, KGM concentration and glyceryl monostearate concentration. The impact of pre-freezing temperatures on ice crystal growth was explained as combining ice crystal growth rate with nucleation rate, while the impacts of KGM and glyceryl monostearate concentration on ice crystal growth were interpreted based on their influences on sol network structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Effect of Roughness Model on Scattering Properties of Ice Crystals.

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Van Diedenhoven, Bastiaan

    2016-01-01

    We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5deg to 20deg, where the uniform roughness model produces a plateau while the Weibull model does not.

  6. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.

    PubMed

    Ramya, L; Ramakrishnan, Vigneshwar

    2016-07-01

    Antifreeze proteins (AFP) observed in cold-adapting organisms bind to ice crystals and prevent further ice growth. However, the molecular mechanism of AFP-ice binding and AFP-inhibited ice growth remains unclear. Here we report the interaction of the insect antifreeze protein (Tenebrio molitor, TmAFP) with ice crystal by molecular dynamics simulation studies. Two sets of simulations were carried out at 263 K by placing the protein near the primary prism plane (PP) and basal plane (BL) of the ice crystal. To delineate the effect of temperatures, both the PP and BL simulations were carried out at 253 K as well. The analyses revealed that the protein interacts strongly with the ice crystal in BL simulation than in PP simulation both at 263 K and 253 K. Further, it was observed that the interactions are primarily mediated through the interface waters. We also observed that as the temperature decreases, the interaction between the protein and the ice increases which can be attributed to the decreased flexibility and the increased structuring of the protein at low temperature. In essence, our study has shed light on the interaction mechanism between the TmAFP antifreeze protein and the ice crystal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Critical Supersaturation for Ice Crystal Growth: Laboratory Measurements and Atmospheric Modeling Implications

    NASA Astrophysics Data System (ADS)

    Magee, N.; Moyle, A.; Lamb, D.

    2003-12-01

    An improved understanding of ice crystal growth, particularly at low temperatures, is much in demand for the advancement of numerical modeling of atmospheric processes. Cirrus models must contend with the complexity of ice crystals growing in cold temperatures, low pressures, low supersaturations, and with multiple nucleation mechanisms. Recent observations have allowed increasingly realistic parameterizations of cirrus ice crystal microphysics, but these observations need to be supplemented by a fundamental understanding of growth processes affecting low-temperature crystals. Several experimental studies have demonstrated that certain ice crystals require a minimum "critical" supersaturation before exhibiting detectable growth. These crystals are presumed to be essentially defect-free, preventing vicinal hillock growth at the site of crystal dislocations. In the case of crystal growth by spiral dislocation, advancement of faces begins as soon as supersaturation is present. The finding of conditional critical supersaturations have analogies in other materials (metals, semiconductors, potassium dihydrogen phosphate) and are thermodynamically predicted given a two-dimensional nucleation growth mechanism. Previous measurements have determined the critical supersaturation for ice as a function of temperature and crystallographic face from 0 to --15° C with extrapolation to --30° C. For both basal and prism faces, critical supersaturation is seen to increase with decreasing temperature, suggesting that low-temperature, low-supersaturation processes are most likely to be affected by this critical contingency. We present laboratory results to verify and extend prior critical supersaturation measurements using a novel approach for supersaturation generation, control, and measurement. The crystals are grown on the tip of a fine glass fiber ( ˜10 microns in diameter) under varying conditions of temperature, pressure, and saturation. Supersaturation is generated when a pre

  8. Observing the formation of ice and organic crystals in active sites

    PubMed Central

    Campbell, James M.; Meldrum, Fiona C.; Christenson, Hugo K.

    2017-01-01

    Heterogeneous nucleation is vital to a wide range of areas as diverse as ice nucleation on atmospheric aerosols and the fabrication of high-performance thin films. There is excellent evidence that surface topography is a key factor in directing crystallization in real systems; however, the mechanisms by which nanoscale pits and pores promote nucleation remain unclear. Here, we use natural cleavage defects on Muscovite mica to investigate the activity of topographical features in the nucleation from vapor of ice and various organic crystals. Direct observation of crystallization within surface pockets using optical microscopy and also interferometry demonstrates that these sharply acute features provide extremely effective nucleation sites and allows us to determine the mechanism by which this occurs. A confined phase is first seen to form along the apex of the wedge and then grows out of the pocket opening to generate a bulk crystal after a threshold saturation has been achieved. Ice nucleation proceeds in a comparable manner, although our resolution is insufficient to directly observe a condensate before the growth of a bulk crystal. These results provide insight into the mechanism of crystal deposition from vapor on real surfaces, where this will ultimately enable us to use topography to control crystal deposition on surfaces. They are also particularly relevant to our understanding of processes such as cirrus cloud formation, where such topographical features are likely candidates for the “active sites” that make clay particles effective nucleants for ice in the atmosphere. PMID:27994140

  9. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  10. Bioprospecting for microbial products that affect ice crystal formation and growth.

    PubMed

    Christner, Brent C

    2010-01-01

    At low temperatures, some organisms produce proteins that affect ice nucleation, ice crystal structure, and/or the process of recrystallization. Based on their ice-interacting properties, these proteins provide an advantage to species that commonly experience the phase change from water to ice or rarely experience temperatures above the melting point. Substances that bind, inhibit or enhance, and control the size, shape, and growth of ice crystals could offer new possibilities for a number of agricultural, biomedical, and industrial applications. Since their discovery more than 40 years ago, ice nucleating and structuring proteins have been used in cryopreservation, frozen food preparation, transgenic crops, and even weather modification. Ice-interacting proteins have demonstrated commercial value in industrial applications; however, the full biotechnological potential of these products has yet to be fully realized. The Earth's cold biosphere contains an almost endless diversity of microorganisms to bioprospect for microbial compounds with novel ice-interacting properties. Microorganisms are the most appropriate biochemical factories to cost effectively produce ice nucleating and structuring proteins on large commercial scales.

  11. On the Importance of Small Ice Crystals in Tropical Anvil Cirrus

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Lawson, P.; Baker, B.; Pilson, B.; Mo, Q.; Heymsfield, A. J.; Bansemer, A.; Bui, T. P.; McGill, M.; Hlavka, D.; hide

    2009-01-01

    In situ measurements of ice crystal concentrations and sizes made with aircraft instrumentation over the past two decades have often indicated the presence of numerous relatively small (< 50 m diameter) crystals in cirrus clouds. Further, these measurements frequently indicate that small crystals account for a large fraction of the extinction in cirrus clouds. The fact that the instruments used to make these measurements, such as the Forward Scattering Spectrometer Probe (FSSP) and the Cloud Aerosol Spectrometer (CAS), ingest ice crystals into the sample volume through inlets has led to suspicion that the indications of numerous small ]crystals could be artifacts of large ]crystal shattering on the instrument inlets. We present new aircraft measurements in anvil cirrus sampled during the Tropical Composition, Cloud, and Climate Coupling (TC4) campaign with the 2 ] Dimensional Stereo (2D ]S) probe, which detects particles as small as 10 m. The 2D ]S has detector "arms" instead of an inlet tube. Since the 2D ]S probe surfaces are much further from the sample volume than is the case for the instruments with inlets, it is expected that 2D ]S will be less susceptible to shattering artifacts. In addition, particle inter ]arrival times are used to identify and remove shattering artifacts that occur even with the 2D ]S probe. The number of shattering artifacts identified by the 2D ]S interarrival time analysis ranges from a negligible contribution to an order of magnitude or more enhancement in apparent ice concentration over the natural ice concentration, depending on the abundance of large crystals and the natural small ]crystal concentration. The 2D ]S measurements in tropical anvil cirrus suggest that natural small ]crystal concentrations are typically one to two orders of magnitude lower than those inferred from CAS. The strong correlation between the CAS/2D ]S ratio of small ]crystal concentrations and large ]crystal concentration suggests that the discrepancy is

  12. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith

    2017-01-01

    This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  13. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  14. Mechanical interactions between ice crystals and red blood cells during directional solidification.

    PubMed

    Ishiguro, H; Rubinsky, B

    1994-10-01

    Experiments in which red blood cells were frozen on a directional solidification stage under a microscope show that there is a mechanical interaction between ice crystals and cells in which cells are pushed and deformed by the ice crystals. The mechanical interaction occurs during freezing of cells in physiological saline and is significantly inhibited by the addition of 20% v/v glycerol to the solution. The addition of osmotically insignificant quantities of antifreeze proteins from the winter flounder or ocean pout to the physiological saline with 20% v/v glycerol generates strong mechanical interactions between the ice and the cells. The cells were destroyed during freezing in physiological saline, survived freezing in physiological saline with glycerol, and were completely destroyed by the addition of antifreeze proteins to the solution with glycerol. The difference in cell survival through freezing and thawing appears to be related, in part, to the habit of ice crystal growing in the suspension of red blood cells and the nature of mechanical interaction between the ice crystal and the cells. This suggests that mechanical damage may be a factor during cryopreservation of cells.

  15. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-07-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert.

  16. Effect of compression rate on ice VI crystal growth using dDAC

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Hee; Kim, Yong-Jae; Lee, Sooheyong; Cho, Yong Chan; Lee, Geun Woo; Frontier in Extreme Physics Team

    It is well known that static and dynamic pressure give different results in many aspects. Understanding of crystal growth under such different pressure condition is one of the crucial issues for the formation of materials in the earth and planets. To figure out the crystal growth under the different pressure condition, we should control compression rate from static to dynamic pressurization. Here, we use a dynamic diamond anvil cell (dDAC) technique to study the effect of compression rate of ice VI crystal growth. Using dDAC with high speed camera, we monitored growth of a single crystal ice VI. A rounded ice crystal with rough surface was selected in the phase boundary of water and ice VI and then, its repetitive growth and melting has been carried out by dynamic operation of the pressure cell. The roughened crystal showed interesting growth transition with compression rate from three dimensional to two dimensional growth as well as faceting process. We will discuss possible mechanism of the growth change by compression rate with diffusion mechanism of water. This research was supported by the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea (NRF-2014M1A7A1A01030128).

  17. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice numbermore » concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 10 6 m -2) is less than that from the LP (8.46 × 10 6 m -2) and BN (5.62 × 10 6 m -2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m -2) than that using the LP (0.46 W m −2) and BN (0.39 W m -2) parameterizations.« less

  18. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    DOE PAGES

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-02-11

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice numbermore » concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 10 6 m -2) is less than that from the LP (8.46 × 10 6 m -2) and BN (5.62 × 10 6 m -2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m -2) than that using the LP (0.46 W m −2) and BN (0.39 W m -2) parameterizations.« less

  19. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics

    PubMed Central

    Drori, Ran; Celik, Yeliz; Davies, Peter L.; Braslavsky, Ido

    2014-01-01

    Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produced by a typical fish AFP. The basis for this difference in activity remains unclear. Here, we have compared the time dependence of TH activity for both hyperactive and moderately active AFPs using a custom-made nanolitre osmometer and a novel microfluidics system. We found that the TH activities of hyperactive AFPs were time-dependent, and that the TH activity of a moderate AFP was almost insensitive to time. Fluorescence microscopy measurement revealed that despite their higher TH activity, hyperactive AFPs from two insects (moth and beetle) took far longer to accumulate on the ice surface than did a moderately active fish AFP. An ice-binding protein from a bacterium that functions as an ice adhesin rather than as an antifreeze had intermediate TH properties. Nevertheless, the accumulation of this ice adhesion protein and the two hyperactive AFPs on the basal plane of ice is distinct and extensive, but not detectable for moderately active AFPs. Basal ice plane binding is the distinguishing feature of antifreeze hyperactivity, which is not strictly needed in fish that require only approximately 1°C of TH. Here, we found a correlation between the accumulation kinetics of the hyperactive AFP at the basal plane and the time sensitivity of the measured TH. PMID:25008081

  20. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization

    PubMed Central

    Huebinger, Jan; Han, Hong-Mei; Hofnagel, Oliver; Vetter, Ingrid R.; Bastiaens, Philippe I.H.; Grabenbauer, Markus

    2016-01-01

    Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth. PMID:26541066

  1. What Controls the Limit of Supercooling and Superheating of Pinned Ice Surfaces?

    PubMed

    Naullage, Pavithra M; Qiu, Yuqing; Molinero, Valeria

    2018-04-05

    Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice. We perform simulations of ice pinned with the antifreeze protein TmAFP, polyvinyl alcohol with different degrees of polymerization, and model ice-binding molecules to determine the thermal hystereses on melting and freezing, i.e. the maximum curvature that can be attained before, respectively, ice melts or grows irreversibly over the ice-binding molecules. We find that the thermal hysteresis is controlled by the bulkiness of the ice-binding molecules and their footprint at the ice surface. We elucidate the origin of the asymmetry between freezing and melting hysteresis found in experiments and propose guidelines to design synthetic antifreeze molecules with potent thermal hysteresis activity.

  2. Cylindrically symmetric Green's function approach for modeling the crystal growth morphology of ice.

    PubMed

    Libbrecht, K G

    1999-08-01

    We describe a front-tracking Green's function approach to modeling cylindrically symmetric crystal growth. This method is simple to implement, and with little computer power can adequately model a wide range of physical situations. We apply the method to modeling the hexagonal prism growth of ice crystals, which is governed primarily by diffusion along with anisotropic surface kinetic processes. From ice crystal growth observations in air, we derive measurements of the kinetic growth coefficients for the basal and prism faces as a function of temperature, for supersaturations near the water saturation level. These measurements are interpreted in the context of a model for the nucleation and growth of ice, in which the growth dynamics are dominated by the structure of a disordered layer on the ice surfaces.

  3. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  4. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth

    PubMed Central

    Celik, Yeliz; Drori, Ran; Pertaya-Braun, Natalya; Altan, Aysun; Barton, Tyler; Bar-Dolev, Maya; Groisman, Alex; Davies, Peter L.; Braslavsky, Ido

    2013-01-01

    Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules. PMID:23300286

  5. Laboratory studies on the uptake of aromatic hydrocarbons by ice crystals during vapor depositional crystal growth

    NASA Astrophysics Data System (ADS)

    Fries, Elke; Starokozhev, Elena; Haunold, Werner; Jaeschke, Wolfgang; Mitra, Subir K.; Borrmann, Stephan; Schmidt, Martin U.

    Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C 6H 6), toluene (methylbenzene, C 7H 8), the C 8H 10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C 9H 12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C 10H 14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3-20.8 μg m -3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS). Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m -3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10 -3 g s -1 m -2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher. Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg g ice-1 (toluene, ethylbenzene, xylenes) and 125 pg g ice-1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg g ice-1 at gas concentrations of 10.3-10.7 μg m -3 calculated at 295 K. Uptake coefficients ( K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of

  6. Calcium carbonate as ikaite crystals in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Dieckmann, Gerhard S.; Nehrke, Gernot; Papadimitriou, Stathys; Göttlicher, Jörg; Steininger, Ralph; Kennedy, Hilary; Wolf-Gladrow, Dieter; Thomas, David N.

    2008-04-01

    We report on the discovery of the mineral ikaite (CaCO3.6H2O) in sea-ice from the Southern Ocean. The precipitation of CaCO3 during the freezing of seawater has previously been predicted from thermodynamic modelling, indirect measurements, and has been documented in artificial sea ice during laboratory experiments but has not been reported for natural sea-ice. It is assumed that CaCO3 formation in sea ice may be important for a sea ice-driven carbon pump in ice-covered oceanic waters. Without direct evidence of CaCO3 precipitation in sea ice, its role in this and other processes has remained speculative. The discovery of CaCO3.6H2O crystals in natural sea ice provides the necessary evidence for the evaluation of previous assumptions and lays the foundation for further studies to help elucidate the role of ikaite in the carbon cycle of the seasonally sea ice-covered regions

  7. Formation of Large (Approximately 100 micrometers) Ice Crystals Near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Bui, T. V.; Lawson, P.; Baker, B.; Mo, Q.; Baumgardner, D.; Weinstock, E. M.; Smith, J. B.; Moyer, E. J.; hide

    2008-01-01

    Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (approx.100 microns length), thin (aspect ratios of approx.6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01/L). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to approx.3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%). If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008)) then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (approx.10:1), then H2O concentrations toward the low end of the measurement range (approx.2-2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm/s to loft the crystals in the tropopause region. These calculations would

  8. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2013-04-01

    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.

  9. "Crystals within Crystals: The Story of Sea Ice". A Classroom-Based Outreach Project Communicating Cutting-Edge Ocean Science to School Pupils

    NASA Astrophysics Data System (ADS)

    Butler, B.

    2016-02-01

    'Crystals within Crystals: The story of sea ice' is a UK based outreach project based that uses a range practical tools to engage school students with cutting edge scientific research that relates to the use of some of the world's most powerful X-rays in sea ice research. The project is delivered in the form of a classroom workshop that first introduces school pupils (aged 11-14) to seawater and the salts that give it a salinity. The pupils are then shown how the presence of salts within seawater results in very important physical changes when the liquid freezes, which includes different structural and optical properties of the ice. The properties of the ice are then linked to the presence of countless microscopic salt crystals that are trapped within the microstructure of the frozen seawater, which is explained with use of a novel crystal growth demonstration. Given that there is currently no way of successfully removing these salt crystals from the ice, the workshop culminates in explaining how some of the worlds most powerful X-rays can be used to investigate processes that otherwise remain elusive. The workshop introduces students to the fundamental principles of scientific enquiry, the sea ice environment, and the power of X-rays in investigating the properties of crystals. Here we present information that outlines a host of practical and project management tools that are applicacble to outreach projects in the the field of ocean sciences, with the aim of seeding ideas and interest for other graduate student to enage with the public during their studies.

  10. Q-space analysis of light scattering by ice crystals

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.

    2016-12-01

    Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.

  11. Modeling variability in dendritic ice crystal backscattering cross sections at millimeter wavelengths using a modified Rayleigh-Gans theory

    NASA Astrophysics Data System (ADS)

    Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Botta, Giovanni; Verlinde, Johannes

    2013-12-01

    Using the Generalized Multi-particle Mie-method (GMM), Botta et al. (in this issue) [7] created a database of backscattering cross sections for 412 different ice crystal dendrites at X-, Ka- and W-band wavelengths for different incident angles. The Rayleigh-Gans theory, which accounts for interference effects but ignores interactions between different parts of an ice crystal, explains much, but not all, of the variability in the database of backscattering cross sections. Differences between it and the GMM range from -3.5 dB to +2.5 dB and are highly dependent on the incident angle. To explain the residual variability a physically intuitive iterative method was developed to estimate the internal electric field within an ice crystal that accounts for interactions between the neighboring regions within it. After modifying the Rayleigh-Gans theory using this estimated internal electric field, the difference between the estimated backscattering cross sections and those from the GMM method decreased to within 0.5 dB for most of the ice crystals. The largest percentage differences occur when the form factor from the Rayleigh-Gans theory is close to zero. Both interference effects and neighbor interactions are sensitive to the morphology of ice crystals. Improvements in ice-microphysical models are necessary to predict or diagnose internal structures within ice crystals to aid in more accurate interpretation of radar returns. Observations of the morphology of ice crystals are, in turn, necessary to guide the development of such ice-microphysical models and to better understand the statistical properties of ice crystal morphologies in different environmental conditions.

  12. Development and characterization of an ice-selecting pumped counterflow virtual impactor (IS-PCVI) to study ice crystal residuals

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Schnaiter, Martin; Vogt, Steffen; Vochezer, Paul; Järvinen, Emma; Wagner, Robert; Bell, David M.; Wilson, Jacqueline; Zelenyuk, Alla; Cziczo, Daniel J.

    2016-08-01

    Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloud system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RHice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow

  13. Ice Growth Measurements from Image Data to Support Ice Crystal and Mixed-Phase Accretion Testing

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Lynch, Christopher J.

    2012-01-01

    This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.

  14. Ice Growth Measurements from Image Data to Support Ice-Crystal and Mixed-Phase Accretion Testing

    NASA Technical Reports Server (NTRS)

    Struk, Peter, M; Lynch, Christopher, J.

    2012-01-01

    This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.

  15. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  16. Apparatus for single ice crystal growth from the melt.

    PubMed

    Zepeda, Salvador; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2009-11-01

    A crystal growth apparatus was designed and built to study the effect of growth modifiers, antifreeze proteins and antifreeze glycoproteins (AFGPs), on ice crystal growth kinetics and morphology. We used a capillary growth technique to obtain a single ice crystal with well-defined crystallographic orientation grown in AFGP solution. The basal plane was readily observed by rotation of the capillary. The main growth chamber is approximately a 0.8 ml cylindrical volume. A triple window arrangement was used to minimize temperature gradients and allow for up to 10 mm working distance objective lens. Temperature could be established to within +/-10 mK in as little as 3.5 min and controlled to within +/-2 mK after 15 min for at least 10 h. The small volume growth chamber and fast equilibration times were necessary for parabolic flight microgravity experiments. The apparatus was designed for use with inverted and side mount configurations.

  17. Effects on skylight at South Pole Station, Antarctica, by ice crystal precipitation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitch, B. W.; Coulson, K. L.

    1983-01-01

    Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.

  18. Effects on skylight at South Pole Station, Antarctica, by ice crystal precipitation in the atmosphere.

    PubMed

    Fitch, B W; Coulson, K L

    1983-01-01

    Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.

  19. Comparing modelled and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    NASA Astrophysics Data System (ADS)

    Farrington, Robert; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.; Hoyle, Chris

    2016-04-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) is the only way in which ice can nucleate under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures warmer than -35°C (e.g. Sassen et al. 2003); however, the cause of ice nucleation at temperatures greater than -10°C is less certain. In-situ measurements of aerosol properties and cloud micro-physical processes are required to drive the improvement of aerosol-cloud processes in numerical models. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in the winters of 2013 and 2014 (Lloyd et al. 2014). Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl), using cloud probes, including the Two-Dimensional Stereo Hydrometeor Spectrometer (2D-S), the Cloud Particle Imager 3V (CPI-3V) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL). The first two of these probes measured significantly higher ice number concentrations than those observed in clouds at similar altitudes from aircraft. In this contribution, we assess the source of the high ice number concentrations observed by comparing in-situ measurements at Jungfraujoch with WRF simulations applied to the region around Jungfraujoch. During the 2014 field campaign the model simulations regularly simulated ice particle concentrations that were 3 orders of magnitude per litre less than the observed ice number concentration, even taking into account the aerosol properties measured upwind. WRF was used to investigate a number of potential sources of the high ice crystal concentrations, including: an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice or snow crystals into the clouds. It was found that the

  20. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  1. Angular selectivity asymmetry of holograms recorded in near infrared sensitive liquid crystal photopolymerizable materials

    NASA Astrophysics Data System (ADS)

    Harbour, Steven; Galstian, Tigran; Akopyan, Rafik; Galstyan, Artur

    2004-08-01

    We have experimentally observed and theoretically explained the angular selectivity asymmetry in polymer dispersed liquid crystal holograms. Experiments are conducted in compounds with near infrared sensitivity. The coupled-wave theory is used to describe the diffraction properties of obtained anisotropic holographic gratings. Furthermore, the comparison of theory and experiments provides information about the optical axis direction that is defined by the average molecular orientation of the liquid crystal in the polymer matrix.

  2. Evaluation of Morphological Change and Aggregation Process of Ice Crystals in Frozen Food by Using Fractal Analysis

    NASA Astrophysics Data System (ADS)

    Koshiro, Yoko; Watanabe, Manabu; Takai, Rikuo; Hagiwara, Tomoaki; Suzuki, Toru

    Size and shape of ice crystals in frozen food materials are very important because they affect not only quality of foods but also the viability of industrial processing such as freeze-drying of concentration. In this study, 30%wt sucrose solution is used as test samples. For examining the effect of stabilizerspectine and xantan gum is added to the sucrose solution. They are frozen on the cold stage of microscope to be observed their growing ice crystals under the circumstance of -10°C. Their size and shape are measured and quantitatively evaluated by applying fractal analysis. lce crystal of complicated shape has large fractal dimension, and vice versa. It successflly categorized the ice crystals into two groups; one is a group of large size and complicated shape, and the other is a group of small size and plain shape. The critical crystal size between the two groups is found to become larger with increasing holding time. It suggests a phenomenological model for metamorphoses process of ice crystals. Further, it is indicated that xantan gum is able to suppress the smoothing of ice crystals.

  3. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  4. Crystal Structure of an Insect Antifreeze Protein and Its Implications for Ice Binding*

    PubMed Central

    Hakim, Aaron; Nguyen, Jennifer B.; Basu, Koli; Zhu, Darren F.; Thakral, Durga; Davies, Peter L.; Isaacs, Farren J.; Modis, Yorgo; Meng, Wuyi

    2013-01-01

    Antifreeze proteins (AFPs) help some organisms resist freezing by binding to ice crystals and inhibiting their growth. The molecular basis for how these proteins recognize and bind ice is not well understood. The longhorn beetle Rhagium inquisitor can supercool to below −25 °C, in part by synthesizing the most potent antifreeze protein studied thus far (RiAFP). We report the crystal structure of the 13-kDa RiAFP, determined at 1.21 Å resolution using direct methods. The structure, which contains 1,914 nonhydrogen protein atoms in the asymmetric unit, is the largest determined ab initio without heavy atoms. It reveals a compressed β-solenoid fold in which the top and bottom sheets are held together by a silk-like interdigitation of short side chains. RiAFP is perhaps the most regular structure yet observed. It is a second independently evolved AFP type in beetles. The two beetle AFPs have in common an extremely flat ice-binding surface comprising regular outward-projecting parallel arrays of threonine residues. The more active, wider RiAFP has four (rather than two) of these arrays between which the crystal structure shows the presence of ice-like waters. Molecular dynamics simulations independently reproduce the locations of these ordered crystallographic waters and predict additional waters that together provide an extensive view of the AFP interaction with ice. By matching several planes of hexagonal ice, these waters may help freeze the AFP to the ice surface, thus providing the molecular basis of ice binding. PMID:23486477

  5. Impact of aerosols on ice crystal size

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  6. Three-dimensional behavior of ice crystals and biological cells during freezing of cell suspensions.

    PubMed

    Ishiguro, H; Koike, K

    1998-09-11

    Behavior of ice crystals and human red blood cells during extracellular-freezing was investigated in three-dimensions using a confocal laser scanning microscope(CLSM), which noninvasively produces tomograms of biological materials. Physiological saline and physiological saline with 2.4 M glycerol were used for suspension. Various cooling rates for directional solidification were used for distinctive morphology of the ice crystals. Addition of acridine orange as a fluorescent dye into the cell suspension enabled ice crystal, cells and unfrozen solution to be distinguished by different colors. The results indicate that the microscopic structure is three-dimensional for flat, cellular, and dendritic solid-liquid interfaces and that a CLSM is very effective in studying three-dimensional structure during the freezing of cell suspensions.

  7. Retrieval of ice crystals' mass from ice water content and particle distribution measurements: a numerical optimization approach

    NASA Astrophysics Data System (ADS)

    Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m - IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in

  8. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  9. Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Stillman, David E.

    2011-03-01

    Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.

  10. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    USGS Publications Warehouse

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were

  11. Update on the NASA Glenn PSL Ice Crystal Cloud Characterization (2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, J.; Bencic, T.; Ratvasky, Thomas P.; Struk, Peter M.

    2016-01-01

    NASA Glenn's Propulsion Systems Laboratory (PSL) is an altitude engine research test facility capable of producing ice-crystal and supercooled liquid clouds. The cloud characterization parameter space is fairly large and complex, but the phase of the cloud seems primarily governed by wet bulb temperature. The presentation will discuss some of the issues uncovered through four cloud characterization efforts to date, as well as some of instrumentation that has been used to characterize cloud parameters including cloud uniformity, bulk total water content, median volumetric diameter and max-diameter, percent freeze-out, relative humidity, and an update on the NASA Glenn PSL Ice Crystal Cloud Characterization (2016).

  12. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.

    PubMed

    Kobayashi, Atsuko; Golash, Harry N; Kirschvink, Joseph L

    2016-06-01

    An outstanding biophysical puzzle is focused on the apparent ability of weak, extremely low-frequency oscillating magnetic fields to enhance cryopreservation of many biological tissues. A recent theory holds that these weak magnetic fields could be inhibiting ice-crystal nucleation on the nanocrystals of biological magnetite (Fe3O4, an inverse cubic spinel) that are present in many plant and animal tissues by causing them to oscillate. In this theory, magnetically-induced mechanical oscillations disrupt the ability of water molecules to nucleate on the surface of the magnetite nanocrystals. However, the ability of the magnetite crystal lattice to serve as a template for heterogeneous ice crystal nucleation is as yet unknown, particularly for particles in the 10-100 nm size range. Here we report that the addition of trace-amounts of finely-dispersed magnetite into ultrapure water samples reduces strongly the incidence of supercooling, as measured in experiments conducted using a controlled freezing apparatus with multiple thermocouples. SQUID magnetometry was used to quantify nanogram levels of magnetite in the water samples. We also report a relationship between the volume change of ice, and the degree of supercooling, that may indicate lower degassing during the crystallization of supercooled water. In addition to supporting the role of ice-crystal nucleation by biogenic magnetite in many tissues, magnetite nanocrystals could provide inexpensive, non-toxic, and non-pathogenic ice nucleating agents needed in a variety of industrial processes, as well as influencing the dynamics of ice crystal nucleation in many natural environments. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  14. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  15. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the Heavily Instrumented ALF503R-5 Engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory will be discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This model engine, serial number LF01, was used during the inaugural icing test in the PSL facility. The reduction of thrust (rollback) events experienced by this engine in flight were replicated in the facility. Limited instrumentation was used to detect icing. Metal temperature on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect characterize ice accretion, and visualize the ice accretion in the region of interest.

  16. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  18. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Optical detection and characterization of ice crystals in LACIS

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank

    2010-05-01

    Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the

  20. Multisensor Analysis of Ice Crystals Backscatter Peak From 5 Years of Collocated POLDER, MODIS and CALIOP Observations.

    NASA Astrophysics Data System (ADS)

    Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.

    2016-12-01

    Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice

  1. Modeling the relative contributions of secondary ice formation processes to ice crystal number concentrations within mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios

    2016-04-01

    Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.

  2. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  3. 75 FR 8116 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Ice Crystal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Ice Crystal Consortium Notice is hereby given that, on December 31, 2009, pursuant to.... (``the Act''), the Ice Crystal Consortium (``ICC'') has filed written notifications simultaneously with...

  4. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    PubMed Central

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.

    2014-01-01

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844

  5. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    DOE PAGES

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; ...

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less

  6. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  7. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    NASA Astrophysics Data System (ADS)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-03-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.

  8. Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates.

    PubMed

    Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun

    2017-10-24

    Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.

  9. Separation of ice crystals from interstitial aerosol particles using virtual impaction at the Fifth International Ice Nucleation Workshop FIN-3

    NASA Astrophysics Data System (ADS)

    Roesch, M.; Garimella, S.; Roesch, C.; Zawadowicz, M. A.; Katich, J. M.; Froyd, K. D.; Cziczo, D. J.

    2016-12-01

    In this study, a parallel-plate ice chamber, the SPectrometer for Ice Nuclei (SPIN, DMT Inc.) was combined with a pumped counterflow virtual impactor (PCVI, BMI Inc.) to separate ice crystals from interstitial aerosol particles by their aerodynamic size. These measurements were part of the FIN-3 workshop, which took place in fall 2015 at Storm Peak Laboratory (SPL), a high altitude mountain top facility (3220 m m.s.l.) in the Rocky Mountains. The investigated particles were sampled from ambient air and were exposed to cirrus-like conditions inside SPIN (-40°C, 130% RHice). Previous SPIN experiments under these conditions showed that ice crystals were found to be in the super-micron range. Connected to the outlet of the ice chamber, the PCVI was adjusted to separate all particulates aerodynamically larger than 3.5 micrometer to the sample flow while smaller ones were rejected and removed by a pump flow. Using this technique reduces the number of interstitial aerosol particles, which could bias subsequent ice nucleating particle (INP) analysis. Downstream of the PCVI, the separated ice crystals were evaporated and the flow with the remaining INPs was split up to a particle analysis by laser mass spectrometry (PALMS) instrument a laser aerosol spectrometer (LAS, TSI Inc.) and a single particle soot photometer (SP2, DMT Inc.). Based on the sample flow and the resolution of the measured particle data, the lowest concentration threshold for the SP2 instrument was 294 INP L-1 and for the LAS instrument 60 INP L-1. Applying these thresholds as filters to the measured PALMS time series 944 valid INP spectra using the SP2 threshold and 445 valid INP spectra using the LAS threshold were identified. A sensitivity study determining the number of good INP spectra as a function of the filter threshold concentration showed a two-phase linear growth when increasing the threshold concentration showing a breakpoint around 100 INP L-1.

  10. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2017-01-01

    This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  11. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2016-01-01

    This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  12. cm-scale variations of crystal orientation fabric in cold Alpine ice core from Colle Gnifetti

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias

    2015-04-01

    Analysis of the microstructural parameters of ice has been an important part of ice core analyses so far mainly in polar cores in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an ice body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the ice matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of ice dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of ice crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an ice core. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the ice matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine ice core (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions

  13. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.

    PubMed

    Lupi, Laura; Peters, Baron; Molinero, Valeria

    2016-12-07

    According to Classical Nucleation Theory (CNT), the transition from liquid to crystal occurs in a single activated step with a transition state controlled by the size of the crystal embryo. This picture has been challenged in the last two decades by several reports of two-step crystallization processes in which the liquid first produces pre-ordered or dense domains, within which the crystal nucleates in a second step. Pre-ordering preceding crystal nucleation has been recently reported in simulations of ice crystallization, raising the question of whether the mechanism of ice nucleation involves two steps. In this paper, we investigate the heterogeneous nucleation of ice on carbon surfaces. We use molecular simulations with efficient coarse-grained models combined with rare event sampling methods and free energy calculations to elucidate the role of pre-ordering of liquid water at the carbon surface in the reaction coordinate for heterogeneous nucleation. We find that ice nucleation proceeds through a classical mechanism, with a single barrier between liquid and crystal. The reaction coordinate that determines the crossing of the nucleation barrier is the size of the crystal nucleus, as predicted by CNT. Wetting of the critical ice nuclei within pre-ordered domains decreases the nucleation barrier, increasing the nucleation rates. The preferential pathway for crystallization involves the early creation of pre-ordered domains that are the birthplace of the ice crystallites but do not represent a minimum in the free energy pathway from liquid to ice. We conclude that a preferential pathway through an intermediate-order precursor does not necessarily result in a two-step mechanism.

  14. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.

    2018-05-01

    We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.

  15. Anchor ice and benthic disturbance in shallow Antarctic waters: interspecific variation in initiation and propagation of ice crystals.

    PubMed

    Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan

    2011-10-01

    Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates.

  16. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arienti, Marco; Yang, Xiaoyuan; Kopacz, Adrian M

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical propertiesmore » of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .« less

  17. NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith F.; Rosine, Bryan M.

    2014-01-01

    The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

  18. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-03-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m-2 sea ice d-1 or to 3.5 ton km-2 ice floe week-1.

  19. The microphysical and radiative properties of tropical cirrus from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    NASA Astrophysics Data System (ADS)

    Um, Jun Shik

    During the 2006 Tropical Warm Pool International Cloud Experiment conducted in the region near Darwin, Australia, the Scaled Composites Proteus aircraft executed spiral profiles and flew horizontal legs through aging cirrus, fresh anvils, and cirrus of unknown origin. Data from 27 Jan., 29 Jan., and 2 Feb., when all the microphysical probes a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Cloud Imaging Probe (CIP), and a Cloud Particle Imager (CPI) were working, are used to investigate whether a single parameterization can be used to characterize tropical cirrus in terms of prognostic variables used in large-scale models, to calculate the single-scattering properties (scattering phase function P11 and asymmetry parameter g) of aggregates and small ice crystals that more closely match observed ice crystals, and to quantify the influences of small ice crystals on the bulk scattering properties of tropical cirrus. A combination of CDP (D < 50 mum), fits (50 < D < 125 microm), and CIP (D > 125 mum) distributions is used to represent ice crystal size distributions. The CDP measurements are used for small ice crystals because comparison between the CAS and CDP suggested the CAS was artificially amplifying small ice crystal concentrations by detecting remnants of shattered large ice crystals. Artifacts in CIP images are removed or corrected and then CIP measurements are used to represent large ice crystals. Because of the uncertainties in both the CPI and CIP for 50 < D < 125 mum, the incomplete gamma fitting method with the CDP (D < 50 mum) and CIP (D > 125 mum) measurements as input is used to characterize these distributions. A new quasi-automatic habit classification scheme is developed. For all days, small quasi-spheres dominated the contributions from all ice crystal sizes (D > 0 mum, by number) for all 3 days. The areal fraction (D > 200 mum) from bullet rosettes and their aggregates was 48% and 60% for 27 and 29 Jan., respectively, but only 7

  20. Electrophoresis in ice surface grooves for probing protein affinity to a specific plane of ice crystal.

    PubMed

    Inagawa, Arinori; Okada, Yusuke; Okada, Tetsuo

    2018-06-01

    Channel-like grooves are formed on the surface of frozen aqueous sucrose. They are filled with a freeze concentrated solution (FCS) and act as an efficient size-tunable separation field for micro and nanoparticles. The width of the channel can be easily varied by changing the temperature. Because the channel width decreases with decreasing temperature, particles become immobilized due to physical interference from the ice wall when the temperature reaches a threshold point specific to the particle size. Surface modification of particles can add a factor of chemical interaction between the particles and ice walls. In this study, anti-freeze proteins (AFPs) are anchored on 1µm-polystyrene (PS) particles, and their behavior in the surface grooves on the ice is studied. The threshold temperature is an effective criterion for evaluating chemical interactions between particles and ice walls. The AFP binding on 1µm PS particles lowers the threshold temperature by 2.5°C, indicating interactions between AFPs on the PS particles and the ice wall. Because the AFPs studied here show selectivity towards the prism plane, it is critical that the prism plane of the ice crystal is in contact with the FCS in the surface grooves. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-08-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  2. Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.

    2011-12-01

    Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction timesmore » follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.« less

  3. Seismic wave propagation in anisotropic ice - Part 2: Effects of crystal anisotropy in geophysical data

    NASA Astrophysics Data System (ADS)

    Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.

    2015-02-01

    We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. We make use of abrupt changes in COF as a common reflection mechanism for seismic and radar data below the firn-ice transition to determine COF-induced reflections in either data set by joint comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic experiments to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous ice viscosity from preferred crystal orientations.

  4. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  5. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  6. Dielectric constant adjustments in computations of the scattering properties of solid ice crystals using the Generalized Multi-particle Mie method

    NASA Astrophysics Data System (ADS)

    Lu, Yinghui; Aydin, Kültegin; Clothiaux, Eugene E.; Verlinde, Johannes

    2014-03-01

    Ice crystal scattering properties at microwave radar wavelengths can be modeled with the Generalized Multi-particle Mie (GMM) method by decomposing an ice crystal into a cluster of tiny spheres composed of solid ice. In this decomposition the mass distribution of the tiny spheres in the cluster is no longer equivalent to that in the original ice crystal because of gaps between the tiny spheres. To compensate for the gaps in the cluster representation of an ice crystal in the GMM computation of crystal scattering properties, the Maxwell Garnett approximation is used to estimate what the dielectric function of the tiny spheres (i.e., the inclusions) in the cluster must be to make the cluster of tiny spheres with associated air gaps (i.e., the background matrix) dielectrically equivalent to the original solid ice crystal. Overall, compared with the T-matrix method for spheroids outside resonance regions this approach agrees to within mostly 0.3 dB (and often better) in the horizontal backscattering cross section σhh and the ratio of horizontal and vertical backscattering cross sections σhh/σvv, and 6% for the amplitude scattering matrix elements Re{S22-S11} and Im{S22} in the forward direction. For crystal sizes and wavelengths near resonances, where the scattering parameters are highly sensitive to the crystal shape, the differences are generally within 1.2 dB for σhh and σhh/σvv, 20% for Re{S22-S11} and 6% for Im{S22}. The Discrete Dipole Approximation (DDA) results for the same spheroids are generally closer than those of GMM to the T-matrix results. For hexagonal plates the differences between GMM and the DDA at a W-band wavelength (3.19 mm) are mostly within 0.6 dB for σhh, 1 dB for σhh/σvv, 11% for Re{S22-S11} and 12% for Im{S22}. For columns the differences are within 0.3 dB for σhh and σhh/σvv, 8% for Re{S22-S11} and 4% for Im{S22}. This method shows higher accuracy than an alternative method that artificially increases the thickness of ice plates

  7. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  8. Specific findings on ice crystal microphysical properties from in-situ observation

    NASA Astrophysics Data System (ADS)

    Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2017-04-01

    This study focuses on microphysical properties of ice particles populating high ice water content areas in Mesoscale Convective Systems (MCS). These clouds have been extensively sampled during the High Altitude Ice Crystal - High Ice Water Content international projects (HAIC-HIWC, Dezitter et al. 2013, Strapp et al. 2015) with the objective of characterizing ice particle properties such as size distribution, radar reflectivity and ice water content. The in-situ data collected during these campaigns at different temperature levels and in different type of MCS (oceanic, continental) make the HAIC-HIWC data set a unique opportunity to study ice particle microphysical properties. Recently, a new approach to retrieve ice particle mass from in-situ measurements has been developed: a forward model that relates ice particles' mass to Particle Size Distribution (PSD) and Ice Water Content (IWC) is formulated as a linear system of equations and the retrieval process consists in solving the inverse problem with numerical optimization tools (Coutris et al. 2016). In this study, this new method is applied to HAIC-HIWC data set and main outcomes are discussed. First, the method is compared to a classical power-law based method using data from one single flight performed in Darwin area on February, 7th 2014. The observed differences in retrieved quantities such as ice particle mass, ice water content or median mass diameter, highlight the potential benefit of abandoning the power law simplistic assumption. The method is then applied to data measured at different cloud temperatures ranging from -40°C to -10°C during several flights of both Darwin 2014 and Cayenne 2015 campaigns. Specific findings about ice microphysical properties such as variations of effective density with particle size and the influence of cloud temperature on particle effective density are presented.

  9. The relevance of ice crystal formation for the cryopreservation of tissues and organs.

    PubMed

    Pegg, David E

    2010-07-01

    This paper discusses the role of ice crystal formation in causing or contributing to the difficulties that have been encountered in attempts to develop effective methods for the cryopreservation of some tissues and all organs. It is shown that extracellular ice can be severely damaging but also that cells in situ in tissues can behave quite differently from similar cells in a suspension with respect to intracellular freezing. It is concluded that techniques that avoid the formation of ice altogether are most likely to yield effective methods for the cryopreservation of recalcitrant tissues and vascularised organs. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Ice crystal number concentration measured at mountain-top research stations - What do we measure?

    NASA Astrophysics Data System (ADS)

    Beck, A.; Henneberger, J.; Fugal, J. P.; David, R.; Larcher, L.; Lohmann, U.

    2017-12-01

    To assess the impact of surface processes (e.g. blowing snow and hoar frost) on the ice crystal number concentrations (ICNCs) measured at mountain-top research stations, vertical profiles of ICNCs were observed up to a height of 10 m at the Sonnblick Observatory (SBO) in the Hohen Tauern Region, Austria. Independent of the presence of a cloud, the observed ICNCs decrease with height. This suggests a strong impact of surface processes on ICNCs measured at mountain-top research stations. Consequently, the measured ICNCs are not representative of the cloud, which limits the relevance of ground-based measurements for atmospheric studies. When the SBO was cloud free, the observed ICNCs reached several hundreds per liter near the surface and gradually decreased by more than two orders of magnitudes within the observed height interval of 10 m. The observed ice crystals had predominantly irregular habits, which is expected from surface processes. During in-cloud conditions, the ICNCs decreased between a factor of five and ten, if the ICNC at the surface was larger than 100 l-1. For one case study, the ICNC for regular and irregular ice crystals showed a similar relative decrease with height, which is not expected from surface processes. Therefore, we propose two near-surface processes that potentially enrich ICNCs near the surface and explain these findings: Either sedimenting ice crystals are captured in a turbulent layer above the surface or the ICNC is enhanced in a convergence zone, as the cloud is forced over a mountain. These two processes would also have an impact on ICNCs measured at mountain-top stations if the surrounding surface is not snow covered. Thus, ground-based measured ICNCs are uncharacteristic of the cloud properties aloft.

  11. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  12. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  13. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  14. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-07-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.

  15. Producing desired ice faces

    PubMed Central

    Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan

    2015-01-01

    The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102

  16. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/ characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  17. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  18. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  19. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.

    PubMed

    Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

    2007-12-20

    We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as

  20. Plant ice-binding (antifreeze) proteins

    USDA-ARS?s Scientific Manuscript database

    Proteins that determine the temperature at which ice crystals will form in water-based solutions in cells and tissues, that bind to growing ice crystals, thus affecting their size, and that impact ice re-crystallization have been widely-documented and studied in many plant, bacterial, fungal, insect...

  1. Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays

    NASA Astrophysics Data System (ADS)

    Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard

    2017-07-01

    Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.

  2. Light Scattering by Ice Crystals Containing Air Bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  3. Mixed Phase Modeling in GlennICE with Application to Engine Icing

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Jorgenson, Philip C. E.; Veres, Joseph P.

    2011-01-01

    A capability for modeling ice crystals and mixed phase icing has been added to GlennICE. Modifications have been made to the particle trajectory algorithm and energy balance to model this behavior. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to four mixed phase ice accretions performed in the Cox icing tunnel in order to calibrate an ice erosion model. A sample ice ingestion case was performed using the Energy Efficient Engine (E3) model in order to illustrate current capabilities. Engine performance characteristics were supplied using the Numerical Propulsion System Simulation (NPSS) model for this test case.

  4. Measurement of muon annual modulation and muon-induced phosphorescence in NaI(Tl) crystals with DM-Ice17

    DOE PAGES

    Cherwinka, J.; Grant, D.; Halzen, F.; ...

    2016-02-01

    We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93±0.04 μ/crystal/day with a modulation amplitude of 12.3±1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5±0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons.more » These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keV ee. Furthermore, while the properties of phosphorescence vary among individual crystals, the annually modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.« less

  5. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  6. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins

    PubMed Central

    Olijve, Luuk L. C.; Meister, Konrad; DeVries, Arthur L.; Duman, John G.; Guo, Shuaiqi; Bakker, Huib J.; Voets, Ilja K.

    2016-01-01

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application. PMID:26936953

  7. Ice forming experiment

    NASA Technical Reports Server (NTRS)

    Vali, G.

    1982-01-01

    A low gravity experiment to assess the effect of the presence of supercooled cloud droplets on the diffusional growth rate of ice crystals is described. The theoretical work and the feasibility studies are summarized. The nucleation of ice crystals in supercooled clouds is also discussed.

  8. Optical Properties of Ice Particles in Young Contrails

    NASA Technical Reports Server (NTRS)

    Hong, Gang; Feng, Qian; Yang, Ping; Kattawar, George; Minnis, Patrick; Hu, Yong X.

    2008-01-01

    The single-scattering properties of four types of ice crystals (pure ice crystals, ice crystals with an internal mixture of ice and black carbon, ice crystals coated with black carbon, and soot coated with ice) in young contrails are investigated at wavelengths 0.65 and 2.13 micrometers using Mie codes from coated spheres. The four types of ice crystals have distinct differences in their single-scattering properties because of the embedded black carbon. The bulk scattering properties of young contrails consisting of the four types of ice crystals are further investigated by averaging their single-scattering properties over a typical ice particle size distribution found in young contrails. The effect of the radiative properties of the four types of ice particles on the Stokes parameters I, Q, U, and V is also investigated for different viewing zenith angles and relative azimuth angles with a solar zenith angle of 30 degrees using a vector radiative transfer model based on the adding-doubling technique. The Stokes parameters at a wavelength of 0.65 micrometers show pronounced differences for the four types of ice crystals. Those at a wavelength of 2.13 micrometers show similar variations with the viewing zenith angle and relative azimuth angle, but their values are noticeably different.

  9. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2017-02-01

    Over the decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particle concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system.

  10. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    PubMed Central

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2018-01-01

    Over decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particles concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in-situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system. PMID:29551842

  11. Hemispheric asymmetry in martian seasonal surface water ice from MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Bandfield, Joshua L.; Wood, Stephen E.

    2015-11-01

    The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured planetary broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. We examine TES daytime albedo, temperature, and atmospheric opacity data to map the latitudinal and temporal occurrence of seasonal surface water frost on Mars. We expand on previous work by looking at the behavior of water frost over the entire martian year, made possible with comprehensive, multi-year data. Interpretations of frost are based on albedo changes and the corresponding daytime temperature range. Data is considered consistent with water frost when there are significant albedo increases (>0.05 relative to frost-free seasons) and the observed temperatures are ∼170-200 K. We argue the presence of extensive water frost in the northern hemisphere, extending from the pole to ∼40°N, following seasonal temperature trends. In the north, water frost first appears near the pole at Ls = ∼160° and is last observed at Ls = ∼90°. Extensive water frost is less evident in southern hemisphere data, though both hemispheres show data that are consistent with the presence of a water ice annulus during seasonal cap retreat. Hemispherical asymmetry in the occurrence of seasonal water frost is due in part to the lower (∼40%) atmospheric water vapor abundances observed in the southern hemisphere. Our results are consistent with net transport of water vapor to the northern hemisphere. The deposition and sublimation of seasonal water frost may significantly increase the near-surface water vapor density that could

  12. Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1.

    PubMed

    Do, Hackwon; Lee, Jun Hyuck; Lee, Sung Gu; Kim, Hak Jun

    2012-07-01

    Ice growth in a cold environment is fatal for polar organisms, not only because of the physical destruction of inner cell organelles but also because of the resulting chemical damage owing to processes such as osmotic shock. The properties of ice-binding proteins (IBPs), which include antifreeze proteins (AFPs), have been characterized and IBPs exhibit the ability to inhibit ice growth by binding to specific ice planes and lowering the freezing point. An ice-binding protein (FfIBP) from the Gram-negative bacterium Flavobacterium frigoris PS1, which was isolated from the Antarctic, has recently been overexpressed. Interestingly, the thermal hysteresis activity of FfIBP was approximately 2.5 K at 50 µM, which is ten times higher than that of the moderately active IBP from Arctic yeast (LeIBP). Although FfIBP closely resembles LeIBP in its amino-acid sequence, the antifreeze activity of FfIBP appears to be much greater than that of LeIBP. In an effort to understand the reason for this difference, an attempt was made to solve the crystal structure of FfIBP. Here, the crystallization and X-ray diffraction data of FfIBP are reported. FfIBP was crystallized using the hanging-drop vapour-diffusion method with 0.1 M sodium acetate pH 4.4 and 3 M sodium chloride as precipitant. A complete diffraction data set was collected to a resolution of 2.9 Å. The crystal belonged to space group P4(1)22, with unit-cell parameters a = b = 69.4, c = 178.2 Å. The asymmetric unit contained one monomer.

  13. Understanding Cirrus Ice Crystal Number Variability for Different Heterogeneous Ice Nucleation Spectra

    NASA Technical Reports Server (NTRS)

    Sullivan, Sylvia C.; Betancourt, Ricardo Morales; Barahona, Donifan; Nenes, Athanasios

    2016-01-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  14. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGES

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; ...

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, N i, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of N i to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand N i variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, andmore » simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of N i sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, N i sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  15. A topographically forced asymmetry in the martian circulation and climate.

    PubMed

    Richardson, Mark I; Wilson, R John

    2002-03-21

    Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180 degrees. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north-south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.

  16. Recent Advances in the LEWICE Icing Model

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Addy, Gene; Struk, Peter; Bartkus, Tadas

    2015-01-01

    This paper will describe two recent modifications to the Glenn ICE software. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the run back model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel.

  17. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  18. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    NASA Astrophysics Data System (ADS)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  19. Dynamics of Uncrystallized Water, Ice, and Hydrated Protein in Partially Crystallized Gelatin-Water Mixtures Studied by Broadband Dielectric Spectroscopy.

    PubMed

    Sasaki, Kaito; Panagopoulou, Anna; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Kyritsis, Apostolos; Pissis, Polycarpos

    2017-01-12

    The glass transition of partially crystallized gelatin-water mixtures was investigated using broadband dielectric spectroscopy (BDS) over a wide range of frequencies (10 mHz to 10 MHz), temperatures (113-298 K), and concentrations (10-45 wt %). Three dielectric relaxation processes (processes I, II, and III) were clearly observed. Processes I, II, and III originate from uncrystallized water (UCW) in the hydration shells of gelatin, ice, and hydrated gelatin, respectively. A dynamic crossover, called the Arrhenius to non-Arrhenius transition of UCW, was observed at the glass transition temperature of the relaxation process of hydrated gelatin for all mixtures. The amount of UCW increases with increasing gelatin content. However, above 35 wt % gelatin, the amount of UCW became more dependent on the gelatin concentration. This increase in UCW causes a decrease in the glass transition temperature of the cooperative motion of gelatin and UCW, which appears to result from a change in the aggregation structure of gelatin in the mixture at a gelatin concentration of approximately 35 wt %. The temperature dependence of the relaxation time of process II has nearly the same activation energy as pure ice made by slow crystallization of ice Ih. This implies that process II originates from the dynamics of slowly crystallized ice Ih.

  20. Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

    2000-01-01

    A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud

  1. Modeling of Highly Instrumented Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.

    2016-01-01

    The Propulsion Systems Laboratory (PSL), an altitude test facility at NASA Glenn Research Center, has been used to test a highly instrumented turbine engine at simulated altitude operating conditions. This is a continuation of the PSL testing that successfully duplicated the icing events that were experienced in a previous engine (serial LF01) during flight through ice crystal clouds, which was the first turbofan engine tested in PSL. This second model of the ALF502R-5A serial number LF11 is a highly instrumented version of the previous engine. The PSL facility provides a continuous cloud of ice crystals with controlled characteristics of size and concentration, which are ingested by the engine during operation at simulated altitudes. Several of the previous operating points tested in the LF01 engine were duplicated to confirm repeatability in LF11. The instrumentation included video cameras to visually illustrate the accretion of ice in the low pressure compressor (LPC) exit guide vane region in order to confirm the ice accretion, which was suspected during the testing of the LF01. Traditional instrumentation included static pressure taps in the low pressure compressor inner and outer flow path walls, as well as total pressure and temperature rakes in the low pressure compressor region. The test data was utilized to determine the losses and blockages due to accretion in the exit guide vane region of the LPC. Multiple data points were analyzed with the Honeywell Customer Deck. A full engine roll back point was modeled with the Numerical Propulsion System Simulation (NPSS) code. The mean line compressor flow analysis code with ice crystal modeling was utilized to estimate the parameters that indicate the risk of accretion, as well as to estimate the degree of blockage and losses caused by accretion during a full engine roll back point. The analysis provided additional validation of the icing risk parameters within the LPC, as well as the creation of models for

  2. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  3. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  4. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    NASA Astrophysics Data System (ADS)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  5. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  6. Experimental investigations of interaction of an air-droplet-crystal flow with a solid body in the problem of a flyer icing

    NASA Astrophysics Data System (ADS)

    Kashevarov, Alexey V.; Miller, Alexey B.; Potapov, Yuriy F.; Stasenko, Albert L.; Zhbanov, Vladimir A.

    2018-05-01

    An experimental facility for modeling of icing processes in various conditions (supercooled droplets, ice crystals and mixed-phase) is described and experimental results are presented. Some methods of icing processes characterization with non-dimensional coefficients are suggested. Theoretical model of a liquid film dynamics, mass and heat transfer during its movement on the model surface is presented. The numerical calculations of liquid film freezing and run-back ice evolution on the surface are performed.

  7. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  8. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  9. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  10. Method of forming calthrate ice

    DOEpatents

    Hino, T.; Gorski, A.J.

    1985-09-30

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  11. Method of forming clathrate ice

    DOEpatents

    Hino, Toshiyuki; Gorski, Anthony J.

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  12. Geometrical-optics solution to light scattering by droxtal ice crystals.

    PubMed

    Zhang, Zhibo; Yang, Ping; Kattawar, George W; Tsay, Si-Chee; Baum, Bryan A; Hu, Yongxiang; Heymsfield, Andrew J; Reichardt, Jens

    2004-04-20

    We investigate the phase matrices of droxtals at wavelengths of 0.66 and 11 microm by using an improved geometrical-optics method. An efficient method is developed to specify the incident rays and the corresponding impinging points on the particle surface necessary to initialize the ray-tracing computations. At the 0.66-microm wavelength, the optical properties of droxtals are different from those of hexagonal ice crystals. At the 11-microm wavelength, the phase functions for droxtals are essentially featureless because of strong absorption within the particles, except for ripple structures that are caused by the phase interference of the diffracted wave.

  13. Identification of Plant Ice-binding Proteins Through Assessment of Ice-recrystallization Inhibition and Isolation Using Ice-affinity Purification.

    PubMed

    Bredow, Melissa; Tomalty, Heather E; Walker, Virginia K

    2017-05-05

    Ice-binding proteins (IBPs) belong to a family of stress-induced proteins that are synthesized by certain organisms exposed to subzero temperatures. In plants, freeze damage occurs when extracellular ice crystals grow, resulting in the rupture of plasma membranes and possible cell death. Adsorption of IBPs to ice crystals restricts further growth by a process known as ice-recrystallization inhibition (IRI), thereby reducing cellular damage. IBPs also demonstrate the ability to depress the freezing point of a solution below the equilibrium melting point, a property known as thermal hysteresis (TH) activity. These protective properties have raised interest in the identification of novel IBPs due to their potential use in industrial, medical and agricultural applications. This paper describes the identification of plant IBPs through 1) the induction and extraction of IBPs in plant tissue, 2) the screening of extracts for IRI activity, and 3) the isolation and purification of IBPs. Following the induction of IBPs by low temperature exposure, extracts are tested for IRI activity using a 'splat assay', which allows the observation of ice crystal growth using a standard light microscope. This assay requires a low protein concentration and generates results that are quickly obtained and easily interpreted, providing an initial screen for ice binding activity. IBPs can then be isolated from contaminating proteins by utilizing the property of IBPs to adsorb to ice, through a technique called 'ice-affinity purification'. Using cell lysates collected from plant extracts, an ice hemisphere can be slowly grown on a brass probe. This incorporates IBPs into the crystalline structure of the polycrystalline ice. Requiring no a priori biochemical or structural knowledge of the IBP, this method allows for recovery of active protein. Ice-purified protein fractions can be used for downstream applications including the identification of peptide sequences by mass spectrometry and the

  14. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH.

    PubMed

    Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: a simulation study

    NASA Astrophysics Data System (ADS)

    Zaragoza, Alberto; Espinosa, Jorge R.; Ramos, Regina; Cobos, José Antonio; Aragones, Juan Luis; Vega, Carlos; Sanz, Eduardo; Ramírez, Jorge; Valeriani, Chantal

    2018-05-01

    We investigate with computer simulations the effect of applying an electric field on the water-to-ice transition. We use a combination of state-of-the-art simulation techniques to obtain phase boundaries and crystal growth rates (direct coexistence), nucleation rates (seeding) and interfacial free energies (seeding and mold integration). First, we consider ice Ih, the most stable polymorph in the absence of a field. Its normal melting temperature, speed of crystal growth and nucleation rate (for a given supercooling) diminish as the intensity of the field goes up. Then, we study polarised cubic ice, or ice Icf, the most stable solid phase under a strong electric field. Its normal melting point goes up with the field and, for a given supercooling, under the studied field (0.3 V nm‑1) ice Icf nucleates and grows at a similar rate as Ih with no field. The net effect of the field would then be that ice nucleates at warmer temperatures, but in the form of ice Icf. The main conclusion of this work is that reasonable electric fields (not strong enough to break water molecules apart) are not relevant in the context of homogeneous ice nucleation at 1 bar.

  16. Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: a simulation study.

    PubMed

    Zaragoza, Alberto; Espinosa, Jorge R; Ramos, Regina; Antonio Cobos, José; Luis Aragones, Juan; Vega, Carlos; Sanz, Eduardo; Ramírez, Jorge; Valeriani, Chantal

    2018-05-02

    We investigate with computer simulations the effect of applying an electric field on the water-to-ice transition. We use a combination of state-of-the-art simulation techniques to obtain phase boundaries and crystal growth rates (direct coexistence), nucleation rates (seeding) and interfacial free energies (seeding and mold integration). First, we consider ice Ih, the most stable polymorph in the absence of a field. Its normal melting temperature, speed of crystal growth and nucleation rate (for a given supercooling) diminish as the intensity of the field goes up. Then, we study polarised cubic ice, or ice Icf, the most stable solid phase under a strong electric field. Its normal melting point goes up with the field and, for a given supercooling, under the studied field (0.3 V nm -1 ) ice Icf nucleates and grows at a similar rate as Ih with no field. The net effect of the field would then be that ice nucleates at warmer temperatures, but in the form of ice Icf. The main conclusion of this work is that reasonable electric fields (not strong enough to break water molecules apart) are not relevant in the context of homogeneous ice nucleation at 1 bar.

  17. Ice and anti-nucleating activities of an ice-binding protein from the annual grass, Brachypodium distachyon.

    PubMed

    Bredow, Melissa; Tomalty, Heather E; Smith, Lindsay; Walker, Virginia K

    2018-05-01

    Plants exposed to sub-zero temperatures face unique challenges that threaten their survival. The growth of ice crystals in the extracellular space can cause cellular dehydration, plasma membrane rupture and eventual cell death. Additionally, some pathogenic bacteria cause tissue damage by initiating ice crystal growth at high sub-zero temperatures through the use of ice-nucleating proteins (INPs), presumably to access nutrients from lysed cells. An annual species of brome grass, Brachypodium distachyon (Bd), produces an ice-binding protein (IBP) that shapes ice with a modest depression of the freezing point (~0.1 °C at 1 mg/mL), but high ice-recrystallization inhibition (IRI) activity, allowing ice crystals to remain small at near melting temperatures. This IBP, known as BdIRI, is unlike other characterized IBPs with a single ice-binding face, as mutational analysis indicates that BdIRI adsorbs to ice on two faces. BdIRI also dramatically attenuates the nucleation of ice by bacterial INPs (up to -2.26 °C). This 'anti-nucleating' activity is significantly higher than previously documented for any IBP. © 2016 John Wiley & Sons Ltd.

  18. Meth (Crank, Ice) Facts

    MedlinePlus

    ... Crank, Ice) Facts Meth (Crank, Ice) Facts Listen Methamphetamine—meth for short—is a white, bitter powder. ... names for meth are: Crank Ice Crystal Glass Chalk In This Section Signs of Meth Use and ...

  19. Medical ice slurry production device

    DOEpatents

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  20. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance.

    PubMed

    Brown, Jennifer R; Seymour, Joseph D; Brox, Timothy I; Skidmore, Mark L; Wang, Chen; Christner, Brent C; Luo, Bing-Hao; Codd, Sarah L

    2014-09-01

    Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR) relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP). Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  1. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2015-07-23

    Clathrate hydrates and ice I are the most abundant crystals of water. The study of their nucleation, growth, and decomposition using molecular simulations requires an accurate and efficient algorithm that distinguishes water molecules that belong to each of these crystals and the liquid phase. Existing algorithms identify ice or clathrates, but not both. This poses a challenge for cases in which ice and hydrate coexist, such as in the synthesis of clathrates from ice and the formation of ice from clathrates during self-preservation of methane hydrates. Here we present an efficient algorithm for the identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in molecular simulations. CHILL+ uses the number of staggered and eclipsed water-water bonds to identify water molecules in cubic ice, hexagonal ice, and clathrate hydrate. CHILL+ is an extension of CHILL (Moore et al. Phys. Chem. Chem. Phys. 2010, 12, 4124-4134), which identifies hexagonal and cubic ice but not clathrates. In addition to the identification of hydrates, CHILL+ significantly improves the detection of hexagonal ice up to its melting point. We validate the use of CHILL+ for the identification of stacking faults in ice and the nucleation and growth of clathrate hydrates. To our knowledge, this is the first algorithm that allows for the simultaneous identification of ice and clathrate hydrates, and it does so in a way that is competitive with respect to existing methods used to identify any of these crystals.

  2. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  3. Mechanism of Ice Crystal Growth Habit and Shape Instability Development Below Water Saturation.

    DTIC Science & Technology

    1981-08-01

    The temperature dependence of the mass growth rate of ice crystals at water saturation had been intepreted in terms of the varia- tions with temperature...copy film and recorded by use of a camera for subsequent analysis. 3.3.4.3 Wedge-shaped chamber. A new geometry was introduced to thermal diffusion...camera, equippped with an Olympus Winder 2, a motor driven film advancer, an Olympus Varimagni 3600 rotating eyepiece attachment, and a Dot Line

  4. Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Várnai, Tamás.; Kostinski, Alexander

    2017-05-01

    The Deep Space Climate Observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sunlit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We construct a yearlong time series of flash latitudes, scattering angles, and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice platelets floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo. These glint observations also support proposals for detecting starlight glints off faint companions in our search for habitable exoplanets.

  5. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2002-01-01

    Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative

  6. "Just not all ice users do that": investigating perceptions and potential harms of Australia's Ice Destroys Lives campaign in two studies.

    PubMed

    Douglass, Caitlin H; Early, Elizabeth C; Wright, Cassandra J C; Palmer, Anna; Higgs, Peter; Quinn, Brendan; Dietze, Paul M; Lim, Megan S C

    2017-07-14

    In 2015, the Australian government launched the media campaign Ice Destroys Lives targeting crystal methamphetamine use. Previous research indicates mass media campaigns may have harmful effects for people engaged in drug use. This study investigated perceptions and harms of Ice Destroys Lives among adults with a history of injecting drugs and young people. This analysis includes data from two studies: an online questionnaire with young people and in-depth interviews with adults who use crystal methamphetamine. Young people from Victoria, Australia, were recruited through Facebook. We collected data on drug use, campaign recognition and behaviours. Participants who recognised the campaign indicated whether they agreed with five statements related to Ice Destroys Lives. We compared campaign perceptions between young people who reported ever using crystal methamphetamine and those who did not. Adults who use crystal methamphetamine were sampled from the Melbourne injecting drug user cohort study. We asked participants if they recognised the campaign and whether it represented their experiences. One thousand twenty-nine young people completed the questionnaire; 71% were female, 4% had used crystal methamphetamine and 69% recognised Ice Destroys Lives. Three quarters agreed the campaign made them not want to use ice. Ever using crystal methamphetamine was associated with disagreeing with three statements including this campaign makes you not want to use ice (adjusted odds ratio (AOR) = 4.3, confidence interval (CI) = 1.8-10.0), this campaign accurately portrays the risks of ice use (AOR = 3.2, CI = 1.4-7.6) and this campaign makes you think that people who use ice are dangerous (AOR = 6.6, CI = 2.2-19.8). We interviewed 14 people who used crystal methamphetamine; most were male, aged 29-39 years, and most recognised the campaign. Participants believed Ice Destroys Lives misrepresented their experiences and exaggerated "the nasty side" of drug

  7. A Web-Based Toolkit to Provide Evidence-Based Resources About Crystal Methamphetamine for the Australian Community: Collaborative Development of Cracks in the Ice.

    PubMed

    Champion, Katrina Elizabeth; Chapman, Cath; Newton, Nicola Clare; Brierley, Mary-Ellen; Stapinski, Lexine; Kay-Lambkin, Frances; Nagle, Jack; Teesson, Maree

    2018-03-20

    The use of crystal methamphetamine (ice) and the associated harms for individuals, families, and communities across Australia has been the subject of growing concern in recent years. The provision of easily accessible, evidence-based, and up-to-date information and resources about crystal methamphetamine for the community is a critical component of an effective public health response. This paper aims to describe the codevelopment process of the Web-based Cracks in the Ice Community Toolkit, which was developed to improve access to evidence-based information and resources about crystal methamphetamine for the Australian community. Development of the Cracks in the Ice Community Toolkit was conducted in collaboration with community members across Australia and with experts working in the addiction field. The iterative process involved the following: (1) consultation with end users, including community members, crystal methamphetamine users, families and friends of someone using crystal methamphetamine, health professionals, and teachers (n=451) via a cross-sectional Web-based survey to understand information needs; (2) content and Web development; and (3) user testing of a beta version of the Web-based toolkit among end users (n=41) and experts (n=10) to evaluate the toolkit's acceptability, relevance, and appeal. Initial end user consultation indicated that the most commonly endorsed reasons for visiting a website about crystal methamphetamine were "to get information for myself" (185/451, 41.0%) and "to find out how to help a friend or a family member" (136/451, 30.2%). Community consultation also revealed the need for simple information about crystal methamphetamine, including what it is, its effects, and when and where to seek help or support. Feedback on a beta version of the toolkit was positive in terms of content, readability, layout, look, and feel. Commonly identified areas for improvement related to increasing the level of engagement and personal connection

  8. Ice formation in subglacial Lake Vostok, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  9. Ice cream structural elements that affect melting rate and hardness.

    PubMed

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  10. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  11. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  12. NASA Engine Icing Research Overview: Aeronautics Evaluation and Test Capabilities (AETC) Project

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2015-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.

  13. Glacier-derived permafrost ground ice, Bylot Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Coulombe, S.; Fortier, D.; Lacelle, D.; Godin, E.; Veillette, A.

    2014-12-01

    Massive icy bodies are important components of permafrost geosystems. In situ freezing of water in the ground by ice-segregation processes forms most of these icy bodies. Other hypotheses for the origin of massive ice include the burial of ice (e.g. glacier, snow, lake, river, sea). The analysis of ground-ice characteristics can give numerous clues about the geomorphologic processes and the thermal conditions at the time when permafrost developed. Massive underground ice therefore shows a great potential as a natural archive of the earth's past climate. Identifying the origin of massive ice is a challenge for permafrost science since the different types of massive ice remain difficult to distinguish on the sole basis of field observations. There is actually no clear method to accurately assess the origin of massive ice and identification criteria need to be defined. The present study uses physico-chemical techniques to characterize buried glacier ice observed on Bylot Island, Nunavut. Combined to the analysis of cryostratigraphy, massive-ice cores crystallography and high-resolution imagery of the internal structure of the ice cores were obtained using micro-computed tomography techniques. These techniques are well suited for detailed descriptions (shape, size, orientation) of crystals, gas inclusions and sediment inclusions. Oxygen and hydrogen isotopes ratios of massive-ice cores were also obtained using common equilibrium technique. Preliminary results suggest the occurrence of two types of buried massive-ice of glacial origin similar to those found on contemporary glaciers: 1) Englacial ice: clear to whitish ice, with large crystals (cm) and abundant gas bubbles at crystal intersections; 2) Basal glacier ice: ice-rich, banded, micro-suspended to suspended cryostructures and ice-rich lenticular to layered cryostructures, with small ice crystals (mm) and a few disseminated gas bubbles. Glacier-derived permafrost contains antegenetic ice, which is ice that

  14. Structure of Ordinary Ice Ih. Part 1: Ideal Structure of Ice

    DTIC Science & Technology

    1993-10-01

    T., H . Onuki and R. Onaka (1977) Electronic structures of water and ice. Journal of the Physics Society of Japan, 42: 152-158. Shimaoka, K. (1960...nearest neighbors .................................................................................................................. 5 6. H -bond...8 12. Positions of oxygen atoms in the ice % h crystal

  15. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    NASA Astrophysics Data System (ADS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  16. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less

  17. Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature

    NASA Astrophysics Data System (ADS)

    Robson, Joseph

    2014-10-01

    Mechanical anisotropy and asymmetry are often pronounced in wrought magnesium alloys and are detrimental to formability and service performance. Single crystals of magnesium are highly anisotropic due to the large difference in critical resolved shear stress between the softest and hardest deformation modes. Polycrystalline magnesium alloys exhibit lower anisotropy, influenced by texture, solute level, and precipitates. In this work, a fundamental study of the effects of alloying, precipitate formation, and texture on the change in anisotropy and asymmetry from the pure magnesium single crystal case to polycrystalline alloys has been performed. It is demonstrated that much of the reduction in anisotropy and asymmetry arises from overall strengthening as solute, precipitates, and grain boundary effects are accounted for. Precipitates are predicted to be more effective than solute in reducing anisotropy and asymmetry, but shape and habit are critical since precipitates produce highly anisotropic strengthening. A small deviation from an ideal basal texture (15 deg spread) has a very strong effect in reducing anisotropy and asymmetry, similar in magnitude to the maximum effect produced by precipitation. Elasto-plastic modeling suggests that this is due to a contribution from basal slip to initial plastic deformation, even when global yield is not controlled by this mode.

  18. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    PubMed

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  19. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  20. New insights into ice growth and melting modifications by antifreeze proteins

    PubMed Central

    Bar-Dolev, Maya; Celik, Yeliz; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2012-01-01

    Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold climates by controlling ice crystal growth. The specific interactions of AFPs with ice determine their potential applications in agriculture, food preservation and medicine. AFPs control the shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately active AFPs cause the formation of elongated bipyramidal crystals, often with seemingly defined facets, while hyperactive AFPs produce more varied crystal shapes. These different morphologies are generally considered to be growth shapes. In a series of bright light and fluorescent microscopy observations of ice crystals in solutions containing different AFPs, we show that crystal shaping also occurs during melting. In particular, the characteristic ice shapes observed in solutions of most hyperactive AFPs are formed during melting. We relate these findings to the affinities of the hyperactive AFPs for the basal plane of ice. Our results demonstrate the relation between basal plane affinity and hyperactivity and show a clear difference in the ice-shaping mechanisms of most moderate and hyperactive AFPs. This study provides key aspects associated with the identification of hyperactive AFPs. PMID:22787007

  1. The Effects of Fat Structures and Ice Cream Mix Viscosity on Physical and Sensory Properties of Ice Cream.

    PubMed

    Amador, Julia; Hartel, Rich; Rankin, Scott

    2017-08-01

    The purpose of this work was to investigate iciness perception and other sensory textural attributes of ice cream due to ice and fat structures and mix viscosity. Two studies were carried out varying processing conditions and mix formulation. In the 1st study, ice creams were collected at -3, -5, and -7.5 °C draw temperatures. These ice creams contained 0%, 0.1%, or 0.2% emulsifier, an 80:20 blend of mono- and diglycerides: polysorbate 80. In the 2nd study, ice creams were collected at -3 °C draw temperature and contained 0%, 0.2%, or 0.4% stabilizer, a blend of guar gum, locust bean gum, and carrageenan. Multiple linear regressions were used to determine relationships between ice crystal size, destabilized fat, and sensory iciness. In the ice and fat structure study, an inverse correlation was found between fat destabilization and sensory iciness. Ice creams with no difference in ice crystal size were perceived to be less icy with increasing amounts of destabilized fat. Destabilized fat correlated inversely with drip-through rate and sensory greasiness. In the ice cream mix viscosity study, an inverse correlation was found between mix viscosity and sensory iciness. Ice creams with no difference in ice crystal size were perceived to be less icy when formulated with higher mix viscosity. A positive correlation was found between mix viscosity and sensory greasiness. These results indicate that fat structures and mix viscosity have significant effects on ice cream microstructure and sensory texture including the reduction of iciness perception. © 2017 Institute of Food Technologists®.

  2. Forces Generated by High Velocity Impact of Ice on a Rigid Structure

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.

    2006-01-01

    Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.

  3. Tension-compression asymmetry of a rolled Mg-Y-Nd alloy

    NASA Astrophysics Data System (ADS)

    Song, Bo; Pan, Hucheng; Ren, Weijie; Guo, Ning; Wu, Zehong; Xin, Renlong

    2017-07-01

    In this work, tension and compression deformation behaviors of rolled and aged Mg-Y-Nd alloys were investigated. The microstructure evolution and plastic deformation mechanism during tension and compression were analyzed by combined use of electron backscatter diffraction and a visco-plastic self-consistent crystal plasticity model. The results show that both rolled and aged Mg-Y-Nd sheets show an extremely low yield asymmetry. Elimination of yield asymmetry can be ascribed to the tilted basal texture and suppression of {10-12} twinning. The rolled sheet has almost no yield asymmetry, however exhibits a remarkable strain-hardening behavior asymmetry. Compressed sample shows lower initial strain hardening rate and keeps higher strain hardening rate at the later stage compared with tension. The strain-hardening asymmetry can be aggravated by aging at 280 C. It is considered the limited amount of twins in compression plays the critical role in the strain hardening asymmetry. Finally, the relevant mechanism was analyzed and discussed.

  4. Calorimetric determination of inhibition of ice crystal growth by antifreeze protein in hydroxyethyl starch solutions.

    PubMed Central

    Hansen, T N; Carpenter, J F

    1993-01-01

    Differential scanning calorimetry and cryomicroscopy were used to investigate the effects of type I antifreeze protein (AFP) from winter flounder on 58% solutions of hydroxyethyl starch. The glass, devitrification, and melt transitions noted during rewarming were unaffected by 100 micrograms/ml AFP. Isothermal annealing experiments were undertaken to detect the effects of AFP-induced inhibition of ice crystal growth using calorimetry. A premelt endothermic peak was detected during warming after the annealing procedure. Increasing the duration or the temperature of the annealing for the temperature range from -28 and -18 degrees C resulted in a gradual increase in the enthalpy of the premelt endotherm. This transition was unaffected by 100 micrograms/ml AFP. Annealing between -18 and -10 degrees C resulted in a gradual decrease in the premelt peak enthalpy. This process was inhibited by 100 micrograms/ml AFP. Cryomicroscopic examination of the samples revealed that AFP inhibited ice recrystallization during isothermal annealing at -10 degrees C. Annealing at lower temperatures resulted in minimal ice recrystallization and no visible effect of AFP. Thus, the 100 micrograms/ml AFP to have a detectable influence on thermal events in the calorimeter, conditions must be used that result in significant ice growth without AFP and visible inhibition of this process by AFP. Images FIGURE 8 PMID:7690257

  5. Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein.

    PubMed

    Mahatabuddin, Sheikh; Fukami, Daichi; Arai, Tatsuya; Nishimiya, Yoshiyuki; Shimizu, Rumi; Shibazaki, Chie; Kondo, Hidemasa; Adachi, Motoyasu; Tsuda, Sakae

    2018-05-22

    Polypentagonal water networks were recently observed in a protein capable of binding to ice crystals, or ice-binding protein (IBP). To examine such water networks and clarify their role in ice-binding, we determined X-ray crystal structures of a 65-residue defective isoform of a Zoarcidae -derived IBP (wild type, WT) and its five single mutants (A20L, A20G, A20T, A20V, and A20I). Polypentagonal water networks composed of ∼50 semiclathrate waters were observed solely on the strongest A20I mutant, which appeared to include a tetrahedral water cluster exhibiting a perfect position match to the [Formula: see text] first prism plane of a single ice crystal. Inclusion of another symmetrical water cluster in the polypentagonal network showed a perfect complementarity to the waters constructing the [Formula: see text] pyramidal ice plane. The order of ice-binding strength was A20L < A20G < WT < A20T < A20V < A20I, where the top three mutants capable of binding to the first prism and the pyramidal ice planes commonly contained a bifurcated γ-CH 3 group. These results suggest that a fine-tuning of the surface of Zoarcidae -derived IBP assisted by a side-chain group regulates the holding property of its polypentagonal water network, the function of which is to freeze the host protein to specific ice planes. Copyright © 2018 the Author(s). Published by PNAS.

  6. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape.

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth; Arnott, W. Patrick; O'C. Starr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2003-04-01

    Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El Niño waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized.Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar depolarization data indicate widespread regions of uniform ice plate orientations, and in situ particle replicator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea salt nuclei in strong thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-salt-contaminated ice crystals during the extended period of cirrus cloud maintenance. The inference that marine microbiota are embedded in the replicas of some ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the

  7. Ice crystallization in porous building materials: assessing damage using real-time 3D monitoring

    NASA Astrophysics Data System (ADS)

    Deprez, Maxim; De Kock, Tim; De Schutter, Geert; Cnudde, Veerle

    2017-04-01

    Frost action is one of the main causes of deterioration of porous building materials in regions at middle to high latitudes. Damage will occur when the internal stresses due to ice formation become larger than the strength of the material. Hence, the sensitivity of the material to frost damage is partly defined by the structure of the solid body. On the other hand, the size, shape and interconnection of pores manages the water distribution in the building material and, therefore, the characteristics of the pore space control potential to form ice crystals (Ruedrich et al., 2011). In order to assess the damage to building materials by ice crystallization, lot of effort was put into identifying the mechanisms behind the stress build up. First of all, volumetric expansion of 9% (Hirschwald, 1908) during the transition of water to ice should be mentioned. Under natural circumstances, however, water saturation degrees within natural rocks or concrete cannot reach a damaging value. Therefore, linear growth pressure (Scherer, 1999), as well as several mechanisms triggered by water redistribution during freezing (Powers and Helmuth, 1953; Everett, 1961) are more likely responsible for damage due to freezing. Nevertheless, these theories are based on indirect observations and models and, thus, direct evidence that reveals the exact damage mechanism under certain conditions is still lacking. To obtain this proof, in-situ information needs to be acquired while a freezing process is performed. X-ray computed tomography has proven to be of great value in material research. Recent advances at the Ghent University Centre for Tomography (UGCT) have already allowed to dynamically 3D image crack growth in natural rock during freeze-thaw cycles (De Kock et al., 2015). A great potential to evaluate the different stress build-up mechanisms can be found in this imaging technique consequently. It is required to cover a range of materials with different petrophysical properties to achieve

  8. Determination of Ice Cloud Models Using MODIS and MISR Data

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.

    2012-01-01

    Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.

  9. Ice-Binding Proteins in Plants.

    PubMed

    Bredow, Melissa; Walker, Virginia K

    2017-01-01

    Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.

  10. High-density amorphous ice: nucleation of nanosized low-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Tonauer, Christina M.; Seidl-Nigsch, Markus; Loerting, Thomas

    2018-01-01

    The pressure dependence of the crystallization temperature of different forms of expanded high-density amorphous ice (eHDA) was scrutinized. Crystallization at pressures 0.05-0.30 GPa was followed using volumetry and powder x-ray diffraction. eHDA samples were prepared via isothermal decompression of very high-density amorphous ice at 140 K to different end pressures between 0.07-0.30 GPa (eHDA0.07-0.3). At 0.05-0.17 GPa the crystallization line T x (p) of all eHDA variants is the same. At pressures  >0.17 GPa, all eHDA samples decompressed to pressures  <0.20 GPa exhibit significantly lower T x values than eHDA0.2 and eHDA0.3. We rationalize our findings with the presence of nanoscaled low-density amorphous ice (LDA) seeds that nucleate in eHDA when it is decompressed to pressures  <0.20 GPa at 140 K. Below ~0.17 GPa, these nanosized LDA domains are latent within the HDA matrix, exhibiting no effect on T x of eHDA<0.2. Upon heating at pressures  ⩾0.17 GPa, these nanosized LDA nuclei transform to ice IX nuclei. They are favored sites for crystallization and, hence, lower T x . By comparing crystallization experiments of bulk LDA with the ones involving nanosized LDA we are able to estimate the Laplace pressure and radius of ~0.3-0.8 nm for the nanodomains of LDA. The nucleation of LDA in eHDA revealed here is evidence for the first-order-like nature of the HDA  →  LDA transition, supporting water’s liquid-liquid transition scenarios.

  11. Retrieval of Ice Cloud Properties Using Variable Phase Functions

    NASA Astrophysics Data System (ADS)

    Heck, Patrick W.; Minnis, Patrick; Yang, Ping; Chang, Fu-Lung; Palikonda, Rabindra; Arduini, Robert F.; Sun-Mack, Sunny

    2009-03-01

    An enhancement to NASA Langley's Visible Infrared Solar-infrared Split-window Technique (VISST) is developed to identify and account for situations when errors are induced by using smooth ice crystals. The retrieval scheme incorporates new ice cloud phase functions that utilize hexagonal crystals with roughened surfaces. In some situations, cloud optical depths are reduced, hence, cloud height is increased. Cloud effective particle size also changes with the roughened ice crystal models which results in varied effects on the calculation of ice water path. Once validated and expanded, the new approach will be integrated in the CERES MODIS algorithm and real-time retrievals at Langley.

  12. Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    China, Swarup; Kulkarni, Gourihar; Scarnato, Barbara V.

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those frommore » supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. Lastly, these results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.« less

  13. Morphology of diesel soot residuals from supercooled water droplets and ice crystals: Implications for optical properties

    DOE PAGES

    China, Swarup; Kulkarni, Gourihar; Scarnato, Barbara V.; ...

    2015-11-01

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those frommore » supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. Lastly, these results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.« less

  14. Disk and circumsolar radiances in the presence of ice clouds

    DOE PAGES

    Haapanala, Päivi; Räisänen, Petri; McFarquhar, Greg M.; ...

    2017-06-12

    The impact of ice clouds on solar disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0 to 8° from the center of the sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus (SPARTICUS) campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements obtained by the Sun and Aureole Measurements (SAM) instrument. First, the sensitivity of the radiances to themore » ice cloud properties and aerosol optical thickness is addressed. The angular dependence of the disk and circumsolar radiances is found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals) and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in comparisons with SAM data, the ice cloud optical thickness is adjusted for each case so that the simulated radiances agree closely (i.e., within 3 %) with the measured disk radiances. Circumsolar radiances at angles larger than ≈ 3° are systematically underestimated when assuming smooth ice crystals, whereas the agreement with the measurements is better when rough ice crystals are assumed. In conclusion, our results suggest that it may well be possible to infer the particle roughness directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.« less

  15. Parity-violating electroweak asymmetry in e→ p scattering

    NASA Astrophysics Data System (ADS)

    Aniol, K. A.; Armstrong, D. S.; Averett, T.; Baylac, M.; Burtin, E.; Calarco, J.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Coman, M.; Dale, D.; Deur, A.; Djawotho, P.; Epstein, M. B.; Escoffier, S.; Ewell, L.; Falletto, N.; Finn, J. M.; Fissum, K.; Fleck, A.; Frois, B.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G. M.; Gilman, R.; Glamazdin, A.; Gomez, J.; Gorbenko, V.; Hansen, O.; Hersman, F.; Higinbotham, D. W.; Holmes, R.; Holtrop, M.; Humensky, T. B.; Incerti, S.; Iodice, M.; de Jager, C. W.; Jardillier, J.; Jiang, X.; Jones, M. K.; Jorda, J.; Jutier, C.; Kahl, W.; Kelly, J. J.; Kim, D. H.; Kim, M.-J.; Kim, M. S.; Kominis, I.; Kooijman, E.; Kramer, K.; Kumar, K. S.; Kuss, M.; Lerose, J.; de Leo, R.; Leuschner, M.; Lhuillier, D.; Liang, M.; Liyanage, N.; Lourie, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; Martino, J.; Mastromarino, P.; McCormick, K.; McIntyre, J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, G. W.; Mitchell, J.; Morand, L.; Neyret, D.; Pedrisat, C.; Petratos, G. G.; Pomatsalyuk, R.; Price, J. S.; Prout, D.; Punjabi, V.; Pussieux, T.; Quéméner, G.; Ransome, R. D.; Relyea, D.; Roblin, Y.; Roche, J.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatie, F.; Saha, A.; Souder, P. A.; Spradlin, M.; Strauch, S.; Suleiman, R.; Templon, J.; Teresawa, T.; Thompson, J.; Tieulent, R.; Todor, L.; Tonguc, B. T.; Ulmer, P. E.; Urciuoli, G. M.; Vlahovic, B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B.; Woo, R.; Xu, W.; Younus, I.; Zhang, C.

    2004-06-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A= -15.05±0.98 (stat) ±0.56 (syst) ppm at the kinematic point < θlab > =12.3° and < Q2 > =0.477 (GeV/c)2 . Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors GsE +0.392 GsM = 0.014±0.020±0.010 , where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.

  16. Ice Particle Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  17. Revealing Layers of Pristine Oriented Crystals Embedded Within Deep Ice Clouds Using Differential Reflectivity and the Copolar Correlation Coefficient

    NASA Astrophysics Data System (ADS)

    Keat, W. J.; Westbrook, C. D.

    2017-11-01

    Pristine ice crystals typically have high aspect ratios (≫ 1), have a high density and tend to fall preferentially with their major axis aligned horizontally. Consequently, they can, in certain circumstances, be readily identified by measurements of differential reflectivity (ZDR), which is related to their average aspect ratio. However, because ZDR is reflectivity weighted, its interpretation becomes ambiguous in the presence of even a few, larger aggregates or irregular polycrystals. An example of this is in mixed-phase regions that are embedded within deeper ice cloud. Currently, our understanding of the microphysical processes within these regions is hindered by a lack of good observations. In this paper, a novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the copolar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and "intrinsic" ZDR (ZDRIP) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZDRIP values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in situ particle images from the Facility for Airborne Atmospheric Measurements BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.

  18. Interaction of ice binding proteins with ice, water and ions.

    PubMed

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-19

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.

  19. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing.

    PubMed

    Deller, Robert C; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2014-01-01

    The cryopreservation of cells, tissue and organs is fundamental to modern biotechnology, transplantation medicine and chemical biology. The current state-of-the-art method of cryopreservation is the addition of large amounts of organic solvents such as glycerol or dimethyl sulfoxide, to promote vitrification and prevent ice formation. Here we employ a synthetic, biomimetic, polymer, which is capable of slowing the growth of ice crystals in a manner similar to antifreeze (glyco)proteins to enhance the cryopreservation of sheep and human red blood cells. We find that only 0.1 wt% of the polymer is required to attain significant cell recovery post freezing, compared with over 20 wt% required for solvent-based strategies. These results demonstrate that synthetic antifreeze (glyco)protein mimics could have a crucial role in modern regenerative medicine to improve the storage and distribution of biological material for transplantation.

  20. Myths and Truths of Nitinol Mechanics: Elasticity and Tension-Compression Asymmetry

    NASA Astrophysics Data System (ADS)

    Bucsek, Ashley N.; Paranjape, Harshad M.; Stebner, Aaron P.

    2016-09-01

    Two prevalent myths of Nitinol mechanics are examined: (1) Martensite is more compliant than austenite; (2) Texture-free Nitinol polycrystals do not exhibit tension-compression asymmetry. By reviewing existing literature, the following truths are revealed: (1) Martensite crystals may be more compliant, equally stiff, or stiffer than austenite crystals, depending on the orientation of the applied load. The Young's Modulus of polycrystalline Nitinol is not a fixed number—it changes with both processing and in operando deformations. Nitinol martensite prefers to behave stiffer under compressive loads and more compliant under tensile loads. (2) Inelastic Nitinol martensite deformation in and of itself is asymmetric, even for texture-free polycrystals. Texture-free Nitinol polycrystals also exhibit tension-compression transformation asymmetry.

  1. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Toon, O. B.

    1994-01-01

    We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.

  2. A Supramolecular Ice Growth Inhibitor.

    PubMed

    Drori, Ran; Li, Chao; Hu, Chunhua; Raiteri, Paolo; Rohl, Andrew L; Ward, Michael D; Kahr, Bart

    2016-10-12

    Safranine O, a synthetic dye, was found to inhibit growth of ice at millimolar concentrations with an activity comparable to that of highly evolved antifreeze glycoproteins. Safranine inhibits growth of ice crystals along the crystallographic a-axis, resulting in bipyramidal needles extended along the <0001> directions as well as and plane-specific thermal hysteresis (TH) activity. The interaction of safranine with ice is reversible, distinct from the previously reported behavior of antifreeze proteins. Spectroscopy and molecular dynamics indicate that safranine forms aggregates in aqueous solution at micromolar concentrations. Metadynamics simulations and aggregation theory suggested that as many as 30 safranine molecules were preorganized in stacks at the concentrations where ice growth inhibition was observed. The simulations and single-crystal X-ray structure of safranine revealed regularly spaced amino and methyl substituents in the aggregates, akin to the ice-binding site of antifreeze proteins. Collectively, these observations suggest an unusual link between supramolecular assemblies of small molecules and functional proteins.

  3. Promotion of Homogeneous Ice Nucleation by Soluble Molecules.

    PubMed

    Mochizuki, Kenji; Qiu, Yuqing; Molinero, Valeria

    2017-11-29

    Atmospheric aerosols nucleate ice in clouds, strongly impacting precipitation and climate. The prevailing consensus is that ice nucleation is promoted heterogeneously by the surface of ice nucleating particles in the aerosols. However, recent experiments indicate that water-soluble molecules, such as polysaccharides of pollen and poly(vinyl alcohol) (PVA), increase the ice freezing temperature. This poses the question of how do flexible soluble molecules promote the formation of water crystals, as they do not expose a well-defined surface to ice. Here we use molecular simulations to demonstrate that PVA promotes ice nucleation through a homogeneous mechanism: PVA increases the nucleation rate by destabilizing water in the solution. This work demonstrates a novel paradigm for understanding ice nucleation by soluble molecules and provides a new handle to design additives that promote crystallization.

  4. Ice-Binding Proteins in Plants

    PubMed Central

    Bredow, Melissa; Walker, Virginia K.

    2017-01-01

    Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops. PMID:29312400

  5. Core drilling through the ross ice shelf (antarctica) confirmed Basal freezing.

    PubMed

    Zotikov, I A; Zagorodnov, V S; Raikovsky, J V

    1980-03-28

    New techniques that have been used to obtain a continuous ice core through the whole 416-meter thickness of the Ross Ice Shelf at Camp J-9 have demonstrated that the bottom 6 meters of the ice shelf consists of sea ice. The rate of basal freezing that is forming this ice is estimated by different methods to be 2 centimeters of ice per year. The sea ice is composed of large vertical crystals, which form the waffle-like lower boundary of the shelf. A distinct alignment of the crystals throughout the sea ice layer suggests the presence of persistent long-term currents beneath the ice shelf.

  6. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  7. Comparison in Schemes for Simulating Depositional Growth of Ice Crystal between Theoretical and Laboratory Data

    NASA Astrophysics Data System (ADS)

    Zhai, Guoqing; Li, Xiaofan

    2015-04-01

    The Bergeron-Findeisen process has been simulated using the parameterization scheme for the depositional growth of ice crystal with the temperature-dependent theoretically predicted parameters in the past decades. Recently, Westbrook and Heymsfield (2011) calculated these parameters using the laboratory data from Takahashi and Fukuta (1988) and Takahashi et al. (1991) and found significant differences between the two parameter sets. There are two schemes that parameterize the depositional growth of ice crystal: Hsie et al. (1980), Krueger et al. (1995) and Zeng et al. (2008). In this study, we conducted three pairs of sensitivity experiments using three parameterization schemes and the two parameter sets. The pre-summer torrential rainfall event is chosen as the simulated rainfall case in this study. The analysis of root-mean-squared difference and correlation coefficient between the simulation and observation of surface rain rate shows that the experiment with the Krueger scheme and the Takahashi laboratory-derived parameters produces the best rain-rate simulation. The mean simulated rain rates are higher than the mean observational rain rate. The calculations of 5-day and model domain mean rain rates reveal that the three schemes with Takahashi laboratory-derived parameters tend to reduce the mean rain rate. The Krueger scheme together with the Takahashi laboratory-derived parameters generate the closest mean rain rate to the mean observational rain rate. The decrease in the mean rain rate caused by the Takahashi laboratory-derived parameters in the experiment with the Krueger scheme is associated with the reductions in the mean net condensation and the mean hydrometeor loss. These reductions correspond to the suppressed mean infrared radiative cooling due to the enhanced cloud ice and snow in the upper troposphere.

  8. Compression Freezing Kinetics of Water to Ice VII

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Galtier, E.; ...

    2017-07-11

    Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

  9. Compression Freezing Kinetics of Water to Ice VII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, A. E.; Bolme, C. A.; Galtier, E.

    Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

  10. Ice Surfaces.

    PubMed

    Shultz, Mary Jane

    2017-05-05

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, I h . Despite its prevalence, I h remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  11. Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.; Nili, Samaun

    2017-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the turbine engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The PSL has been used to test a highly instrumented Honeywell ALF502R-5A (LF11) turbofan engine at simulated altitude operating conditions. Test data analysis with an engine cycle code and a compressor flow code was conducted to determine the values of key icing parameters, that can indicate the risk of ice accretion, which can lead to engine rollback (un-commanded loss of engine thrust). The full engine aerothermodynamic performance was modeled with the Honeywell Customer Deck specifically created for the ALF502R-5A engine. The mean-line compressor flow analysis code, which includes a code that models the state of the ice crystal, was used to model the air flow through the fan-core and low pressure compressor. The results of the compressor flow analyses included calculations of the ice-water flow rate to air flow rate ratio (IWAR), the local static wet bulb temperature, and the particle melt ratio throughout the flow field. It was found that the assumed particle size had a large effect on the particle melt ratio, and on the local wet bulb temperature. In this study the particle size was varied parametrically to produce a non-zero calculated melt ratio in the exit guide vane (EGV) region of the low pressure compressor (LPC) for the data points that experienced a growth of blockage there, and a subsequent engine called rollback (CRB). At data points where the engine experienced a CRB having the lowest wet bulb temperature of 492 degrees Rankine at the EGV trailing edge, the smallest particle size that produced a non-zero melt ratio (between 3 percent - 4 percent) was on the order of 1 micron. This value of melt ratio was utilized as the target for all other subsequent data points analyzed, while the particle size was varied from 1 micron - 9

  12. Ice Particle Growth Under Conditions of the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 microns, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  13. Understanding Poly(vinyl alcohol)-Mediated Ice Recrystallization Inhibition through Ice Adsorption Measurement and pH Effects.

    PubMed

    Burkey, Aaron A; Riley, Christopher L; Wang, Lyndsey K; Hatridge, Taylor A; Lynd, Nathaniel A

    2018-01-08

    The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.

  14. New simulation model of multicomponent crystal growth and inhibition.

    PubMed

    Wathen, Brent; Kuiper, Michael; Walker, Virginia; Jia, Zongchao

    2004-04-02

    We review a novel computational model for the study of crystal structures both on their own and in conjunction with inhibitor molecules. The model advances existing Monte Carlo (MC) simulation techniques by extending them from modeling 3D crystal surface patches to modeling entire 3D crystals, and by including the use of "complex" multicomponent molecules within the simulations. These advances makes it possible to incorporate the 3D shape and non-uniform surface properties of inhibitors into simulations, and to study what effect these inhibitor properties have on the growth of whole crystals containing up to tens of millions of molecules. The application of this extended MC model to the study of antifreeze proteins (AFPs) and their effects on ice formation is reported, including the success of the technique in achieving AFP-induced ice-growth inhibition with concurrent changes to ice morphology that mimic experimental results. Simulations of ice-growth inhibition suggest that the degree of inhibition afforded by an AFP is a function of its ice-binding position relative to the underlying anisotropic growth pattern of ice. This extended MC technique is applicable to other crystal and crystal-inhibitor systems, including more complex crystal systems such as clathrates.

  15. What Determines the Ice Polymorph in Clouds?

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2016-07-20

    Ice crystals in the atmosphere nucleate from supercooled liquid water and grow by vapor uptake. The structure of the ice polymorph grown has strong impact on the morphology and light scattering of the ice crystals, modulates the amount of water vapor in ice clouds, and can impact the molecular uptake and reactivity of atmospheric aerosols. Experiments and molecular simulations indicate that ice nucleated and grown from deeply supercooled liquid water is metastable stacking disordered ice. The ice polymorph grown from vapor has not yet been determined. Here we use large-scale molecular simulations to determine the structure of ice that grows as a result of uptake of water vapor in the temperature range relevant to cirrus and mixed-phase clouds, elucidate the molecular mechanism of the formation of ice at the vapor interface, and compute the free energy difference between cubic and hexagonal ice interfaces with vapor. We find that vapor deposition results in growth of stacking disordered ice only under conditions of extreme supersaturation, for which a nonequilibrium liquid layer completely wets the surface of ice. Such extreme conditions have been used to produce stacking disordered frost ice in experiments and may be plausible in the summer polar mesosphere. Growth of ice from vapor at moderate supersaturations in the temperature range relevant to cirrus and mixed-phase clouds, from 200 to 260 K, produces exclusively the stable hexagonal ice polymorph. Cubic ice is disfavored with respect to hexagonal ice not only by a small penalty in the bulk free energy (3.6 ± 1.5 J mol(-1) at 260 K) but also by a large free energy penalty at the ice-vapor interface (89.7 ± 12.8 J mol(-1) at 260 K). The latter originates in higher vibrational entropy of the hexagonal-terminated ice-vapor interface. We predict that the free energy penalty against the cubic ice interface should decrease strongly with temperature, resulting in some degree of stacking disorder in ice grown from

  16. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    NASA Astrophysics Data System (ADS)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  17. An improved ice cloud formation parameterization in the EMAC model

    NASA Astrophysics Data System (ADS)

    Bacer, Sara; Pozzer, Andrea; Karydis, Vlassis; Tsimpidi, Alexandra; Tost, Holger; Sullivan, Sylvia; Nenes, Athanasios; Barahona, Donifan; Lelieveld, Jos

    2017-04-01

    Cirrus clouds cover about 30% of the Earth's surface and are an important modulator of the radiative energy budget of the atmosphere. Despite their importance in the global climate system, there are still large uncertainties in understanding the microphysical properties and interactions with aerosols. Ice crystal formation is quite complex and a variety of mechanisms exists for ice nucleation, depending on aerosol characteristics and environmental conditions. Ice crystals can be formed via homogeneous nucleation or heterogeneous nucleation of ice-nucleating particles in different ways (contact, immersion, condensation, deposition). We have implemented the computationally efficient cirrus cloud formation parameterization by Barahona and Nenes (2009) into the EMAC (ECHAM5/MESSy Atmospheric Chemistry) model in order to improve the representation of ice clouds and aerosol-cloud interactions. The parameterization computes the ice crystal number concentration from precursor aerosols and ice-nucleating particles accounting for the competition between homogeneous and heterogeneous nucleation and among different freezing modes. Our work shows the differences and the improvements obtained after the implementation with respect to the previous version of EMAC.

  18. A global view of atmospheric ice particle complexity

    NASA Astrophysics Data System (ADS)

    Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin

    2016-11-01

    Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.

  19. Cirrus cloud model parameterizations: Incorporating realistic ice particle generation

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Dodd, G. C.; Starr, David OC.

    1990-01-01

    Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.

  20. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.

    NASA Astrophysics Data System (ADS)

    Straka, Jerry M.; Mansell, Edward R.

    2005-04-01

    A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

  1. Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; Ansmann, Albert; Korenskiy, Michail; Borovoi, Anatoli; Hu, Qiaoyun; Bovchaliuk, Valentin; Whiteman, David N.

    2018-04-01

    Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR) effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

  2. Electromagnetic scattering and absorption by thin walled dielectric cylinders with application to ice crystals

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Weil, H.

    1977-01-01

    Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.

  3. Stationary Waves of the Ice Age Climate.

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.; Held, Isaac M.

    1988-08-01

    A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.

  4. The anomalously high melting temperature of bilayer ice.

    PubMed

    Kastelowitz, Noah; Johnston, Jessica C; Molinero, Valeria

    2010-03-28

    Confinement of water usually depresses its melting temperature. Here we use molecular dynamics simulations to determine the liquid-crystal equilibrium temperature for water confined between parallel hydrophobic or mildly hydrophilic plates as a function of the distance between the surfaces. We find that bilayer ice, an ice polymorph in which the local environment of each water molecule strongly departs from the most stable tetrahedral structure, has the highest melting temperature (T(m)) of the series of l-layer ices. The melting temperature of bilayer ice is not only unusually high compared to the other confined ices, but also above the melting point of bulk hexagonal ice. Recent force microscopy experiments of water confined between graphite and a tungsten tip reveal the formation of ice at room temperature [K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008)]. Our results suggest that bilayer ice, for which we compute a T(m) as high as 310 K in hydrophobic confinement, is the crystal formed in those experiments.

  5. Synergistic Measurement of Ice Cloud Microphysics using C- and Ka-Band Radars

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Gross, S.; Hagen, M.; Li, Q.; Zinner, T.

    2017-12-01

    Ice clouds play an essential role in the climate system since they have a large effect on the Earth's radiation budget. Uncertainties associated with their spatial and temporal distribution as well as their optical and microphysical properties still account for large uncertainties in climate change predictions. Substantial improvement of our understanding of ice clouds was achieved with the advent of cloud radars into the field of ice cloud remote sensing. Here, highly variable ice crystal size distributions are one of the key issues remaining to be resolved. With radar reflectivity scaling with the sixth moment of the particle size, the assumed ice crystal size distribution has a large impact on the results of microphysical retrievals. Different ice crystal sizes distributions can, however, be distinguished, when cloud radars of different wavelength are used simultaneously.For this study, synchronous RHI scans were performed for a common measurement range of about 30 km between two radar instruments using different wavelengths: the dual-polarization C-band radar POLDIRAD operated at DLR and the Mira-36 Ka-band cloud radar operated at the University of Munich. For a measurement period over several months, the overlapping region for ice clouds turned out to be quite large. This gives evidence on the presence of moderate-sized ice crystals for which the backscatter is sufficient high to be visible in the C-band as well. In the range between -10 to +10 dBz, reflectivity measurements from both radars agreed quite well indicating the absence of large ice crystals. For reflectivities above +10 dBz, we observed differences with smaller values at the Ka-band due to Mie scattering effects at larger ice crystals.In this presentation, we will show how this differential reflectivity can be used to gain insight into ice cloud microphysics on the basis of electromagnetic scattering calculations. We will further explore ice cloud microphysics using the full polarization agility

  6. Treatment of TNT red water by layer melt crystallization.

    PubMed

    Jo, Jeong-Hyeon; Ernest, Takyi; Kim, Kwang-Joo

    2014-09-15

    Treatment of the red water, which is wastewater of 2,4,6- trinitrotoluene (TNT) manufacturing process has been explored using ice crystallization. This study focuses on the formation of ice crystals from the red water in a layer crystallizer under various operating conditions. Among the parameters which affect layer crystallization, attention was given to cooling rate, cooling temperature, sweating rate and concentration of the red water. The study highlights the effect of subcooling and growth rate on purity of the ice crystalline layers produced. After sweating, the COD value of crystalline ice layer was significantly reduced from 10,000 mg/L to below 20mg/L. Most organic contaminants were removed in sweating fractions of 0.5. Eventually, the red water was treated by layer crystallization combined with the sweating process. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A Multi-Moment Bulkwater Ice Microphysics Scheme with Consideration of the Adaptive Growth Habit and Apparent Density for Pristine Ice in the WRF Model

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Chen, J. P.; Dearden, C.

    2014-12-01

    The wide variety of ice crystal shapes and growth habits makes it a complicated issue in cloud models. This study developed the bulk ice adaptive habit parameterization based on the theoretical approach of Chen and Lamb (1994) and introduced a 6-class hydrometeors double-moment (mass and number) bulk microphysics scheme with gamma-type size distribution function. Both the proposed schemes have been implemented into the Weather Research and Forecasting model (WRF) model forming a new multi-moment bulk microphysics scheme. Two new moments of ice crystal shape and volume are included for tracking pristine ice's adaptive habit and apparent density. A closure technique is developed to solve the time evolution of the bulk moments. For the verification of the bulk ice habit parameterization, some parcel-type (zero-dimension) calculations were conducted and compared with binned numerical calculations. The results showed that: a flexible size spectrum is important in numerical accuracy, the ice shape can significantly enhance the diffusional growth, and it is important to consider the memory of growth habit (adaptive growth) under varying environmental conditions. Also, the derived results with the 3-moment method were much closer to the binned calculations. A field campaign of DIAMET was selected to simulate in the WRF model for real-case studies. The simulations were performed with the traditional spherical ice and the new adaptive shape schemes to evaluate the effect of crystal habits. Some main features of narrow rain band, as well as the embedded precipitation cells, in the cold front case were well captured by the model. Furthermore, the simulations produced a good agreement in the microphysics against the aircraft observations in ice particle number concentration, ice crystal aspect ratio, and deposition heating rate especially within the temperature region of ice secondary multiplication production.

  8. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-02-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.

  9. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    PubMed Central

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-01-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236

  10. Peculiarities of Vibration Characteristics of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gets, Kirill V.; Subbotin, Oleg S.; Belosludov, Vladimir R.

    2012-03-01

    Dynamic properties of low (LDA), high (HDA) and very high (VHDA) density amorphous ices were investigated within the approach based on Lattice Dynamics simulations. In this approach, we assume that the short-range molecular order mainly determines the dynamic and thermodynamic properties of amorphous ices. Simulation cell of 512 water molecules with periodical boundary conditions and disordering allows us to study dynamical properties and dispersion curves in the Brillouin zone of pseudo-crystal. Existence of collective phenomena in amorphous ices which is usual for crystals but anomalous for disordered phase was confirmed in our simulations. Molecule amplitudes of delocalized (collective) as well as localized vibrations have been considered.

  11. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  12. Photochemical Concepts on the Origin of Biomolecular Asymmetry

    NASA Astrophysics Data System (ADS)

    Meierhenrich, Uwe J.; Thiemann, Wolfram H.-P.

    2004-02-01

    Biopolymers like DNA and proteins are strongly selective towards the chirality of their monomer units. The use of homochiral monomers is regarded as essential for the construction and function of biopolymers; the emergence of the molecular asymmetry is therefore considered as a fundamental step in Chemical Evolution. This work focuses on physicochemical mechanisms for the origin of biomolecular asymmetry. Very recently two groups, one from Allamandola at NASA Ames and the other from our Inter-European team, demonstrated simultaneously the spontaneous photoformation of a variety of chiral amino acid structures under simulated interstellar conditions. Since both groups used unpolarized light for the photoreaction the obtained amino acids turned out racemic as expected. The obtained experimental data support the assumption that tiny ice grains can furthermore play host to important asymmetric reactions when irradiated by interstellar circularly polarized ultraviolet light. It is possible that such ice grains could have become incorporated into the early cloud that formed our Solar System and ended up on Earth, assisting life to start. Several lines of evidence suggest that some of the building blocks of life were delivered to the primitive Earth via (micro-) meteoroids and/or comets. These results suggest that asymmetric interstellar photochemistry may have played a significant part in supplying Earth with some of the enantioenriched organic materials needed to trigger life. The search for the origin of biomolecular homochirality leads to a strong interest in the fields of asymmetric photochemistry with special emphasis on absolute asymmetric synthesis. We outline here the theoretical background on asymmetric interstellar ice photochemistry, summarize recent concepts and advances in the field, and discuss briefly its implications. The obtained data are crucial for the design of the enantioselective COSAC GC-MS experiment onboard the ROSETTA spacecraft to a comet to be

  13. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  14. Enantiomeric Excesses Induced in Amino Acids by Ultraviolet Circularly Polarized Light Irradiation of Extraterrestrial Ice Analogs: A Possible Source of Asymmetry for Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Modica, Paola; Meinert, Cornelia; de Marcellus, Pierre; Nahon, Laurent; Meierhenrich, Uwe J.; Le Sergeant d'Hendecourt, Louis

    2014-06-01

    The discovery of meteoritic amino acids with enantiomeric excesses of the L-form (ee L) has suggested that extraterrestrial organic materials may have contributed to prebiotic chemistry and directed the initial occurrence of the ee L that further led to homochirality of amino acids on Earth. A proposed mechanism for the origin of ee L in meteorites involves an asymmetric photochemistry of extraterrestrial ices by UV circularly polarized light (CPL). We have performed the asymmetric synthesis of amino acids on achiral extraterrestrial ice analogs by VUV CPL, investigating the chiral asymmetry transfer at two different evolutionary stages at which the analogs were irradiated (regular ices and/or organic residues) and at two different photon energies (6.6 and 10.2 eV). We identify 16 distinct amino acids and precisely measure the L-enantiomeric excesses using the enantioselective GC × GC-TOFMS technique in five of them: α-alanine, 2,3-diaminopropionic acid, 2-aminobutyric acid, valine, and norvaline, with values ranging from ee L = -0.20% ± 0.14% to ee L = -2.54% ± 0.28%. The sign of the induced ee L depends on the helicity and the energy of CPL, but not on the evolutionary stage of the samples, and is the same for all five considered amino acids. Our results support an astrophysical scenario in which the solar system was formed in a high-mass star-forming region where icy grains were irradiated during the protoplanetary phase by an external source of CPL of a given helicity and a dominant energy, inducing a stereo-specific photochemistry.

  15. Expression and Characterization of an Ice Binding Protein from a Bacterium Isolated at a Depth of 3,519 Meters in the Vostok Ice Core, Antarctica

    NASA Astrophysics Data System (ADS)

    Christner, B. C.; Achberger, A.; Brox, T. I.; Skidmore, M. L.

    2011-12-01

    The cryopreservation of microorganisms in ancient glacial ice is possible if lethal levels of macromolecular damage are not incurred and cellular integrity is not compromised via intracellular ice formation or recrystallization. There are numerous examples of cold-adapted species that prevent or limit ice crystal growth by producing ice-binding proteins (IBP). Previously, a bacterium (isolate 3519-10; Flavobacteriaceae family) recovered from a depth of 3,519 meters below the surface in the Vostok ice core was shown to produce and secrete an IBP that inhibits the recrystallization of ice. To explore the phenotypic advantage that IBPs confer to ice-entrapped cells, experiments were designed to examine the expression of 3519-10's IBP gene and protein at different temperatures, assess the effect of the IBP on bacterial viability in ice, and determine how the IBP influences the physical structure of the ice. Total RNA isolated from aerobic cultures grown at temperatures between 4C to 25C and analyzed by reverse transcription-PCR indicated constitutive expression of the IBP gene. Additionally, SDS-PAGE analysis of 3519-10's extracellular proteins revealed a polypeptide corresponding to the predicted size of the 54 kDa IBP at all temperatures tested. The total extracellular protein fraction was subsequently used in assays with Escherichia coli to examine the effect of the IBP on bacterial survival in warm ice (-5C) and after freeze-thaw cycling. In the presence of 100 μg mL-1 of extracellular protein from 3519-10, the survival of E. coli was increased by greater than 100-fold; however, the survival of E. coli suspensions containing the same concentration of bovine serum albumin was not significantly different than controls (p<0.05). Microscopic analysis of ice formed in the presence of the IBP indicated that in a mm^2 field of view, there were 5 times as many crystals as in ice formed in the presence of washed 3519-10 cells and non-IBP producing bacteria, and 10 times as

  16. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  17. A new optical ice particle counter at LACIS

    NASA Astrophysics Data System (ADS)

    Bieligk, Henner; Voelker, Georg Sebastian; Clauss, Tina; Grundmann, Marius; Stratmann, Frank

    2014-05-01

    Clouds play an important role within the climate system, especially for the radiative energy budget of the earth. The radiative properties of a cloud depend strongly on the fractions of ice crystals and water droplets, their size distributions, and the ice crystal shapes within the particular cloud. One option to gain this kind of information is using optical particle counters. A new optical particle counter is developed for laboratory work and is based on the concept of the Thermostabilized Optical Particle Spectrometer for the Detection of Ice Particles (TOPS-Ice, Clauss et al., 2013). TOPS-Ice uses linearly polarized green laser light and the depolarization of the scattered light at a scattering angle of 42.5° to discriminate between liquid water droplets and ice crystals in the lower μm range. However, the measurements are usually limited to ice fractions in the order of 1%. To improve the determination of the ice fraction, several modifications of the original setup are implemented including an additional detection system at another scattering angle. The new scattering angle is optimized for least interference between the droplet and ice signals. This is achieved by finding the angle with the maximum difference in scattered intensity of water droplets compared to ice crystals with the same volume equivalent diameter. The suitable scattering angle of 100° for linearly polarized light was chosen based on calculations using T-Matrix method, Lorenz-Mie theory, Müller matrices and distribution theory. The new optical setup is designed to run in combination with a laminar flow tube, the so-called Leipzig Aerosol Cloud Interaction Simulator (LACIS, Stratmann et al., 2004; Hartmann et al., 2011). Using LACIS and its precisely controlled thermodynamic conditions, we are able to form small water droplets and ice crystals which will then be detected, classified and sized by our new optical device. This setup is planned to be tested in ice measurements including

  18. Initiation of secondary ice production in clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Hoose, Corinna; Kiselev, Alexei; Leisner, Thomas; Nenes, Athanasios

    2018-02-01

    Disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms - rime splintering, frozen droplet shattering, and ice-ice collisional breakup - with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice), thermodynamic limitations, and the impact of parametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim)) as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the phasedness of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice-ice collisional breakup is the only process for which a meaningful NINP(lim) exists (0.002 up to 0.15 L-1). For droplet shattering and rime splintering, a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of NINP(lim) here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.

  19. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.

    PubMed

    Hanada, Yuichi; Nishimiya, Yoshiyuki; Miura, Ai; Tsuda, Sakae; Kondo, Hidemasa

    2014-08-01

    Antifreeze proteins (AFPs) are structurally diverse macromolecules that bind to ice crystals and inhibit their growth to protect the organism from injuries caused by freezing. An AFP identified from the Antarctic bacterium Colwellia sp. strain SLW05 (ColAFP) is homologous to AFPs from a wide variety of psychrophilic microorganisms. To understand the antifreeze function of ColAFP, we have characterized its antifreeze activity and determined the crystal structure of this protein. The recombinant ColAFP exhibited thermal hysteresis activity of approximately 4 °C at a concentration of 0.14 mm, and induced rapid growth of ice crystals in the hexagonal direction. Fluorescence-based ice plane affinity analysis showed that ColAFP binds to multiple planes of ice, including the basal plane. These observations show that ColAFP is a hyperactive AFP. The crystal structure of ColAFP determined at 1.6 Å resolution revealed an irregular β-helical structure, similar to known homologs. Mutational and molecular docking studies showed that ColAFP binds to ice through a compound ice-binding site (IBS) located at a flat surface of the β-helix and the adjoining loop region. The IBS of ColAFP lacks the repetitive sequences that are characteristic of hyperactive AFPs. These results suggest that ColAFP exerts antifreeze activity through a compound IBS that differs from the characteristic IBSs shared by other hyperactive AFPs. This study demonstrates a novel method for protection from freezing by AFPs in psychrophilic microorganisms. Structural data for ColAFP have been submitted to the Protein Data Bank (PDB) under accession number 3WP9. © 2014 FEBS.

  20. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  1. Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan

    2015-01-01

    This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.

  2. Formation of Iapetus' extreme albedo dichotomy by exogenically triggered thermal ice migration.

    PubMed

    Spencer, John R; Denk, Tilmann

    2010-01-22

    The extreme albedo asymmetry of Saturn's moon Iapetus, which is about 10 times as bright on its trailing hemisphere as on its leading hemisphere, has been an enigma for three centuries. Deposition of exogenic dark material on the leading side has been proposed as a cause, but this alone cannot explain the global shape, sharpness, and complexity of the transition between Iapetus' bright and dark terrain. We demonstrate that all these characteristics, and the asymmetry's large amplitude, can be plausibly explained by runaway global thermal migration of water ice, triggered by the deposition of dark material on the leading hemisphere. This mechanism is unique to Iapetus among the saturnian satellites because its slow rotation produces unusually high daytime temperatures and water ice sublimation rates for a given albedo.

  3. Food Crystalization and Eggs

    USDA-ARS?s Scientific Manuscript database

    Food Crystalization and Eggs Deana R. Jones, Ph.D. USDA Agricultural Research Service Egg Safety and Quality Research Unit Athens, Georgia, USA Deana.Jones@ars.usda.gov Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a foo...

  4. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.

  5. Characterization of Arctic ice cloud properties observed during ISDAC

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Girard, Eric; Pelon, Jacques; Gultepe, Ismail; Delanoë, Julien; Blanchet, Jean-Pierre

    2012-12-01

    Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-2A), being topped by a cover of nonprecipitating very small (radar unseen) ice crystals (TIC-1), is found more frequently in pristine environment, whereas the second type (TIC-2B), detected by both sensors, is associated preferentially with a high concentration of aerosols. To further investigate the microphysical properties of TIC-1/2A and TIC-2B, airborne in situ and satellite measurements of specific cases observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC) have been analyzed. For the first time, Arctic TIC-1/2A and TIC-2B microstructures are compared using in situ cloud observations. Results show that the differences between them are confined in the upper part of the clouds where ice nucleation occurs. TIC-2B clouds are characterized by fewer (by more than 1 order of magnitude) and larger (by a factor of 2 to 3) ice crystals and a larger ice supersaturation (of 15-20%) compared to TIC-1/2A. Ice crystal growth in TIC-2B clouds seems explosive, whereas it seems more gradual in TIC-1/2A. It is hypothesized that these differences are linked to the number concentration and the chemical composition of aerosols. The ice crystal growth rate in very cold conditions impinges on the precipitation efficiency, dehydration and radiation balance. These results represent an essential and important first step to relate previous modeling, remote sensing and laboratory studies with TICs cloud in situ observations.

  6. Overview of Icing Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.

    2013-01-01

    The aviation industry continues to deal with icing-related incidents and accidents on a regular basis. Air traffic continues to increase, placing more aircraft in adverse icing conditions more frequently and for longer periods. Icing conditions once considered rare or of little consequence, such as super-cooled large droplet icing or high altitude ice crystals, have emerged as major concerns for modern aviation. Because of this, there is a need to better understand the atmospheric environment, the fundamental mechanisms and characteristics of ice growth, and the aerodynamic effects due to icing, as well as how best to protect these aircraft. The icing branch at NASA Glenn continues to develop icing simulation methods and engineering tools to address current aviation safety issues in airframe, engine and rotorcraft icing.

  7. Structural incorporation of MgCl2 into ice VII at room temperature

    NASA Astrophysics Data System (ADS)

    Watanabe, Mao; Komatsu, Kazuki; Noritake, Fumiya; Kagi, Hiroyuki

    2017-05-01

    Raman spectra and X-ray diffraction patterns were obtained from 1:100 and 1:200 \\text{MgCl}2:\\text{H}2\\text{O} solutions (in molar ratio) at pressures up to 6 GPa using diamond anvil cells (DACs) and compared with those of pure water. The O-H stretching band from ice VII crystallized from the 1:200 solution was approximately 10 cm-1 higher than that of pure ice VII. The phase boundaries between ice VII and VIII crystallized from the MgCl2 solutions at 4 GPa were 2 K lower than those of pure ice VII and VIII. These observations indicate that ice VII incorporates MgCl2 into its structure. The unit cell volumes of ice VII crystallized from pure water and the two solutions coincided with each other within the experimental error, and salt incorporation was not detectable from the cell volume. Possible configurations of ion substitution and excess volume of ice VIII were simulated on the basis of density functional theory (DFT) calculations.

  8. Convective Troposphere-Stratosphere Transport in the Tropics and Hydration by ice Crystals Geysers

    NASA Astrophysics Data System (ADS)

    Pommereau, J.

    2008-12-01

    Twenty-five years ago the suggestion was made by Danielsen of direct fast convective penetration of tropospheric air in the stratosphere over land convective systems. Although the existence of the mechanism is accepted, it was thought to be rare and thus its contribution to Troposphere-Stratosphere Transport (TST) of chemical species and water vapour at global scale unimportant at global scale. In contrast to this assumption, observations of temperature, water vapour, ice particles, long-lived tropospheric species during HIBISCUS, TROCCINOX and SCOUT-O3 over Brazil, Australia and Africa and more recently CALIPSO aerosols observations suggest that it is a general feature of tropical land convective regions in the summer. Particularly relevant to stratospheric water vapour is the observation of geyser like ice crystals in the TTL over overshooting events which may result in the moistening of the stratosphere. Although such events successfully captured by small scale Cloud-Resolving Models may have a significant impact on stratospheric ozone chemistry and climate, they are currently totally ignored by NWPs, CTMs and CCMs. Several recent balloon and aircraft observations of overshoots and CRM simulations will be shown illustrating the mechanism, as well as observations from a variety of satellites suggesting a significant impact at global scale.

  9. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  10. Effect of storage temperature on quality of light and full-fat ice cream.

    PubMed

    Buyck, J R; Baer, R J; Choi, J

    2011-05-01

    Ice cream quality is dependent on many factors including storage temperature. Currently, the industry standard for ice cream storage is -28.9 °C. Ice cream production costs may be decreased by increasing the temperature of the storage freezer, thus lowering energy costs. The first objective of this research was to evaluate the effect of 4 storage temperatures on the quality of commercial vanilla-flavored light and full-fat ice cream. Storage temperatures used were -45.6, -26.1, and -23.3 °C for the 3 treatments and -28.9 °C as the control or industry standard. Ice crystal sizes were analyzed by a cold-stage microscope and image analysis at 1, 19.5, and 39 wk of storage. Ice crystal size did not differ among the storage temperatures of light and full-fat ice creams at 19.5 or 39 wk. An increase in ice crystal size was observed between 19.5 and 39 wk for all storage temperatures except -45.6 °C. Coldness intensity, iciness, creaminess, and storage/stale off-flavor of the light and full-fat ice creams were evaluated at 39 wk of storage. Sensory evaluation indicated no difference among the different storage temperatures for light and full-fat ice creams. In a second study, light and full-fat ice creams were heat shocked by storing at -28.9 °C for 35 wk and then alternating between -23.3 and -12.2 °C every 24h for 4 wk. Heat-shocked ice creams were analyzed at 2 and 4 wk of storage for ice crystal size and were evaluated by the sensory panel. A difference in ice crystal size was observed for light and full-fat ice creams during heat-shock storage; however, sensory results indicated no differences. In summary, storage of light or full-fat vanilla-flavored ice creams at the temperatures used within this research did not affect quality of the ice creams. Therefore, ice cream manufacturers could conserve energy by increasing the temperature of freezers from -28.9 to -26.1 °C. Because freezers will typically fluctuate from the set temperature, usage of -26.1

  11. Fish antifreeze protein and the freezing and recrystallization of ice.

    PubMed

    Knight, C A; DeVries, A L; Oolman, L D

    Antifreeze glycopeptide and peptides from the blood of polar fishes prevent the growth of ice crystals in water at temperatures down to approximately 1 degree C below freezing point, but do not appreciably influence the equilibrium freezing point. This freezing point hysteresis must be a disequilibrium effect, or it would violate Gibbs' phase rule, but the separate freezing and melting points are experimentally very definite: ice neither melts nor freezes perceptibly within the 'hysteresis gap', for periods of hours or days. We report here unusual crystal faces on ice crystals grown from solutions of very low concentrations of the anti-freeze glycopeptides and peptides. This is a clue to the mechanism of freezing inhibition, and it may be the basis of a simple, very sensitive test for antifreeze material. Very low concentrations of the antifreeze protein are also remarkably effective in preventing the recrystallization of ice.

  12. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice

    PubMed Central

    del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-01-01

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis. PMID:27819265

  13. Food crystallization and eggs.

    USDA-ARS?s Scientific Manuscript database

    Egg products can be utilized to control crystallization in a diverse realm of food products. Albumen and egg yolk can aid in the control of sugar crystal formation in candies. Egg yolk can enhance the textural properties and aid in the control of large ice crystal formation in frozen desserts. In...

  14. In situ observations of a high-pressure phase of H2O ice

    USGS Publications Warehouse

    Chou, I.-Ming; Blank, J.G.; Goncharov, A.F.; Mao, Ho-kwang; Hemley, R.J.

    1998-01-01

    A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10??and 50??C. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.

  15. The Effect of Surface Chemical Functionality Upon Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Doss, Jereme; Spence, Destiny; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin R.; McDougal, Nicholas D.

    2015-01-01

    In nature, anti-freeze proteins present in fish utilize specific organic functionalities to disrupt ice crystal formation and propagation. Based on these structures, surfaces with controlled chemical functionality and chain length were evaluated both experimentally and computationally to assess the effect of both parameters in mitigating ice formation. Linear aliphatic dimethylethoxysilanes terminated with methyl or hydroxyl groups were prepared, characterized, and used to coat aluminum. The effect upon icing using a microdroplet freezing apparatus and the Adverse Environment Rotor Test Stand found hydroxyl-terminated materials exhibited a greater propensity for ice formation and adhesion. Molecular dynamics simulations of a silica substrate bearing functionalized species of similar composition were brought into contact with a pre-equilibrated ice crystal. Several parameters including chain mobility were monitored to ascertain the size of a quasi-liquid layer. The studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition.

  16. Retrieving the properties of ice-phase precipitation with multi-frequency radar measurements

    NASA Astrophysics Data System (ADS)

    Mace, G. G.; Gergely, M.; Mascio, J.

    2017-12-01

    The objective of most retrieval algorithms applied to remote sensing measurements is the microphysical properties that a model might predict such as condensed water content, particle number, or effective size. However, because ice crystals grow and aggregate into complex non spherical shapes, the microphysical properties of interest are very much dependent on the physical characteristics of the precipitation such as how mass and crystal area are distributed as a function of particle size. Such physical properties also have a strong influence on how microwave electromagnetic energy scatters from ice crystals causing significant ambiguity in retrieval algorithms. In fact, passive and active microwave remote sensing measurements are typically nearly as sensitive to the ice crystal physical properties as they are to the microphysical characteristics that are typically the aim of the retrieval algorithm. There has, however, been active development of multi frequency algorithms recently that attempt to ameliorate and even exploit this sensitivity. In this paper, we will review these approaches and present practical applications of retrieving ice crystal properties such as mass- and area dimensional relationships from single and dual frequency radar measurements of precipitating ice using data collected aboard ship in the Southern Ocean and from remote sensors in the Rocky Mountains of the Western U.S.

  17. Impact of surface nanostructure on ice nucleation.

    PubMed

    Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

    2014-09-28

    Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

  18. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modica, Paola; De Marcellus, Pierre; D'Hendecourt, Louis Le Sergeant

    2014-06-10

    The discovery of meteoritic amino acids with enantiomeric excesses of the L-form (ee {sub L}) has suggested that extraterrestrial organic materials may have contributed to prebiotic chemistry and directed the initial occurrence of the ee {sub L} that further led to homochirality of amino acids on Earth. A proposed mechanism for the origin of ee {sub L} in meteorites involves an asymmetric photochemistry of extraterrestrial ices by UV circularly polarized light (CPL). We have performed the asymmetric synthesis of amino acids on achiral extraterrestrial ice analogs by VUV CPL, investigating the chiral asymmetry transfer at two different evolutionary stages atmore » which the analogs were irradiated (regular ices and/or organic residues) and at two different photon energies (6.6 and 10.2 eV). We identify 16 distinct amino acids and precisely measure the L-enantiomeric excesses using the enantioselective GC × GC-TOFMS technique in five of them: α-alanine, 2,3-diaminopropionic acid, 2-aminobutyric acid, valine, and norvaline, with values ranging from ee {sub L} = –0.20% ± 0.14% to ee {sub L} = –2.54% ± 0.28%. The sign of the induced ee {sub L} depends on the helicity and the energy of CPL, but not on the evolutionary stage of the samples, and is the same for all five considered amino acids. Our results support an astrophysical scenario in which the solar system was formed in a high-mass star-forming region where icy grains were irradiated during the protoplanetary phase by an external source of CPL of a given helicity and a dominant energy, inducing a stereo-specific photochemistry.« less

  19. AB-stacked square-like bilayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn

    2016-08-10

    Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.

  20. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    PubMed

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  1. Parameterizing Size Distribution in Ice Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD).more » Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment

  2. The time-dependence of the defective nature of ice Ic (cubic ice) and its implications for atmospheric science

    NASA Astrophysics Data System (ADS)

    Sippel, Christian; Koza, Michael M.; Hansen, Thomas C.; Kuhs, Werner F.

    2010-05-01

    The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4]. Our recent microstructural work on ice Ic [5,6] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [7] and other group's work [8] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Recently, we have studied the time-dependency of the changes in both "cubicity" and particle size at various temperatures of relevance for cirrus clouds and contrails by in-situ neutron powder diffraction. The timescales over which changes occur (several to many hours) are similar to the life-time of cirrus clouds and contrails and suggest that the supersaturation situation may change within this time span in the natural environment too. Some accompanying results obtained by cryo-SEM (scanning electron microscopy) work will also be presented and suggest that stacking-faulty ice Ic has kinky surfaces providing many more active centres for heterogeneous reactions on the surface than in the usually assumed stable hexagonal form of ice Ih with its rather

  3. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2

  4. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  5. A direct evidence of vibrationally delocalized response at ice surface.

    PubMed

    Ishiyama, Tatsuya; Morita, Akihiro

    2014-11-14

    Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.

  6. Ice fog and light snow measurements using a high resolution camera system

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-04-01

    In this presentation, measurements collected by the ice crystal imaging (ICI) probe employed during FRAM (Fog Remote Sensing and Modeling) project for the Winter of 2010-2011 in Yellowknife, NWT, Canada are analysed to study small ice crystal impact on aviation operations. Ice fog, diamond dust, and light snow form during cold weather conditions and they affect aviation operations through visibility and deposition over the surfaces. In addition, these events influence the local heat budget through radiative cooling. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges. These phenomena need to be better represented in forecast and climate models and this can only be done using accurate measurements from ground-based instrumentation. Imaging of ice particles' properties can complement other in-situ measurements being collected routinely. The newly developed ICI probe, aimed at measuring ice fog and light snow particles, is presented here. The ICI probe samples ice particles through a vertical inlet, where a laser beam and photodetector detect ice crystals contained in the flow. The detected particles are then imaged with high optical resolution between 10 to 1000 micron size range. An illuminating LED flash and image capturing for measurements are triggered by the photodetector. The results suggested that the majority of ice particles during the two-month long campaign were small with sizes between 300 μm and 800 μm. During ice fog events, the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm. In this presentation, challenges and issues related to small ice crystals are described and their importance for aviation operations and climate change are discussed.

  7. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  8. Examination of Surface Roughness on Light Scattering by Long Ice Columns by Use of a Two-Dimensional Finite-Difference Time-Domain Algorithm

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.

    2004-01-01

    Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.

  9. Measurements and properties of ice particles and carbon dioxide bubbles in aqueous mixture utilizing optical techniques

    NASA Astrophysics Data System (ADS)

    Diallo, Amadou O.

    Optical techniques are used to determine the size, shape and many other properties of particles ranging from the micro to a nano-level. These techniques have endless applications. This research is based on a project assigned by a "Vendor" that wants anonymity. The Leica optical microscope and the Dark Field Polarizing Metallurgical Microscope is used to determine the size and count of ice crystals (Vendors products) in multiple time frames. Since the ice temperature influences, its symmetry and the shape is subject to changes at room temperature (300 K) and the atmospheric pressure that is exerted on the ice crystals varies. The ice crystals are in a mixture of water, electrolytes and carbon dioxide with the optical spectroscopy (Qpod2) and Spectra suite, the optical density of the ice crystals is established from the absorbance and transmission measurements. The optical density in this case is also referred to as absorption; it is plotted with respect to a frequency (GHz), wavelength (nm) or Raman shift (1/cm) which shows the light colliding with the ice particles and CO2. Depending on the peaks positions, it is possible to profile the ice crystal sizes using a mean distribution plots. The region of absorbency wavelength expected for the ice is in the visible range; the water molecules in the (UV) Ultra-violet range and the CO2 in the (IR) infrared region. It is also possible to obtain the reflection and transmission output as a percentage change with the wavelengths ranging from 200 to 1100 nm. The refractive index of the ice can be correlated to the density based on the optical acoustic theorem, or Mie Scattering Theory. The viscosity of the ice crystals and the solutions from which the ice crystals are made of as well are recorded with the SV-10 viscometer. The baseline viscosity is used as reference and set lower than that of the ice crystals. The Zeta potential of the particles present in the mixture are approximated by first finding the viscosity of the

  10. Reversible pressure-induced crystal-amorphous structural transformation in ice Ih

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2014-08-01

    Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA → ice Ih.

  11. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  12. Measurements of Ice Nuclei properties at the Jungfraujoch using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, Cédric

    2010-05-01

    Ice clouds and mixed-phase clouds have different microphysical properties. Both affect the climate in various ways. Ice phase present in these clouds have the ability to scatter the incoming solar radiation and absorb terrestrial radiation differently from water droplets. Ice is also responsible for most of the precipitation in the mid-latitudes. Ice crystals can be formed via two main processes: homogeneous and heterogeneous ice nucleation. Investigation of thermodynamic conditions at which ice nuclei (IN) trigger nucleation and their number concentrations is necessary in order to understand the formation of the ice phase in the atmosphere. In order to investigate the presence of IN in the free troposphere, the Institute for Atmospheric and Climate Sciences of the ETH Zurich has recently designed a new chamber: the Portable Ice Nucleation Chamber (PINC), which is the field version of the Zurich Ice Nucleation Chamber (Stetzer et al., 2008). Both chambers follow the principle of a "continuous flow diffusion chamber" (Rogers, 1988) and can measure the number concentration of IN at different temperatures and relative humidities. Aerosols are collected through an inlet where an impactor removes larger particles that could be counted as ice crystals. The aerosol load is layered between two dry sheath air flows as it enters the main chamber. Both walls of the chamber are covered with a thin layer of ice and maintained at two different temperatures in order to create supersaturation with respect to ice (and with respect to water in case of a larger temperature difference between the walls). At the exit of the main chamber, the sample goes throught the evaporation part that is kept saturated with respect to ice. There, water droplets evaporate and only ice crystals and smaller aerosol particles are counted by the Optical Particle Counter (OPC) at the bottom of the chamber. The high alpine research station Jungfraujoch is located at 3580 m a.s.l. It is mainly in

  13. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams.

    PubMed

    Mariette, François; Lucas, Tiphaine

    2005-03-09

    The NMR relaxation signals from complex products such as ice cream are hard to interpret because of the multiexponential behavior of the relaxation signal and the difficulty of attributing the NMR relaxation components to specific molecule fractions. An attribution of the NMR relaxation parameters is proposed, however, based on an approach that combines quantitative analysis of the spin-spin and spin-lattice relaxation times and the signal intensities with characterization of the ice cream components. We have been able to show that NMR can be used to describe the crystallized and liquid phases separately. The first component of the spin-spin and spin-lattice relaxation describes the behavior of the protons of the crystallized fat in the mix. The amount of fat crystals can then be estimated. In the case of ice cream, only the spin-lattice relaxation signal from the crystallized fraction is relevant. However, it enables the ice protons and the protons of the crystallized fat to be distinguished. The spin-lattice relaxation time can be used to describe the mobility of the protons in the different crystallized phases and also to quantify the amount of ice crystals and fat crystals in the ice cream. The NMR relaxation of the liquid phase of the mix has a biexponential behavior. A first component is attributable to the liquid fraction of the fat and to the sugars, while a second component is attributable to the aqueous phase. Overall, the study shows that despite the complexity of the NMR signal from ice cream, a number of relevant parameters can be extracted to study the influence of the formulation and of the process stages on the ice fraction, the crystallized fat fraction, and the liquid aqueous fraction.

  14. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, Husi; Ishimoto, Hiroshi; Riedi, Jerome; Nakajima, Takashi Y.; -Labonnote, Laurent C.; Baran, Anthony J.; Nagao, Takashi M.; Sekiguchi, Miho

    2016-09-01

    In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a

  15. Carbon dioxide crystals: An examination of their size, shape, and scattering properties at 37 GHz and comparisons with water ice (snow) measurements

    NASA Astrophysics Data System (ADS)

    Foster, J. L.; Chang, A. T. C.; Hall, D. K.; Wergin, W. P.; Erbe, E. F.; Barton, J.

    1998-11-01

    On Earth, the temperature regime is such that water is generally fairly close to its freezing point, and thus relatively small differences in climate affect how much snow and ice are present and whether or not the snow covering will be seasonal or last from one year to the next. On Mars, as on Earth, the presence of ice also plays a role in large-scale climate processes and it is important in controlling the abundance of atmospheric carbon dioxide (CO2) and water vapor. Passive microwave radiometry has been used to derive snow extent and snow depth on Earth, where scattering by snow (H2O) crystals is the dominant effect on the microwave radiation emanating from the ground and emerging from the snowpack. Microwave remote sensing may also prove to be useful for assessing the coverage and thickness of the frozen H2O and CO2 on Mars, but more exact information is needed on how both H2O crystals and frozen CO2 crystals scatter and absorb passive microwave radiation. In this study, CO2 crystals have been produced in a laboratory cold chamber with temperature conditions similar to those found on the polar caps of Mars, and detailed three-dimensional images of their size and shape have been made with a low-temperature scanning electron microscope. Unlike the much larger H2O snow crystals found on Earth, which typically range in size between 0.1 mm and 1.0 mm (radius), CO2 crystals are differently shaped and considerably smaller. Bipyramid crystals (base to base four-sided pyramids) are commonly observed, some as small as 1.0 μm. A discrete dipole model was employed to calculate the passive microwave radiation scattered and absorbed by crystals of various sizes and shapes. Modeling results indicate that the shape of the crystal, whether for frozen CO2 or H2O, is of little consequence in affecting extinction efficiency. However, owing to their smaller size, frozen CO2 crystals are more emissive than the H2O crystals in the 37 GHz region of the microwave spectrum. For the

  16. Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam

    2018-03-01

    The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.

  17. Submillimeter-Wave Cloud Ice Radiometry

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1999-01-01

    Submillimeter-wave cloud ice radiometry is a new and innovative technique for characterizing cirrus ice clouds. Cirrus clouds affect Earth's climate and hydrological cycle by reflecting incoming solar energy, trapping outgoing IR radiation, sublimating into vapor, and influencing atmospheric circulation. Since uncertainties in the global distribution of cloud ice restrict the accuracy of both climate and weather models, successful development of this technique could provide a valuable tool for investigating how clouds affect climate and weather. Cloud ice radiometry could fill an important gap in the observational capabilities of existing and planned Earth-observing systems. Using submillimeter-wave radiometry to retrieve properties of ice clouds can be understood with a simple model. There are a number of submillimeter-wavelength spectral regions where the upper troposphere is transparent. At lower tropospheric altitudes water vapor emits a relatively uniform flux of thermal radiation. When cirrus clouds are present, they scatter a portion of the upwelling flux of submillimeter-wavelength radiation back towards the Earth as shown in the diagram, thus reducing the upward flux o f energy. Hence, the power received by a down-looking radiometer decreases when a cirrus cloud passes through the field of view causing the cirrus cloud to appear radiatively cool against the warm lower atmospheric thermal emissions. The reduction in upwelling thermal flux is a function of both the total cloud ice content and mean crystal size. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in crystal size to be distinguished from changes in ice content, and polarized measurements can be used to constrain mean crystal shape. The goal of the cloud ice radiometry program is to further develop and validate this technique of characterizing cirrus. A multi-frequency radiometer is being designed to support airborne science and

  18. Investigating the Sensitivity of Nucleation Parameterization on Ice Growth

    NASA Astrophysics Data System (ADS)

    Gaudet, L.; Sulia, K. J.

    2017-12-01

    The accurate prediction of precipitation from lake-effect snow events associated with the Great Lakes region depends on the parameterization of thermodynamic and microphysical processes, including the formation and subsequent growth of frozen hydrometeors. More specifically, the formation of ice hydrometeors has been represented through varying forms of ice nucleation parameterizations considering the different nucleation modes (e.g., deposition, condensation-freezing, homogeneous). These parameterizations have been developed from in-situ measurements and laboratory observations. A suite of nucleation parameterizations consisting of those published in Meyers et al. (1992) and DeMott et al. (2010) as well as varying ice nuclei data sources are coupled with the Adaptive Habit Model (AHM, Harrington et al. 2013), a microphysics module where ice crystal aspect ratio and density are predicted and evolve in time. Simulations are run with the AHM which is implemented in the Weather Research and Forecasting (WRF) model to investigate the effect of ice nucleation parameterization on the non-spherical growth and evolution of ice crystals and the subsequent effects on liquid-ice cloud-phase partitioning. Specific lake-effect storms that were observed during the Ontario Winter Lake-Effect Systems (OWLeS) field campaign (Kristovich et al. 2017) are examined to elucidate this potential microphysical effect. Analysis of these modeled events is aided by dual-polarization radar data from the WSR-88D in Montague, New York (KTYX). This enables a comparison of the modeled and observed polarmetric and microphysical profiles of the lake-effect clouds, which involves investigating signatures of reflectivity, specific differential phase, correlation coefficient, and differential reflectivity. Microphysical features of lake-effect bands, such as ice, snow, and liquid mixing ratios, ice crystal aspect ratio, and ice density are analyzed to understand signatures in the aforementioned modeled

  19. Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries.

    PubMed

    Scott, R H H; Clark, D S; Bradley, D K; Callahan, D A; Edwards, M J; Haan, S W; Jones, O S; Spears, B K; Marinak, M M; Town, R P J; Norreys, P A; Suter, L J

    2013-02-15

    The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

  20. Validation and Determination of Ice Water Content - Radar Reflectivity Relationships during CRYSTAL-FACE: Flight Requirements for Future Comparisons

    NASA Technical Reports Server (NTRS)

    Sayres, D. S.; Smith, J. B.; Pittman, J. V.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Fridland, A. M.; Ackerman, A. S.

    2007-01-01

    In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches.

  1. Ice Recrystallization in a Solution of a Cryoprotector and Its Inhibition by a Protein: Synchrotron X-Ray Diffraction Study.

    PubMed

    Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi

    2016-07-01

    Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Intercellular ice propagation: experimental evidence for ice growth through membrane pores.

    PubMed Central

    Acker, J P; Elliott, J A; McGann, L E

    2001-01-01

    Propagation of intracellular ice between cells significantly increases the prevalence of intracellular ice in confluent monolayers and tissues. It has been proposed that gap junctions facilitate ice propagation between cells. This study develops an equation for capillary freezing-point depression to determine the effect of temperature on the equilibrium radius of an ice crystal sufficiently small to grow through gap junctions. Convection cryomicroscopy and video image analysis were used to examine the incidence and pattern of intracellular ice formation (IIF) in the confluent monolayers of cell lines that do (MDCK) and do not (V-79W) form gap junctions. The effect of gap junctions on intracellular ice propagation was strongly temperature-dependent. For cells with gap junctions, IIF occurred in a directed wave-like pattern in 100% of the cells below -3 degrees C. At temperatures above -3 degrees C, there was a marked drop in the incidence of IIF, with isolated individual cells initially freezing randomly throughout the sample. This random pattern of IIF was also observed in the V-79W monolayers and in MDCK monolayers treated to prevent gap junction formation. The significant change in the low temperature behavior of confluent MDCK monolayers at -3 degrees C is likely the result of the inhibition of gap junction-facilitated ice propagation, and supports the theory that gap junctions facilitate ice nucleation between cells. PMID:11509353

  3. Tectonics of icy satellites driven by melting and crystallization of water bodies inside their ice shells

    NASA Astrophysics Data System (ADS)

    Johnston, Stephanie Ann

    Enceladus and Europa are icy satellites that currently support bodies of liquid water in the outer solar system Additionally, they show signs of being geologically active. Developing numerical models informed by observations of these icy satellites allows for the development of additional constraints and an improved understanding of the tectonics and evolution of icy satellites. The formation mechanisms for both chaos and ridges on Europa are thought to involve water as albedo changes observed in association with them imply the deposition of salt-rich water near these features. Ridges are the most ubiquitous feature on Europa and are described as central troughs flanked by two raised edifices, range in height from tens to hundreds of meters. Europan ridges can extend hundreds of km continuously along strike but are only about 2 km across. A model of a crystallizing dike--like water intrusion is able to match the overall morphology of ridges, and is consistent the long continuous strike. However, the intrusion of a large volume of water is required to match the most common heights of the ridges. Chaos on Europa is defined as a large area of disrupted ice that contain blocks of pre-existing material separated by a hummocky matrix. A proposed mechanism for the formation of Chaos is that a region of heterogeneous ice within the shell is melted and then recrystallizes. Comparing the model results with the geology of Thera Macula, a region where it has been proposed that Chaos is currently forming, suggests that additional processes may be needed to fully understand the development of Chaos. Water-rich plumes erupt from the south pole of Enceladus, suggesting the presence of a pressurized water reservoir. If a pressurized sea is located beneath the south polar terrain, its geometry and size in the ice shell would contribute to the stress state in the ice shell. The geometry and location of such an ocean, as well as the boundary conditions and thickness of an ice shell

  4. Satellite Data Analysis of Impact of Anthropogenic Air Pollution on Ice Clouds

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K. N.; Zhao, B.; Jiang, J. H.; Su, H.

    2017-12-01

    Despite numerous studies about the impact of aerosols on ice clouds, the role of anthropogenic aerosols in ice processes, especially over pollution regions, remains unclear and controversial, and has not been considered in a regional model. The objective of this study is to improve our understanding of the ice process associated with anthropogenic aerosols, and provide a comprehensive assessment of the contribution of anthropogenic aerosols to ice nucleation, ice cloud properties, and the consequent regional radiative forcing. As the first attempt, we evaluate the effects of different aerosol types (mineral dust, air pollution, polluted dust, and smoke) on ice cloud micro- and macro-physical properties using satellite data. We identify cases with collocated CloudSat, CALIPSO, and Aqua observations of vertically resolved aerosol and cloud properties, and process these observations into the same spatial resolution. The CALIPSO's aerosol classification algorithm determines aerosol layers as one of six defined aerosol types by taking into account the lidar depolarization ratio, integrated attenuated backscattering, surface type, and layer elevation. We categorize the cases identified above according to aerosol types, collect relevant aerosol and ice cloud variables, and determine the correlation between column/layer AOD and ice cloud properties for each aerosol type. Specifically, we investigate the correlation between aerosol loading (indicated by the column AOD and layer AOD) and ice cloud microphysical properties (ice water content, ice crystal number concentration, and ice crystal effective radius) and macro-physical properties (ice water path, ice cloud fraction, cloud top temperature, and cloud thickness). By comparing the responses of ice cloud properties to aerosol loadings for different aerosol types, we infer the role of different aerosol types in ice nucleation and the evolution of ice clouds. Our preliminary study shows that changes in the ice crystal

  5. Surface crystallization of supercooled water in clouds

    PubMed Central

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at −33°C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near −40°C. PMID:12456877

  6. TOWARDS ICE FORMATION CLOSURE IN MIXED-PHASE BOUNDARY LAYER CLOUDS DURING ISDAC

    NASA Astrophysics Data System (ADS)

    Avramov, A.; Ackerman, A. S.; Fridlind, A. M.; van Diedenhoven, B.; Korolev, A. V.

    2009-12-01

    Mixed-phase stratus clouds are ubiquitous in the Arctic during the winter and transition seasons. Despite their important role in various climate feedback mechanisms they are not well understood and are difficult to represent faithfully in cloud models. In particular, models of all types experience difficulties reproducing observed ice concentrations and liquid/ice water partitioning in these clouds. Previous studies have demonstrated that simulated ice concentrations and ice water content are critically dependent on ice nucleation modes and ice crystal habit assumed in simulations. In this study we use large-eddy simulations with size-resolved microphysics to determine whether uncertainties in ice nucleus concentrations, ice nucleation mechanisms, ice crystal habits and large-scale forcing are sufficient to account for the difference between simulated and observed quantities. We present results of simulations of two case studies based on observations taken during the recent Indirect and Semi-Direct Aerosol Campaign (ISDAC) on April 8 and 26, 2008. The model simulations are evaluated through extensive comparison with in-situ observations and ground-based remote sensing measurements.

  7. Kinetic boundaries and phase transformations of ice i at high pressure.

    PubMed

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F

    2018-01-28

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  8. Kinetic boundaries and phase transformations of ice i at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  9. Terrestrial Ice Sheets: Studies of Climate History, Internal Structure, Surface, and Bedrock

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Th.; Kipfstuhl, J.; Nixdorf, U.; Oerter, H.; Miller, H.; Fritsche, D.; Jung-Rothenhaeusler, F.; Mayer, C.; Schwager, M.; Wilhelms, F.; Steinhage, D.; Goektas, F.

    1998-01-01

    Recently drilled deep ice cores from Central Greenland (GRIP and GISP2) provide the most detailed results available on climatic variation in the northern hemisphere during the last 100,000 years, a period that includes the Holocene (0-11.5 ka) and most of the Wisconsin glacial period. Summer-winter variation in various physical and chemical properties of polar ice allows dating of ice cores by annual layer counting. Several such methods are currently being employed on an ice core drilled by the new North Greenland Ice Core Project (NGRIP), which is aimed at extending the Greenland ice palaeoclimatic record through the last interglacial, the Eemian. Two examples will be presented: (1) visual and photographic studies of seasonal variation in stratigraphic layering, crystal size, air bubble and clathrate concentration, and (2) studies of electric stratigraphy, using the method of dielectric profiling (DEP). This method records the AC conductivity of ice cores, which is negatively correlated with the concentration of airborne dust in the ice but positively correlated with volcanic and marine aerosols. Comprehensive surface traverse programs, which include shallow coring and ice velocity measurements, have recently been carried out by the Alfred Wegener Institute in previously little-investigated regions of Greenland and Antarctica. Serving partly as reconnaissance prior to deep drilling projects, such studies also help to reduce considerable uncertainties in the mass balance of the two large polar ice sheets and thus in their estimated response to climate change. Main results of a recent traverse in North Greenland include the following: (1) A new map of the accumulation distribution on the ice sheet indicates a large low-accumulation region in Northeast-Greenland; (2) North Greenland records show significantly greater climatic variability during the last 500 yr than corresponding records from the southern part of the ice sheet; and (3) data on variation in

  10. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    NASA Astrophysics Data System (ADS)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  11. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties.

    PubMed

    Marcellini, Moreno; Fernandes, Francisco M; Dedovets, Dmytro; Deville, Sylvain

    2017-04-14

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  12. Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes

    PubMed Central

    Bell, David R.; Sanfilippo, Jennifer L.; Binkley, Neil; Heiderscheit, Bryan C.

    2015-01-01

    The purpose of this investigation was to: (1) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (2) determine how power and force asymmetry affected jump height, and (3) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 Division 1 athletes (mass=85.7±20.3kg, age=20.0±1.2years, 103M/64F). Lean mass of the pelvis, thigh, and shank was assessed via dual-energy X-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R2=0.20, P<0.001), while lean mass asymmetry of the pelvis, thigh and shank explained 25% of the variance in power asymmetry (R2=0.25, P<0.001). Jump height was compared across level of force and power asymmetry (P>0.05) and greater than 10% asymmetry in power tended to decrease performance (effect size>1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between −11.8 to 16.8% and a power asymmetry between −9.9 to 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry. PMID:24402449

  13. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes.

    PubMed

    Bell, David R; Sanfilippo, Jennifer L; Binkley, Neil; Heiderscheit, Bryan C

    2014-04-01

    The purpose of this investigation was to (a) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (b) determine how power and force asymmetry affected jump height, and (c) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 division 1 athletes (mass = 85.7 ± 20.3 kg, age = 20.0 ± 1.2 years; 103 men and 64 women). Lean mass of the pelvis, thigh, and shank was assessed using dual-energy x-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R = 0.20, p < 0.001), whereas lean mass asymmetry of the pelvis, thigh, and shank explained 25% of the variance in power asymmetry (R = 0.25, p < 0.001). Jump height was compared across level of force and power asymmetry (p > 0.05) and greater than 10% asymmetry in power tended to decrease the performance (effect size >1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between -11.8 and 16.8% and a power asymmetry between -9.9 and 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry.

  14. Limit regimes of ice formation in turbulent supercooled water.

    PubMed

    De Santi, Francesca; Olla, Piero

    2017-10-01

    A study of ice formation in stationary turbulent conditions is carried out in various limit regimes of crystal growth, supercooling, and ice entrainment at the water surface. Analytical expressions for the temperature, salinity, and ice concentration mean profiles are provided, and the role of fluctuations in ice production is numerically quantified. Lower bounds on the ratio of sensible heat flux to latent heat flux to the atmosphere are derived and their dependence on key parameters such as salt rejection in freezing and ice entrainment in the water column is elucidated.

  15. Nasopupillary asymmetry.

    PubMed

    Arenas, Eduardo; Muñoz, Diana; Matheus, Evelyn; Morales, Diana

    2014-01-01

    To establish the prevalence of nasopupillary asymmetry (difference in nasopupillary distances) in the population and its relation with the interpupillary distance. A retrospective descriptive study was conducted by reviewing of 1262 medical records. The values of nasopupillary asymmetry and the interpupillary distance were obtained. A statistical analysis was made and the correlation between these variables was established. Seventy-nine percent of the population presented some degree of nasopupillary asymmetry. The interpupillary distance had a very low correlation with the nasopupillary asymmetry (r = 0.074, P = 0.0). It is advisable to use the nasopupillary distance of each eye as a standard measurement.

  16. Chemical and physical characterization of fertile soil-derived ice residuals from the Fifth International Ice Nucleation workshop in November 2014 (FIN-1)

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Laskin, Alexander; Zelenyuk, Alla

    2017-04-01

    The climate impact of ice-nucleating particles (INPs) derived from fertile soils on global scale has been recently accented by their diversity and efficient freezing ability. However, their representation in atmospheric models is limited in part due to our incomplete knowledge of fertile soil composition, abundance and associated sensitivity to heterogeneous ice nucleation. To fill given knowledge gap, we have investigated a unique/rich set of ice crystal residual samples derived from a variety of fertile soil samples obtained through our participation in the Fifth International Ice Nucleation workshop (FIN-1). FIN-1 was held at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility at Karlsruhe Institute of Technology (KIT), which is the world's foremost facility for studying ice clouds in a controlled setting, in November 2014 to comprehensively study the heterogeneous ice formation in the atmosphere with collaboration among 10 international groups that were funded through European consortium, NSF and USDOE agencies. Here, we will present the nanoscale surface morphology and elemental/molecular composition of ice crystal residuals as well as that of total aerosol samples from the FIN-1 activity to identify and classify any specific mineral and organic inclusions that may have promoted nucleation of ice. Comparing total aerosols to residuals will shed light on the composition and abundance of certain particle types in INPs. Acknowledgements: The valuable contributions of the INUIT (Ice Nuclei Research Unit) collaborators, the FIN organizers, their institutions and the FIN-1 Workshop science team are gratefully acknowledged.

  17. Food Crystals: the Role of Eggs

    USDA-ARS?s Scientific Manuscript database

    Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a food product can be beneficial or detrimental and is of particular importance in candy and frozen desserts. The most common crystal in foods is sugar which affects the quali...

  18. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  19. Ice Particle Impacts on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Ruggeri, Charles; Struk, Peter M.; Pereira, Mike; Revilock, Duane; Kreeger, Richard E.

    2015-01-01

    An experimental study was conducted at the Ballistic Laboratory of NASA Glenn Research Center to study the impact of ice particles on a stationary flat surface target set at 45 degrees with respect to the direction of motion of the impinging particle (Figure 1). The experiment is part of NASA efforts to study the physics involved in engine power-loss events due to ice-crystal ingestion and ice accretion formation inside engines. These events can occur when aircraft encounter high-altitude convective weather.

  20. The Backscatter Cloudprobe with Polarization Detection: A New Aircraft Ice Water Detector

    NASA Astrophysics Data System (ADS)

    Freer, M.; Baumgardner, D.; Axisa, D.

    2017-12-01

    The differentiation of liquid water and ice crystals smaller than 100 um in mixed phase clouds continues to challenge the cloud measurement community. In situ imaging probes now have pixel resolution down to about 5 um, but at least 10 pixels are needed to accurately distinguish a water droplet from an ice crystal. This presents a major obstacle for the understanding of cloud glaciation in general, and the formation and evolution of cloud ice in particular. A new sensor has recently been developed that can detect and quantify supercooled liquid droplets and ice crystals. The Backscatter Cloudprobe with Polarization Detection (BCPD) is a very lightweight, compact and low power optical spectrometer that has already undergone laboratory, wind tunnel and flight tests that have validated its capabilities. The BCPD employs the optical approach with single particles that has been used for years in remote sensing to distinguish liquid water from ice crystals in ensembles of cloud particles. The sensor is mounted inside an aircraft and projects a linearly polarized laser beam to the outside through a heated window. Particles that pass through the sample volume of the laser scatter light and the photons scattered in the back direction pass through another heated window where they are collected and focused onto a beam splitter that directs them onto two photodetectors. The P-detector senses the light with polarization parallel to that of the incident light and the S-Detector measures the light that is perpendicular to that of the laser. The polarization ratio, S/P, is sensitive to the asphericity of a particle and is used to identify liquid water and ice crystals. The BCPD has now been exercised in an icing wind tunnel where it was compared with other cloud spectrometers. It has also been flown on the NCAR C-130 and on a commercial Citation, making measurements in all water, all ice and mixed phase clouds. Results from these three applications clearly show that the BCPD can

  1. Crystal alignments in the Fast ice of arctic Alaska

    NASA Astrophysics Data System (ADS)

    Weeks, W. F.; Gow, A. J.

    1980-02-01

    Field observations at 60 sites located in the fast or near-fast ice along a 1200-km stretch of the north coast of Alaska between the Bering Strait and Barter Island have shown that the great majority of the ice samples (95%) exhibit striking c axis alignments within the horizontal plane. In all cases the degree of preferred orientation increased with depth in the ice. Representative standard deviations around a mean direction in the horizontal plane are commonly less than ±10° for samples collected near the bottom of the ice. At a given site the mean c axis direction ?0 may vary as much as 20° with vertical location in the ice sheet. The c axis allignments in the nearshore region generally parallel the coast, with strong alignments occurring in the lagoon systems between the barrier islands and the coast and seaward of the barrier islands. In passes between islands and in entrances such as the opening to Kotzebue Sound the alignment is parallel to the channel. Only limited observations are available farther seaward over the inner (10- to 50-m isobaths) and outer (50-m isobath to shelf break) shelf regions. These indicate NE-SW and E-W alignments, respectively, in the Beaufort Sea north of Prudhoe Bay. The general patterns of the alignments support the correlation between the preferred c axis direction and the current direction at the ice/water interface suggested by Weeks and Gow (1978). A comparison between c axis alignments and instantaneous current measurements made at 42 locations shows that the most frequent current direction coincides with ?0. At the one site where we were able to determine the current direction (52°T) over a longer period (7 hours), the agreement with ?0. (48°T) was excellent. Similarly, if only ?0. values determined in the nearshore region are considered, the most frequent deviation is 10° or less between ?0. and the trend of the adjacent shoreline, which is presumably parallel to the prevailing longshore currents. The c axis

  2. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    PubMed Central

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  3. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping

    2008-01-01

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.

  4. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of icemore » nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.« less

  5. Radar Differential Phase Signatures of Ice Orientation for the Prediction of Lightning Initiation and Cessation

    NASA Technical Reports Server (NTRS)

    Carey, L.D.; Petersen, W.A.; Deierling, W.

    2009-01-01

    The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and

  6. What Controls the Low Ice Number Concentration in the Upper Tropical Troposphere?

    NASA Astrophysics Data System (ADS)

    Penner, J.; Zhou, C.; Lin, G.; Liu, X.; Wang, M.

    2015-12-01

    Cirrus clouds in the tropical tropopause play a key role in regulating the moisture entering the stratosphere through their dehydrating effect. Low ice number concentrations and high supersaturations were frequently were observed in these clouds. However, low ice number concentrations are inconsistent with cirrus cloud formation based on homogeneous freezing. Different mechanisms have been proposed to explain this discrepancy, including the inhibition of homogeneous freezing by pre-existing ice crystals and/or glassy organic aerosol heterogeneous ice nuclei (IN) and limiting the formation of ice number from high frequency gravity waves. In this study, we examined the effect from three different parameterizations of in-cloud updraft velocities, the effect from pre-existing ice crystals, the effect from different water vapor deposition coefficients (α=0.1 or 1), and the effect from 0.1% of secondary organic aerosol (SOA) acting as glassy heterogeneous ice nuclei (IN) in CAM5. Model simulated ice crystal numbers are compared against an aircraft observational dataset. Using grid resolved large-scale updraft velocity in the ice nucleation parameterization generates ice number concentrations in better agreement with observations for temperatures below 205K while using updraft velocities based on the model-generated turbulence kinetic energy generates ice number concentrations in better agreement with observations for temperatures above 205K. A larger water vapor deposition coefficient (α=1) can efficiently reduce the ice number at temperatures below 205K but less so at higher temperatures. Glassy SOA IN are most effective at reducing the ice number concentrations when the effective in-cloud updraft velocities are moderate (~0.05-0.2 m s-1). Including the removal of water vapor on pre-existing ice can also effectively reduce the ice number and diminish the effects from the additional glassy SOA heterogeneous IN. We also re-evaluate whether IN seeding in cirrus cloud is

  7. D meson production asymmetry, unfavored fragmentation, and consequences for prompt atmospheric neutrino production

    NASA Astrophysics Data System (ADS)

    Maciuła, Rafał; Szczurek, Antoni

    2018-04-01

    We consider unfavored light quark/antiquark to D meson fragmentation. We discuss nonperturbative effects for small transverse momenta. The asymmetry for D+ and D- production measured by the LHCb collaboration provides natural constraints on the parton (quark/antiquark) fragmentation functions. We find that already a fraction of q /q ¯→D fragmentation probability is sufficient to account for the measured asymmetry. We make predictions for similar asymmetry for neutral D mesons. Large D -meson production asymmetries are found for large xF which is related to dominance of light quark/antiquark q /q ¯→D fragmentation over the standard c →D fragmentation. As a consequence, prompt atmospheric neutrino flux at high neutrino energies can be much larger than for the conventional c →D fragmentation. The latter can constitute a sizeable background for the cosmic neutrinos claimed to be observed recently by the IceCube Observatory. Large rapidity-dependent D+/D- and D0/D¯0 asymmetries are predicted for low (√{s }=20 - 100 GeV ) energies. The q /q ¯→D fragmentation leads to enhanced production of D mesons at low energies. At √{s }=20 GeV the enhancement factor with respect to the conventional contribution is larger than a factor of five. In the considered picture the large-xF D mesons are produced dominantly via fragmentation of light quarks/antiquarks. Predictions for fixed target p + 4He collisions relevant for a fixed target LHCb experiment are presented.

  8. A consistent model for leptogenesis, dark matter and the IceCube signal

    NASA Astrophysics Data System (ADS)

    Fiorentin, M. Re; Niro, V.; Fornengo, N.

    2016-11-01

    We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino N 1, thus fixing its mass and lifetime, while the production of N 1 in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional SU(2) R interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the B - L asymmetry dominantly produced by the next-to-lightest neutrino N 2. Further consequences and predictions of the model are that: the N 1 production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the SU(2) R triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at 7 × 109 GeV. Additionally, the model requires a vanishing absolute neutrino mass scale m 1 ≃ 0.

  9. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water.

    PubMed

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-Ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-Ichiro; Sazaki, Gen

    2017-03-06

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as 'antifreeze' in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing.

  10. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    PubMed Central

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-ichiro; Sazaki, Gen

    2017-01-01

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as ‘antifreeze’ in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing. PMID:28262787

  11. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  12. Extinction coefficients from lidar observations in ice clouds compared to in-situ measurements from the Cloud Integrating Nephelometer during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.

    2005-01-01

    This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.

  13. Leipzig Ice Nucleation chamber Comparison (LINC): intercomparison of four online ice nucleation counters

    NASA Astrophysics Data System (ADS)

    Burkert-Kohn, Monika; Wex, Heike; Welti, André; Hartmann, Susan; Grawe, Sarah; Hellner, Lisa; Herenz, Paul; Atkinson, James D.; Stratmann, Frank; Kanji, Zamin A.

    2017-09-01

    Ice crystal formation in atmospheric clouds has a strong effect on precipitation, cloud lifetime, cloud radiative properties, and thus the global energy budget. Primary ice formation above 235 K is initiated by nucleation on seed aerosol particles called ice-nucleating particles (INPs). Instruments that measure the ice-nucleating potential of aerosol particles in the atmosphere need to be able to accurately quantify ambient INP concentrations. In the last decade several instruments have been developed to investigate the ice-nucleating properties of aerosol particles and to measure ambient INP concentrations. Therefore, there is a need for intercomparisons to ensure instrument differences are not interpreted as scientific findings.In this study, we intercompare the results from parallel measurements using four online ice nucleation chambers. Seven different aerosol types are tested including untreated and acid-treated mineral dusts (microcline, which is a K-feldspar, and kaolinite), as well as birch pollen washing waters. Experiments exploring heterogeneous ice nucleation above and below water saturation are performed to cover the whole range of atmospherically relevant thermodynamic conditions that can be investigated with the intercompared chambers. The Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the Portable Immersion Mode Cooling chAmber coupled to the Portable Ice Nucleation Chamber (PIMCA-PINC) performed measurements in the immersion freezing mode. Additionally, two continuous-flow diffusion chambers (CFDCs) PINC and the Spectrometer for Ice Nuclei (SPIN) are used to perform measurements below and just above water saturation, nominally presenting deposition nucleation and condensation freezing.The results of LACIS and PIMCA-PINC agree well over the whole range of measured frozen fractions (FFs) and temperature. In general PINC and SPIN compare well and the observed differences are explained by the ice crystal growth and different residence times in

  14. Incorporation of stratospheric acids into water ice

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1990-01-01

    Hydrochloric and hydrofluoric acids are absorbed within the water ice lattice at mole fractions maximizing below 0.00001 and 0.0001 in a variety of solid impurity studies. The absorption mechanism may be substitutional or interstitial, leading in either case to a weak permeation of stratospheric ices by the acids at equilibrium. Impurities could also inhabit grain boundaries, and the acid content of atmospheric ice crystals will then depend on details of their surface and internal microstructures. Limited evidence indicates similar properties for the absorption of HNO3. Water ice lattices saturated with acid cannot be a significant local reservoir for HCl in the polar stratosphere.

  15. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, H.; Ishimoto, H.; Riedi, J.; Nakajima, T. Y.; -Labonnote, L. C.; Baran, A. J.; Nagao, T. M.; Skiguchi, M.

    2015-11-01

    Various ice particle habits are investigated in conjunction with inferring the optical properties of ice cloud for the Global Change Observation Mission-Climate (GCOM-C) satellite program. A database of the single-scattering properties of five ice particle habits, namely, plates, columns, droxtals, bullet-rosettes, and Voronoi, is developed. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor onboard the GCOM-C satellite, which is scheduled to be launched in 2017 by Japan Aerospace Exploration Agency (JAXA). A combination of the finite-difference time-domain (FDTD) method, Geometric Optics Integral Equation (GOIE) technique, and geometric optics method (GOM) are applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible-to-infrared spectral region, covering the SGLI channels for the size parameter, which is defined with respect to the equivalent-volume radius sphere, which ranges between 6 and 9000. The database includes the extinction efficiency, absorption efficiency, average geometrical cross-section, single-scattering albedo, asymmetry factor, size parameter of an equivalent volume sphere, maximum distance from the center of mass, particle volume, and six non-zero elements of the scattering phase matrix. The characteristics of the calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, the optical thickness and spherical albedo of ice clouds using the five ice particle habit models are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL). The optimal ice particle habit for retrieving the SGLI ice cloud properties was investigated by adopting the spherical albedo difference (SAD) method. It is

  16. Volumetric and infrared measurements on amorphous ice structure

    NASA Astrophysics Data System (ADS)

    Manca, C.; Martin, C.; Roubin, P.

    2004-05-01

    We have simultaneously used adsorption isotherm volumetry and Fourier transform infrared spectroscopy in order to take the investigations on amorphous ice structure a step further, especially concerning porosity and annealing-induced modifications. We have studied surface reorganization during annealing and found that the number of surface sites decreases before crystallization, their relative ratios being different for amorphous and crystalline ice. We also present results confirming that ice can have a large specific surface area and nevertheless be non-microporous.

  17. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flowmore » Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of

  18. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium.

    PubMed

    Banerjee, Rachana; Chakraborti, Pratim; Bhowmick, Rupa; Mukhopadhyay, Subhasish

    2015-01-01

    Antifreeze proteins or ice-binding proteins (IBPs) facilitate the survival of certain cellular organisms in freezing environment by inhibiting the growth of ice crystals in solution. Present study identifies orthologs of the IBP of Colwellia sp. SLW05, which were obtained from a wide range of taxa. Phylogenetic analysis on the basis of conserved regions (predicted as the 'ice-binding domain' [IBD]) present in all the orthologs, separates the bacterial and archaeal orthologs from that of the eukaryotes'. Correspondence analysis pointed out that the bacterial and archaeal IBDs have relatively higher average hydrophobicity than the eukaryotic members. IBDs belonging to bacterial as well as archaeal AFPs contain comparatively more strands, and therefore are revealed to be under higher evolutionary selection pressure. Molecular docking studies prove that the ice crystals form more stable complex with the bacterial as well as archaeal proteins than the eukaryotic orthologs. Analysis of the docked structures have traced out the ice-binding sites (IBSs) in all the orthologs which continue to facilitate ice-binding activity even after getting mutated with respect to the well-studied IBSs of Typhula ishikariensis and notably, all these mutations performing ice-binding using 'anchored clathrate mechanism' have been found to prefer polar and hydrophilic amino acids. Horizontal gene transfer studies point toward a strong selection pressure favoring independent evolution of the IBPs in some polar organisms including prokaryotes as well as eukaryotes because these proteins facilitate the polar organisms to acclimatize to the adversities in their niche, thus safeguarding their existence.

  19. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae

    PubMed Central

    Ali, Farman; Wharton, David A.

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  20. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.

    PubMed

    Ali, Farman; Wharton, David A

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization.

  1. From symmetry to asymmetry: Phylogenetic patterns of asymmetry variation in animals and their evolutionary significance

    PubMed Central

    Palmer, A. Richard

    1996-01-01

    Phylogenetic analyses of asymmetry variation offer a powerful tool for exploring the interplay between ontogeny and evolution because (i) conspicuous asymmetries exist in many higher metazoans with widely varying modes of development, (ii) patterns of bilateral variation within species may identify genetically and environmentally triggered asymmetries, and (iii) asymmetries arising at different times during development may be more sensitive to internal cytoplasmic inhomogeneities compared to external environmental stimuli. Using four broadly comparable asymmetry states (symmetry, antisymmetry, dextral, and sinistral), and two stages at which asymmetry appears developmentally (larval and postlarval), I evaluated relations between ontogenetic and phylogenetic patterns of asymmetry variation. Among 140 inferred phylogenetic transitions between asymmetry states, recorded from 11 classes in five phyla, directional asymmetry (dextral or sinistral) evolved directly from symmetrical ancestors proportionally more frequently among larval asymmetries. In contrast, antisymmetry, either as an end state or as a transitional stage preceding directional asymmetry, was confined primarily to postlarval asymmetries. The ontogenetic origin of asymmetry thus significantly influences its subsequent evolution. Furthermore, because antisymmetry typically signals an environmentally triggered asymmetry, the phylogenetic transition from antisymmetry to directional asymmetry suggests that many cases of laterally fixed asymmetries evolved via genetic assimilation. PMID:8962039

  2. How Cubic Can Ice Be?

    DOE PAGES

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.; ...

    2017-06-28

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  3. Structural white matter asymmetries in relation to functional asymmetries during speech perception and production.

    PubMed

    Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René

    2013-12-01

    Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.

  4. Cassini Imaging of Iapetus and Solution of the Albedo Asymmetry Enigma

    NASA Astrophysics Data System (ADS)

    Denk, Tilmann; Spencer, John

    2014-05-01

    Cassini imaging of Iapetus during one close and several more distant flybys mainly in the first years of the mission revealed an alien and often unique landscape of this third-largest moon in the Saturnian system [1]. The data show numerous impact craters on the bright and dark terrain, equator-facing dark and pole-facing bright crater walls, huge impact basins, rather minor endogenic geologic features, a non-spherical, but ellipsoidal shape, a giant ridge which spans across half of Iapetus' circumference exactly along the equator, a newly detected global 'color dichotomy' presumably formed by dust from retrograde irregular moons, and of course the famous extreme global albedo asymmetry which has been an enigma for more than three centuries. Revealing the cause of this 'albedo dichotomy' enigma of Iapetus, where the trailing side and poles are more than 10x brighter than the leading side, was one of the major tasks for the Cassini mission. It has now been solved successfully. In the mid-1970es, deposition of exogenic dark material on the leading side, originating from outer retrograde moon Phoebe, was proposed as the cause. But this alone could not explain the global shape, sharpness, and complexity of the transition between Iapetus' bright and dark terrain. Mainly with Cassini spectrometer (CIRS) and imaging (ISS) data, all these characteristics and the asymmetry's large amplitude are now plausibly explained by runaway global thermal migration of water ice, triggered by the deposition of dark material on the leading hemisphere. This mechanism is unique to Iapetus among the Saturnian satellites for many reasons. Most important are Iapetus' slow rotation which produces unusually high daytime temperatures and water ice sublimation rates, and the size (gravity) of Iapetus which is small enough for global migration of water ice but large enough that much of the ice is retained on the surface [2]. References: [1] Denk, T., Neukum, G., Roatsch, Th., Porco, C.C., Burns, J

  5. Partially ordered state of ice XV

    PubMed Central

    Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H.

    2016-01-01

    Most ice polymorphs have order–disorder “pairs” in terms of hydrogen positions, which contributes to the rich variety of ice polymorphs; in fact, three recently discovered polymorphs— ices XIII, XIV, and XV—are ordered counter forms to already identified disordered phases. Despite the considerable effort to understand order–disorder transition in ice crystals, there is an inconsistency among the various experiments and calculations for ice XV, the ordered counter form of ice VI, i.e., neutron diffraction observations suggest antiferroelectrically ordered structures, which disagree with dielectric measurement and theoretical studies, implying ferroelectrically ordered structures. Here we investigate in-situ neutron diffraction measurements and density functional theory calculations to revisit the structure and stability of ice XV. We find that none of the completely ordered configurations are particular favored; instead, partially ordered states are established as a mixture of ordered domains in disordered ice VI. This scenario in which several kinds of ordered configuration coexist dispels the contradictions in previous studies. It means that the order–disorder pairs in ice polymorphs are not one-to-one correspondent pairs but rather have one-to-n correspondence, where there are n possible configurations at finite temperature. PMID:27375120

  6. Microfabric and Structures in Glacial Ice

    NASA Astrophysics Data System (ADS)

    Monz, M.; Hudleston, P. J.

    2017-12-01

    Similar to rocks in active orogens, glacial ice develops both structures and fabrics that reflect deformation. Crystallographic preferred orientation (CPO), associated with mechanical anisotropy, develops as ice deforms, and as in rock, directly reflects the conditions and mechanisms of deformation and influences the overall strength. This project aims to better constrain the rheologic properties of natural ice through microstructural analysis and to establish the relationship of microfabric to macroscale structures. The focus is on enigmatic fabric patterns found in coarse grained, "warm" (T > -10oC) ice deep in ice sheets and in valley glaciers. Deformation mechanisms that produce such patterns are poorly understood. Detailed mapping of surface structures, including bedding, foliation, and blue bands (bubble-free veins of ice), was done in the ablation zone of Storglaciären, a polythermal valley glacier in northern Sweden. Microstructural studies on samples from a transect across the ablation zone were carried out in a cold room. Crystal size was too large for use of electron backscattered diffraction to determine CPO, therefore a Rigsby universal stage, designed specifically for ice, was used. In thick and thin sections, recrystallized grains are locally variable in both size (1mm-7cm in one thin section) and shape and clearly reflect recrystallization involving highly mobile grain boundaries. Larger crystals are often branching, and appear multiple times throughout one thin section. There is a clear shape preferred orientation that is generally parallel with foliation defined by bubble alignment and concentration. Locally, there appears to be an inverse correlation between bubble concentration and smoothness of grain boundaries. Fabric in samples that have undergone prolonged shear display roughly symmetrical multimaxima patterns centered around the pole to foliation. The angular distances between maxima suggest a possible twin relationship that may have

  7. Effect of Frozen Storage Temperature on the Quality of Premium Ice Cream.

    PubMed

    Park, Sung Hee; Jo, Yeon-Ji; Chun, Ji-Yeon; Hong, Geun-Pyo; Davaatseren, Munkhtugs; Choi, Mi-Jung

    2015-01-01

    The market sales of premium ice cream have paralleled the growth in consumer desire for rich flavor and taste. Storage temperature is a major consideration in preserving the quality attributes of premium ice cream products for both the manufacturer and retailers during prolonged storage. We investigated the effect of storage temperature (-18℃, -30℃, -50℃, and -70℃) and storage times, up to 52 wk, on the quality attributes of premium ice cream. Quality attributes tested included ice crystal size, air cell size, melting resistance, and color. Ice crystal size increased from 40.3 μm to 100.1 μm after 52 wk of storage at -18℃. When ice cream samples were stored at -50℃ or -70℃, ice crystal size slightly increased from 40.3 μm to 57-58 μm. Initial air cell size increased from 37.1 μm to 87.7 μm after storage at -18℃ for 52 wk. However, for storage temperatures of -50℃ and -70℃, air cell size increased only slightly from 37.1 μm to 46-47 μm. Low storage temperature (-50℃ and -70℃) resulted in better melt resistance and minimized color changes in comparison to high temperature storage (-18℃ and -30℃). In our study, quality changes in premium ice cream were gradually minimized according to decrease in storage temperature up to-50℃. No significant beneficial effect of -70℃ storage was found in quality attributes. In the scope of our experiment, we recommend a storage temperature of -50℃ to preserve the quality attributes of premium ice cream.

  8. Temporal dynamics of ikaite in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.

    2014-08-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of <100 μmol kg-1. Snowfall events caused the sea ice to warm and ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.

  9. Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures

    NASA Technical Reports Server (NTRS)

    Cole, Benjamin H.; Yang, Ping; Baum, Bryan A.; Riedi, Jerome; Labonnote, Laurent C.; Thieuleux, Francois; Platnick, Steven

    2012-01-01

    Insufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations required in downstream applications involving these clouds. The widely used MODerate Resolution Imaging Spectroradiometer (MODIS) Collection 5 ice microphysical model assumes a mixture of various ice crystal shapes with smooth-facets except aggregates of columns for which a moderately rough condition is assumed. When compared with PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of 9 different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding-doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multi-angular observations. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.

  10. Digital-image processing and image analysis of glacier ice

    USGS Publications Warehouse

    Fitzpatrick, Joan J.

    2013-01-01

    This document provides a methodology for extracting grain statistics from 8-bit color and grayscale images of thin sections of glacier ice—a subset of physical properties measurements typically performed on ice cores. This type of analysis is most commonly used to characterize the evolution of ice-crystal size, shape, and intercrystalline spatial relations within a large body of ice sampled by deep ice-coring projects from which paleoclimate records will be developed. However, such information is equally useful for investigating the stress state and physical responses of ice to stresses within a glacier. The methods of analysis presented here go hand-in-hand with the analysis of ice fabrics (aggregate crystal orientations) and, when combined with fabric analysis, provide a powerful method for investigating the dynamic recrystallization and deformation behaviors of bodies of ice in motion. The procedures described in this document compose a step-by-step handbook for a specific image acquisition and data reduction system built in support of U.S. Geological Survey ice analysis projects, but the general methodology can be used with any combination of image processing and analysis software. The specific approaches in this document use the FoveaPro 4 plug-in toolset to Adobe Photoshop CS5 Extended but it can be carried out equally well, though somewhat less conveniently, with software such as the image processing toolbox in MATLAB, Image-Pro Plus, or ImageJ.

  11. Microscopic study of crystal growth in cryopreservation agent solutions and water.

    PubMed

    Tao, Le-Ren; Hua, Tse-Chao

    2002-10-01

    Ice formation inside or outside cells during cryopreservation is evidently the main factor of cryoinjury to cells. In the study described here a high voltage DC electric field and a cryomicroscopic stage were used to test DMSO and NaCl solutions under electric field strengths ranging from 83 kV/m to 320 kV/m. Dendritic ice crystals became asymmetric when the electric field was activated. This change in the ice crystal shape was more pronounced in the ionic NaCl solution. In addition, ice growth of distilled water without an electric field was tested under different cooling rates.

  12. Photonic crystal fiber monitors for intracellular ice formation

    NASA Astrophysics Data System (ADS)

    Battinelli, Emily; Reimlinger, Mark; Wynne, Rosalind

    2012-04-01

    An all-silica steering wheel photonic crystal fiber (SW-PCF) device with real-time analysis for cellular temperature sensing is presented. Results are provided for water-filled SW-PCF fibers experiencing cooling down near -40°C. Cellular temperature sensors with fast response times are of interest particularly to the study of cryopreservation, which has been influential in applications such as tissue preservation, food quality control, genetic engineering, as well as drug discovery and in- vitro toxin testing. Results of this investigation are relevant to detection of intracellular ice formation (IIF) and better understanding cell freezing at very low temperatures. IIF detection is determined as a function of absorption occurring within the core of the SW-PCF. The SW-PCF has a 3.3μm core diameter, 125μm outer diameter and steering wheel-like air hole pattern with triangular symmetry, with a 20μm radius. One end of a 0.6m length of the SW-PCF is placed between two thermoelectric coolers, filled with ~0.1μL water. This end is butt coupled to a 0.5m length of single mode fiber (SMF), the distal end of the fiber is then inserted into an optical spectrum analyzer. A near-IR light source is guided through the fiber, such that the absorption of the material in the core can be measured. Spectral characteristics demonstrated by the optical absorption of the water sample were present near the 1300-1700nm window region with strongest peaks at 1350, 1410 and 1460nm, further shifting of the absorption peaks is possible at cryogenic temperatures making this device suitable for IIF monitoring applications.

  13. HAIC/HIWC field campaign - investigating ice microphysics in high ice water content regions of mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter; Lilie, Lyle; Dezitter, Fabien; Grandin, Alice

    2015-04-01

    Despite existing research programs focusing on tropical convection, high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) - potentially encountered by commercial aircraft and related to reported in-service events - remain poorly documented either because investigation of such high IWC regions was not of highest priority or because utilized instrumentation was not capable of providing accurate cloud microphysical measurements. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The French Falcon 20 research aircraft had been equipped among others with a state-of-the-art in situ microphysics package including the IKP (isokinetic evaporator probe which provides a reference measurement of IWC and TWC), the CDP (cloud droplet spectrometer probe measuring particles in the range 2-50 µm), the 2D-S (2D-Stereo, 10-1280 µm) and PIP (precipitation imaging probe, 100-6400 µm) optical array probes. Microphysical data collection has been performed mainly at -40°C and -30°C levels, whereas little data could be sampled at -50°C and at -15C/-10°C. The study presented here focuses on ice crystal size properties, thereby analyzing in detail the 2D image data from 2D-S and PIP optical array imaging probes. 2D images recorded with 2D-S and PIP were processed in order to extract a large variety of geometrical parameters, such as maximum diameter (Dmax), 2D surface equivalent diameter (Deq), and the corresponding number particle size distribution (PSD). Using the PSD information from both probes, a composite size distribution was then built, with sizes ranging from few tens of µm to roughly 10 mm. Finally, mass-size relationships for ice crystals in tropical convection were established in terms of power laws in order to compute median mass diameters MMDmax and

  14. Non-basal dislocations should be accounted for in simulating ice mass flow

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  15. Distinct ice patterns on solid surfaces with various wettabilities

    PubMed Central

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045

  16. What controls the low ice number concentration in the upper troposphere?

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng; Penner, Joyce E.; Lin, Guangxing; Liu, Xiaohong; Wang, Minghuai

    2016-10-01

    Cirrus clouds in the tropical tropopause play a key role in regulating the moisture entering the stratosphere through their dehydrating effect. Low ice number concentrations ( < 200 L-1) and high supersaturations (150-160 %) have been observed in these clouds. Different mechanisms have been proposed to explain these low ice number concentrations, including the inhibition of homogeneous freezing by the deposition of water vapour onto pre-existing ice crystals, heterogeneous ice formation on glassy organic aerosol ice nuclei (IN), and limiting the formation of ice number from high-frequency gravity waves. In this study, we examined the effect from three different representations of updraft velocities, the effect from pre-existing ice crystals, the effect from different water vapour deposition coefficients (α = 0.1 or 1), and the effect of 0.1 % of the total secondary organic aerosol (SOA) particles acting as IN. Model-simulated ice crystal numbers are compared against an aircraft observational dataset.Including the effect from water vapour deposition on pre-existing ice particles can effectively reduce simulated in-cloud ice number concentrations for all model setups. A larger water vapour deposition coefficient (α = 1) can also efficiently reduce ice number concentrations at temperatures below 205 K, but less so at higher temperatures. SOA acting as IN is most effective at reducing ice number concentrations when the effective updraft velocities are moderate ( ˜ 0.05-0.2 m s-1). However, the effects of including SOA as IN and using (α = 1) are diminished when the effect from pre-existing ice is included.When a grid-resolved large-scale updraft velocity ( < 0.1 m s-1) is used, the ice nucleation parameterization with homogeneous freezing only or with both homogeneous freezing and heterogeneous nucleation is able to generate low ice number concentrations in good agreement with observations for temperatures below 205 K as long as the pre-existing ice effect is

  17. What controls the low ice number concentration in the upper troposphere?

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J. E.; Lin, G.; Liu, X.; Wang, M.

    2015-12-01

    Cirrus clouds in the tropical tropopause play a key role in regulating the moisture entering the stratosphere through their dehydrating effect. Low ice number concentrations (< 200 L-1) and high supersaturations (150-160 %) have been observed in these clouds. Different mechanisms have been proposed to explain these low ice number concentrations, including the inhibition of homogeneous freezing by the deposition of water vapour onto pre-existing ice crystals, heterogeneous ice formation on glassy organic aerosol ice nuclei (IN), and limiting the formation of ice number from high frequency gravity waves. In this study, we examined the effect from three different representations of updraft velocities, the effect from pre-existing ice crystals, the effect from different water vapour deposition coefficients (α = 0.1 or 1), and the effect of 0.1 % of the total secondary organic aerosol (SOA) particles acting as IN. Model simulated ice crystal numbers are compared against an aircraft observational dataset. Including the effect from water vapour deposition on pre-existing ice particles can effectively reduce simulated in-cloud ice number concentrations for all model set-ups. A larger water vapour deposition coefficient (α = 1) can also efficiently reduce ice number concentrations at temperatures below 205 K but less so at higher temperatures. SOA acting as IN are most effective at reducing ice number concentrations when the effective updraft velocities are moderate (∼ 0.05-0.2 m s-1). However, the effects of including SOA as IN and using (α = 1) are diminished when the effect from pre-existing ice is included. When a grid resolved large-scale updraft velocity (< 0.1 m s-1) is used, the ice nucleation parameterization with homogeneous freezing only or with both homogeneous freezing and heterogeneous nucleation is able to generate low ice number concentrations in good agreement with observations for temperatures below 205 K as long as the pre-existing ice effect is

  18. Onset and Cessation of Thermal Convection within Titan's Ice Shell

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Tobie, G.; Choblet, G.

    2015-12-01

    The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.

  19. Microfluidic Cold-Finger Device for the Investigation of Ice-Binding Proteins.

    PubMed

    Haleva, Lotem; Celik, Yeliz; Bar-Dolev, Maya; Pertaya-Braun, Natalya; Kaner, Avigail; Davies, Peter L; Braslavsky, Ido

    2016-09-20

    Ice-binding proteins (IBPs) bind to ice crystals and control their structure, enlargement, and melting, thereby helping their host organisms to avoid injuries associated with ice growth. IBPs are useful in applications where ice growth control is necessary, such as cryopreservation, food storage, and anti-icing. The study of an IBP's mechanism of action is limited by the technological difficulties of in situ observations of molecules at the dynamic interface between ice and water. We describe herein a new, to our knowledge, apparatus designed to generate a controlled temperature gradient in a microfluidic chip, called a microfluidic cold finger (MCF). This device allows growth of a stable ice crystal that can be easily manipulated with or without IBPs in solution. Using the MCF, we show that the fluorescence signal of IBPs conjugated to green fluorescent protein is reduced upon freezing and recovers at melting. This finding strengthens the evidence for irreversible binding of IBPs to their ligand, ice. We also used the MCF to demonstrate the basal-plane affinity of several IBPs, including a recently described IBP from Rhagium inquisitor. Use of the MCF device, along with a temperature-controlled setup, provides a relatively simple and robust technique that can be widely used for further analysis of materials at the ice/water interface. Copyright © 2016. Published by Elsevier Inc.

  20. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    PubMed

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi

  1. Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling

    NASA Astrophysics Data System (ADS)

    Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin

    2018-02-01

    A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.

  2. Using depolarization to quantify ice nucleating particle concentrations: a new method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less

  3. Using depolarization to quantify ice nucleating particle concentrations: a new method

    DOE PAGES

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; ...

    2017-12-01

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less

  4. Using depolarization to quantify ice nucleating particle concentrations: a new method

    NASA Astrophysics Data System (ADS)

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; Yang, Ping; Levin, Ezra J. T.; Suski, Kaitlyn J.; DeMott, Paul J.; Brooks, Sarah D.

    2017-12-01

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal size cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.

  5. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  6. Physical and chemical properties of ice residuals during the 2013 and 2014 CLACE campaigns

    NASA Astrophysics Data System (ADS)

    Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Hammer, Emanuel; Gysel, Martin; Färber, Raphael; Fuchs, Claudia; Schnaiter, Martin; Baltensperger, Urs; Schmidt, Susan; Schneider, Johannes; Bigi, Alessandro; Toprak, Emre; Linke, Claudia; Klimach, Thomas

    2014-05-01

    The shortcomings in our understanding and, thus, representation of aerosol-cloud interactions are one of the major sources of uncertainty in climate model projections. Among the poorly understood processes is mixed-phase cloud formation via heterogeneous nucleation, and the subsequent spatial and temporal evolution of such clouds. Cloud glaciation augments precipitation formation, resulting in decreased cloud cover and lifetime, and affects cloud radiative properties. Meanwhile, the physical and chemical properties of atmospherically relevant ice nuclei (IN), the sub-population of aerosol particles which enable heterogeneous nucleation, are not well known. Extraction of ice residuals (IR) in mixed-phase clouds is a difficult task, requiring separation of the few small, freshly formed ice crystals (the IR within such crystals can be deemed representative of the original IN) not only from interstitial particles, but also from the numerous supercooled droplets which have aerodynamic diameters similar to those of the ice crystals. In order to address the difficulties with ice crystal sampling and IR extraction in mixed-phase clouds, the new Ice Selective Inlet (ISI) has been designed and deployed at the Jungfraujoch field site. Small ice crystals are selectively sampled via the inlet with simultaneous counting, sizing and imaging of hydrometeors contained in the cloud by a set of optical particle spectrometers, namely Welas optical particle counters (OPC) and a Particle Phase Discriminator (PPD). The heart of the ISI is a droplet evaporation unit with ice-covered inner walls, resulting in removal of droplets using the Wegener-Bergeron-Findeisen process, while transmitting a relatively high fraction of small ice crystals. The ISI was deployed in the winters of 2013 and 2014 at the high alpine Jungfraujoch site (3580 m.a.s.l) during the intensive CLACE field campaigns. The measurements focused on analysis of the physical and chemical characteristics of IR and the

  7. Point defects at the ice (0001) surface

    PubMed Central

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-01-01

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938

  8. Effect of Frozen Storage Temperature on the Quality of Premium Ice Cream

    PubMed Central

    Park, Sung Hee; Jo, Yeon-Ji; Chun, Ji-Yeon; Hong, Geun-Pyo

    2015-01-01

    The market sales of premium ice cream have paralleled the growth in consumer desire for rich flavor and taste. Storage temperature is a major consideration in preserving the quality attributes of premium ice cream products for both the manufacturer and retailers during prolonged storage. We investigated the effect of storage temperature (−18℃, −30℃, −50℃, and −70℃) and storage times, up to 52 wk, on the quality attributes of premium ice cream. Quality attributes tested included ice crystal size, air cell size, melting resistance, and color. Ice crystal size increased from 40.3 μm to 100.1 μm after 52 wk of storage at −18℃. When ice cream samples were stored at −50℃ or −70℃, ice crystal size slightly increased from 40.3 μm to 57-58 μm. Initial air cell size increased from 37.1 μm to 87.7 μm after storage at −18℃ for 52 wk. However, for storage temperatures of −50℃ and −70℃, air cell size increased only slightly from 37.1 μm to 46-47 μm. Low storage temperature (−50℃ and −70℃) resulted in better melt resistance and minimized color changes in comparison to high temperature storage (−18℃ and −30℃). In our study, quality changes in premium ice cream were gradually minimized according to decrease in storage temperature up to−50℃. No significant beneficial effect of −70℃ storage was found in quality attributes. In the scope of our experiment, we recommend a storage temperature of −50℃ to preserve the quality attributes of premium ice cream. PMID:26877639

  9. Effects of exchange bias on magnetotransport in permalloy kagome artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, B. L.; Rench, D. W.; Misra, R.

    2015-02-01

    We investigate the magnetotransport properties of connected kagome artificial spin ice networks composed of permalloy nanowires. Our data show clear evidence of magnetic switching among the wires, both in the longitudinal and transverse magnetoresistance. An unusual asymmetry with field sweep direction appears at temperatures below about 20 K that appears to be associated with exchange bias resulting from surface oxidation of permalloy, and which disappears in alumina-capped samples. These results demonstrate that exchange bias is a phenomenon that must be considered in understanding the physics of such artificial spin ice systems, and that opens up new possibilities for their control.

  10. From ice-binding proteins to bio-inspired antifreeze materials.

    PubMed

    Voets, I K

    2017-07-19

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.

  11. Possible Catalytic Effects of Ice Particles on the Production of NOx by Lightning Discharges

    NASA Technical Reports Server (NTRS)

    2010-01-01

    One mechanism by which NO(x) is produced in the atmosphere is heating in lightning discharge channels. Since most viable proposed electrification mechanisms involve ice crystals, it is reasonable to assume that lightning discharge channels frequently pass through fields of ice particles of various kinds. We address the question of whether ice crystals may serve as catalysts for the production of NO(x) by lightning discharges. If so, and if the effect is large, it would need to be taken into account in estimates of global NO(x) production by lightning. In this study, we make a series of plausible assumptions about the temperature and concentration of reactant species in the environment of discharges and we postulate a mechanism by which ice crystals are able to adsorb nitrogen atoms. We then compare production rates between uncatalyzed and catalytic reactions at 2000 K, 3000 K, and 4000 K. Catalyzed NO production rates are greater at 2000 K, whereas uncatalyzed production occurs most rapidly at 4000 K. 2010

  12. Assessment and validation of the community radiative transfer model for ice cloud conditions

    NASA Astrophysics Data System (ADS)

    Yi, Bingqi; Yang, Ping; Weng, Fuzhong; Liu, Quanhua

    2014-11-01

    The performance of the Community Radiative Transfer Model (CRTM) under ice cloud conditions is evaluated and improved with the implementation of MODIS collection 6 ice cloud optical property model based on the use of severely roughened solid column aggregates and a modified Gamma particle size distribution. New ice cloud bulk scattering properties (namely, the extinction efficiency, single-scattering albedo, asymmetry factor, and scattering phase function) suitable for application to the CRTM are calculated by using the most up-to-date ice particle optical property library. CRTM-based simulations illustrate reasonable accuracy in comparison with the counterparts derived from a combination of the Discrete Ordinate Radiative Transfer (DISORT) model and the Line-by-line Radiative Transfer Model (LBLRTM). Furthermore, simulations of the top of the atmosphere brightness temperature with CRTM for the Crosstrack Infrared Sounder (CrIS) are carried out to further evaluate the updated CRTM ice cloud optical property look-up table.

  13. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  14. Detecting High Ice Water Content Cloud Regions Using Airborne and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kheyrollah Pour, H.; Korolev, A.; Barker, H.; Wolde, M.; Heckman, I.; Duguay, C. R.

    2016-12-01

    Tropical mesoscale convective systems (MCS) have significant impacts on local and global hydrological cycles and radiation budgets. Moreover, high ice water content (HIWC) found inside MCS clouds at altitudes above 7 km have been identified as hazardous for aviation safety. The environment inside HIWC cloud regions may cause icing of aircraft engines resulting in uncontrolled engine power loss or damage. This phenomenon is known as ice crystal icing (ICI). International aviation regulatory agencies are now attempting to define techniques that enable prediction and detection of potential ICI environments. Such techniques range from on-board HIWC detection to nowcasting of ice crystal weather using satellite data and numerical weather prediction models. The most practical way to monitor continuously for areas of HIWC is by remote sensing with passive radiometers on geostationary satellites. Establishing correlations between HIWC cloud regions and radiances is, however, a challenging problem. This is because regions of HIWC can occur several kilometers below cloud top, while passive satellite radiometers response mainly to the upper kilometers of MCS clouds. The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaigns in Cayenne, French Guiana collected a rich dataset from aboard the Canadian NRC Convair-580 that was equipped with a suite of in-situ microphysical instruments and Dopplerized W- and X-band radars with vertically- and horizontally-directed antenna. This paper aims to describe an algorithm that has been developed to establish relationships between satellite radiances and locations of HIWC regions identified from in-situ measurements of microphysical properties, Doppler velocities, and vertical and horizontal radar reflectivity.

  15. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically-symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over- saturation, determines crystal morphology, there are no quantitative models that relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be direct relationships between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D lattice Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. Crystal growth patterns can be varied between random growth and deterministic growth (along the maximum concentration gradient for example). The input parameters needed are the isotope- dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the condensation coefficient for ice is uncertain. The ratio D/k is a length (order 1 micron) that determines the minimum scale of dendritic growth features

  16. Infrared Retrievals of Ice Cloud Properties and Uncertainties with an Optimal Estimation Retrieval Method

    NASA Astrophysics Data System (ADS)

    Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.

    2014-12-01

    We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.

  17. Climate Impacts of Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  18. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  19. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  20. Square ice in graphene nanocapillaries.

    PubMed

    Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V

    2015-03-26

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  1. Square ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.

    2015-03-01

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  2. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.

    PubMed

    Johnston, Jessica C; Molinero, Valeria

    2012-04-18

    Water nanoparticles play an important role in atmospheric processes, yet their equilibrium and nonequilibrium liquid-ice phase transitions and the structures they form on freezing are not yet fully elucidated. Here we use molecular dynamics simulations with the mW water model to investigate the nonequilibrium freezing and equilibrium melting of water nanoparticles with radii R between 1 and 4.7 nm and the structure of the ice formed by crystallization at temperatures between 150 and 200 K. The ice crystallized in the particles is a hybrid form of ice I with stacked layers of the cubic and hexagonal ice polymorphs in a ratio approximately 2:1. The ratio of cubic ice to hexagonal ice is insensitive to the radius of the water particle and is comparable to that found in simulations of bulk water around the same temperature. Heating frozen particles that contain multiple crystallites leads to Ostwald ripening and annealing of the ice structures, accompanied by an increase in the amount of ice at the expense of the liquid water, before the particles finally melt from the hybrid ice I to liquid, without a transition to hexagonal ice. The melting temperatures T(m) of the nanoparticles are not affected by the ratio of cubic to hexagonal layers in the crystal. T(m) of the ice particles decreases from 255 to 170 K with the particle size and is well described by the Gibbs-Thomson equation, T(m)(R) = T(m)(bulk) - K(GT)/(R - d), with constant K(GT) = 82 ± 5 K·nm and a premelted liquid of width d = 0.26 ± 0.05 nm, about one monolayer. The freezing temperatures also decrease with the particles' radii. These results are important for understanding the composition, freezing, and melting properties of ice and liquid water particles under atmospheric conditions. © 2012 American Chemical Society

  3. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  4. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.

    PubMed

    Tomalty, Heather E; Walker, Virginia K

    2014-09-26

    Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  5. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    NASA Astrophysics Data System (ADS)

    Gouveia, Diego; Baars, Holger; Seifert, Patric; Wandinger, Ulla; Barbosa, Henrique; Barja, Boris; Artaxo, Paulo; Lopes, Fabio; Landulfo, Eduardo; Ansmann, Albert

    2018-04-01

    Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  6. Distinct ice patterns on solid surfaces with various wettabilities.

    PubMed

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-10-24

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.

  7. Extracellular ice phase transitions in insects.

    PubMed

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  8. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohong; Zhang, Kai; Jensen, Eric J.; Gettelman, Andrew; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-01-01

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0+/-0.1Wm (sup-2) (1 uncertainty) and 2.4+/-0.1Wm (sup-2), respectively due to the presence of dust IN, with the net cloud forcing change of -0.40+/-0.20W m(sup-2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190- 205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (greater than 200 L(sup-1) and underestimate the frequency of low ice crystal number concentration (less than 30 L(sup-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  9. The defective nature of ice Ic and its implications for atmospheric science

    NASA Astrophysics Data System (ADS)

    Kuhs, W. F.; Hansen, T. C.

    2009-04-01

    The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4,5]. Our recent microstructural work on ice Ic [6,7] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [8] and other group's work [9] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Moreover, the stacking faults lead to kinks in the outer shapes of the minute ice Ic crystals as seen by cryo scanning electron microscopy (cryo-SEM); these defective sites are likely to play some role in heterogeneous reactions in the atmosphere. The cryo-SEM work suggests that stacking-faulty ice Ic has many more active centres for such reactions than the usually considered thermodynamically stable form, ice Ih. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] DM Murphy (2003) Dehydration in cold clouds is enhanced by a transition from from cubic to hexagonal ice. Geophys.Res.Lett.,30, 2230, doi:10.1029/2003GL018566. [3] RS Gao & 19 other authors (2004

  10. From ice-binding proteins to bio-inspired antifreeze materials

    PubMed Central

    Voets, I. K.

    2017-01-01

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented. PMID:28657626

  11. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity

    PubMed Central

    Wang, Danhong; Buckner, Randy L.

    2013-01-01

    Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior lobe, including crus I and crus II, in regions estimated to link to the cerebral association cortex. The most strongly left lateralized cerebellar regions were located in lobules VI and VIII in regions linked to distinct cerebral association networks. Comparison of cerebellar asymmetry with independently estimated cerebral asymmetry revealed that the lateralized regions of the cerebellum belong to the same networks that are strongly lateralized in the cerebrum. The degree of functional asymmetry of the cerebellum across individuals was significantly correlated with cerebral asymmetry and varied with handedness. In addition, cerebellar asymmetry estimated at rest predicted cerebral lateralization during an active language task. These results demonstrate that functional lateralization is likely a unitary feature of large-scale cerebrocerebellar networks, consistent with the hypothesis that the cerebellum possesses a roughly homotopic map of the cerebral cortex including the prominent asymmetries of the association cortex. PMID:23076113

  12. Spring snow conditions on Arctic sea ice north of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.

  13. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  14. Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf

    2018-05-01

    One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm

  15. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.

    PubMed

    Mazzobre, M F; Longinotti, M P; Corti, H R; Buera, M P

    2001-11-01

    Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties. Copyright 2001 Elsevier Science (USA).

  16. Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Bui, Thaopaul; Weinheimer, Andrew; Weinstock, Elliot; Smith, Jessica; Pittman, Jasna; Baumgardner, Darrel; Lawson, Paul; McGill, Matthew J.

    2005-01-01

    On July 13, 2002 a widespread, subvisible tropopause cirrus layer occurred over the Florida region. This cloud was observed in great detail with the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) instrumentation, including in situ measurements with the WB-57 aircraft. In this paper, we use the 13 July cloud as a case study to evaluate the physical processes controlling the formation and evolution of tropopause cirrus layers. Microphysics measurements indicate that ice crystal diameters in the cloud layer ranged from about 7 to 50 microns, and the peak number mode was about 10-25 microns. In situ water vapor and temperature measurements in the cloud indicated supersaturation with respect to ice throughout, with ice saturation ratios as large as 1.8. Even when the ice surface area density was as high as about 500 sq microns/cu cm, ice supersaturations of 20-30% were observed. Trajectory analysis shows that the air sampled near the tropopause on this day generally came from the north and cooled considerably during the previous few days. Examination of infrared satellite imagery along air parcel back trajectories from the WB-57 flight track indicates that the tropopause cloud layer formation was, in general, not simply left over ice from recently generated anvil cirrus. Simulations of cloud formation using time-height curtains of temperature along the trajectory paths show that the cloud could have formed in situ near the tropopause as the air was advected into the south Florida region and cooled to unusually low temperatures. If we assume a high threshold for ice nucleation via homogeneous freezing of aqueous sulfate aerosols, the model reproduces the observed cloud structure, ice crystal size distributions, and ice supersaturation statistics. Inclusion of observed gravity wave temperature perturbations in the simulations is essential to reproduce the observed cloud properties. Without waves, crystal

  17. Experiments on planetary ices at UCL

    NASA Astrophysics Data System (ADS)

    Grindrod, P. M.; Fortes, A. D.; Wood, I. G.; Dobson, D.; Sammonds, P. R.; Stone-Drake, L.; Vocadlo, L.

    2007-08-01

    Using a suite of techniques and equipment, we conduct several different types of experiments on planetary ices at UCL. Samples are prepared in the Ice Physics Laboratory, which consists of a 5 chamber complex of inter-connected cold rooms, controllable from +30 to -30 deg C. Within this laboratory we have a functioning triaxial deformation cell operating at low temperature (down to -90 deg C) and high pressures (300 MPa), an Automatic Ice Fabric Analyser (AIFA) and a low-temperature microscope with CCD output. Polycrystalline samples, 40mm diameter by 100mm long, are compressed in the triaxial rig with a confining pressure; single crystal specimens are compressed in a separate uniaxial creep rig which operates at zero confining pressure for surface studies. A cold stage is also available for study of ice microstructural studies on our new Jeol JSM-6480LV SEM, which also allows tensile, compression and/or bending tests, with load ranges from less than 2N to 5000N. Finally, we also use a cold stage on a new PANalytical, X'pert PRO MPD, high resolution powder diffractometer to study the structure and phase behaviour of icy materials. Recent highlights of our work include: (1) derivation of a manufacturing process for methane clathrate at low temperatures, analysed in the X-Ray Diffraction Laboratory, for future rheological experiments, (2) analysed the growth behaviour of MS11, (3) refurbished and commenced calibration tests on the triaxial deformation cell using ice Ih, and (4) performed creep tests on gypsum and epsomite using the single crystal deformation cell. Further experiments will build on these preliminary results.

  18. HAIC/HIWC field project: characterizing the high ice water content environment

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter; Korolev, Alexei; McFarquhar, Greg; Gourbeyre, Christophe; Dupuy, Regis; Dezitter, Fabien; Calmels, Alice

    2016-04-01

    High ice water content (IWC) cloud regions in mesoscale convective systems (MCSs) are suspected to cause in-service engine power loss events and air-data probe malfunctions on commercial aircraft. In order to better document this particular environment, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including two field campaigns. The first campaign was conducted in Darwin in 2014 while the second one took place in Cayenne in May 2015. The French Falcon 20 research aircraft has been deployed for the two campaigns, with an instrumental payload including an IKP-2 (isokinetic evaporator probe which provides a reference measurement of IWC), a CDP-2 (cloud droplet spectrometer probe measuring particles in the range 2-50 μm), and optical array probes 2D-S (2D-Stereo, 10-1280 μm) and PIP (precipitation imaging probe, 100-6400 μm). 23 flights were performed in Darwin, 18 in Cayenne, all sampling MCSs at different flight levels with temperatures from -10°C to -50°C. The study presented here focuses on ice crystal size properties related to IWC, thereby analyzing in detail the 2D image data from 2D-S and PIP optical array imaging probes. 2D images recorded with 2D-S and PIP probes were processed in order to produce particle size distributions (PSDs) and median mass diameters (MMDs). Darwin results shows that ice crystals properties are quite different in high IWC areas compared to the surrounding cloud regions. Most of the sampled MCS reveal that the higher the measured IWC, the smaller are the corresponding crystal MMD. This effect is interfering with a temperature trend, whereby colder temperatures are leading to smaller MMD. A preliminary analysis of the Cayenne data seems to be consistent with the above trends.

  19. Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets

    NASA Astrophysics Data System (ADS)

    Wittlinger, Gérard; Farra, Véronique

    2015-03-01

    We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.

  20. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power lawmore » relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.« less

  1. Catalytic crystallization of ices by small silicate smokes at temperatures less than 20K

    NASA Technical Reports Server (NTRS)

    Moore, M.; Ferrante, R.; Hudson, R.; Tanabe, T.; Nuth, J.

    1993-01-01

    Samples of methanol and water ices condensed from the vapor onto aluminum substrates at low temperatures (below approximately 80 K) form amorphous ices; annealing at temperatures in excess of 140-155 K is usually required to convert such amorphous samples to crystalline ices. However, we have found that when either methanol or water vapor is deposited on to aluminum substrates that have been coated with a thin (0.1-0.5 mm) layer of amorphous silicate smoke, the ices condense in crystalline form. We believe that crystalline ice forms as the result of energy liberated at the ice/silicate interface perhaps due to weak bonding of the ice at defect sites on the grains and the very high surface to volume ratio and defect density of these smokes. Annealing of amorphous water ice mixed with more volatile components such as methane, carbon monoxide, etc., has been suggested as an efficient way to produce clatherates in the outer solar nebula and thus explain the volatile content of comets and icy satellites of the outer planets. This hypothesis may need to be re-examined if amorphous ice does not form on cold silicate grains.

  2. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.

    PubMed

    Goshima, Hiroshika; Do, Gabsoo; Nakagawa, Kyuya

    2016-06-01

    It has been known that the sublimation kinetics of a freeze-drying product is affected by its internal ice crystal microstructures. This article demonstrates the impact of the ice morphologies of a frozen formulation in a vial on the design space for the primary drying of a pharmaceutical freeze-drying process. Cross-sectional images of frozen sucrose-bovine serum albumin aqueous solutions were optically observed and digital pictures were acquired. Binary images were obtained from the optical data to extract the geometrical parameters (i.e., ice crystal size and tortuosity) that relate to the mass-transfer resistance of water vapor during the primary drying step. A mathematical model was used to simulate the primary drying kinetics and provided the design space for the process. The simulation results predicted that the geometrical parameters of frozen solutions significantly affect the design space, with large and less tortuous ice morphologies resulting in wide design spaces and vice versa. The optimal applicable drying conditions are influenced by the ice morphologies. Therefore, owing to the spatial distributions of the geometrical parameters of a product, the boundary curves of the design space are variable and could be tuned by controlling the ice morphologies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Diurnal Variation of Tropical Ice Cloud Microphysics: Evidence from Global Precipitation Measurement Microwave Imager Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Zeng, Xiping; Wu, Dong L.; Li, Xiaowen

    2018-01-01

    The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice clouds' role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, 3 years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30°S-30°N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 h, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.

  4. Correlations of oriented ice and precipitation in marine midlatitude low clouds using collocated CloudSat, CALIOP, and MODIS observations

    NASA Astrophysics Data System (ADS)

    Ross, Alexa; Holz, Robert E.; Ackerman, Steven A.

    2017-08-01

    In April 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) launched aboard the CALIPSO satellite and into the A-Train constellation of satellites with its transmitter pointed near nadir. This proved problematic due to specular reflection from horizontally oriented ice crystals occurring more frequently than expected. Because the specular backscatter from oriented ice crystals has large attenuated backscatter and almost no depolarization, the standard lidar inversions cannot be applied. To mitigate this issue, the CALIOP transmitter was moved to 3° off nadir in November 2007. Though problematic for global CALIOP retrievals, the sensitivity to oriented ice during the first year of observations provides a unique data set to investigate scenes of this ice crystal signature. This study focuses on the CALIOP-oriented signature that occurs in midlatitude ocean regions whose cloud tops are relatively warm and low, existing below 6 km. A significant seasonal dependence is found in the Northern Hemisphere with up to 19% of clouds below 6 km yielding specular reflection by CALIOP during the colder months. In contrast, the Southern Hemisphere lacks such seasonal dependence and sees fewer oriented ice crystals. Using collocated CloudSat observations with both CALIOP and Moderate Resolution Imaging Spectroradiometer (MODIS), we investigate the correlations of the oriented signature with MODIS cloud properties. Comparing with CloudSat precipitation retrievals, we find that the oriented signature is strongly correlated with surface precipitation with 64% of CALIOP-oriented ice crystal cases precipitating compared to 40% for nonoriented cases.

  5. Thermodynamic origin of surface melting on ice crystals

    PubMed Central

    Murata, Ken-ichiro; Asakawa, Harutoshi; Nagashima, Ken; Furukawa, Yoshinori; Sazaki, Gen

    2016-01-01

    Since the pioneering prediction of surface melting by Michael Faraday, it has been widely accepted that thin water layers, called quasi-liquid layers (QLLs), homogeneously and completely wet ice surfaces. Contrary to this conventional wisdom, here we both theoretically and experimentally demonstrate that QLLs have more than two wetting states and that there is a first-order wetting transition between them. Furthermore, we find that QLLs are born not only under supersaturated conditions, as recently reported, but also at undersaturation, but QLLs are absent at equilibrium. This means that QLLs are a metastable transient state formed through vapor growth and sublimation of ice, casting a serious doubt on the conventional understanding presupposing the spontaneous formation of QLLs in ice–vapor equilibrium. We propose a simple but general physical model that consistently explains these aspects of surface melting and QLLs. Our model shows that a unique interfacial potential solely controls both the wetting and thermodynamic behavior of QLLs. PMID:27791107

  6. Antifreeze Protein Binds Irreversibly to Ice

    NASA Astrophysics Data System (ADS)

    Braslavsky, I.; Pertaya, N.; di Prinzio, C. L.; Wilen, L.; Thomson, E.; Wettlaufer, J. S.; Marshall, C. B.; Davies, P. L.

    2006-03-01

    Many organisms are protected from freezing by antifreeze proteins (AFPs), which bind to ice and prevent its growth by a mechanism not completely understood. Although it has been postulated that AFPs would have to bind irreversibly to arrest the growth of an ice crystal bathed in excess liquid water, the binding forces seem insufficient to support such a tight interaction. By putting a fluorescent tag on a fish AFP, we were able to visualize AFP binding to ice and demonstrate, by lack of recovery after photo-bleaching, that it is indeed irreversible. Because even the most avid protein/ligand interactions exhibit reversibility, this finding is key to understanding the mechanism of antifreeze proteins, which are becoming increasingly valuable in cryopreservation and improving the frost tolerance of crops.

  7. Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization.

    PubMed

    Graham, Ben; Fayter, Alice E R; Houston, Judith E; Evans, Rachel C; Gibson, Matthew I

    2018-05-02

    Antifreeze glycoproteins (AFGPs) from polar fish are the most potent ice recrystallization (growth) inhibitors known, and synthetic mimics are required for low-temperature applications such as cell cryopreservation. Here we introduce facially amphipathic glycopolymers that mimic the three-dimensional structure of AFGPs. Glycopolymers featuring segregated hydrophilic and hydrophobic faces were prepared by ring-opening metathesis polymerization, and their rigid conformation was confirmed by small-angle neutron scattering. Ice recrystallization inhibition (IRI) activity was reduced when a hydrophilic oxo-ether was installed on the glycan-opposing face, but significant activity was restored by incorporating a hydrophobic dimethylfulvene residue. This biomimetic strategy demonstrates that segregated domains of distinct hydrophilicity/hydrophobicity are a crucial motif to introduce IRI activity, which increases our understanding of the complex ice crystal inhibition processes.

  8. Theoretical model of the Bergeron-Findeisen mechanism of ice crystal growth in clouds

    NASA Astrophysics Data System (ADS)

    Castellano, N. E.; Avila, E. E.; Saunders, C. P. R.

    A numerical study of growth rate of ice particles in an array of water droplets (Bergeron-Findeisen mechanism) has used the method of electrostatic image charges to determine the vapour field in which a particle grows. Analysis of growth rate in various conditions of relevance to clouds has shown that it is proportional to liquid water content and to ice particle size, while it is inversely proportional to cloud droplet size. The results show that growth rate is enhanced by several percent relative to the usual treatment in which vapour is assumed to diffuse from infinity towards a growing ice particle. The study was performed for ice particles between 25 and 150 μm radii, water droplet sizes between 6 and 20 μm diameter and a wide range of liquid water contents. A study was also made to determine the effect of reducing the vapour source at infinity so that the droplets alone provided the vapour for particle growth. A parameterisation of ice particle growth rate is given as a function of liquid water content and ice particle and droplet sizes. These studies are of importance to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between ice particles and graupel could take place.

  9. Theoretical study of interaction of winter flounder antifreeze protein with ice

    PubMed Central

    Jorov, Alexander; Zhorov, Boris S.; Yang, Daniel S.C.

    2004-01-01

    Antifreeze proteins (AFPs) are synthesized by various organisms to enable their cells to survive subzero environment. These proteins bind to small ice crystals and inhibit their growth, which if left uncontrolled would be fatal to cells. The crystal structures of a number of AFPs have been determined; however, crystallographic analysis of AFP–ice complex is nearly impossible. Molecular modeling studies of AFPs’ interaction with ice surface is therefore invaluable. Early models of AFP–ice interaction suggested H-bond as the primary driving force behind such interaction. Recent experimental evidence, however, suggested that hydrophobic interactions could be the main contributor to AFP–ice association. All computational studies published to date were carried out to verify the H-bond model, and no works attempting to verify the hydrophobic interaction model have been published. In this work, we Monte Carlo–minimized complexes of several AFPs with ice taking into account nonbonded interactions, H-bonds, and the hydration potential for proteins. Parameters of the hydration potential for ice were developed with the assumption that the free energy of the water–ice association should be close to zero at equilibrium melting temperature. Our calculations demonstrate that desolvation of hydrophobic groups in the AFPs upon their binding to the grooves at the ice surface is indeed the major stabilizing contributor to the free energy of AFP–ice binding. This study is consistent with available structural and mutation data on AFPs. In particular, it explains the paradoxical finding that substitution of Thr residues with Val does not affect the potency of winter flounder AFP whereas substitution with Ser abolished its antifreeze activity. PMID:15152087

  10. Laboratory studies of cometary ice analogues

    NASA Astrophysics Data System (ADS)

    Schmitt, B.; Espinasse, S.; Grim, R. J. A.; Greenberg, J. M.; Klinger, J.

    1989-12-01

    Laboratory studies were performed in order to simulate the physico-chemical processes that are likely to occur in the near surface layers of short and intermediate period comets. Pure H2O ice as well as CO:H2O, CO2:H2O, CH4:H2O, CO:CO2:H2O, and NH3:H2O ice mixtures were studied in the temperature range between 10 and 180 K. The evolution of the composition of ice mixtures, the crystallization of H2O ice as well as the formation and decompostion of clathrate hydrate by different processes were studied as a function of temperature and time. Using the results together with numerical modeling, predictions are made about the survival of amorphous ice, CO, CO2, CH4, and NH3 in the near surface layers of short period comets. The likeliness of finding clathrate and molecular hydrates is discussed. It is proposed that the analytical methods developed here could be fruitfully adapted to the analysis of returned comet samples.

  11. High pressure ices.

    PubMed

    Hermann, Andreas; Ashcroft, N W; Hoffmann, Roald

    2012-01-17

    H(2)O will be more resistant to metallization than previously thought. From computational evolutionary structure searches, we find a sequence of new stable and meta-stable structures for the ground state of ice in the 1-5 TPa (10 to 50 Mbar) regime, in the static approximation. The previously proposed Pbcm structure is superseded by a Pmc2(1) phase at p = 930 GPa, followed by a predicted transition to a P2(1) crystal structure at p = 1.3 TPa. This phase, featuring higher coordination at O and H, is stable over a wide pressure range, reaching 4.8 TPa. We analyze carefully the geometrical changes in the calculated structures, especially the buckling at the H in O-H-O motifs. All structures are insulating--chemistry burns a deep and (with pressure increase) lasting hole in the density of states near the highest occupied electronic levels of what might be component metallic lattices. Metallization of ice in our calculations occurs only near 4.8 TPa, where the metallic C2/m phase becomes most stable. In this regime, zero-point energies much larger than typical enthalpy differences suggest possible melting of the H sublattice, or even the entire crystal.

  12. Experimental investigation of the dynamics of spontaneous pattern formation during dendritic ice crystal growth

    NASA Astrophysics Data System (ADS)

    Tirmizi, Shakeel H.; Gill, William N.

    1989-06-01

    The dynamics of spontaneous pattern formation are studied experimentally by observing and recording the evolution of ice crystal patterns which grow freely in a supercooled melt. The sequence of evolution to dendrites is recorded in real time using cine-micrography. In the range of subcoolings from 0.06 to 0.29°C, all the patterns evolved as follows: Smooth disk → Perturbed disk → Disk dendrite → Partially developed dendrite → Fully developed dendrite. The initial smooth disk, the main branch and the side branches all developed perturbations beyond a critical size which depends on the subcooling. The combined effect of the destabilizing thermal gradients ahead of the growing crystal and the stabilizing Gibbs-Thompson capillarity effect dictates the critical size of the unstable structures in terms of the mean curvature of the interface. Detailed analysis of the evolving patterns was done using digital image analysis on the PRIME computer to determine both the manner in which the dendritic growth process replicates itself and the role which the shape and the movement of the interface play in the pattern formation process. Total arc length ST, total area A and the complexity ratio ξ = ST⧸√ A of evolving patterns were computed as a function of time and undercooling for each crystal image. These results permitted us to make some comparisons with theoretical models on pattern evolution. Three distinct phases of evolution were identified: the initial phase when the crystal structure is smooth and free of any perturbations and the complexity ratio is almost a constant, an intermediate phase when the crystal structure develops perturbations which grow quickly in number and in size and the complexity ratio increases rapidly and a final phase when the pattern approaches that of a fully developed dendrite which, on a global scale grows in a shape-perserving manner and has a slowly increasing complexity ratio which seems to approach an asymptote. Two factors were

  13. Interior ice/mineral/water interface dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.

    2009-12-01

    The search for life begins with the search for liquid water. In our solar system, persistent water reservoirs are invariably found together with ice. On Earth, organisms have evolved to thrive at sub-zero temperatures in ice-bound habitats that have numerous analogues throughout our solar system and beyond. To assess the potential for life requires a thorough investigation of the dynamic interactions within these deposits. Well-established thermodynamic principles govern the stable coexistence of premelted liquid at the interface between ice and other minerals. Foreign constituents are efficiently rejected from the ice crystal lattice and are concentrated in residual liquid regions instead. This gains added importance with the recognition that the most fundamental requirements for survival include a food source and the removal of waste. This talk reviews the astrobiological implications of the availability, behavior, and properties of liquid water in association with the interiors of icy bodies and ice-mineral interfacial regions.

  14. Friction at ice-Ih / water interfaces

    NASA Astrophysics Data System (ADS)

    Louden, Patrick B.; Gezelter, J. Daniel

    We present evidence that the prismatic and secondary prism facets of ice-Ih crystals possess structural features that alter the effective hydrophilicity of the ice / water interface. This is shown through molecular dynamics simulations of solid-liquid friction, where the prismatic { 10 1 0 } , secondary prism { 11 2 0 } , basal { 0001 } , and pyramidal { 20 2 1 } facets are drawn through liquid water. We find that the two prismatic facets exhibit differential solid-liquid friction coefficients when compared with the basal and pyramidal facets. These results are complemented by a model solid/liquid interface with tunable hydrophilicity. These simulations provide evidence that the two prismatic faces have a significantly smaller effective surface area in contact with the liquid water. The ice / water interfacial widths for all four crystal facets are similar (using both structural and dynamic measures), and were found to be independent of the shear rate. Additionally, decomposition of orientational time correlation functions show position-dependence for the short- and longer-time decay components close to the interface. Support for this project was provided by the National Science Foundation under Grant CHE-1362211. Computational time was provided by the Center for Research Computing (CRC) at the University of Notre Dame.

  15. A new model for simulating 3-d crystal growth and its application to the study of antifreeze proteins.

    PubMed

    Wathen, Brent; Kuiper, Michael; Walker, Virginia; Jia, Zongchao

    2003-01-22

    A novel computational technique for modeling crystal formation has been developed that combines three-dimensional (3-D) molecular representation and detailed energetics calculations of molecular mechanics techniques with the less-sophisticated probabilistic approach used by statistical techniques to study systems containing millions of molecules undergoing billions of interactions. Because our model incorporates both the structure of and the interaction energies between participating molecules, it enables the 3-D shape and surface properties of these molecules to directly affect crystal formation. This increase in model complexity has been achieved while simultaneously increasing the number of molecules in simulations by several orders of magnitude over previous statistical models. We have applied this technique to study the inhibitory effects of antifreeze proteins (AFPs) on ice-crystal formation. Modeling involving both fish and insect AFPs has produced results consistent with experimental observations, including the replication of ice-etching patterns, ice-growth inhibition, and specific AFP-induced ice morphologies. Our work suggests that the degree of AFP activity results more from AFP ice-binding orientation than from AFP ice-binding strength. This technique could readily be adapted to study other crystal and crystal inhibitor systems, or to study other noncrystal systems that exhibit regularity in the structuring of their component molecules, such as those associated with the new nanotechnologies.

  16. Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition.

    PubMed

    Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard

    2013-06-21

    The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.

  17. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE PAGES

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; ...

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  18. Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom.

    PubMed

    Wollenburg, J E; Katlein, C; Nehrke, G; Nöthig, E-M; Matthiessen, J; Wolf-Gladrow, D A; Nikolopoulos, A; Gázquez-Sanchez, F; Rossmann, L; Assmy, P; Babin, M; Bruyant, F; Beaulieu, M; Dybwad, C; Peeken, I

    2018-05-16

    Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m -2 gypsum crystals were formed in sea ice at temperatures below -6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.

  19. 35 GHz Measurements of CO2 Crystals for Simulating Observations of the Martian Polar Caps

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Chang, A. T. C.; Hall, D. K.; Tait, A. B.; Barton, J. S.

    1998-01-01

    In order to learn more about the Martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33 cm snowpack was measured with a 35 GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice). A 1 m x 2 m plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. Compared to the natural snow crystals, results for the dry ice layers exhibit lower' microwave brightness temperatures for similar thicknesses, regardless of the incidence angle of the radiometer. For example, at 50 degree H (horizontal polarization) and with a covering of 21 cm of snow and 18 cm of dry ice, the brightness temperatures were 150 K and 76 K, respectively. When the snow depth was 33 cm, the brightness temperature was 144 K, and when the total thickness of the dry ice was 27 cm, the brightness temperature was 86 K. The lower brightness temperatures are due to a combination of the lower physical temperature and the larger crystal sizes of the commercial CO2 Crystals compared to the snow crystals. As the crystal size approaches the size of the microwave wavelength, it scatters microwave radiation more effectively, thus lowering the brightness temperature. The dry ice crystals in this experiment were about an order of magnitude larger than the snow crystals and three orders of magnitude larger than the CO2 Crystals produced in the cold stage of a scanning electron microscope. Spreading soil, approximately 2 mm in thickness, on the dry ice appeared to have no effect on the brightness temperatures.

  20. Development of formulations and processes to incorporate wax oleogels in ice cream.

    PubMed

    Zulim Botega, Daniele C; Marangoni, Alejandro G; Smith, Alexandra K; Goff, H Douglas

    2013-12-01

    The objective of this study was to investigate the influence of emulsifiers, waxes, fat concentration, and processing conditions on the application of wax oleogel to replace solid fat content and create optimal fat structure in ice cream. Ice creams with 10% or 15% fat were formulated with rice bran wax (RBW), candelilla wax (CDW), or carnauba wax (CBW) oleogels, containing 10% wax and 90% high-oleic sunflower oil. The ice creams were produced using batch or continuous freezing processes. Transmission electron microscopy (TEM) and cryo-scanning electron microscopy were used to evaluate the microstructure of ice cream and the ultrastructure of oleogel droplets in ice cream mixes. Among the wax oleogels, RBW oleogel had the ability to form and sustain structure in 15% fat ice creams when glycerol monooleate (GMO) was used as the emulsifier. TEM images revealed that the high degree of fat structuring observed in GMO samples was associated with the RBW crystal morphology within the fat droplet, which was characterized by the growth of crystals at the outer edge of the droplet. Continuous freezing improved fat structuring compared to batch freezing. RBW oleogels established better structure compared to CDW or CBW oleogels. These results demonstrate that RBW oleogel has the potential to develop fat structure in ice cream in the presence of GMO and sufficiently high concentrations of oleogel. © 2013 Institute of Food Technologists®

  1. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  2. Characterizing Intracellular Ice Formation of Lymphoblasts Using Low-Temperature Raman Spectroscopy.

    PubMed

    Yu, Guanglin; Yap, Yan Rou; Pollock, Kathryn; Hubel, Allison

    2017-06-20

    Raman microspectroscopy was used to quantify freezing response of cells to various cooling rates and solution compositions. The distribution pattern of cytochrome c in individual cells was used as a measure of cell viability in the frozen state and this metric agreed well with the population-averaged viability and trypan blue staining experiments. Raman imaging of cells demonstrated that intracellular ice formation (IIF) was common and did not necessarily result in cell death. The amount of intracellular ice as well as ice crystal size played a role in determining whether or not ice inside the cell was a lethal event. Intracellular ice crystals were colocated to the sections of cell membrane in close proximity to extracellular ice. Increasing the distance between extracellular ice and cell membrane decreased the incidence of IIF. Reducing the effective stiffness of the cell membrane by disrupting the actin cytoskeleton using cytochalasin D increased the amount of IIF. Strong intracellular osmotic gradients were observed when IIF was present. These observations support the hypothesis that interactions between the cell membrane and extracellular ice result in IIF. Raman spectromicroscopy provides a powerful tool for observing IIF and understanding its role in cell death during freezing, and enables the development, to our knowledge, of new and improved cell preservation protocols. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Spectral properties of ice-particulate mixtures and implications for remote sensing. 1. Intimate mixtures.

    USGS Publications Warehouse

    Clark, R.N.; Lucey, P.G.

    1984-01-01

    The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors

  4. Preliminary Flight Deck Observations During Flight in High Ice Water Content Conditions

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas; Duchanoy, Dominque; Bourdinot, Jean-Francois; Harrah, Steven; Strapp, Walter; Schwarzenboeck, Alfons; Dezitter, Fabien; Grandin, Alice

    2015-01-01

    In 2006, Mason et al. identified common observations that occurred in engine power-loss events attributed to flight in high concentrations of ice crystals. Observations included light to moderate turbulence, precipitation on the windscreen (often reported as rain), aircraft total temperature anomalies, lack of significant airframe icing, and no flight radar echoes at the location and altitude of the engine event. Since 2006, Mason et al. and others have collected information from pilots who experienced engine power-loss events via interviews and questionnaires to substantiate earlier observations and support event analyses. In 2011, Mason and Grzych reported that vertical acceleration data showed increases in turbulence prior to engine events, although the turbulence was usually light to moderate and not unique to high ice water content (HIWC) clouds. Mason concluded that the observation of rain on the windscreen was due to melting of ice high concentrations of ice crystals on the windscreen, coalescing into drops. Mason also reported that these pilot observations of rain on the windscreen were varied. Many pilots indicated no rain was observed, while others observed moderate rain with unique impact sounds. Mason concluded that the variation in the reports may be due to variation in the ice concentration, particle size, and temperature.

  5. [Spectral features analysis of sea ice in the Arctic Ocean].

    PubMed

    Ke, Chang-qing; Xie, Hong-jie; Lei, Rui-bo; Li, Qun; Sun, Bo

    2012-04-01

    Sea ice in the Arctic Ocean plays an important role in the global climate change, and its quick change and impact are the scientists' focus all over the world. The spectra of different kinds of sea ice were measured with portable ASD FieldSpec 3 spectrometer during the long-term ice station of the 4th Chinese national Arctic Expedition in 2010, and the spectral features were analyzed systematically. The results indicated that the reflectance of sea ice covered by snow is the highest one, naked sea ice the second, and melted sea ice the lowest. Peak and valley characteristics of spectrum curves of sea ice covered by thick snow, thin snow, wet snow and snow crystal are very significant, and the reflectance basically decreases with the wavelength increasing. The rules of reflectance change with wavelength of natural sea ice, white ice and blue ice are basically same, the reflectance of them is medium, and that of grey ice is far lower than natural sea ice, white ice and blue ice. It is very significant for scientific research to analyze the spectral features of sea ice in the Arctic Ocean and to implement the quantitative remote sensing of sea ice, and to further analyze its response to the global warming.

  6. Minimalist model of ice microphysics in mixed-phase stratiform clouds

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-01

    The question of whether persistent ice crystal precipitation from supercooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power-law relationship with ice number concentration (ni). wi and ni from a LES cloud model with stochastic ice nucleation confirm the 2.5 power-law relationship, and initial indications of the scaling law are observed in data from the Indirect and Semi-Direct Aerosol Campaign. The prefactor of the power law is proportional to the ice nucleation rate and therefore provides a quantitative link to observations of ice microphysical properties.

  7. Analytical Tools for Cloudscope Ice Measurement

    NASA Technical Reports Server (NTRS)

    Arnott, W. Patrick

    1998-01-01

    The cloudscope is a ground or aircraft instrument for viewing ice crystals impacted on a sapphire window. It is essentially a simple optical microscope with an attached compact CCD video camera whose output is recorded on a Hi-8 mm video cassette recorder equipped with digital time and date recording capability. In aircraft operation the window is at a stagnation point of the flow so adiabatic compression heats the window to sublimate the ice crystals so that later impacting crystals can be imaged as well. A film heater is used for ground based operation to provide sublimation, and it can also be used to provide extra heat for aircraft operation. The compact video camera can be focused manually by the operator, and a beam splitter - miniature bulb combination provide illumination for night operation. Several shutter speeds are available to accommodate daytime illumination conditions by direct sunlight. The video images can be directly used to qualitatively assess the crystal content of cirrus clouds and contrails. Quantitative size spectra are obtained with the tools described in this report. Selected portions of the video images are digitized using a PCI bus frame grabber to form a short movie segment or stack using NIH (National Institute of Health) Image software with custom macros developed at DRI. The stack can be Fourier transform filtered with custom, easy to design filters to reduce most objectionable video artifacts. Particle quantification of each slice of the stack is performed using digital image analysis. Data recorded for each particle include particle number and centroid, frame number in the stack, particle area, perimeter, equivalent ellipse maximum and minimum radii, ellipse angle, and pixel number. Each valid particle in the stack is stamped with a unique number. This output can be used to obtain a semiquantitative appreciation of the crystal content. The particle information becomes the raw input for a subsequent program (FORTRAN) that

  8. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies

    NASA Astrophysics Data System (ADS)

    Rogers, David C.

    A supercooled continuous flow, thermal gradient diffusion chamber has been developed to study the ice nucleating properties of natural or artificial aerosols. The chamber has concentric cylinder geometry with the cylinder axis alignment and airflow vertically downward. Sample airflow is 1 l min -1 and occupies the central 10% of the annular lamina; it is separated from the ice-covered walls by filtered sheath air. The wall temperatures are independently controlled over the range from about -4°C to -25°C, so that the vapor concentration at the location of the sample lamina can be set to a well defined value between ice saturation and a few percent water supersaturation. There is a range of temperature and supersaturation values across the sample region; for lamina center conditions of -15°C and +1% with respect to water, the range is -14.6 to -15.4°C and +0.53 to +1.31%. Errors in temperature control produce variations estimated as ±0.1°C and ±0.23%. Typical sample residence time is about 10 s. Ice crystals which form on active nuclei are detected optically at the outlet end of the chamber. To enhance the size difference between ice crystals and cloud droplets, the downstream 25% of the warm ice wall is covered with a thermally insulating vapor barrier which reduces the vapor concentration to ice saturation at the cold wall temperature, so cloud droplets evaporate. A mathematical model was developed to describe the temperature and vapor fields and to calculate the growth, evaporation, and sedimentation of water and ice particles. At 1% water supersaturation, the model predicts that ice particles will grow to about 5 μm diameter, and cloud droplets will achieve about 1 μm before they reach the evaporation section of the chamber. A different model was developed to describe the steady state airflow profile and location of the sample lamina. Experimental tests of the chamber were performed to characterize the airflow, to assess the ability of the technique to

  9. Freezing, melting and structure of ice in a hydrophilic nanopore.

    PubMed

    Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

    2010-04-28

    The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.

  10. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  11. Treatment of textile wastewaters using Eutectic Freeze Crystallization.

    PubMed

    Randall, D G; Zinn, C; Lewis, A E

    2014-01-01

    A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate.

  12. A Krill's Eye View: Sea Ice Microstructure and Microchemistry

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.; Lieb-Lappen, R.

    2015-12-01

    Sea ice plays important roles in the marine ecosystem and our environment, and a detailed understanding of all aspects of its microstructure is especially important in this time of changing climate. For many months of the year, the ice forms a permeable barrier between Polar oceans and the atmosphere, and as it freezes and melts, its microstructure evolves and changes in ways that affect other parts of that system. Sea ice also provides a microhabitat that is an important part of the marine ecosystem, but much remains to be learned about it on this scale. In material terms, sea ice is multiphase and very close to its melting point, and these properties make its microstructure particularly complex and dynamic, as well as challenging and interesting to study. We use a combination of analytical methods to achieve a very detailed understanding of sea ice microstructure - specifically the morphology and distribution of ice crystals and brine channels. Overall porosity affects freeboard, emissivity, and optical and mechanical properties, but pore connectivity is critical to gas and fluid transport, salt flux to polar oceans, the transfer of halogens to the boundary layer troposphere, and the transport of nutrients and pollutants to microorganisms. When sea ice forms, salts are expelled from newly formed ice crystals and concentrated on grain boundaries and in brine pockets and channels. We use synchrotron-based X-ray fluorescence spectroscopy (SXRF) and scanning electron microscope-based energy dispersive spectroscopy (EDS) to map the location in two dimensions of several important salt components in sea ice: SXRF for bromine, chlorine, potassium, calcium and iron, EDS for these as well as some lighter elements such as sodium, magnesium, and silicon. We use X-ray microcomputed tomography (microCT) to produce three-dimensional models of brine channels and to study changes in brine network topology due to warming and cooling. Both microCT and optical thin sections provide

  13. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multi-frequency EM

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.

    2015-12-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.

  14. Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions

    PubMed Central

    2018-01-01

    The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell–Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell–Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2. PMID:29651228

  15. Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.

    PubMed

    van Westen, Thijs; Groot, Robert D

    2018-04-04

    The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell-Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell-Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2.

  16. Scattering Properties of Needle-Like and plate-like Ice Spheroids with Moderate Size Parameters

    NASA Technical Reports Server (NTRS)

    Zakharova, Nadia T.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    We use the current advanced version of the T-matrix method to compute the optical cross sections, the asymmetry parameter of the phase function, and the scattering matrix elements of ice spheroids with aspect ratios up to 20 and surface-equivalent-sphere size parameters up to 12. We demonstrate that plate-like and needle-like particles with moderate size parameters possess unique scattering properties: their asymmetry parameters and phase functions are similar to those of surface-equivalent spheres, whereas all other elements of the scattering matrix are typical of particles much smaller than the wavelength (Rayleigh scatterers). This result may have important implications for optical particle sizing and remote sensing of the terrestrial and planetary atmospheres.

  17. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  18. Animal left-right asymmetry.

    PubMed

    Blum, Martin; Ott, Tim

    2018-04-02

    Symmetry is appealing, be it in architecture, art or facial expression, where symmetry is a key feature to finding someone attractive or not. Yet, asymmetries are widespread in nature, not as an erroneous deviation from the norm but as a way to adapt to the prevailing environmental conditions at a time. Asymmetries in many cases are actively selected for: they might well have increased the evolutionary fitness of a species. Even many single-celled organisms are built asymmetrically, such as the pear-shaped ciliate Paramecium, which may depend on its asymmetry to navigate towards the oxygen-richer surface of turbid waters, at least based on modeling. Everybody knows the lobster with its asymmetric pair of claws, the large crusher usually on the left and the smaller cutter on the right. Snail shells coil asymmetrically, as do the organs they house. Organ asymmetries are found throughout the animal kingdom, referring to asymmetric positioning, asymmetric morphology or both, with the vertebrate heart being an example for the latter. Functional asymmetries, such as that of the human brain with its localization of the language center in one hemisphere, add to the complexity of organ asymmetries and presumably played a decisive role for sociocultural evolution. The evolutionary origin of organ asymmetries may have been a longer than body length gut, which allows efficient retrieval of nutrients, and the need to stow a long gut in the body cavity in an orderly manner that ensures optimal functioning. Vertebrate organ asymmetries (situs solitus) are quite sophisticated: in humans, the apex of the asymmetrically built heart points to the left; the lung in turn, due to space restrictions, has fewer lobes on the left than on the right side (two versus three in humans), stomach and spleen are found on the left, the liver on the right, and small and large intestine coil in a chiral manner (Figure 1A). In very rare cases (1:10,000), the organ situs is inverted (situs inversus

  19. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  20. Diatom assemblages promote ice formation in large lakes

    PubMed Central

    D'souza, N A; Kawarasaki, Y; Gantz, J D; Lee, R E; Beall, B F N; Shtarkman, Y M; Koçer, Z A; Rogers, S O; Wildschutte, H; Bullerjahn, G S; McKay, R M L

    2013-01-01

    We present evidence for the directed formation of ice by planktonic communities dominated by filamentous diatoms sampled from the ice-covered Laurentian Great Lakes. We hypothesize that ice formation promotes attachment of these non-motile phytoplankton to overlying ice, thereby maintaining a favorable position for the diatoms in the photic zone. However, it is unclear whether the diatoms themselves are responsible for ice nucleation. Scanning electron microscopy revealed associations of bacterial epiphytes with the dominant diatoms of the phytoplankton assemblage, and bacteria isolated from the phytoplankton showed elevated temperatures of crystallization (Tc) as high as −3 °C. Ice nucleation-active bacteria were identified as belonging to the genus Pseudomonas, but we could not demonstrate that they were sufficiently abundant to incite the observed freezing. Regardless of the source of ice nucleation activity, the resulting production of frazil ice may provide a means for the diatoms to be recruited to the overlying lake ice, thereby increasing their fitness. Bacterial epiphytes are likewise expected to benefit from their association with the diatoms as recipients of organic carbon excreted by their hosts. This novel mechanism illuminates a previously undescribed stage of the life cycle of the meroplanktonic diatoms that bloom in Lake Erie and other Great Lakes during winter and offers a model relevant to aquatic ecosystems having seasonal ice cover around the world. PMID:23552624

  1. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    NASA Astrophysics Data System (ADS)

    Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.

    2014-10-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.

  2. Mathematical modeling of the growth and coarsening of ice particles in the context of high pressure shift freezing processes.

    PubMed

    Smith, N A S; Burlakov, V M; Ramos, Á M

    2013-07-25

    High pressure shift freezing (HPSF) has been proven more beneficial for ice crystal size and shape than traditional (at atmospheric pressure) freezing.1-3 A model for growth and coarsening of ice crystals inside a frozen food sample (either at atmospheric or high pressure) is developed, and some numerical experiments are given, with which the model is validated by using experimental data. To the best of our knowledge, this is the first model suited for freezing crystallization in the context of high pressure.

  3. Quantifying asymmetry: ratios and alternatives.

    PubMed

    Franks, Erin M; Cabo, Luis L

    2014-08-01

    Traditionally, the study of metric skeletal asymmetry has relied largely on univariate analyses, utilizing ratio transformations when the goal is comparing asymmetries in skeletal elements or populations of dissimilar dimensions. Under this approach, raw asymmetries are divided by a size marker, such as a bilateral average, in an attempt to produce size-free asymmetry indices. Henceforth, this will be referred to as "controlling for size" (see Smith: Curr Anthropol 46 (2005) 249-273). Ratios obtained in this manner often require further transformations to interpret the meaning and sources of asymmetry. This model frequently ignores the fundamental assumption of ratios: the relationship between the variables entered in the ratio must be isometric. Violations of this assumption can obscure existing asymmetries and render spurious results. In this study, we examined the performance of the classic indices in detecting and portraying the asymmetry patterns in four human appendicular bones and explored potential methodological alternatives. Examination of the ratio model revealed that it does not fulfill its intended goals in the bones examined, as the numerator and denominator are independent in all cases. The ratios also introduced strong biases in the comparisons between different elements and variables, generating spurious asymmetry patterns. Multivariate analyses strongly suggest that any transformation to control for overall size or variable range must be conducted before, rather than after, calculating the asymmetries. A combination of exploratory multivariate techniques, such as Principal Components Analysis, and confirmatory linear methods, such as regression and analysis of covariance, appear as a promising and powerful alternative to the use of ratios. © 2014 Wiley Periodicals, Inc.

  4. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-09-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  5. Role of stacking disorder in ice nucleation

    NASA Astrophysics Data System (ADS)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria

    2017-11-01

    The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  6. Role of stacking disorder in ice nucleation.

    PubMed

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  7. Icing Branch Current Research Activities in Icing Physics

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2009-01-01

    Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.

  8. High Ice Water Content: DC-8 Aeronautics Campaign

    NASA Image and Video Library

    2015-09-10

    During the month of August, NASA’s DC-8 completed flights in Florida aimed at collecting data on high-altitude crystals for the High Ice Water Content (HIWC) mission. High ice water content can be found within large convective storms and can result in aircraft engines losing power or not functioning properly. Researchers will use the data to develop technology that can be used onboard commercial aircraft to avoid high ice water content conditions and provide a safer flight for passengers. This video gives an inside look at the HIWC mission, including research done in and around Hurricane Danny, as well as a look at the instruments being used onboard the research aircraft. Researchers and pilots onboard worked with satellite information from the ground to find regions of high ice water content within the convective systems.

  9. Asymmetry in the epithalamus of vertebrates

    PubMed Central

    L. CONCHA, MIGUEL; W. WILSON, STEPHEN

    2001-01-01

    The epithalamus is a major subdivision of the diencephalon constituted by the habenular nuclei and pineal complex. Structural asymmetries in this region are widespread amongst vertebrates and involve differences in size, neuronal organisation, neurochemistry and connectivity. In species that possess a photoreceptive parapineal organ, this structure projects asymmetrically to the left habenula, and in teleosts it is also situated on the left side of the brain. Asymmetries in size between the left and right sides of the habenula are often associated with asymmetries in neuronal organisation, although these two types of asymmetry follow different evolutionary courses. While the former is more conspicuous in fishes (with the exception of teleosts), asymmetries in neuronal organisation are more robust in amphibia and reptiles. Connectivity of the parapineal organ with the left habenula is not always coupled with asymmetries in habenular size and/or neuronal organisation suggesting that, at least in some species, assignment of parapineal and habenular asymmetries may be independent events. The evolutionary origins of epithalamic structures are uncertain but asymmetry in this region is likely to have existed at the origin of the vertebrate, perhaps even the chordate, lineage. In at least some extant vertebrate species, epithalamic asymmetries are established early in development, suggesting a genetic regulation of asymmetry. In some cases, epigenetic factors such as hormones also influence the development of sexually dimorphic habenular asymmetries. Although the genetic and developmental mechanisms by which neuroanatomical asymmetries are established remain obscure, some clues regarding the mechanisms underlying laterality decisions have recently come from studies in zebrafish. The Nodal signalling pathway regulates laterality by biasing an otherwise stochastic laterality decision to the left side of the epithalamus. This genetic mechanism ensures a consistency of

  10. Asymmetry and coherence weight of quantum states

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  11. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Struk, Peter M.; Tsao, Jen-Ching

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.

  12. Microbial genesis, life and death in glacial ice.

    PubMed

    Price, P Buford

    2009-01-01

    Arguments are given that terrestrial RNA and DNA may have originated in a frozen environment more than 4 billion years ago. Scenarios are developed for atmospheric transport of microbes onto glacial ice, their adaptation to subzero temperatures in the ice, and their incorporation into one of three habitats - liquid veins, mineral grain surfaces, or isolated inside 1 of the crystals that make up polycrystalline ice. The Arrhenius dependence of microbial metabolic rate on temperature is shown to match that required to repair damage owing to spontaneous DNA depurination and amino acid racemization. Even for the oldest glacial ice, microbial lifetime is shown not to be shortened by radiation damage from 238U, 232Th, or 40K in mineral dust in ice, by phage-induced lysis, or by penetrating cosmic radiation. Instead, death of those cells adapted to the hostile conditions in glacial ice is probably due to exhaustion of available nutrients. By contrast, in permafrost microbial death is more likely due to alpha-particle radiation damage from U and Th in the soil and rocks intermixed with ice. For residence times in ice longer than a million years, spore formers may be unable to compete in longevity with vegetative cells that are able to repair DNA damage via survival metabolism.

  13. A Revised Validation Process for Ice Accretion Codes

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Porter, Christopher E.

    2017-01-01

    A research project is underway at NASA Glenn to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from the latest LEWICE release, version 3.5. This program differs from previous releases in its ability to model mixed phase and ice crystal conditions such as those encountered inside an engine. It also has expanded capability to use structured grids and a new capability to use results from unstructured grid flow solvers. A quantitative comparison of the results against a database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. This paper will extend the comparison of ice shapes between LEWICE 3.5 and experimental data from a previous paper. Comparisons of lift and drag are made between experimentally collected data from experimentally obtained ice shapes and simulated (CFD) data on simulated (LEWICE) ice shapes. Comparisons are also made between experimentally collected and simulated performance data on select experimental ice shapes to ensure the CFD solver, FUN3D, is valid within the flight regime. The results show that the predicted results are within the accuracy limits of the experimental data for the majority of cases.

  14. Model calculations for the airborne Fast Ice Nuclei CHamber FINCH-HALO

    NASA Astrophysics Data System (ADS)

    Nillius, B.; Bingemer, H.; Bundke, U.; Jaenicke, R.; Reimann, B.; Wetter, T.

    2009-04-01

    Ice nuclei (IN) initiate the formation of primary ice in tropospheric clouds. In mixed phase clouds the primary ice crystals can grow very fast by the Bergeron-Findeisen process (Findeisen, 1938) at the expense of evaporating water droplets, and form precipitation. Thus, IN are essential for the development of precipitation in mixed phase clouds in the middle latitude. However, the role of IN in the development of clouds is still poorly understood and needs to be studied (Levin and Cotton, 2007). A Fast Ice Nuclei CHamber (FINCH-HALO) for airborne operation on the High And LOng Range research aircraft (HALO) is under development at the Institute for Atmosphere and Environment University Frankfurt. IN particles are activated within the chamber at certain ice super-saturation and temperature by mixing three gas flows, a warm moist, a cold dry, and an aerosol flow. After activation the particles will grow within a processing chamber. In an optical depolarisation detector droplets and ice crystals are detected separately. The setup of the new FINCH-HALO instrument is based on the ground based IN counter FINCH (Bundke, 2008). In FINCH-HALO a new cooling unit is used. Thus, measurements down to -40°C are possible. Furthermore minor changes of the inlet section where the mixing occurs were done. The contribution will present 3D model calculations with FLUENT of the flow conditions in the new inlet section for different pressure levels during a flight typical for HALO. Growth rates of ice crystals in the chamber at different temperature and super-saturation will be shown. References: Bundke U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, H. Bingemer, (2008). The Fast Ice Nucleus Chamber FINCH, Atmospheric Research, doi:10.1016/j.atmosres.2008.02.008 Findeisen, R., (1938). Meteorologisch-physikalische Begebenheiten der Vereisung in der Atmosphäre. Hauptversammlung 1938 der Lilienthal-Gesellschaft. Levin, Z., W. Cotton, (2007). Aerosol pollution impact on precipitation

  15. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial

  16. Study of ice cluster impacts on amorphous silica using the ReaxFF reactive force field molecular dynamics simulation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnamoun, A.; Duin, A. C. T. van

    We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster moleculesmore » bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron

  17. Light scattering by nonspherical particles: Remote sensing and climatic implications

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.

    Calculations of the scattering and adsorption properties of ice crystals and aerosols, which are usually nonspherical, require specific methodologies. There is no unique theoretical solution for the scattering by nonspherical particles. Practically, all the numerical solutions for the scattering of nonspherical particles, including the exact wave equation approach, integral equation method, and discrete-dipole approximation, are applicable only to size parameters less than about 20. Thus, these methods are useful for the study of radiation problems involving nonspherical aerosols and small ice crystals in the thermal infrared wavelengths. The geometric optics approximation has been used to evaluate the scattering, absorption and polarization properties of hexagonal ice crystals whose sizes are much larger than the incident wavelength. This approximation is generally valid for hexagonal ice crystals with size parameters larger than about 30. From existing laboratory data and theoretical results, we illustrate that nonspherical particles absorb less and have a smaller asymmetry factor than the equal-projected area/volume spherical counterparts. In particular, we show that hexagonal ice crystals exhibit numerous halo and arc features that cannot be obtained from spherical particles; and that ice crystals scatter more light in the 60° to 140° scattering angle regions than the spherical counterparts. Satellite remote sensing of the optical depth and height of cirrus clouds using visible and IR channels must use appropriate phase functions for ice crystals. Use of an equivalent sphere model would lead to a significant overestimation and underestimation of the cirrus optical depth and height, respectively. Interpretation of the measurements for polarization reflected from sunlight involving cirrus clouds cannot be made without an appropriate ice crystal model. Large deviations exist for the polarization patterns between spheres and hexagonal ice crystals. Interpretation

  18. Contact ice nucleation by submicron atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deshler, T.

    1982-01-01

    An apparatus designed to measure the concentrations of submicron contact ice nuclei is described. Here, natural forces transfer nuclei to supercooled sample drops suspended in an aerosol stream. Experimental measurements of the scavenging rate of the sample drops for several humidities and aerosol sizes are found to be in agreement with theory to within a factor of two. This fact, together with the statistical tests showing a difference between the data and control samples, is seen as indicating that a reliable measurement of the concentrations of submicron contact ice nuclei has been effected. A figure is included showing the ice nucleus concentrations as a function of temperature and assumed aerosol radius. For a 0.01 micron radius, the average is 1/liter at -15 C and 3/liter at -18 C. It is noted that the measurements are in fair agreement with ice crystal concentrations in stable winter clouds measured over Elk Mountain, WY (Vali et al., 1982).

  19. Variability of the contrail radiative forcing due to crystal shape

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  20. Microbial production of ice crystals in clouds as a novel atmospheric biosignature

    NASA Astrophysics Data System (ADS)

    Santl-Temkiv, T.; Sahyoun, M.; Kjeldsen, H.; Ling, M.; Boesen, T.; Karlson, U. G.; Finster, K.

    2014-03-01

    A diverse assembly of exoplanets has been discovered during recent decades (Howard 2013), their atmospheres providing some of the most accessible evidence for the presence of biological activity on these planets. Metabolic gases have been commonly proposed as atmospheric biosignatures (Seager et al 2012). However, airborne microbes are also involved in cloud- and precipitation formation on Earth. Thus, meteorological phenomena may serve as alternative atmospheric biosignatures, for which appropriate observational techniques have yet to be developed. The atmospheric part of the Earth's water cycle heavily relies on the presence of nucleating particles, which promote the condensation and freezing of atmospheric water, both potentially leading to precipitation. While cloud condensation nuclei are diverse and relatively common, ice nuclei are poorly understood and comparably rare airborne particles. According to current knowledge, most ice nucleation below ñ15∞C is driven by the presence of inorganic dust particles, which are considered inactive at higher temperatures. Biogenic IN are the only reported particles that promote ice formation above ñ10∞C. Some bacteria, e.g. Pseudomonas syringae, produce Ice Nucleation Active (INA) proteins that are most efficient ice nuclei currently known. These INA bacteria are common in the atmosphere, and may thus be involved in precipitation processes of mixed phase clouds (Möhler et al 2007). We investigate the relevance of bacterial INA proteins for atmospheric processes using three approaches: (i) study of the presence of INA bacteria and their INA proteins in the atmosphere, (ii) a detailed molecular and physical study of isolated INA proteins, and finally (iii) a modeling study of the importance of INA proteins for ice-path in clouds as well as their importance for precipitation. During 14 precipitation events, we observed that 12% of isolated bacteria carried INA genes. INA bacteria had likely been emitted to the

  1. Sensitivity Study of Ice Crystal Optical Properties in the 874 GHz Submillimeter Band

    NASA Technical Reports Server (NTRS)

    Tang, Guanglin; Yang, Ping; Wu, Dong L.

    2015-01-01

    Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50200 m.

  2. Experiments indicating a second hydrogen ordered phase of ice VI

    PubMed Central

    Gasser, Tobias M.; Thoeny, Alexander V.; Plaga, Lucie J.; Köster, Karsten W.; Etter, Martin; Böhmer, Roland

    2018-01-01

    In the last twelve years five new ice phases were experimentally prepared. Two of them are empty clathrate hydrates and three of them represent hydrogen ordered counterparts of previously known disordered ice phases. Here, we report on hydrogen ordering in ice VI samples produced by cooling at pressures up to 2.00 GPa. Based on results from calorimetry, dielectric relaxation spectroscopy, Raman spectroscopy, and powder X-ray diffraction the existence of a second hydrogen ordered polymorph related to ice VI is suggested. Powder X-ray data show the oxygen network to be the one of ice VI. For the 1.80 GPa sample the activation energy from dielectric spectroscopy is 45 kJ mol–1, which is much larger than for the known hydrogen ordered proxy of ice VI, ice XV. Raman spectroscopy indicates the 1.80 GPa sample to be more ordered than ice XV. It is further distinct from ice XV in that it experiences hydrogen disordering above ≈103 K which is 26 K below the ice XV to ice VI disordering transition. Consequently, below 103 K it is thermodynamically more stable than ice XV, adding a stability region to the phase diagram of water. For the time being we suggest to call this new phase ice β-XV and to relabel it ice XVIII once its crystal structure is known. PMID:29780552

  3. Experiments indicating a second hydrogen ordered phase of ice VI.

    PubMed

    Gasser, Tobias M; Thoeny, Alexander V; Plaga, Lucie J; Köster, Karsten W; Etter, Martin; Böhmer, Roland; Loerting, Thomas

    2018-05-14

    In the last twelve years five new ice phases were experimentally prepared. Two of them are empty clathrate hydrates and three of them represent hydrogen ordered counterparts of previously known disordered ice phases. Here, we report on hydrogen ordering in ice VI samples produced by cooling at pressures up to 2.00 GPa. Based on results from calorimetry, dielectric relaxation spectroscopy, Raman spectroscopy, and powder X-ray diffraction the existence of a second hydrogen ordered polymorph related to ice VI is suggested. Powder X-ray data show the oxygen network to be the one of ice VI. For the 1.80 GPa sample the activation energy from dielectric spectroscopy is 45 kJ mol -1 , which is much larger than for the known hydrogen ordered proxy of ice VI, ice XV. Raman spectroscopy indicates the 1.80 GPa sample to be more ordered than ice XV. It is further distinct from ice XV in that it experiences hydrogen disordering above ≈103 K which is 26 K below the ice XV to ice VI disordering transition. Consequently, below 103 K it is thermodynamically more stable than ice XV, adding a stability region to the phase diagram of water. For the time being we suggest to call this new phase ice β-XV and to relabel it ice XVIII once its crystal structure is known.

  4. Detection and Analysis of High Ice Concentration Events and Supercooled Drizzle from IAGOS Commercial Aircraft

    NASA Astrophysics Data System (ADS)

    Gallagher, Martin; Baumgardner, Darrel; Lloyd, Gary; Beswick, Karl; Freer, Matt; Durant, Adam

    2016-04-01

    Hazardous encounters with high ice concentrations that lead to temperature and airspeed sensor measurement errors, as well as engine rollback and flameout, continue to pose serious problems for flight operations of commercial air carriers. Supercooled liquid droplets (SLD) are an additional hazard, especially for smaller commuter aircraft that do not have sufficient power to fly out of heavy icing conditions or heat to remove the ice. New regulations issued by the United States and European regulatory agencies are being implemented that will require aircraft below a certain weight class to carry sensors that will detect and warn of these types of icing conditions. Commercial aircraft do not currently carry standard sensors to detect the presence of ice crystals in high concentrations because they are typical found in sizes that are below the detection range of aircraft weather radar. Likewise, the sensors that are currently used to detect supercooled water do not respond well to drizzle-sized drops. Hence, there is a need for a sensor that can fill this measurement void. In addition, the forecast models that are used to predict regions of icing rely on pilot observations as the only means to validate the model products and currently there are no forecasts for the prevalence of high altitude ice crystals. Backscatter Cloud Probes (BCP) have been flying since 2011 under the IAGOS project on six Airbus commercial airliners operated by Lufthansa, Air France, China Air, Iberia and Cathay Pacific, and measure cloud droplets, ice crystals and aerosol particles larger than 5 μm. The BCP can detect these particles and measures an optical equivalent diameter (OED) but is not able to distinguish the type of particle, i.e. whether they are droplets, ice crystals, dust or ash. However, some qualification can be done based on measured temperature to discriminate between liquid water and ice. The next generation BCP (BCPD, Backscatter Cloud Probe with polarization detection) is

  5. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming

    PubMed Central

    Cziko, Paul A.; DeVries, Arthur L.; Evans, Clive W.; Cheng, Chi-Hing Christina

    2014-01-01

    Antifreeze proteins (AFPs) of polar marine teleost fishes are widely recognized as an evolutionary innovation of vast adaptive value in that, by adsorbing to and inhibiting the growth of internalized environmental ice crystals, they prevent death by inoculative freezing. Paradoxically, systemic accumulation of AFP-stabilized ice could also be lethal. Whether or how fishes eliminate internal ice is unknown. To investigate if ice inside high-latitude Antarctic notothenioid fishes could melt seasonally, we measured its melting point and obtained a decadal temperature record from a shallow benthic fish habitat in McMurdo Sound, Antarctica. We found that AFP-stabilized ice resists melting at temperatures above the expected equilibrium freezing/melting point (eqFMP), both in vitro and in vivo. Superheated ice was directly observed in notothenioid serum samples and in solutions of purified AFPs, and ice was found to persist inside live fishes at temperatures more than 1 °C above their eqFMP for at least 24 h, and at a lower temperature for at least several days. Field experiments confirmed that superheated ice occurs naturally inside wild fishes. Over the long-term record (1999–2012), seawater temperature surpassed the fish eqFMP in most summers, but never exceeded the highest temperature at which ice persisted inside experimental fishes. Thus, because of the effects of AFP-induced melting inhibition, summer warming may not reliably eliminate internal ice. Our results expose a potentially antagonistic pleiotropic effect of AFPs: beneficial freezing avoidance is accompanied by melting inhibition that may contribute to lifelong accumulation of detrimental internal ice crystals. PMID:25246548

  6. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming.

    PubMed

    Cziko, Paul A; DeVries, Arthur L; Evans, Clive W; Cheng, Chi-Hing Christina

    2014-10-07

    Antifreeze proteins (AFPs) of polar marine teleost fishes are widely recognized as an evolutionary innovation of vast adaptive value in that, by adsorbing to and inhibiting the growth of internalized environmental ice crystals, they prevent death by inoculative freezing. Paradoxically, systemic accumulation of AFP-stabilized ice could also be lethal. Whether or how fishes eliminate internal ice is unknown. To investigate if ice inside high-latitude Antarctic notothenioid fishes could melt seasonally, we measured its melting point and obtained a decadal temperature record from a shallow benthic fish habitat in McMurdo Sound, Antarctica. We found that AFP-stabilized ice resists melting at temperatures above the expected equilibrium freezing/melting point (eqFMP), both in vitro and in vivo. Superheated ice was directly observed in notothenioid serum samples and in solutions of purified AFPs, and ice was found to persist inside live fishes at temperatures more than 1 °C above their eqFMP for at least 24 h, and at a lower temperature for at least several days. Field experiments confirmed that superheated ice occurs naturally inside wild fishes. Over the long-term record (1999-2012), seawater temperature surpassed the fish eqFMP in most summers, but never exceeded the highest temperature at which ice persisted inside experimental fishes. Thus, because of the effects of AFP-induced melting inhibition, summer warming may not reliably eliminate internal ice. Our results expose a potentially antagonistic pleiotropic effect of AFPs: beneficial freezing avoidance is accompanied by melting inhibition that may contribute to lifelong accumulation of detrimental internal ice crystals.

  7. The role of acids in electrical conduction through ice

    NASA Astrophysics Data System (ADS)

    Stillman, David E.; MacGregor, Joseph A.; Grimm, Robert E.

    2013-03-01

    Electrical conduction through meteoric polar ice is controlled by soluble impurities that originate mostly from sea salt, biomass burning, and volcanic eruptions. The strongest conductivity response is to acids, yet the mechanism causing this response has been unclear. Here we elucidate conduction mechanisms in ice using broadband dielectric spectroscopy of meteoric polar ice cores. We find that conduction through polycrystalline polar ice is consistent with Jaccard theory for migration of charged protonic point defects through single ice crystals, except that bulk DC conduction is impeded by grain boundaries. Neither our observations nor modeling using Archie's Law support the hypothesis that grain-boundary networks of unfrozen acids cause significant electrolytic conduction. Common electrical logs of ice cores (by electrical conductivity measurement [ECM] or dielectric profiling [DEP]) and the attenuation of radio waves in ice sheets thus respond to protonic point defects only. This response implies that joint interpretation of electrical and chemical logs can determine impurity partitioning between the lattice and grain boundaries or inclusions. For example, in the Greenland Ice Core Project (GRIP) ice core from central Greenland, on average more than half of the available lattice-soluble impurities (H+, Cl-, NH4+) create defects. Understanding this partitioning could help further resolve the nature of past changes in atmospheric chemistry.

  8. Parameterization of Shortwave Cloud Optical Properties for a Mixture of Ice Particle Habits for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.

  9. Parameterization of the Vertical Variability of Tropical Cirrus Cloud Microphysical and Optical Properties

    NASA Technical Reports Server (NTRS)

    Gerber, Hermann E.

    2004-01-01

    Cloud Integrating Nephelometers (CIN) were flown on the U. North Dakota Citation aircraft and the NASA WB-57 aircraft for the purpose of measuring in-situ the optical extinction coefficient and the asymmetry parameter (g) at a wavelength of 635 nm of primarily ice particles encountered during the NASA CRYSTAL-FACE study of large cumulus clouds (Cu) and their anvils found in the southern Florida region. The probes performance was largely successful and produced archived data for vertical profiles of extinction, asymmetry parameter, and effective radius (Re), the latter being obtained by combining CIN and CVI (total water; Oregon State U.) measurements. Composites of the CIN and CVI data describing the average microphysical and optical behavior of the Cu and their anvils showed the following: The extinction increases with height as a result of the size of the particles also decreasing with height as shown by the Re measurements; near the top of anvils the size of the primary ice particles is about 10-um radius; and the value of g does not vary significantly with height and has a mean value of about 0.73 consistent with the idea that ambient ice crystals are primarily of complex shape and reflect solar radiation more efficiently than particles of pristine crystal shape. Other observations include: The g measurements were found to be an indicator of the phase of the cloud permitting identification of the clouds with water droplets, rain, and ice; visual ranges as small as several tens of meters were occasionally found in "extinction cores" that coincided with strong updraft cores; and comparison of the cloud probes on the Citation showed significant disagreement.

  10. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm

    NASA Astrophysics Data System (ADS)

    Geilfus, Nicolas-Xavier; Galley, Ryan J.; Else, Brent G. T.; Campbell, Karley; Papakyriakou, Tim; Crabeck, Odile; Lemes, Marcos; Delille, Bruno; Rysgaard, Søren

    2016-09-01

    The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice-seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmol kg-1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64-66 µmol kg-1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmol kg-1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper

  11. Laboratory and Cloud Chamber Studies of Formation Processes and Properties of Atmospheric Ice Particles

    NASA Astrophysics Data System (ADS)

    Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2009-04-01

    The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction

  12. Dynamics of topological solitons, knotted streamlines, and transport of cargo in liquid crystals

    NASA Astrophysics Data System (ADS)

    Sohn, Hayley R. O.; Ackerman, Paul J.; Boyle, Timothy J.; Sheetah, Ghadah H.; Fornberg, Bengt; Smalyukh, Ivan I.

    2018-05-01

    Active colloids and liquid crystals are capable of locally converting the macroscopically supplied energy into directional motion and promise a host of new applications, ranging from drug delivery to cargo transport at the mesoscale. Here we uncover how topological solitons in liquid crystals can locally transform electric energy to translational motion and allow for the transport of cargo along directions dependent on frequency of the applied electric field. By combining polarized optical video microscopy and numerical modeling that reproduces both the equilibrium structures of solitons and their temporal evolution in applied fields, we uncover the physical underpinnings behind this reconfigurable motion and study how it depends on the structure and topology of solitons. We show that, unexpectedly, the directional motion of solitons with and without the cargo arises mainly from the asymmetry in rotational dynamics of molecular ordering in liquid crystal rather than from the asymmetry of fluid flows, as in conventional active soft matter systems.

  13. Controlled ice nucleation in cryopreservation--a review.

    PubMed

    Morris, G John; Acton, Elizabeth

    2013-04-01

    We review here for the first time, the literature on control of ice nucleation in cryopreservation. Water and aqueous solutions have a tendency to undercool before ice nucleation occurs. Control of ice nucleation has been recognised as a critical step in the cryopreservation of embryos and oocytes but is largely ignored for other cell types. We review the processes of ice nucleation and crystal growth in the solution around cells and tissues during cryopreservation with an emphasis on non IVF applications. The extent of undercooling that is encountered during the cooling of various cryocontainers is defined and the methods that have been employed to control the nucleation of ice are examined. The effects of controlled ice nucleation on the structure of the sample and the outcome of cryopreservation of a range of cell types and tissues are presented and the physical events which define the cellular response are discussed. Nucleation of ice is the most significant uncontrolled variable in conventional cryopreservation leading to sample to sample variation in cell recovery, viability and function and should be controlled to allow standardisation of cryopreservation protocols for cells for biobanking, cell based assays or clinical application. This intervention allows a way of increasing viability of cells and reducing variability between samples and should be included as standard operating procedures are developed. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Design, construction and commissioning of the Braunschweig Icing Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Bansmer, Stephan E.; Baumert, Arne; Sattler, Stephan; Knop, Inken; Leroy, Delphine; Schwarzenboeck, Alfons; Jurkat-Witschas, Tina; Voigt, Christiane; Pervier, Hugo; Esposito, Biagio

    2018-06-01

    Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m × 0.5 m with peak velocities of up to 40 m s-1. The static air temperature ranges from -25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m-3 can be reproduced. The unique aspect of this facility is the combination of an icing tunnel with a cloud chamber system for making ice particles. These ice particles are more realistic in shape and density than those usually used for mixed phase and ice crystal icing experiments. Ice water contents up to 20 g m-3 can be generated. We further show how current state-of-the-art measurement techniques for particle sizing are performed on ice particles. The data are compared to those of in-flight measurements in mesoscale convective cloud systems in tropical regions. Finally, some applications of the icing wind tunnel are presented.

  15. Do detailed simulations with size-resolved microphysics reproduce basic features of observed cirrus ice size distributions?

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.

    2017-12-01

    It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the

  16. Structural, compositional, and sensorial properties of United States commercial ice cream products.

    PubMed

    Warren, Maya M; Hartel, Richard W

    2014-10-01

    Commercial vanilla ice cream products from the United States (full fat, low fat, and nonfat) were analyzed for their structural, behavioral (i.e., melt rate and drip-through), compositional, and sensorial attributes. Mean size distributions of ice crystals and air cells, drip-through rates, percent partially coalesced fat, percent overrun and total fat, and density were determined. A trained panel carried out sensory analyses in order to determine correlations between ice cream microstructure attributes and sensory properties using a Spectrum(TM) descriptive analysis. Analyses included melt rate, breakdown, size of ice particulates (iciness), denseness, greasiness, and overall creaminess. To determine relationships and interactions, principle component analysis and multivariate pairwise correlation were performed within and between the instrumental and sensorial data. Greasiness and creaminess negatively correlated with drip-through rate and creaminess correlated with percent total fat and percent fat destabilization. Percent fat did not determine the melt rate on a sensorial level. However, drip-through rate at ambient temperatures was predicted by total fat content of the samples. Based on sensory analysis, high-fat products were noted to be creamier than low and nonfat products. Iciness did not correlate with mean ice crystal size and drip-through rate did not predict sensory melt rate. Furthermore, on a sensorial level, greasiness positively correlated with total percent fat destabilization and mean air cell size positively correlated with denseness. These results indicate that commercial ice cream products vary widely in composition, structure, behavior, and sensory properties. There is a wide range of commercial ice creams in the United States market, ranging from full fat to nonfat. In this research we showed that these ice creams vary greatly in their microstructures, behaviors (the melt/drip-though, collapse, and/or stand up properties of ice cream

  17. Bathymetry in Petermann fjord from Operation IceBridge aerogravity

    NASA Astrophysics Data System (ADS)

    Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas

    2015-07-01

    Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.

  18. First Principles Simulations of Ice Nucleation at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Michaelides, Angelos

    2005-03-01

    Ice nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of ice nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of ice nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of ice - adsorbed on a number of close-packed transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric ice structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).

  19. A root bond between ice and antifreeze protein.

    PubMed

    Hawes, Timothy C

    2016-10-01

    It has always been assumed that a three-dimensional protein structure is essential to antifreeze protein (AFP) ice interactions. Using a 9 kDa AFP isolated from the springtail, Gomphiocephalus hodgsoni, it was found that the bond between ice and protein is maintained independent of higher order protein structure. GomplyAFP9 remained bound to ice after denaturing by a range of agents (boiling, extreme pH, DTT, ethanol, urea). Thermal hysteresis was minimal (0.03-0.04 °C), but not lost. Crystal faceting and growth occurred normal to the c-axis, indicating the protein binds primarily to sites along the a-axis. These observations lend additional support to the hypothesis of irreversible binding. More significantly, they suggest that binding to ice and functional hysteresis may be achieved independently (i.e. are different operations). These results are consistent with the view that there is a root bond with ice and it is achieved via an amino acid derived interface that bonds to water molecules in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Physical characteristics of summer sea ice across the Arctic Ocean

    USGS Publications Warehouse

    Tucker, W. B.; Gow, A.J.; Meese, D.A.; Bosworth, H.W.; Reimnitz, E.

    1999-01-01

    Sea ice characteristics were investigated during July and August on the 1994 transect across the Arctic Ocean. Properties examined from ice cores included salinity, temperature, and ice structure. Salinities measured near zero at the surface, increasing to 3-4??? at the ice-water interface. Ice crystal texture was dominated by columnar ice, comprising 90% of the ice sampled. Surface albedos of various ice types, measured with radiometers, showed integrated shortwave albedos of 0.1 to 0.3 for melt ponds, 0.5 for bare, discolored ice, and 0.6 to 0.8 for a deteriorated surface or snow-covered ice. Aerial photography was utilized to document the distribution of open melt ponds, which decreased from 12% coverage of the ice surface in late July at 76??N to almost none in mid-August at 88??N. Most melt ponds were shallow, and depth bore no relationship to size. Sediment was pervasive from the southern Chukchi Sea to the north pole, occurring in bands or patches. It was absent in the Eurasian Arctic, where it had been observed on earlier expeditions. Calculations of reverse trajectories of the sediment-bearing floes suggest that the southernmost sediment was entrained during ice formation in the Beaufort Sea while more northerly samples probably originated in the East Siberian Sea, some as far west as the New Siberian Islands.