Sample records for ice extent decreased

  1. Global Warming and Northern Hemisphere Sea Ice Extent.

    PubMed

    Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov

    1999-12-03

    Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.

  2. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  3. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  4. Probabilistic Forecasting of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Slater, A. G.

    2013-12-01

    Sea ice in the Arctic is changing rapidly. Most noticeable has been the series of record, or near-record, annual minimums in sea ice extent in the past six years. The changing regime of sea ice has prompted much interest in seasonal prediction of sea ice extent, particularly as opportunities for Arctic shipping and resource exploration or extraction increase. This study presents a daily sea ice extent probabilistic forecast method with a 50-day lead time. A base projection is made from historical data and near-real-time sea ice concentration is assimilated on the issue date of the forecast. When considering the September mean ice extent for the period 1995-2012, the performance of the 50-day lead time forecast is very good: correlation=0.94, Bias = 0.14 ×106 km^2 and RMSE = 0.36 ×106 km^2. Forecasts for the daily minimum contains equal skill levels. The system is highly competitive with any of the SEARCH Sea Ice Outlook estimates. The primary finding of this study is that large amounts of forecast skill can be gained from knowledge of the initial conditions of concentration (perhaps more than previously thought). Given the simplicity of the forecast model, improved skill should be available from system refinement and with suitable proxies for large scale atmosphere and ocean circulation.

  5. Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2000-01-01

    Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major

  6. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    NASA Astrophysics Data System (ADS)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  7. Springtime atmospheric transport controls Arctic summer sea-ice extent

    NASA Astrophysics Data System (ADS)

    Kapsch, Marie; Graversen, Rune; Tjernström, Michael

    2013-04-01

    The sea-ice extent in the Arctic has been steadily decreasing during the satellite remote sensing era, 1979 to present, with the highest rate of retreat found in September. Contributing factors causing the ice retreat are among others: changes in surface air temperature (SAT; Lindsay and Zhang, 2005), ice circulation in response to winds/pressure patterns (Overland et al., 2008) and ocean currents (Comiso et al., 2008), as well as changes in radiative fluxes (e.g. due to changes in cloud cover; Francis and Hunter, 2006; Maksimovich and Vihma, 2012) and ocean conditions. However, large interannual variability is superimposed onto the declining trend - the ice extent by the end of the summer varies by several million square kilometer between successive years (Serreze et al., 2007). But what are the processes causing the year-to-year ice variability? A comparison of years with an anomalously large September sea-ice extent (HIYs - high ice years) with years showing an anomalously small ice extent (LIYs - low ice years) reveals that the ice variability is most pronounced in the Arctic Ocean north of Siberia (which became almost entirely ice free in September of 2007 and 2012). Significant ice-concentration anomalies of up to 30% are observed for LIYs and HIYs in this area. Focusing on this area we find that the greenhouse effect associated with clouds and water-vapor in spring is crucial for the development of the sea ice during the subsequent months. In years where the end-of-summer sea-ice extent is well below normal, a significantly enhanced transport of humid air is evident during spring into the region where the ice retreat is encountered. The anomalous convergence of humidity increases the cloudiness, resulting in an enhancement of the greenhouse effect. As a result, downward longwave radiation at the surface is larger than usual. In mid May, when the ice anomaly begins to appear and the surface albedo therefore becomes anomalously low, the net shortwave radiation

  8. Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Stewart, A.

    2017-12-01

    Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.

  9. Effects of recent decreases in arctic sea ice on an ice-associated marine bird

    NASA Astrophysics Data System (ADS)

    Divoky, George J.; Lukacs, Paul M.; Druckenmiller, Matthew L.

    2015-08-01

    Recent major reductions in summer arctic sea ice extent could be expected to be affecting the distributions and life histories of arctic marine biota adapted to living adjacent to sea ice. Of major concern are the effects of ice reductions, and associated increasing SST, on the most abundant forage fish in the Arctic, Arctic cod (Boreogadus saida), the primary prey for the region's upper trophic level marine predators. The black guillemot (Cepphus grylle mandtii) is an ice-obligate diving seabird specializing in feeding on Arctic cod and has been studied annually since 1975 at a breeding colony in the western Beaufort Sea. The data set is one of the few allowing assessment of the response of an upper trophic marine predator to recent decadal changes in the region's cryosphere. Analysis of oceanographic conditions north of the colony from 1975 to 2012 for the annual period when parents provision young (mid-July to early September), found no major regime shifts in ice extent or SST until the late 1990s with major decreases in ice and increases in SST in the first decade of the 21st Century. We examined decadal variation in late summer oceanographic conditions, nestling diet and success, and overwinter adult survival, comparing a historical period (1975-1984) with a recent (2003-2012) one. In the historical period sea ice retreated an average of 1.8 km per day from 15 July to 1 September to an average distance of 95.8 km from the colony, while in the recent period ice retreat averaged 9.8 km per day to an average distance of 506.9 km for the same time period. SST adjacent to the island increased an average of 2.9 °C between the two periods. While Arctic cod comprised over 95% of the prey provided to nestlings in the historical period, in the recent period 80% of the years had seasonal decreases, with Arctic cod decreasing to <5% of the nestling diet, and nearshore demersals, primarily sculpin (Cottidae), comprising the majority of the diet. A five-fold increase in

  10. Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013

    NASA Astrophysics Data System (ADS)

    Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.

    2015-12-01

    Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.

  11. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  12. Predicting the Extent of Summer Sea Ice in the Arctic

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Wallace, J. M.

    2003-12-01

    The summers of 1998 and 2002 had the least sea ice extent (SIE) in the Arctic. These observations seem to agree with the trends noted by Parkinson, et al. (1999, hereafter P99) for the period 1979-1997, but the spatial pattern of these recent decreases in summer SIE were different. The summer trends shown by P99, exhibit large decreases in SIE primarily in the East Siberian Sea (ESS), while the decreases observed during 1998 and 2002 were much larger in the Beaufort and Chukchi seas (BCS). We now show that the trends for the period 1979 - 2002 are much smaller in the ESS than the trends shown by P99, and the largest decreasing trends have shifted from the ESS to the BCS. Rigor, et al. (2002) showed that the changes in SIE that P99 noted were driven by changes in atmospheric circulation related to the phase of the prior winter Arctic Oscillation (AO, Thompson and Wallace, 1998) index. Given that the latest trends in SIE are different than those shown by P99, one could ask whether the affect of the AO on sea ice noted by Rigor, et al. (2002) has also changed, and whether some large scale climate modes other than the AO has influenced the climate of the Arctic Ocean more? To answer these questions, we applied Empirical Orthogonal Function (EOF) analysis on the September SIE data from microwave satellites, and found that the first two modes SIE were most highly correlated to the prior winter AO, and the AO index of the summer months just prior to each September. These modes explain more than 45% of the variance in SIE, and show that the influence of the winter and summer AO dominates Arctic climate from 1979 - 2002. Using data from the International Arctic Buoy Programme and the National Centers for Environmental Prediction, we will show that the changes in sea ice extent are primarily driven by dynamic changes in sea ice thickness and discuss the implications for predicting summer SIE.

  13. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  14. The Effect of Recent Decreases in Sea Ice Extent and Increases in SST on the Seasonal Availability of Arctic Cod (Boreogadus saida) to Seabirds in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Divoky, G.; Druckenmiller, M. L.

    2016-02-01

    With major decreases in pan-Arctic summer sea ice extent steadily underway, the Beaufort Sea has been nearly ice-free in five of the last eight summers. This loss of a critical arctic marine habitat and the concurrent warming of the recently ice-free waters could potentially cause major changes in the biological oceanography of the Beaufort Sea and alter the distribution, abundance and condition of the region's upper trophic level predators that formerly relied on prey associated with sea ice or cold (<2°C) surface waters. Arctic cod (Boreogadus saida), the primary forage fish for seabirds in the Beaufort Sea, is part of the cryopelagic fauna associated with sea ice and is also found in adjacent ice-free waters. In the extreme western Beaufort Sea near Cooper Island, Arctic cod availability to breeding Black Guillemots (Cepphus grylle), a diving seabird, has declined since 2002. Guillemots are a good indicator of Arctic cod availability in surface waters and the upper water column as they feed at depths of 1-20m. Currently, when sea ice is absent from the nearshore and SST exceeds 4°C, guillemots are observed to seasonally shift from Arctic cod to nearshore demersal prey, with a resulting decrease in nestling survival and quality. Arctic cod is the primary prey for many of the seabirds utilizing the Beaufort Sea as a post-breeding staging area and migratory corridor in late summer and early fall. The loss of approximately 200-300 thousand sq km of summer sea ice habitat in recent years could be expected to affect the distribution, abundance, and movements of these species as there are few alternative fish resources in the region. We examine temporal and spatial variation in August sea ice extent and SST in the Beaufort Sea to determine the regions, periods and bird species that are potentially most affected as the Beaufort Sea transitions to becoming regularly ice-free in late summer.

  15. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  16. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  17. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  18. Reconstruction of past equilibrium line altitude using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri

    2017-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.

  19. Update on the Greenland Ice Sheet Melt Extent: 1979-1999

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed; Steffen, Konrad

    2000-01-01

    Analysis of melt extent on the Greenland ice sheet is updated to span the time period 1979-1999 is examined along with its spatial and temporal variability using passive microwave satellite data. In order to acquire the full record, the issue of continuity between previous passive microwave sensors (SMMR, SSM/I F-8, and SSM/I F-11), and the most recent SSM/I F-13 sensor is addressed. The F-13 Cross-polarized gradient ratio (XPGR) melt-classification threshold is determined to be -0.0154. Results show that for the 21-year record, an increasing melt trend of nearly 1 %/yr is observed, and this trend is driven by conditions on in the western portion of the ice sheet, rather than the east, where melt appears to have decreased slightly. Moreover, the eruption of Mt. Pinatubo in 1991 is likely to have had some impact the melt, but not as much as previously suspected. The 1992 melt anomaly is 1.7 standard deviations from the mean. Finally, the relationship between coastal temperatures and melt extent suggest an increase in surface runoff contribution to sea level of 0.31 mm/yr for a 1 C temperature rise.

  20. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  1. Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Doddridge, Edward W.; Marshall, John

    2017-10-01

    Through analysis of remotely sensed sea surface temperature (SST) and sea ice concentration data, we investigate the impact of winds related to the Southern Annular Mode (SAM) on sea ice extent around Antarctica. We show that positive SAM anomalies in the austral summer are associated with anomalously cold SSTs that persist and lead to anomalous ice growth in the following autumn, while negative SAM anomalies precede warm SSTs and a reduction in sea ice extent during autumn. The largest effect occurs in April, when a unit change in the detrended summertime SAM is followed by a 1.8±0.6 ×105 km2 change in detrended sea ice extent. We find no evidence that sea ice extent anomalies related to the summertime SAM affect the wintertime sea ice extent maximum. Our analysis shows that the wind anomalies related to the negative SAM during the 2016/2017 austral summer contributed to the record minimum Antarctic sea ice extent observed in March 2017.

  2. Moving beyond the total sea ice extent in gauging model biases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.

    Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less

  3. Moving beyond the total sea ice extent in gauging model biases

    DOE PAGES

    Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; ...

    2016-11-29

    Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less

  4. The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange

    NASA Astrophysics Data System (ADS)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-04-01

    years has the potential to influence greenhouse gas exchange across terrestrial ecosystems and the Arctic Ocean, but the overall impact remains unclear. In this study, we therefore try to reduce this uncertainty by addressing the influence of the decline in sea ice extent on all affected greenhouse gas fluxes in the high latitudes. Also, we will address the need for more research, on the ocean and on the land, to understand the impact of a lower sea ice extent on Arctic greenhouse gas exchange. References: Bates, N. R., Moran, S. B., Hansell, D. A. and Mathis, J. T.: An increasing CO2 sink in the Arctic Ocean due to sea-ice loss, Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028, 2006. Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., et al.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329(5991), 556-559, doi:10.1126/science.1189338, 2010. Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S., Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., et al.: Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nature Geosci., 5(5), 318-321, doi:10.1038/NGEO1452, 2012. Nomura, D., Yoshikawa-Inoue, H. and Toyota, T.: The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, vol. 58, pp. 418-426. 2006. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., et al.: Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946), 1355-1358, doi:10.1126/science.1173113, 2009. Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007. Schuur, E. A. G., Abbott, B. and Network, P. C

  5. Recalculated Areas for Maximum Ice Extents of the Baltic Sea During Winters 1971-2008

    NASA Astrophysics Data System (ADS)

    Niskanen, T.; Vainio, J.; Eriksson, P.; Heiler, I.

    2009-04-01

    Publication of operational ice charts in Finland was started from the Baltic Sea in a year 1915. Until year 1993 all ice charts were hand drawn paper copies but in the year 1993 ice charting software IceMap was introduced. Since then all ice charts were produced digitally. Since the year 1996 IceMap has had an option that user can calculate areas of single ice area polygons in the chart. Using this option the area of the maximum ice extent can be easily solved fully automatically. Before this option was introduced (and in full operation) all maximum extent areas were calculated manually by a planimeter. During recent years it has become clear that some areas calculated before 1996 don't give the same result as IceMap. Differences can come from for example inaccuracy of old coastlines, map projections, the calibration of the planimeter or interpretation of old ice area symbols. Old ice charts since winter 1970-71 have now been scanned, rectified and re-drawn. New maximum ice extent areas for Baltic Sea have now been re-calculated. By these new technological tools it can be concluded that in some cases clear differences can be found.

  6. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-01-01

    In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

  7. Bellingshausen Sea Ice Extent Recorded in an Antarctic Peninsula Ice Core

    NASA Technical Reports Server (NTRS)

    Porter, Stacy E.; Parkinson, Claire L.; Mosley-Thompson, Ellen

    2016-01-01

    Annual net accumulation (A(sub n)) from the Bruce Plateau (BP) ice core retrieved from the Antarctic Peninsula exhibits a notable relationship with sea ice extent (SIE) in the Bellingshausen Sea. Over the satellite era, both BP A(sub n) and Bellingshausen SIE are influenced by large-scale climatic factors such as the Amundsen Sea Low, Southern Annular Mode, and Southern Oscillation. In addition to the direct response of BP A(sub n) to Bellingshausen SIE (e.g., more open water as a moisture source), these large-scale climate phenomena also link the BP and the Bellingshausen Sea indirectly such that they exhibit similar responses (e.g., northerly wind anomalies advect warm, moist air to the Antarctic Peninsula and neighboring Bellingshausen Sea, which reduces SIE and increases A(sub n)). Comparison with a time series of fast ice at South Orkney Islands reveals a relationship between BP A(sub n) and sea ice in the northern Weddell Sea that is relatively consistent over the twentieth century, except when it is modulated by atmospheric wave patterns described by the Trans-Polar Index. The trend of increasing accumulation on the Bruce Plateau since approximately 1970 agrees with other climate records and reconstructions in the region and suggests that the current rate of sea ice loss in the Bellingshausen Sea is unrivaled in the twentieth century.

  8. Large-scale variations in observed Antarctic Sea ice extent and associated atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.

    1981-01-01

    The 1974 Antarctic large scale sea ice extent is studied from data from Nimbus 2 and 5 and temperature and sea level pressure fields from the Australian Meteorological Data Set. Electrically Scanning Microwave Radiometer data were three-day averaged and compared with 1000 mbar atmospheric pressure and sea level pressure data, also in three-day averages. Each three-day period was subjected to a Fourier analysis and included the mean latitude of the ice extent and the phases and percent variances in terms of the first six Fourier harmonics. Centers of low pressure were found to be generally east of regions which displayed rapid ice growth, and winds acted to extend the ice equatorward. An atmospheric response was also noted as caused by the changing ice cover.

  9. Evidence for smaller extents of the northwestern Greenland Ice Sheet and North Ice Cap during the Holocene

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.

    2013-12-01

    The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica

  10. Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent

    NASA Astrophysics Data System (ADS)

    Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.

    2018-05-01

    East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.

  11. Recent Increases in Snow Accumulation and Decreases in Sea-Ice Concentration Recorded in a Coastal NW Greenland Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.

    2013-12-01

    A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-ice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive

  12. Response of Arctic Snow and Sea Ice Extents to Melt Season Atmospheric Forcing Across the Land-Ocean Boundary

    NASA Astrophysics Data System (ADS)

    Bliss, A. C.; Anderson, M. R.

    2011-12-01

    Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, however, the analysis of these data averaged spatially over three study regions located in North America and Eastern and Western Russia, reveals a distinct difference in the response of anomalous snow and sea ice conditions to the atmospheric forcing. This study compares the monthly continental snow cover and sea ice extent loss in the Arctic, during the melt season months (May-August) for the period 1979-2007, with regional atmospheric conditions known to influence summer melt including: mean sea level pressures, 925 hPa air temperatures, and mean 2 m U and V wind vectors from NCEP/DOE Reanalysis 2. The monthly hemispheric snow cover extent data used are from the Rutgers University Global Snow Lab and sea ice extents for this study are derived from the monthly passive microwave satellite Bootstrap algorithm sea ice concentrations available from the National Snow and Ice Data Center. Three case study years (1985, 1996, and 2007) are used to compare the direct response of monthly anomalous sea ice and snow cover areal extents to monthly mean atmospheric forcing averaged spatially over the extent of each study region. This comparison is then expanded for all summer months over the 29 year study period where the monthly persistence of sea ice and snow cover extent anomalies and changes in the sea ice and snow conditions under differing atmospheric conditions are explored further. The monthly anomalous atmospheric conditions are classified into four categories including: warmer temperatures with higher pressures, warmer temperatures with lower pressures, cooler temperatures with higher pressures, and cooler temperatures with lower pressures. Analysis of the atmospheric conditions surrounding anomalous loss of snow and ice cover over the independent study regions indicates that conditions of warmer temperatures

  13. Record low lake ice thickness and bedfast ice extent on Alaska's Arctic Coastal Plain in 2017 exemplify the value of monitoring freshwater ice to understand sea-ice forcing and predict permafrost dynamics

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Alexeev, V. A.; Bondurant, A. C.; Creighton, A.; Engram, M. J.; Jones, B. M.; Parsekian, A.

    2017-12-01

    The winter of 2016/2017 was exceptionally warm and snowy along the coast of Arctic Alaska partly due to low fall sea ice extent. Based on several decades of field measurements, we documented a new record low maximum ice thickness (MIT) for lakes on the Barrow Peninsula, averaging 1.2 m. This is in comparison to a long-term average MIT of 1.7 m stretching back to 1962 with a maximum of 2.1 m in 1970 and previous minimum of 1.3 m in 2014. The relevance of thinner lake ice in arctic coastal lowlands, where thermokarst lakes cover greater than 20% of the land area, is that permafrost below lakes with bedfast ice is typically preserved. Lakes deeper than the MIT warm and thaw sub-lake permafrost forming taliks. Remote sensing analysis using synthetic aperture radar (SAR) is a valuable tool for scaling the field observations of MIT to the entire freshwater landscape to map bedfast ice. A new, long-term time-series of late winter multi-platform SAR from 1992 to 2016 shows a large dynamic range of bedfast ice extent, 29% of lake area or 6% of the total land area over this period, and adding 2017 to this record is expected to extend this range further. Empirical models of lake mean annual bed temperature suggest that permafrost begins to thaw at depths less than 60% of MIT. Based on this information and knowledge of average lake ice growth trajectories, we suggest that future SAR analysis of lake ice should focus on mid-winter (January) to evaluate the extent of bedfast ice and corresponding zones of sub-lake permafrost thaw. Tracking changes in these areas from year to year in mid-winter may provide the best landscape-scale evaluation of changing permafrost conditions in lake-rich arctic lowlands. Because observed changes in MIT coupled with mid-winter bedfast ice extent provide much information on permafrost stability, we suggest that these measurements can serve as Essential Climate Variables (EVCs) to indicate past and future changes in lake-rich arctic regions. The

  14. Change in the Extent of Baffin Island's Penny Ice Cap in Response to Regional Warming, 1969 - 2014

    NASA Astrophysics Data System (ADS)

    Cox, M. C.; Cormier, H. M.; Gardner, A. S.

    2014-12-01

    Glaciers are retreating globally in response to warmer atmospheric temperatures, adding large volumes of melt water to the world's oceans. The largest glacierized region and present-day contributor to sea level rise outside of the massive ice sheets is the Canadian Arctic. Recent work has shown that the glaciers of the southern Canadian Arctic (Baffin and Bylot Island) have experienced accelerated rates of ice loss in recent decades, but little is known regarding the spatial and temporal variations in rates of loss. For this study we examine in detail changes in the extent of the Penny Ice Cap (a proxy for ice loss) between 1969 and 2014 to better understand the climatic drivers of the recently observed accelerated rates of ice loss on Baffin Island. To do this, we reconstruct the extent of the ice cap for the year 1969 from historical maps and for the years 1985, 1995, 2010, and 2014 from Landsat 5 TM and Landsat 8 OLI imagery. We use 2009 SPOT HRS imagery and a novel extent comparison algorithm to assess the accuracy of glacier extents derived from Landsat imagery. Regional temperature and precipitation records were used to explain the spatial pattern of change. Due to large variation in elevations, hypsometry was also investigated as a contributor to differences in rates of change across the ice cap. Preliminary results show overall retreat throughout the ice cap but with regional differences in area and length change on either side of the Ice Cap divide.

  15. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Douglas, David C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  16. 2015 Arctic Sea Ice Maximum Annual Extent Is Lowest On Record

    NASA Image and Video Library

    2015-03-19

    The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on Feb. 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Read more: 1.usa.gov/1Eyvelz Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Polar Climate: Arctic sea ice

    USGS Publications Warehouse

    Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.

    2005-01-01

    Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).

  18. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season

    NASA Astrophysics Data System (ADS)

    Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.

    2017-09-01

    The 2016 austral spring was characterized by the lowest Southern Hemisphere (SH) sea ice extent seen in the satellite record (1979 to present) and coincided with anomalously warm surface waters surrounding most of Antarctica. We show that two distinct processes contributed to this event: First, the extreme El Niño event peaking in December-February 2015/2016 contributed to pronounced extratropical SH sea surface temperature and sea ice extent anomalies in the eastern Ross, Amundsen, and Bellingshausen Seas that persisted in part until the following 2016 austral spring. Second, internal unforced atmospheric variability of the Southern Annular Mode promoted the exceptional low sea ice extent in November-December 2016. These results suggest that a combination of tropically forced and internal SH atmospheric variability contributed to the unprecedented sea ice decline during the 2016 austral spring, on top of a background of slow changes expected from greenhouse gas and ozone forcing.

  19. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiquan; Zib, Benjamin J.; Xi, Baike

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extentmore » from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat

  20. Spatial patterns of increases and decreases in the length of the sea ice season in the north polar region, 1979-1986

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1992-01-01

    Recently it was reported that sea ice extents in the Northern Hemisphere showed a very slight but statistically significant decrease over the 8.8-year period of the Nimbus 7 scanning multichannel microwave radiometer (SMMR) data set. In this paper the same SMMR data are used to reveal spatial patterns in increasing and decreasing sea ice coverage. Specifically, the length of the ice season is mapped for each full year of the SMMR data set (1979-1986), and the trends over the 8 years in these ice season lengths are also mapped. These trends show considerable spatial coherence, with a shortening in the sea ice season apparent in much of the eastern hemisphere of the north polar ice cover, particularly in the Sea of Okhotsk, the Barents Sea, and the Kara Sea, and a lengthening of the sea ice season apparent in much of the western hemisphere of the north polar ice cover, particularly in Davis Strait, the Labrador Sea, and the Beaufort Sea.

  1. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  2. 30-Year Satellite Record Reveals Accelerated Arctic Sea Ice Loss, Antarctic Sea Ice Trend Reversal

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    Arctic sea ice extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent observed in the early 1970's.

  3. Data-adaptive Harmonic Decomposition and Real-time Prediction of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael

    2017-04-01

    Decline in the Arctic sea ice extent (SIE) has profound socio-economic implications and is a focus of active scientific research. Of particular interest is prediction of SIE on subseasonal time scales, i.e. from early summer into fall, when sea ice coverage in Arctic reaches its minimum. However, subseasonal forecasting of SIE is very challenging due to the high variability of ocean and atmosphere over Arctic in summer, as well as shortness of observational data and inadequacies of the physics-based models to simulate sea-ice dynamics. The Sea Ice Outlook (SIO) by Sea Ice Prediction Network (SIPN, http://www.arcus.org/sipn) is a collaborative effort to facilitate and improve subseasonal prediction of September SIE by physics-based and data-driven statistical models. Data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) techniques [Chekroun and Kondrashov, 2017], have been successfully applied to the nonlinear stochastic modeling, as well as retrospective and real-time forecasting of Multisensor Analyzed Sea Ice Extent (MASIE) dataset in key four Arctic regions. In particular, DAH-MSLM predictions outperformed most statistical models and physics-based models in real-time 2016 SIO submissions. The key success factors are associated with DAH ability to disentangle complex regional dynamics of MASIE by data-adaptive harmonic spatio-temporal patterns that reduce the data-driven modeling effort to elemental MSLMs stacked per frequency with fixed and small number of model coefficients to estimate.

  4. Reconstruction of the extent and variability of late Quaternary ice sheets and Arctic sea ice: Insights from new mineralogical and geochemical proxy records

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Niessen, F.; Fahl, K.; Forwick, M.; Kudriavtseva, A.; Ponomarenko, E.; Prim, A. K.; Quatmann-Hense, A.; Spielhagen, R. F.; Zou, H.

    2016-12-01

    The Arctic Ocean and surrounding continents are key areas within the Earth system and very sensitive to present and past climate change. In this context, the timing and extent of circum-Arctic ice sheets and its interaction with oceanic and sea-ice dynamics are major interest and focus of international research. New sediment cores recovered during the Polarstern Expeditions PS87 (Lomonosov Ridge/2014) and PS93.1 (Fram Strait/2015) together with several sediment cores available from previous Polarstern expeditions allow to carry out a detailed sedimentological and geochemical study that may help to unravel the changes in Arctic sea ice and circum-Arctic ice sheets during late Quaternary times. Our new data include biomarkers indicative for past sea-ice extent, phytoplankton productivity and terrigenous input as well as grain size, physical property, XRD and XRF data indicative for sources and pathways of terrigenous sediments (ice-rafted debris/IRD) related to glaciations in Eurasia, East Siberia, Canada and Greenland. Here, we present examples from selected sediment cores that give new insights into the timing and extent of sea ice and glaciations during MIS 6 to MIS 2. To highlight one example: SE-NW oriented, streamlined landforms have been mapped on top of the southern Lomonosov Ridge (LR) at water depths between 800 and 1000 m over long distances during Polarstern Expedition PS87, interpreted to be glacial lineations that formed beneath grounded ice sheets and ice streams. The orientations of the lineations identified are similar to those on the East Siberian continental margin, suggesting an East Siberian Chukchi Ice Sheet extended far to the north on LR during times of extreme Quaternary glaciations. Based on our new biomarker records from Core PS2757 (located on LR near 81°N) indicating a MIS 6 ice-edge situation with some open-water phytoplankton productivity, the glacial erosional event should have been older than MIS 6 (e.g., MIS 12?).

  5. Antarctic Sea Ice Variability and Trends, 1979-2010

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Cavalieri, D. J.

    2012-01-01

    In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  6. Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas

    USGS Publications Warehouse

    Harada, Naomi; Katsuki, Kota; Nakagawa, Mitsuhiro; Matsumoto, Akiko; Seki, Osamu; Addison, Jason A.; Finney, Bruce P.; Sato, Miyako

    2014-01-01

    Accurate prediction of future climate requires an understanding of the mechanisms of the Holocene climate; however, the driving forces, mechanisms, and processes of climate change in the Holocene associated with different time scales remain unclear. We investigated the drivers of Holocene sea surface temperature (SST) and sea ice extent in the North Pacific Ocean, and the Okhotsk and Bering Seas, as inferred from sediment core records, by using the alkenone unsaturation index as a biomarker of SST and abundances of sea ice-related diatoms (F. cylindrus and F. oceanica) as an indicator of sea ice extent to explore controlling mechanisms in the high-latitude Pacific. Temporal changes in alkenone content suggest that alkenone production was relatively high during the middle Holocene in the Okhotsk Sea and the western North Pacific, but highest in the late Holocene in the eastern Bering Sea and the eastern North Pacific. The Holocene variations of alkenone-SSTs at sites near Kamchatka in the Northwest Pacific, as well as in the western and eastern regions of the Bering Sea, and in the eastern North Pacific track the changes of Holocene summer insolation at 50°N, but at other sites in the western North Pacific, in the southern Okhotsk Sea, and the eastern Bering Sea they do not. In addition to insolation, other atmosphere and ocean climate drivers, such as sea ice distribution and changes in the position and activity of the Aleutian Low, may have systematically influenced the timing and magnitude of warming and cooling during the Holocene within the subarctic North Pacific. Periods of high sea ice extent in both the Okhotsk and Bering Seas may correspond to some periods of frequent or strong winter–spring dust storms in the Mongolian Gobi Desert, particularly one centered at ∼4–3 thousand years before present (kyr BP). Variation in storm activity in the Mongolian Gobi Desert region may reflect changes in the strength and positions of the Aleutian Low and Siberian

  7. Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent.

    PubMed

    Severi, M; Becagli, S; Caiazzo, L; Ciardini, V; Colizza, E; Giardi, F; Mezgec, K; Scarchilli, C; Stenni, B; Thomas, E R; Traversi, R; Udisti, R

    2017-06-01

    Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa + flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data

    NASA Technical Reports Server (NTRS)

    Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.

    2014-01-01

    The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are signicant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10 km +/- 0.3x10 km. This is more the 250,000 km greater than the 19.44x10 km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10 km +/- 0.3x10 km. This is more than 1.5x10 km below the passive microwave record of 17.5x10 km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10 km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.

  9. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  10. A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Kingslake, J.

    2017-12-01

    It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.

  11. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  12. Paleo ice-cap surfaces and extents

    NASA Astrophysics Data System (ADS)

    Gillespie, A.; Pieri, D.

    2008-12-01

    The distribution, equilibrium-line altitude (ELA) and timing of Pleistocene alpine glaciers are used to constrain paleoclimatic reconstructions. Attention has largely focused on the geomorphic evidence for the former presence of simple valley glaciers; paleo alpine ice caps and their outlet glaciers have proven to be more problematical. This is especially so in the remote continental interior of Asia, where the research invested in the Alps or Rocky Mountains has yet to be duplicated. Even the putative existence and size of paleo ice caps in Tibet and the Kyrgyz Tien Shan is controversial. Remote sensing offers the opportunity to assess vast tracts of land quickly, with images and co-registered digital elevation models (DEMs) offering the most information for studies of paleoglaciers. We pose several questions: (1) With what confidence can nunataks be identified remotely? (2) What insights do their physiographic characteristics offer? (3) What characteristics of the bed of a paleo ice cap can be used to identify its former presence remotely? and (4) Can the geomorphic signatures of the edges of paleo ice caps be recognized and mapped? Reconstruction of the top surface of a paleo ice cap depends on the recognition of nunataks, typically rougher at 1 m to 100 m scales than their surroundings. Nunataks in southern Siberia are commonly notched by multiple sub- horizontal bedrock terraces. These step terraces appear to originate from freeze-thaw action on the rock-ice interface during periods of stability, and presence of multiple terraces suggests stepwise lowering of ice surfaces during deglaciation. An older generation of step-terraced nunataks, distinguished by degraded and eroded terraces, delineates a larger paleo ice cap in the Sayan Range (Siberian - Mongolian border) that significantly pre-dates the last glacial maximum (LGM). Large ice caps can experience pressure melting at their base and can manifest ice streams within the ice cap. Valleys left behind differ

  13. Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data

    NASA Technical Reports Server (NTRS)

    Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.

    2013-01-01

    The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are significant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more the 250,000 sq. km greater than the 19.44x10(exp 6) sq. km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more than 1.5x10(exp 6) sq. km below the passive microwave record of 17.5x10(exp 6) sq. km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10(exp 6) sq. km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.

  14. 30-Year Satellite Record Reveals Contrasting Arctic and Antarctic Decadal Sea Ice Variability

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    A 30-year satellite record of sea ice extents derived mostly from satellite microwave radiometer observations reveals that the Arctic sea ice extent decreased by 0.30+0.03 x 10(exp 6) square kilometers per 10 yr from 1972 through 2002, but by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per 10yr from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased. Over the full 30-year period, the Antarctic ice extent decreased by 0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10 yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent in the early 1970's, an anomaly that apparently began in the late 1960's, as observed in early visible and infrared satellite images.

  15. Precipitation Impacts of a Shrinking Arctic Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.

    2009-12-01

    Since the beginning of the modern satellite record in October 1978, the extent of Arctic sea ice has declined in all months, with the strongest downward trend at the end of the melt season in September. Recently the September trends have accelerated. Through 2001, the extent of September sea ice was decreasing at a rate of -7 per cent per decade. By 2006, the rate of decrease had risen to -8.9 per cent per decade. In September 2007, Arctic sea ice extent fell to its lowest level recorded, 23 per cent below the previous record set in 2005, boosting the downward trend to -10.7 per cent per decade. Ice extent in September 2008 was the second lowest in the satellite record. Including 2008, the trend in September sea ice extent stands at -11.8 percent per decade. Compared to the 1970s, September ice extent has retreated by 40 per cent. Summer 2009 looks to repeat the anomalously low ice conditions that characterized the last couple of years. Scientists have long expected that a shrinking Arctic sea ice cover will lead to strong warming of the overlying atmosphere, and as a result, affect atmospheric circulation and precipitation patterns. Recent results show clear evidence of Arctic warming linked to declining ice extent, yet observational evidence for responses of atmospheric circulation and precipitation patterns is just beginning to emerge. Rising air temperatures should lead to an increase in the moisture holding capacity of the atmosphere, with the potential to impact autumn precipitation. Although climate models predict a hemispheric wide decrease in snow cover as atmospheric concentrations of GHGs increase, increased precipitation, particular in autumn and winter may result as the Arctic transitions towards a seasonally ice free state. In this study we use atmospheric reanalysis data and a cyclone tracking algorithm to investigate the influence of recent extreme ice loss years on precipitation patterns in the Arctic and the Northern Hemisphere. Results show

  16. Skillful Spring Forecasts of September Arctic Sea Ice Extent Using Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Petty, A. A.; Schroder, D.; Stroeve, J. C.; Markus, Thorsten; Miller, Jeffrey A.; Kurtz, Nathan Timothy; Feltham, D. L.; Flocco, D.

    2017-01-01

    In this study, we demonstrate skillful spring forecasts of detrended September Arctic sea ice extent using passive microwave observations of sea ice concentration (SIC) and melt onset (MO). We compare these to forecasts produced using data from a sophisticated melt pond model, and find similar to higher skill values, where the forecast skill is calculated relative to linear trend persistence. The MO forecasts shows the highest skill in March-May, while the SIC forecasts produce the highest skill in June-August, especially when the forecasts are evaluated over recent years (since 2008). The high MO forecast skill in early spring appears to be driven primarily by the presence and timing of open water anomalies, while the high SIC forecast skill appears to be driven by both open water and surface melt processes. Spatial maps of detrended anomalies highlight the drivers of the different forecasts, and enable us to understand regions of predictive importance. Correctly capturing sea ice state anomalies, along with changes in open water coverage appear to be key processes in skillfully forecasting summer Arctic sea ice.

  17. Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration

    NASA Astrophysics Data System (ADS)

    Edinburgh, Tom; Day, Jonathan J.

    2016-11-01

    In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897-1917), and in this study we compare these to satellite observations from the period 1989-2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.

  18. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  19. The role of declining summer sea ice extent in increasing Arctic winter precipitation

    NASA Astrophysics Data System (ADS)

    Hamman, J.; Roberts, A.; Cassano, J. J.; Nijssen, B.

    2016-12-01

    In the past three decades, the Arctic has experienced large declines in summer sea ice cover, permafrost extent, and spring snow cover, and increases in winter precipitation. This study explores the relationship between declining Arctic sea ice extent (IE) and winter precipitation (WP) across the Arctic land masses. The first part of this presentation presents the observed relationship between IE and WP. Using satellite estimates of IE and WP data based on a combination of in-situ observations and global reanalyses, we show that WP is negatively correlated with summer IE and that this relationship is strongest before the year 2000. After 2000, around the time IE minima began to decline most rapidly, the relationship between IE and WP degenerates. This indicates that other processes are driving changes in IE and WP. We hypothesize that positive anomalies in poleward moisture transport have historically driven anomalously low IE and high WP, and that since the significant decline in IE, moisture divergence from the central Arctic has been a larger contributor to WP over land. To better understand the physical mechanisms driving the observed changes in the Arctic climate system and the sensitivity of the Arctic climate system to declining sea ice, we have used the fully-coupled Regional Arctic System Model (RASM) to simulate two distinct sea ice climates. The first climate represents normal IE, while the second includes reduced summer IE. The second portion of this presentation analyzes these two RASM simulations, in conjunction with our observation-based analysis, to understand the coupled relationship between poleward moisture transport, IE, evaporation from the Arctic Ocean, and precipitation. We will present the RASM-simulated Arctic water budget and demonstrate the role of IE in driving WP anomalies. Finally, a spatial correlation analysis identifies characteristic patterns in IE, ocean evaporation, and polar cap convergence that contribute to anomalies in WP.

  20. Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages

    USGS Publications Warehouse

    Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.

    2008-01-01

    The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.

  1. The role of sea ice in 2 x CO2 climate model sensitivity. Part 1: The total influence of sea ice thickness and extent

    NASA Technical Reports Server (NTRS)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1995-01-01

    As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. Thinner ice amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner ice to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater sea ice extent in the control run, which provides more opportunity for sea ice reduction. An experiment with sea ice not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of sea ice on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to sea ice variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the sea ice impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying sea level increases of varying magnitude or no change. These results highlight the importance of properly constraining the sea ice response to climate perturbations, necessitating the use of more realistic sea ice and ocean models.

  2. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    NASA Astrophysics Data System (ADS)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  3. Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.

    2012-12-01

    for generating potentiometric maps for each region of interest. Using these potentiometric maps, along with surficial DEMs, supra- and subglacial routing paths, as well as potential sites for discrete supraglacial hydrologic input sources are identified. Comparison of hydrologic drainage networks with the spatial distribution of recent rapid dynamic changes detected by altimetry allows for the assessment of the extent of influence that subglacial hydrology has on ice sheet behavior.

  4. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the

  5. Loss of sea ice in the Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  6. On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.

    1987-01-01

    The influence of the hemispheric atmospheric circulation on the sea ice covers of the Bering Sea and the Sea of Okhotsk is examined using data obtained with the Nimbus 5 electrically scanning microwave radiometer for the four winters of the 1973-1976 period. The 3-day averaged sea ice extent data were used to establish periods for which there is an out-of-phase relationship between fluctuations of the two ice covers. A comparison of the sea-level atmospheric pressure field with the seasonal, interannual, and short-term sea ice fluctuations reveal an association between changes in the phase and the amplitude of the long waves in the atmosphere and advance and retreat of Arctic ice covers.

  7. Seasonal regional forecast of the minimum sea ice extent in the LapteV Sea

    NASA Astrophysics Data System (ADS)

    Tremblay, B.; Brunette, C.; Newton, R.

    2017-12-01

    Late winter anomaly of sea ice export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea ice extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian Ice Tracking System (LITS) forced with satellite derived sea-ice drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal ice divergence leads to formation of thinner ice that melts earlier in early summer, hence creating areas of open water that have a lower albedo and trigger an ice-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea ice export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al

  8. Revisiting the Potential of Melt Pond Fraction as a Predictor for the Seasonal Arctic Sea Ice Extent Minimum

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2015-01-01

    The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.

  9. Observational determination of albedo decrease caused by vanishing Arctic sea ice

    PubMed Central

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V.

    2014-01-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m2 of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  10. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-04

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  11. Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3

    PubMed Central

    Pico, T; Creveling, J. R.; Mitrovica, J. X.

    2017-01-01

    The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet's peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately −40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables. PMID:28555637

  12. Studies of the Antarctic Sea Ice Edges and Ice Extents from Satellite and Ship Observations

    NASA Technical Reports Server (NTRS)

    Worby, Anthony P.; Comiso, Josefino C.

    2003-01-01

    Passive-microwave derived ice edge locations in Antarctica are assessed against other satellite data as well as in situ observations of ice edge location made between 1989 and 2000. The passive microwave data generally agree with satellite and ship data but the ice concentration at the observed ice edge varies greatly with averages of 14% for the TEAM algorithm and 19% for the Bootstrap algorithm. The comparisons of passive microwave with the field data show that in the ice growth season (March - October) the agreement is extremely good, with r(sup 2) values of 0.9967 and 0.9797 for the Bootstrap and TEAM algorithms respectively. In the melt season however (November - February) the passive microwave ice edge is typically 1-2 degrees south of the observations due to the low concentration and saturated nature of the ice. Sensitivity studies show that these results can have significant impact on trend and mass balance studies of the sea ice cover in the Southern Ocean.

  13. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  14. Multi-resolution Changes in the Spatial Extent of Perennial Arctic Alpine Snow and Ice Fields with Potential Archaeological Significance in the Central Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.

    2015-12-01

    Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage

  15. The Satellite Passive-Microwave Record of Sea Ice in the Ross Sea Since Late 1978

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2009-01-01

    the highest rate of increase in sea ice coverage of any of five standard divisions of the Southern Ocean, although the Weddell Sea, Indian Ocean, and Western Pacific Ocean all also had sea ice increases, while only the Bellingshausen/Smundsen Seas experienced overall sea ice decreases. Overall, the Southern Ocean sea ice cover increased at an average rate of 10,800 plus or minus 2,500 square kilometers per year between November 1978 and December 2007, with every month showing positive values although with some of these values not being statistically significant. The sea ice increase since November 1978 was preceded by a sharp decrease in Southern Ocean ice coverage in the 1970's and is in marked contrast to the decrease in Arctic sea ice coverage that has occurred both in the period since November 1978 and since earlier in the 1970's. On a yearly average bases, for 1979-2007 the Southern Ocean sea ice extent increased at a rate of 1.0 plus or minus 0.4% per decade, whereas the Arctic ice extent decreased at the much greater rate of 4.0 plus or minus 0.4 percent per decade (closer to the % per decade rate of increase in the Ross Sea). Considerable research is ongoing to explain the differences.

  16. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  17. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.

  18. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  19. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  20. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  1. Towards an Ice-Free Arctic Ocean in Summertime

    NASA Astrophysics Data System (ADS)

    Gascard, Jean Claude

    2014-05-01

    Dividing the Arctic Ocean in two parts, the so-called Atlantic versus the Pacific sector, two distinct modes of variability appear for characterizing the Arctic sea-ice extent from 70°N up to 80°N in both sectors. The Atlantic sector seasonal sea-ice extent is characterized by a longer time scale than the Pacific sector with a break up melting season starting in May and reaching a peak in June-July, one month earlier than the Pacific sector of the Arctic Ocean revealing a faster time evolution and a larger spatial amplitude than the Atlantic sector. During recent years like 2007, sea-ice extent with sea-ice concentration above 15% retreated from 4 millions km2 to about 1 million km2 in the Arctic Pacific sector between 70° and 80°N except for 2012 when most of sea-ice melted away in this region. That explained most of the differences between the two extreme years 2007 and 2012. In the Atlantic sector, Arctic sea-ice retreated from 2 millions km2 to nearly 0 during recent years including 2007 and 2012. The Atlantic inflow North of Svalbard and Franz Josef Land is more likely responsible for a northward retreat of the ice edge in that region. The important factor is not only that the Arctic summer sea-ice minimum extent decreased by 3 or 4 millions km2 over the past 10 years but also that the melting period was steadily increasing by one to two days every year during that period. An important factor concerns the strength of the freezing that can be quantified in terms of Freezing Degree Days FDD accumulated during the winter-spring season and the strength of the melting (MDD) that can be accumulated during the summer season. FDD and MDD have been calculated for the past 30 years all over the Arctic Ocean using ERA Interim Reanalysis surface temperature at 2m height in the atmosphere. It is clear that FDD decreased significantly by more than 2000 FDD between 1980 and 2012 which is equivalent to the sensible heat flux corresponding to more than a meter of sea-ice

  2. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.

    PubMed

    Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L

    2016-06-01

    Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is

  4. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web

    NASA Astrophysics Data System (ADS)

    Loeb, V.; Siegel, V.; Holm-Hansen, O.; Hewitt, R.; Fraser, W.; Trivelpiece, W.; Trivelpiece, S.

    1997-06-01

    Krill (Euphausia superba) provide a direct link between primary producers and higher trophic levels in the Antarctic marine food web. The pelagic tunicate Salpa thompsoni can also be important during spring and summer through the formation of extensive and dense blooms. Although salps are not a major dietary item for Antarctic vertebrate predators,, their blooms can affect adult krill reproduction and survival of krill larvae. Here we provide data from 1995 and 1996 that support hypothesized relationships between krill, salps and region-wide sea-ice conditions,. We have assessed salp consumption as a proportion of net primary production, and found correlations between herbivore densities and integrated chlorophyll-a that indicate that there is a degree of competition between krill and salps. Our analysis of the relationship between annual sea-ice cover and a longer time series of air temperature measurements, indicates a decreased frequency of winters with extensive sea-ice development over the last five decades. Our data suggest that decreased krill availability may affect the levels of their vertebrate predators. Regional warming and reduced krill abundance therefore affect the marine food web and krill resource management.

  5. New Visualizations Highlight New Information on the Contrasting Arctic and Antarctic Sea-Ice Trends Since the Late 1970s

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; DiGirolamo, Nicolo E.

    2016-01-01

    Month-by-month ranking of 37 years (1979-2015) of satellite-derived sea-ice extents in the Arctic and Antarctic reveals interesting new details in the overall trends toward decreasing sea-ice coverage in the Arctic and increasing sea-ice coverage in the Antarctic. The Arctic decreases are so definitive that there has not been a monthly record high in Arctic sea-ice extents in any month since 1986, a time period during which there have been 75 monthly record lows. The Antarctic, with the opposite but weaker trend toward increased ice extents, experienced monthly record lows in 5 months of 1986, then 6 later monthly record lows scattered through the dataset, with the last two occurring in 2006, versus 45 record highs since 1986. However, in the last three years of the 1979-2015 dataset, the downward trends in Arctic sea-ice extents eased up, with no new record lows in any month of 2013 or 2014 and only one record low in 2015,while the upward trends in Antarctic ice extents notably strengthened, with new record high ice extents in 4 months (August-November) of 2013, in 6 months (April- September) of 2014, and in 3 months (January, April, and May) of 2015. Globally, there have been only 3 monthly record highs since 1986 (only one since 1988), whereas there have been 43 record lows, although the last record lows (in the 1979-2015 dataset) occurred in 2012.

  6. Observed and Modeled Trends in Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2003-01-01

    Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong

  7. The Greenland Ice Sheet's surface mass balance in a seasonally sea ice-free Arctic

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Bamber, J. L.; Valdes, P. J.

    2013-09-01

    General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near-surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice-free Arctic Ocean. To investigate the impact of this phenomenon on Greenland Ice Sheet climate and surface mass balance (SMB), a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation, Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution.

  8. Towards Improving Sea Ice Predictabiity: Evaluating Climate Models Against Satellite Sea Ice Observations

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.

    2014-12-01

    The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the

  9. McMurdo Ice Shelf Sounding and Radar Statistical Reconnaissance at 60-MHz: Brine Infiltration Extent and Surface Properties

    NASA Astrophysics Data System (ADS)

    Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.

    2014-12-01

    McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert

  10. High latitude changes in ice dynamics and their impact on polar marine ecosystems.

    PubMed

    Moline, Mark A; Karnovsky, Nina J; Brown, Zachary; Divoky, George J; Frazer, Thomas K; Jacoby, Charles A; Torres, Joseph J; Fraser, William R

    2008-01-01

    Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate-mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate-induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice-dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.

  11. Sea Ice Sensitivities in the 0.72 deg and 0.08 deg Arctic Cap Coupled HYCOM/CICE Models

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sea Ice Sensitivities in the 0.72°and 0.08° Arctic Cap...Arctic ice extent, which corresponds to the sea ice that remains during the summer minimum, has decreased over the years 1979–2007 by more than 10% per...Goosse et al. 2009) with the lowest observed sea ice extent in the satellite record (1979-present) occurring in September 2012 (Perovich et al. 2012

  12. Wind, current and swell influences on the ice extent and flux in the Grand Banks-Labrador sea area as observed in the LIMEX '87 experiment

    NASA Technical Reports Server (NTRS)

    Argus, Susan Digby; Carsey, Frank; Holt, Benjamin

    1988-01-01

    This paper presents data collected by airborne and satellite instruments during the Labrador Ice Margin Experiment, that demonstrate the effects of oceanic and atmospheric processes on the ice conditions in the Grand Banks-Labrador sea area. Special consideration is given to the development of algorithms for extracting information from SAR data. It is shown that SAR data can be used to monitor ice extent, determine ice motion, locate shear zones, monitor the penetration of swell into the ice, estimate floe sizes, and establish the dimensions of the ice velocity zones. It is also shown that the complex interaction of the ice cover with winds, currents, swell, and coastlines is similar to the dynamics established for a number of sites in both polar regions.

  13. Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC

    NASA Astrophysics Data System (ADS)

    Ono, Jun; Tatebe, Hiroaki; Komuro, Yoshiki; Nodzu, Masato I.; Ishii, Masayoshi

    2018-02-01

    To assess the skill of seasonal to inter-annual predictions of the detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on 1 January, 1 April, 1 July and 1 October for each year from 1980 to 2011, for lead times up to three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialised with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to two months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian seas initialised in July, as suggested by previous studies.

  14. Mapping Of Lake Ice In Northern Europe Using Dual-Polarization RadarSAT-2 Data

    NASA Astrophysics Data System (ADS)

    Hindberg, Heidi; Malnes, Erik

    2013-12-01

    In this paper, we investigate the potential of including cross-polarization data in an unsupervised classification method based on SAR data to determine ice extent over lakes in Northern Europe. By introducing cross-pol data we can increase the separability between open water and ice, and we can decrease misclassifications where open water with waves is classified as ice. Cross-pol data also helps with labelling of the classes. However, cross-pol data can decrease the separability between the classes if the ice on the lake is very thin.

  15. Arctic ice cover, ice thickness and tipping points.

    PubMed

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  16. The influence of sea ice on Antarctic ice core sulfur chemistry and on the future evolution of Arctic snow depth: Investigations using global models

    NASA Astrophysics Data System (ADS)

    Hezel, Paul J.

    SO2-4 deposition to differences between the modern and LGM climates, including sea ice extent, sea surface temperatures, oxidant concentrations, and meteorological conditions. We are unable to find a mechanism whereby MSA deposition fluxes are higher than nss SO2-4 deposition fluxes on the East Antarctic Plateau in the LGM compared the modern period. We conclude that the observed differences between MSA and nss SO2-4 on glacial-interglacial time scales are due to post-depositional processes that affect the ice core MSA concentrations. We can not rule out the possibility of increased DMS emissions in the LGM compared to the modern day. If oceanic DMS production and ocean-to-air fluxes in the sea ice zone are significantly enhanced by the presence of sea ice as indicated by observations, we suggest that the potentially larger amplitude of the seasonal cycle in sea ice extent in the LGM implies a more important role for sea ice in modulating the sulfur cycle during the LGM compared to the modern period. We then shift our focus to study the evolution of snow depth on sea ice in global climate model simulations of the 20th and 21st centuries from the Coupled Model Intercomparison Project 5 (CMIP5). Two competing processes, decreasing sea ice extent and increasing precipitation, will affect snow accumulation on sea ice in the future, and it is not known a priori which will dominate. The decline in Arctic sea ice extent is a well-studied problem in future scenarios of climate change. Moisture convergence into the Arctic is also expected to increase in a warmer world, which may result in increasing snowfall rates. We show that the accumulated snow depth on sea ice in the spring declines as a result of decreased ice extent in the early autumn, in spite of increased winter snowfall rates. The ringed seal (Phoca hispida ) depends on accumulated snow in the spring to build subnivean birth lairs, and provides one of the motivations for this study. Using an empirical threshold of

  17. ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.

    USGS Publications Warehouse

    Ling, Chi-Hai; Parkinson, Claire L.

    1986-01-01

    A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.

  18. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    PubMed

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  19. Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces.

    PubMed

    Wilson, P W; Haymet, A D J

    2008-09-18

    Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.

  20. Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the Alps

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian

    2016-04-01

    During the Last Glacial Maximum (LGM) in the European Alps (late Würm) local ice caps and extensive ice fields in the high Alps fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the Alps was underway by about 24 ka. In the high Alps, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central Alps (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high Alps was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the Alps. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.

  1. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  2. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

  3. New aerogeophysical data reveal the extent of the Weddell Sea Rift beneath the Institute and Möller ice streams

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Siegert, M. J.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A. M.

    2011-12-01

    Significant continental rifting associated with Gondwana breakup has been widely recognised in the Weddell Sea region. However, plate reconstructions and the extent of this rift system onshore beneath the West Antarctic Ice Sheet (WAIS) are ambiguous, due to the paucity of modern geophysical data across the Institute and Möller ice stream catchments. Understanding this region is key to unravelling Gondwana breakup and the possible kinematic links between the Weddell Sea and the West Antarctic Rift System. The nature of the underlying tectonic structure is also critical, as it provides the template for ice-flow draining ~20% of the West Antarctic Ice Sheet (WAIS). During the 2010/11 Antarctic field season ~25,000 km of new airborne radar, aerogravity and aeromagnetic data were collected to help unveil the crustal structure and geological boundary conditions beneath the Institute and Möller ice streams. Our new potential field maps delineate varied subglacial geology beneath the glacial catchments, including Jurassic intrusive rocks, sedimentary basins, and Precambrian basement rocks of the Ellsworth Mountains. Inversion of airborne gravity data reveal significant crustal thinning directly beneath the faster flowing coastal parts of the Institute and Möller ice streams. We suggest that continental rifting focussed along the Weddell Sea margin of the Ellsworth-Whitmore Mountains block, providing geological controls for the fast flowing ice streams of the Weddell Sea Embayment. Further to the south we suggest that strike-slip motion between the East Antarctica and the Ellsworth-Whitmore Mountains block may provide a kinematic link between Cretaceous-Cenozoic extension in the West Antarctic Rift System and deformation in the Weddell Sea Embayment.

  4. Extent of Low-accumulation 'Wind Glaze' Areas on the East Antarctic Plateau: Implications for Continental Ice Mass Balance

    NASA Technical Reports Server (NTRS)

    Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; hide

    2012-01-01

    Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.

  5. Impact of aerosol emission controls on future Arctic sea ice cover

    NASA Astrophysics Data System (ADS)

    Gagné, M.-Ã..; Gillett, N. P.; Fyfe, J. C.

    2015-10-01

    We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emission changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become ice-free during summertime in 2045, but it does not become ice-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.

  6. ICESat-2, its retrievals of ice sheet elevation change and sea ice freeboard, and potential synergies with CryoSat-2

    NASA Astrophysics Data System (ADS)

    Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron

    2017-04-01

    Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.

  7. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  8. Parametric Experimental Study of the Formation of Glaze Ice Shapes on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1999-01-01

    An experiment was conducted to study the effect of velocity and sweep angle on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to the beginning of the zone where roughness elements develop into glaze ice feathers. Icing runs were performed on a NACA 00 1 2 swept wing tip at velocities of 75, 100, 150, and 200 miles per hour. At each velocity and tunnel condition, the sweep angle was changed from 0 deg to 45 deg at 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that at given velocity and tunnel conditions, as the sweep angle is increased from 0 deg to 25 deg the critical distance slowly decreases. As the sweep angle is increased past 25 deg, the critical distance starts decreasing more rapidly. For 75 and 100 mph it reaches a value of 0 millimeters at 35 deg. For 150 and 200 mph it reaches a value of 0 millimeters at 40 deg. On the ice accretion, as the sweep angle is increased from 0 deg to 25 deg, the extent of the attachment line zone slowly decreases. In the glaze ice feathers zone, the angle that the preferred direction of growth of the feathers makes with respect to the attachment line direction increases. But overall, the ice accretions remain similar to the 0 deg sweep angle case. As the sweep angle is increased above 25 deg, the extent of the attachment line zone decreases rapidly and complete scallops form at 35 deg sweep angle for 75 and 100 mph, and at 40 deg for 150 and 200 mph.

  9. Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David

    2015-11-01

    During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM

  10. Arctic Sea Ice Parameters from AMSR-E Data using Two Techniques, and Comparisons with Sea Ice from SSM

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2007-01-01

    We use two algorithms to process AMSR-E data in order to determine algorithm dependence, if any, on the estimates of sea ice concentration, ice extent and area, and trends and to evaluate how AMSR-E data compare with historical SSM/I data. The monthly ice concentrations derived from the two algorithms from AMSR-E data (the AMSR-E Bootstrap Algorithm, or ABA, and the enhanced NASA Team algorithm, or NT2) differ on average by about 1 to 3%, with data from the consolidated ice region being generally comparable for ABA and NT2 retrievals while data in the marginal ice zones and thin ice regions show higher values when the NT2 algorithm is used. The ice extents and areas derived separately from AMSR-E using these two algorithms are, however, in good agreement, with the differences (ABA-NT2) being about 6.6 x 10(exp 4) square kilometers on average for ice extents and -6.6 x 10(exp 4) square kilometers for ice area which are small compared to mean seasonal values of 10.5 x 10(exp 6) and 9.8 x 10(exp 6) for ice extent and area: respectively. Likewise, extents and areas derived from the same algorithm but from AMSR-E and SSM/I data are consistent but differ by about -24.4 x 10(exp 4) square kilometers and -13.9 x 10(exp 4) square kilometers, respectively. The discrepancies are larger with the estimates of extents than area mainly because of differences in channel selection and sensor resolutions. Trends in extent during the AMSR-E era were also estimated and results from all three data sets are shown to be in good agreement (within errors).

  11. Arctic Sea Ice Variability and Trends, 1979-2006

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2008-01-01

    Analysis of Arctic sea ice extents derived from satellite passive-microwave data for the 28 years, 1979-2006 yields an overall negative trend of -45,100 +/- 4,600 km2/yr (-3.7 +/- 0.4%/decade) in the yearly averages, with negative ice-extent trends also occurring for each of the four seasons and each of the 12 months. For the yearly averages the largest decreases occur in the Kara and Barents Seas and the Arctic Ocean, with linear least squares slopes of -10,600 +/- 2,800 km2/yr (-7.4 +/- 2.0%/decade) and -10,100 +/- 2,200 km2/yr (-1.5 +/- 0.3%/decade), respectively, followed by Baffin Bay/Labrador Sea, with a slope of -8,000 +/- 2,000 km2/yr) -9.0 +/- 2.3%/decade), the Greenland Sea, with a slope of -7,000 +/- 1,400 km2/yr (-9.3 +/- 1.9%/decade), and Hudson Bay, with a slope of -4,500 +/- 900 km2/yr (-5.3 +/- 1.1%/decade). These are all statistically significant decreases at a 99% confidence level. The Seas of Okhotsk and Japan also have a statistically significant ice decrease, although at a 95% confidence level, and the three remaining regions, the Bering Sea, Canadian Archipelago, and Gulf of St. Lawrence, have negative slopes that are not statistically significant. The 28-year trends in ice areas for the Northern Hemisphere total are also statistically significant and negative in each season, each month, and for the yearly averages.

  12. Predictability of the Arctic sea ice edge

    NASA Astrophysics Data System (ADS)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  13. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  14. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1986-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  15. Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward

    2014-04-01

    Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction.

  16. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean

    PubMed Central

    Horvat, Christopher; Jones, David Rees; Iams, Sarah; Schroeder, David; Flocco, Daniela; Feltham, Daniel

    2017-01-01

    In July 2011, the observation of a massive phytoplankton bloom underneath a sea ice–covered region of the Chukchi Sea shifted the scientific consensus that regions of the Arctic Ocean covered by sea ice were inhospitable to photosynthetic life. Although the impact of widespread phytoplankton blooms under sea ice on Arctic Ocean ecology and carbon fixation is potentially marked, the prevalence of these events in the modern Arctic and in the recent past is, to date, unknown. We investigate the timing, frequency, and evolution of these events over the past 30 years. Although sea ice strongly attenuates solar radiation, it has thinned significantly over the past 30 years. The thinner summertime Arctic sea ice is increasingly covered in melt ponds, which permit more light penetration than bare or snow-covered ice. Our model results indicate that the recent thinning of Arctic sea ice is the main cause of a marked increase in the prevalence of light conditions conducive to sub-ice blooms. We find that as little as 20 years ago, the conditions required for sub-ice blooms may have been uncommon, but their frequency has increased to the point that nearly 30% of the ice-covered Arctic Ocean in July permits sub-ice blooms. Recent climate change may have markedly altered the ecology of the Arctic Ocean. PMID:28435859

  17. Surface Exposure Dating of the Huancané III Moraines in Peru: A Record of Quelccaya Ice Cap's Maximum Extent during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Baranes, H. E.; Kelly, M. A.; Stroup, J. S.; Howley, J. A.; Lowell, T. V.

    2012-12-01

    The climatic conditions that influenced the tropics during the height of the last glacial period are not well defined and controversial. There are disparities in estimates of temperature anomalies (e.g., MARGO, 2009; Rind and Peteet, 1985; CLIMAP, 1976), and critical terrestrial paleotemperature proxy records in tropical regions are poorly dated (e.g., Porter, 2001). Defining these conditions is important for understanding the mechanisms that cause major shifts in climate, as the tropics are a primary driver of atmospheric and oceanic circulation. This study aims to constrain the timing of maximum glacier extents in the Cordillera Oriental in southern Peru during the last glacial period by applying surface exposure (beryllium-10) dating to the Huancané III (Hu-III) moraines. The Hu-III moraines mark the maximum extent of Quelccaya Ice Cap (QIC) (13.93°S, 70.83°W), the largest tropical ice cap, during the last ice age. The eight beryllium-10 ages presented here yield 17,056 ± 520 yrs ago as a minimum age for the onset of recession from the ice cap advance marked by the Hu-III moraines. Comparing this age to other paleoclimate records indicates that the ice cap advance marked by the Hu-III moraines is more likely associated with a North Atlantic climate event known as Heinrich I (H1; 16,800 yrs ago, Bond et al., 1992, 1993) than with global cooling at the Last Glacial Maximum (LGM; ~21,000 yrs ago, Denton and Hughes, 1981). This result suggests that climate processes in the North Atlantic region are linked to climatic conditions in the tropical Andes. A mesoscale climate model and an ice-flow model are currently being developed for QIC. The moraine data presented in this study will be used with these two models to test response of QIC to North Atlantic and global climate events.

  18. Spatial Distribution of Trends and Seasonality in the Hemispheric Sea Ice Covers

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Parkinson, C. L.; Cavalieri, D. J.; Cosmiso, J. C.; Zwally, H. J.

    1998-01-01

    We extend earlier analyses of a 9-year sea ice data set that described the local seasonal and trend variations in each of the hemispheric sea ice covers to the recently merged 18.2-year sea ice record from four satellite instruments. The seasonal cycle characteristics remain essentially the same as for the shorter time series, but the local trends are markedly different, in some cases reversing sign. The sign reversal reflects the lack of a consistent long-term trend and could be the result of localized long-term oscillations in the hemispheric sea ice covers. By combining the separate hemispheric sea ice records into a global one, we have shown that there are statistically significant net decreases in the sea ice coverage on a global scale. The change in the global sea ice extent, is -0.01 +/- 0.003 x 10(exp 6) sq km per decade. The decrease in the areal coverage of the sea ice is only slightly smaller, so that the difference in the two, the open water within the packs, has no statistically significant change.

  19. Sensitivity of Totten Glacier Ice Shelf extent and grounding line to oceanic forcing

    NASA Astrophysics Data System (ADS)

    Pelle, T.; Morlighem, M.; Choi, Y.

    2017-12-01

    Totten Glacier is a major outlet glacier of the East Antarctic Ice Sheet and has been shown to be vulnerable to ocean-induced melt in both its past and present states. The intrusion of warm, circumpolar deep water beneath the Totten Glacier Ice Shelf (TGIS) has been observed to accelerate ice shelf thinning and promote iceberg calving, a primary mechanism of mass discharge from Totten. As such, accurately simulating TGIS's ice front dynamics is crucial to the predictive capabilities of ice sheet models in this region. Here, we study the TGIS using the Ice Sheet System Model (ISSM) and test the applicability of three calving laws: Crevasse Formation calving, Eigen calving, and Tensile Stress calving. We simulate the evolution of Totten Glacier through 2100 under enhanced oceanic forcing in order to investigate both future changes in ice front dynamics and possible thresholds of instability. In addition, we artificially retreat Totten's ice front position and allow the model to proceed dynamically in order to analyze the response of the glacier to calving events. Our analyses show that Tensile Stress calving most accurately reproduces Totten Glacier's observed ice front position. Furthermore, unstable grounding line retreat is projected when Totten is simulated under stronger oceanic thermal forcing scenarios and when the calving front is significantly retreated.

  20. Assessment of Arctic and Antarctic Sea Ice Predictability in CMIP5 Decadal Hindcasts

    NASA Technical Reports Server (NTRS)

    Yang, Chao-Yuan; Liu, Jiping (Inventor); Hu, Yongyun; Horton, Radley M.; Chen, Liqi; Cheng, Xiao

    2016-01-01

    This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Decadal hindcasts exhibit a large multimodel spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3-7 years), but there is a reemerging predictive skill in the North Atlantic at a lead time of 6-8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.

  1. Reliable radiocarbon evidence for the maximum extent of the West Antarctic Ice Sheet in the easternmost Amundsen Sea Embayment during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hillenbrand, C. D.; Klages, J. P.; Kuhn, G.; Smith, J.; Graham, A. G. C.; Gohl, K.; Wacker, L.

    2016-02-01

    We present the first age control and sedimentological data for the upper part of a stratified seismic unit that is unusually thick ( 6-9 m) for the outer shelf of the ASE and overlies an acoustically transparent unit. The transparent unit probably consists of soft till deposited during the last advance of grounded ice onto the outer shelf. We mapped subtle mega-scale glacial lineations (MSGL) on the seafloor and suggest that these are probably the expressions of bedforms originally moulded into the surface of the underlying till layer. We note that the lineations are less distinct when compared to MSGLs recorded in bathymetric data collected further upstream and suggest that this is because of the blanketing influence of the thick overlying drape. The uppermost part (≤ 3 m) of the stratified drape was sampled by two of our sediment cores and contains sufficient amounts of calcareous foraminifera throughout to establish reliable age models by radiocarbon dating. In combination with facies analysis of the recovered sediments the obtained radiocarbon dates suggest deposition of the draping unit in a sub-ice shelf/sub-sea ice to seasonal-open marine environment that existed on the outer shelf from well before (>45 ka BP) the Last Glacial Maximum until today. This indicates the maximum extent of grounded ice at the LGM must have been situated south of the two core locations, where a well-defined grounding-zone wedge (`GZWa') was deposited. The third sediment core was recovered from the toe of this wedge and retrieved grounding-line proximal glaciogenic debris flow sediments that were deposited by 14 cal. ka BP. Our new data therefore provide direct evidence for 1) the maximum extent of grounded ice in the easternmost ASE at the LGM (=GZWa), 2) the existence of a large shelf area seawards the wedge that was not covered by grounded ice during that time, and 3) landward grounding line retreat from GZWa prior to 14 cal. ka BP. This knowledge will help to improve LGM ice

  2. Sea Ice on the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1998-01-01

    Year-round satellite records of sea ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic sea ice. In the Amundsen & Bellingshausen Seas, sea ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The sea ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of sea ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross Sea, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of sea ice range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade

  3. Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction

    NASA Technical Reports Server (NTRS)

    Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.

    1987-01-01

    Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.

  4. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet

    PubMed Central

    Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.

    2017-01-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014

  5. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.

    PubMed

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L

    2017-06-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  6. Reducing Spread in Climate Model Projections of a September Ice-Free Arctic

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2013-01-01

    This paper addresses the specter of a September ice-free Arctic in the 21st century using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that large spread in the projected timing of the September ice-free Arctic in 30 CMIP5 models is associated at least as much with different atmospheric model components as with initial conditions. Here we reduce the spread in the timing of an ice-free state using two different approaches for the 30 CMIP5 models: (i) model selection based on the ability to reproduce the observed sea ice climatology and variability since 1979 and (ii) constrained estimation based on the strong and persistent relationship between present and future sea ice conditions. Results from the two approaches show good agreement. Under a high-emission scenario both approaches project that September ice extent will drop to approx. 1.7 million sq km in the mid 2040s and reach the ice-free state (defined as 1 million sq km) in 2054-2058. Under a medium-mitigation scenario, both approaches project a decrease to approx.1.7 million sq km in the early 2060s, followed by a leveling off in the ice extent.

  7. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    NASA Astrophysics Data System (ADS)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves

  8. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  9. September Arctic Sea Ice minimum prediction - a new skillful statistical approach

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Scholz, Patrick; Treffeisen, Renate; Lohmann, Gerrit

    2017-04-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability is complex and it depends on various climate and oceanic parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on ocean heat content, sea surface temperature and different atmospheric variables to calculate an estimate of the September Sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts at monthly/seasonal forecasts of SSIE show a relatively reduced skill, we show here that more than 92% (r = 0.96) of the September sea ice extent can be predicted at the end of May by using previous months' climate and oceanic conditions. The skill of the model increases with a decrease in the time lag used for the forecast. At the end of August, our predictions are even able to explain 99% of the SSIE. Our statistical model captures both the general trend as well as the interannual variability of the SSIE. Moreover, it is able to properly forecast the years with extreme high/low SSIE (e.g. 1996/ 2007, 2012, 2013). Besides its forecast skill for SSIE, the model could provide a valuable tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  10. New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis

    NASA Astrophysics Data System (ADS)

    Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.

    2017-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.

  11. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Haumann, F. Alexander; Raphael, Marilyn N.

    2018-03-01

    In contrast to the Arctic, where total sea ice extent (SIE) has been decreasing for the last three decades, Antarctic SIE has shown a small, but significant, increase during the same time period. However, in 2016, an unusually early onset of the melt season was observed; the maximum Antarctic SIE was already reached as early as August rather than the end of September, and was followed by a rapid decrease. The decay was particularly strong in November, when Antarctic SIE exhibited a negative anomaly (compared to the 1979-2015 average) of approximately 2 million km2. ECMWF Interim reanalysis data showed that the early onset of the melt and the rapid decrease in sea ice area (SIA) and SIE were associated with atmospheric flow patterns related to a positive zonal wave number three (ZW3) index, i.e., synoptic situations leading to strong meridional flow and anomalously strong southward heat advection in the regions of strongest sea ice decline. A persistently positive ZW3 index from May to August suggests that SIE decrease was preconditioned by SIA decrease. In particular, in the first third of November northerly flow conditions in the Weddell Sea and the Western Pacific triggered accelerated sea ice decay, which was continued in the following weeks due to positive feedback effects, leading to the unusually low November SIE. In 2016, the monthly mean Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. A better spatial and temporal coverage of reliable ice thickness data is needed to assess the change in ice mass rather than ice area.

  12. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  13. A New Normal for the Sea Ice Index

    NASA Technical Reports Server (NTRS)

    Fetterer, Florence; Windnagel, Ann; Meier, Walter N.

    2014-01-01

    The NSIDC Sea Ice Index is a popular data product that shows users how ice extent and concentration have changed since the beginning of the passive microwave satellite record in 1978. It shows time series of monthly ice extent anomalies rather than actual extent values, in order to emphasize the information the data are carrying. Along with the time series, an image of average extent for the previous month is shown as a white field, with a pink line showing the median extent for that month. These are updated monthly; corresponding daily products are updated daily.

  14. New details about the LGM extent and subsequent retreat of the West Antarctic Ice Sheet from the easternmost Amundsen Sea Embayment shelf

    NASA Astrophysics Data System (ADS)

    Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.

    2017-12-01

    In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.

  15. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  16. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles

    DTIC Science & Technology

    2017-01-01

    repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain...contributing to the rapid decline in summer ice extent that has occurred in recent years. The SIZ is the region between maximum winter sea ice extent and...minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water

  17. Air-Sea Interactions in the Marginal Ice Zone

    DTIC Science & Technology

    2016-03-31

    Arctic Ocean has increased with the significant retreat of the seasonal sea-ice extent. Here, we use wind, wave, turbulence, and ice measurements to...which has experienced a significant retreat of the seasonal ice extent (Comiso and Nishio, 2008; Comiso et al., 2008). Thomson and Rogers (2014) showed

  18. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  19. Diminishing sea ice in the western Arctic Ocean

    USGS Publications Warehouse

    Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.

    2004-01-01

    Since the advent of satellite passive microwave radiometry (1978), variations in sea ice extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea ice extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea ice melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea ice (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea ice and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic ice motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear ice into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the ice pack and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and ice in the western Arctic Ocean.

  20. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  1. The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping

    PubMed Central

    Lutz, Stefanie; McCutcheon, Jenine; McQuaid, James B.; Benning, Liane G.

    2018-01-01

    The Arctic is being disproportionally affected by climate change compared with other geographic locations, and is currently experiencing unprecedented melt rates. The Greenland Ice Sheet (GrIS) can be regarded as the largest supraglacial ecosystem on Earth, and ice algae are the dominant primary producers on bare ice surfaces throughout the course of a melt season. Ice-algal-derived pigments cause a darkening of the ice surface, which in turn decreases albedo and increases melt rates. The important role of ice algae in changing melt rates has only recently been recognized, and we currently know little about their community compositions and functions. Here, we present the first analysis of ice algal communities across a 100 km transect on the GrIS by high-throughput sequencing and subsequent oligotyping of the most abundant taxa. Our data reveal an extremely low algal diversity with Ancylonema nordenskiöldii and a Mesotaenium species being by far the dominant taxa at all sites. We employed an oligotyping approach and revealed a hidden diversity not detectable by conventional clustering of operational taxonomic units and taxonomic classification. Oligotypes of the dominant taxa exhibit a site-specific distribution, which may be linked to differences in temperatures and subsequently the extent of the melting. Our results help to better understand the distribution patterns of ice algal communities that play a crucial role in the GrIS ecosystem. PMID:29547098

  2. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    NASA Astrophysics Data System (ADS)

    Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.

    2014-12-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation. Sea ice extent has constantly declined since 1980s. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) in April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness between 2011 and 2014 were estimated using CryoSat-2 SAR and SARIn mode data that have sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard, i.e., elevation difference between the top of sea ice surface should be calculated. Freeboard can be estimated through detecting leads. We proposed a novel lead detection approach. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, stack standard deviation, skewness and kurtosis were examined to distinguish leads from sea ice. Near-real time cloud-free MODIS images corresponding to CryoSat-2 data measured were used to visually identify leads. Rule-based machine learning approaches such as See5.0 and random forest were used to identify leads. The proposed lead detection approach better distinguished leads from sea ice than the existing approaches

  3. Current Status and Future Plan of Arctic Sea Ice monitoring in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Park, J.

    2016-12-01

    Arctic sea ice is one of the most important parameters in climate. For monitoring of sea ice changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic sea ice monitoring system" to retrieve the sea ice extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic sea ice extent. This system has been implemented to the web site for real-time public service. The sea ice information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The sea ice information like sea ice extent, sea ice surface roughness, and predictive sea ice extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic sea ice" twice a year. We are trying to add more sea ice information into this system. Details of current status and future plan of Arctic sea ice monitoring and the methodology of the sea ice information retrievals will be presented in the meeting.

  4. Arctic Sea Ice Simulation in the PlioMIP Ensemble

    NASA Technical Reports Server (NTRS)

    Howell, Fergus W.; Haywood, Alan M.; Otto-Bliesner, Bette L.; Bragg, Fran; Chan, Wing-Le; Chandler, Mark A.; Contoux, Camille; Kamae, Youichi; Abe-Ouchi, Ayako; Rosenbloom, Nan A.; hide

    2016-01-01

    Eight general circulation models have simulated the mid-Pliocene warm period (mid-Pliocene, 3.264 to 3.025 Ma) as part of the Pliocene Modelling Intercomparison Project (PlioMIP). Here, we analyse and compare their simulation of Arctic sea ice for both the pre-industrial period and the mid-Pliocene. Mid-Pliocene sea ice thickness and extent is reduced, and the model spread of extent is more than twice the pre-industrial spread in some summer months. Half of the PlioMIP models simulate ice-free conditions in the mid-Pliocene. This spread amongst the ensemble is in line with the uncertainties amongst proxy reconstructions for mid-Pliocene sea ice extent. Correlations between mid-Pliocene Arctic temperatures and sea ice extents are almost twice as strong as the equivalent correlations for the pre-industrial simulations. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.

  5. Fire, ice, water, and dirt: A simple climate model

    NASA Astrophysics Data System (ADS)

    Kroll, John

    2017-07-01

    A simple paleoclimate model was developed as a modeling exercise. The model is a lumped parameter system consisting of an ocean (water), land (dirt), glacier, and sea ice (ice) and driven by the sun (fire). In comparison with other such models, its uniqueness lies in its relative simplicity yet yielding good results. For nominal values of parameters, the system is very sensitive to small changes in the parameters, yielding equilibrium, steady oscillations, and catastrophes such as freezing or boiling oceans. However, stable solutions can be found, especially naturally oscillating solutions. For nominally realistic conditions, natural periods of order 100kyrs are obtained, and chaos ensues if the Milankovitch orbital forcing is applied. An analysis of a truncated system shows that the naturally oscillating solution is a limit cycle with the characteristics of a relaxation oscillation in the two major dependent variables, the ocean temperature and the glacier ice extent. The key to getting oscillations is having the effective emissivity decreasing with temperature and, at the same time, the effective ocean albedo decreases with increasing glacier extent. Results of the original model compare favorably to the proxy data for ice mass variation, but not for temperature variation. However, modifications to the effective emissivity and albedo can be made to yield much more realistic results. The primary conclusion is that the opinion of Saltzman [Clim. Dyn. 5, 67-78 (1990)] is plausible that the external Milankovitch orbital forcing is not sufficient to explain the dominant 100kyr period in the data.

  6. Fire, ice, water, and dirt: A simple climate model.

    PubMed

    Kroll, John

    2017-07-01

    A simple paleoclimate model was developed as a modeling exercise. The model is a lumped parameter system consisting of an ocean (water), land (dirt), glacier, and sea ice (ice) and driven by the sun (fire). In comparison with other such models, its uniqueness lies in its relative simplicity yet yielding good results. For nominal values of parameters, the system is very sensitive to small changes in the parameters, yielding equilibrium, steady oscillations, and catastrophes such as freezing or boiling oceans. However, stable solutions can be found, especially naturally oscillating solutions. For nominally realistic conditions, natural periods of order 100kyrs are obtained, and chaos ensues if the Milankovitch orbital forcing is applied. An analysis of a truncated system shows that the naturally oscillating solution is a limit cycle with the characteristics of a relaxation oscillation in the two major dependent variables, the ocean temperature and the glacier ice extent. The key to getting oscillations is having the effective emissivity decreasing with temperature and, at the same time, the effective ocean albedo decreases with increasing glacier extent. Results of the original model compare favorably to the proxy data for ice mass variation, but not for temperature variation. However, modifications to the effective emissivity and albedo can be made to yield much more realistic results. The primary conclusion is that the opinion of Saltzman [Clim. Dyn. 5, 67-78 (1990)] is plausible that the external Milankovitch orbital forcing is not sufficient to explain the dominant 100kyr period in the data.

  7. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  8. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  10. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka - Reconstructions from biomarker records

    NASA Astrophysics Data System (ADS)

    Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.

    2018-02-01

    The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP25 and the related phytoplankton - sea ice index PIP25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.

  11. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  12. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  13. Contrasting Trends in Arctic and Antarctic Sea Ice Coverage Since the Late 1970s

    NASA Astrophysics Data System (ADS)

    Parkinson, C. L.

    2016-12-01

    Satellite observations have allowed a near-continuous record of Arctic and Antarctic sea ice coverage since late 1978. This record has revealed considerable interannual variability in both polar regions but also significant long-term trends, with the Arctic losing, the Antarctic gaining, and the Earth as a whole losing sea ice coverage. Over the period 1979-2015, the trend in yearly average sea ice extents in the Arctic is -53,100 km2/yr (-4.3 %/decade) and in the Antarctic is 23,800 km2/yr (2.1 %/decade). For all 12 months, trends are negative in the Arctic and positive in the Antarctic, with the highest magnitude monthly trend being for September in the Arctic, at -85,300 km2/yr (-10.9 %/decade). The decreases in Arctic sea ice extents have been so dominant that not a single month since 1986 registered a new monthly record high, whereas 75 months registered new monthly record lows between 1987 and 2015 and several additional record lows were registered in 2016. The Antarctic sea ice record highs and lows are also out of balance, in the opposite direction, although not in such dramatic fashion. Geographic details on the changing ice covers, down to the level of individual pixels, can be seen by examining changes in the length of the sea ice season. Results reveal (and quantify) shortening ice seasons throughout the bulk of the Arctic marginal ice zone, the main exception being within the Bering Sea, and lengthening sea ice seasons through much of the Southern Ocean but shortening seasons in the Bellingshausen Sea, southern Amundsen Sea, and northwestern Weddell Sea. The decreasing Arctic sea ice coverage was widely anticipated and fits well with a large array of environmental changes in the Arctic, whereas the increasing Antarctic sea ice coverage was not widely anticipated and explaining it remains an area of active research by many scientists exploring a variety of potential explanations.

  14. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  15. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Stringer, William J.; Searcy, Craig

    1993-01-01

    Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea ice melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of ice melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal areas with minimal river discharge. The analysis also revealed that the removal of sea ice involves the following: over-ice-flooding along the coast offshore from river delta channels; under-ice flow of 'warm' river water; melting and calving of the fast ice; and, the formation of a bight in the pack ice edge. Two stages in the melting of sea ice were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast ice zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the ice cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore ice are presented.

  16. What About Sea Ice? People, animals, and climate change in the polar regions: An online resource for the International Polar Year and beyond

    NASA Astrophysics Data System (ADS)

    Renfrow, S.; Meier, W. N.; Wolfe, J.; Scott, D.; Leon, A.; Weaver, R.

    2005-12-01

    Decreasing Arctic sea ice has been one of the most noticeable changes on Earth over the past quarter-century. The years 2002 through 2005 have had much lower summer sea ice extents than the long-term (1979-2000). Reduced sea ice extent has a direct impact on Arctic wildlife and people, as well as ramifications for regional and global climate. Students, educators, and the general public want and need to have a better understanding of sea ice. Most of us are unfamiliar with sea ice: what it is, where it occurs, and how it affects global climate. The upcoming International Polar Year will provide an opportunity for the public to learn about sea ice. Here, we provide an overview of sea ice, the changes that the sea ice is undergoing, and information about the relation between sea ice and climate. The information presented here is condensed from the National Snow and Ice Data Center's new 'All About Sea Ice' Web site (http://www.nsidc.org/seaice/), a comprehensive resource of information for sea ice.

  17. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  18. Extent and relevance of stacking disorder in “ice Ic”

    PubMed Central

    Kuhs, Werner F.; Sippel, Christian; Falenty, Andrzej; Hansen, Thomas C.

    2012-01-01

    A solid water phase commonly known as “cubic ice” or “ice Ic” is frequently encountered in various transitions between the solid, liquid, and gaseous phases of the water substance. It may form, e.g., by water freezing or vapor deposition in the Earth’s atmosphere or in extraterrestrial environments, and plays a central role in various cryopreservation techniques; its formation is observed over a wide temperature range from about 120 K up to the melting point of ice. There was multiple and compelling evidence in the past that this phase is not truly cubic but composed of disordered cubic and hexagonal stacking sequences. The complexity of the stacking disorder, however, appears to have been largely overlooked in most of the literature. By analyzing neutron diffraction data with our stacking-disorder model, we show that correlations between next-nearest layers are clearly developed, leading to marked deviations from a simple random stacking in almost all investigated cases. We follow the evolution of the stacking disorder as a function of time and temperature at conditions relevant to atmospheric processes; a continuous transformation toward normal hexagonal ice is observed. We establish a quantitative link between the crystallite size established by diffraction and electron microscopic images of the material; the crystallite size evolves from several nanometers into the micrometer range with progressive annealing. The crystallites are isometric with markedly rough surfaces parallel to the stacking direction, which has implications for atmospheric sciences. PMID:23236184

  19. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  20. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  1. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae

    2014-05-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2

  2. A 100-year Reconstruction of Regional Sea Ice Extent in the Ross and Amundsen-Bellingshausen Seas as Derived from the RICE Ice Core, Coastal West Antarctica

    NASA Astrophysics Data System (ADS)

    Emanuelsson, D. B.; Bertler, N. A. N.; Baisden, W. T.; Keller, E. D.

    2014-12-01

    Antarctic sea ice increased over the past decades. This increase is the result of an increase in the Ross Sea (RS) and along the coast of East Antarctica, whereas the Amundsen-Bellingshausen Seas (ABS) and the Antarctic Peninsula has seen a general decline. Several mechanisms have been suggested as drivers for the regional, complex sea ice pattern, which include changes in ocean currents, wind pattern, as well as ocean and atmospheric temperature. As part of the Roosevelt Island Climate Evolution (RICE) project, a 763 m deep ice core was retrieved from Roosevelt Island (RI; W161° 21', S79°41', 560 m a.s.l.), West Antarctica. The new record provides a unique opportunity to investigate mechanism driving sea ice variability in the RS and ABS sectors. Here we present the water stable isotope record (δD) from the upper part of the RICE core 0-40 m, spanning the time period from 1894 to 2011 (Fig. 1a). Annual δD are correlated with Sea Ice Concentration (SIC). A significant negative (r= -0.45, p≤ 0.05) correlation was found between annual δD and SIC in the eastern RS sector (boxed region in Fig. 1b) for the following months NDJFMA (austral summer and fall). During NDJFMA, RI receives local moisture input from the RS, while during the rest of the year a large extent of this local moisture source area will be covered with sea ice with the exception of the RS Polynya. Concurrently, we observe positive δD and SIC correlations in the ABS, showing a dipole pattern with the eastern RS. For this reason, we suggest that the RICE δD might be used as a proxy for past SIC for the RS and ABS region. There is no overall trend in δD over 100 years (r= -0.08 ‰ dec-1, p= 0.81, 1894-2011). However, we observe a strong increase from 2000-2011 of 17.7 ‰ dec-1(p≤ 0.1), yet the recent δD values and trend of the last decade are not unprecedented (Fig. 1a). We investigate changes in sea surface temperature, atmospheric temperature, inferred surface ocean currents and

  3. Atmospheric Influences on the Anomalous 2016 Antarctic Sea Ice Decay

    NASA Astrophysics Data System (ADS)

    Raphael, M. N.; Schlosser, E.; Haumann, A.

    2017-12-01

    Over the past three decades, a small but significant increase in sea ice extent (SIE) has been observed in the Antarctic. However, in 2016 there was a surprisingly early onset of the melt season. The maximum Antarctic SIE was reached in August rather than end of September, and was followed by a rapid decrease. The decline of the sea ice area (SIA) started even earlier, in July. The retreat of the ice was particularly large in November where Antarctic SIE exhibited a negative anomaly (compared to the 1981-2010 average) of almost 2 Mio. km2, which, combined with reduced Arctic SIE, led to a distinct minimum in global SIE. And, satellite observations show that from November 2016 to February 2017, the daily Antarctic SIE has been at record low levels. We use sea level pressure and geopotential height data from the ECMWF- Interim reanalysis, in conjunction with sea ice data obtained from the National Snow and Ice Data Centre (NSIDC), to investigate possible atmospheric influences on the observed phenomena. Indications are that both the onset of the melt in July and the rapid decrease in SIA and SIE in November were triggered by atmospheric flow patterns related to a positive Zonal Wave 3 index, i.e. synoptic situations leading to strong meridional flow. Additionally the Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. It is likely that the SIE decrease was preconditioned by SIA decrease. Positive feedback effects led to accelerated melt and consequently to the extraordinary low November SIE.

  4. Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.

    2013-12-01

    In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE

  5. The Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  6. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    NASA Astrophysics Data System (ADS)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  7. Evaluation of changes in atmospheric and oceanic fluxes during continental ice sheet retreat

    NASA Astrophysics Data System (ADS)

    Martin, J.; Martin, E. E.; Deuerling, K. M.

    2017-12-01

    Extensive land areas were exposed across North America, Eurasia, and to a lesser extent Greenland as continental ice sheets retreated following the last glacial maximum. A transect of watersheds from the coast to the western Greenland Ice Sheet (GrIS) provides an opportunity to evaluate possible changes in oceanic solute fluxes and atmospheric CO2 exchange as ice sheets retreat. We evaluate these fluxes in one proglacial watershed (draining ice sheet runoff) and four deglaciated watersheds (draining local precipitation and permafrost melt). Sr isotope ratios indicate bedrock near the coast has experienced greater weathering than near the ice sheet. A mass balance model of the major element composition of stream water indicates weathering in deglaciated watersheds is dominated by carbonic acid dissolution of carbonate minerals near the ice sheet that switches to carbonic acid alteration of silicate minerals near the coast. In addition, weathering by sulfuric acid, derived from oxidative dissolution of sulfide minerals, increases from the ice sheet to the coast. These changes in the weathered minerals and weathering acids impact CO2 sequestration associated with weathering. Weathering consumes 350 to 550 µmol CO2/L in watersheds near the ice sheet, but close to the coast, consumes only 15 µmol CO2/L in one watershed and sources 140 µmol CO2/L to the atmosphere at another coastal watershed. The decreasing CO2 weathering sink from the GrIS to coast reflects decreased carbonic acid weathering and increased sulfuric acid weathering of carbonate minerals. The proglacial stream shows downstream variations in composition from mixing of two water sources, with only minor in-stream weathering, which consumes < 0.1 µmol CO2/L. Discharge from the deglaciated watersheds is currently unknown but their higher solute concentrations and CO2 exchange than proglacial systems suggest deglaciated watersheds dominate atmospheric fluxes of CO2 and oceanic solute fluxes. These results

  8. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  9. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    NASA Technical Reports Server (NTRS)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  10. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    DTIC Science & Technology

    2015-11-30

    information from the PIOMAS model [J. Zhang], melt pond coverage from MODIS [Rösel et al., 2012], and ice-age estimates [Maslanik et al., 2011] to...determined from MODIS satellite data using an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc- 6-431-2012. PUBLICATIONS Carmack...from MODIS , and ice-age estimates to this dataset. We have used this extented dataset to build a climatology of the partitioning of solar heat between

  11. A Theory of Heterogeneous Ice Nucleation in the Immersion Mode

    NASA Astrophysics Data System (ADS)

    Barahona, D.

    2017-12-01

    Immersion ice nucleation is likely involved in the initiation of precipitation and determines to a large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory. CNT however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. The theory suggests that many species are very efficient at nucleating ice and it is likely that highly effective INP are not uncommon in the atmosphere; however ice nucleation rates may be slower than currently believed. Predicted nucleation rates show good agreement with experimental results for a diverse set of atmospheric relevant materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  12. High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years

    NASA Astrophysics Data System (ADS)

    Méheust, Marie; Stein, Ruediger; Fahl, Kirsten; Max, Lars; Riethdorf, Jan-Rainer

    2016-04-01

    Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.

  13. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  14. Variability of Arctic Sea Ice as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1998-01-01

    Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to

  15. The Role of Snow and Ice in the Climate System

    ScienceCinema

    Barry, Roger G.

    2017-12-09

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  16. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  17. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  18. Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan; McDonald, Adrian; Rack, Wolfgang

    2016-04-01

    Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production

  19. Collaborative, International Efforts at Estimating Arctic Sea Ice Processes During IPY (Invited)

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Eicken, H.; Wiggins, H. V.

    2009-12-01

    Planning for the fourth IPY was conducted during a time of moderate decadal change in the Arctic. However, after this initial planning was completed, further rapid changes were seen, including a 39 % reduction in summer sea ice extent in 2007 and 2008 relative to the 1980s-1990s, loss of multi-year sea ice, and increased sea ice mobility. The SEARCH and DAMOCLES Programs endeavored to increase communication within the research community to promote observations and understanding of rapidly changing Arctic sea ice conditions during IPY. In May 2008 a web-based Sea Ice Outlook was initiated, an international collaborative effort that synthesizes, on a monthly basis throughout the summer, the community’s projections for September arctic sea ice extent. Each month, participating investigators provided a projection for the mean September sea ice extent based on spring and early summer data, along with a rationale for their estimates. The Outlook continued in summer of 2009. The Outlook is a method of rapidly synthesizing a broad range of remote sensing and field observations collected at the peak of the IPY, with analysis methods ranging from heuristic to statistical to ice-ocean model ensemble runs. The 2008 Outlook was a success with 20 groups participating and providing a median sea ice extent projection from June 2008 data of 4.4 million square kilometers (MSQK)—near the observed extent in September 2008 of 4.7 MSQK, and well below the 1979-2007 climatological extent of 6.7 MSQK. More importantly, the contrast of sea ice conditions and atmospheric forcing in 2008 compared to 2007 provided clues to the future fate of arctic sea ice. The question was whether the previous loss of multi-year ice and delay in autumn freeze-up in 2007 would allow sufficient winter thickening of sea ice to last through the summer 2008, promoting recovery from the 2007 minimum, or whether most first-year sea ice would melt out as in 2005 and 2007, resulting in a new record minimum extent

  20. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea-ice to open ocean

    NASA Astrophysics Data System (ADS)

    Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.

    2016-04-01

    The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime

  1. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations

  2. Trends in Arctic Sea Ice Volume 2010-2013 from CryoSat-2

    NASA Astrophysics Data System (ADS)

    Tilling, R.; Ridout, A.; Wingham, D.; Shepherd, A.; Haas, C.; Farrell, S. L.; Schweiger, A. J.; Zhang, J.; Giles, K.; Laxon, S.

    2013-12-01

    Satellite records show a decline in Arctic sea ice extent over the past three decades with a record minimum in September 2012, and results from the Pan-Arctic Ice-Ocean Modelling and Assimilation System (PIOMAS) suggest that this has been accompanied by a reduction in volume. We use three years of measurements recorded by the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, to generate estimates of seasonal variations and inter-annual trends in Arctic sea ice volume between 2010 and 2013. The CS-2 estimates of sea ice thickness agree with in situ estimates derived from upward looking sonar measurements of ice draught and airborne measurements of ice thickness and freeboard to within 0.1 metres. Prior to the record minimum in summer 2012, autumn and winter Arctic sea ice volume had fallen by ~1300 km3 relative to the previous year. Using the full 3-year period of CS-2 observations, we estimate that winter Arctic sea ice volume has decreased by ~700 km3/yr since 2010, approximately twice the average rate since 1980 as predicted by the PIOMAS.

  3. Moat Development and Evolution on a Perennialy Ice-Covered Lake in East Antarctica

    NASA Astrophysics Data System (ADS)

    Wayt, M. E.; Myers, K. F.; Doran, P.

    2017-12-01

    Lake Fryxell is a closed basin lake located in the lower end of Taylor Valley in McMurdo Dry Valleys of east Antarctica. The lake has an 4 m thick perennial ice-cover, however during the austral summers an ice-free moat forms around the lake margin due to increased temperatures and stream run off. Satellite imagery paired with ground-based camera data from Lake Fryxell were used to determine onset of moat formation, moat duration, and total area of open water at peak formation from 2009 through 2015. Temperature data from a meteorological station on the shore of Lake Fryxell were used to correlate degree days above freezing (DDAF) with moat formation and extent. The results showed that overall, the moat was smallest in 2009-10, accounting for roughly .61% percent of the surface area of Lake Fryxell. In 2010-11 and 2011-12 moat extent increase by roughly 1% and then decreased by 4% in 2012-13. In 2013-14 the moat was at its largest, accounting for about 11% with a decrease in area of 6% the following summer. Preliminary analysis of temperature data suggest a correlation between DDAF and moat extent. Moats make up on average 9% of lake area and are likely sites of elevated primary productivity in the summer. Moats are ice free which allows for unobstructed photosynthetically active radiation to penetrate the shallow water column. We hypothesize projected increases in air temperatures will lead to continued rise in lake level and larger moat areas, making it critical to understand these delicate and rapidly changing ecosystems.

  4. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  5. Global warming releases microplastic legacy frozen in Arctic Sea ice

    NASA Astrophysics Data System (ADS)

    Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.

    2014-06-01

    When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.

  6. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.

    2017-12-01

    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation

  7. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  8. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.

    PubMed

    Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard

    2011-12-02

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  9. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows

    NASA Astrophysics Data System (ADS)

    Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.

    2018-02-01

    The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable

  10. The Rapidly Diminishing Arctic ice Cover and its Potential Impact on Navy Operational Considerations

    NASA Astrophysics Data System (ADS)

    Muench, R. D.; Conlon, D.; Lamb, D.

    2001-12-01

    Observations made from U.S. Navy Fleet submarines during the 1990s have revealed a dramatic decrease in thickness, when compared to historical values, of the central Arctic Ocean pack ice cover. Estimates of this decrease have been as high as 40%. Remote sensing observations have shown a coincident decrease in the areal extent of the pack. The areal decrease has been especially apparent during winter. The overall loss of ice appears to have accelerated over the past decade, raising the possibility that the Northwest Passage and the Northern Sea Route may become seasonally navigable on a regular basis in the coming decade. The ice loss has been most evident in the peripheral seas and continental shelf areas. For example, during winter 2000-2001 the Bering Sea was effectively ice-free, with strong and immediate impacts on the surrounding indigenous populations. Lessening of the peripheral pack ice cover will presumably, lead to accelerated development of the resource-rich regions that surround the deep, central Arctic Ocean basin. This raises potential issues with respect to national security and commercial interests, and has implicit strategic concerns for the Navy. The timeline for a significantly navigable Arctic may extend decades into the future; however, operational requirements must be identified in the nearer term to ensure that the necessary capabilities exist when future Arctic missions do present themselves. A first step is to improve the understanding of the coupled atmosphere/ice/ocean system. Current environmental measurement and prediction, including Arctic weather and ice prediction, shallow water acoustic performance prediction, dynamic ocean environmental changes and data to support navigation is inadequate to support sustained naval operations in the Arctic. A new focus on data collection is required in order to measure, map, monitor and model Arctic weather, ice and oceanographic conditions.

  11. Numerical model of ice melange expansion during abrupt ice-shelf collapse

    NASA Astrophysics Data System (ADS)

    Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.

    2010-12-01

    Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system

  12. Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.

    PubMed

    Warren, Maya M; Hartel, Richard W

    2018-03-01

    Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.

  13. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea

  14. Visualizing Glaciers and Sea Ice via Google Earth

    NASA Astrophysics Data System (ADS)

    Ballagh, L. M.; Fetterer, F.; Haran, T. M.; Pharris, K.

    2006-12-01

    The NOAA team at NSIDC manages over 60 distinct cryospheric and related data products. With an emphasis on data rescue and in situ data, these products hold value for both the scientific and non-scientific user communities. The overarching goal of this presentation is to promote products from two components of the cryosphere (glaciers and sea ice). Our Online Glacier Photograph Database contains approximately 3,000 photographs taken over many decades, exemplifying change in the glacier terminus over time. The sea ice product shows sea ice extent and concentration along with anomalies and trends. This Sea Ice Index product, which starts in 1979 and is updated monthly, provides visuals of the current state of sea ice in both hemispheres with trends and anomalies. The long time period covered by the data set means that many of the trends in ice extent and concentration shown in this product are statistically significant despite the large natural variability in sea ice. The minimum arctic sea ice extent has been a record low in September 2002 and 2005, contributing to an accelerated trend in sea ice reduction. With increasing world-wide interest in indicators of global climate change, and the upcoming International Polar Year, these data products are of interest to a broad audience. To further extend the impact of these data, we have made them viewable through Google Earth via the Keyhole Markup Language (KML). This presents an opportunity to branch out to a more diverse audience by using a new and innovative tool that allows spatial representation of data of significant scientific and educational interest.

  15. Sea Ice Prediction Has Easy and Difficult Years

    NASA Technical Reports Server (NTRS)

    Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward; Cutler, Matthew; Kay, Jennifer; Meier, Walter N.; Stroeve, Julienne; Wiggins, Helen

    2014-01-01

    Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013).

  16. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.

  17. The extent and timing of the last British-Irish Ice Sheet offshore of west Ireland-preliminary findings

    NASA Astrophysics Data System (ADS)

    Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.

    2014-05-01

    Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.

  18. Will Arctic sea ice thickness initialization improve seasonal forecast skill?

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Hawkins, E.; Tietsche, S.

    2014-11-01

    Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

  19. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    NASA Technical Reports Server (NTRS)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  20. Seasonal and interannual variability of the Arctic sea ice: A comparison between AO-FVCOM and observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Chen, Changsheng; Beardsley, Robert C.; Gao, Guoping; Qi, Jianhua; Lin, Huichan

    2016-11-01

    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978-2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ˜0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.

  1. Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland

    PubMed Central

    Larsen, Nicolaj K.; Find, Jesper; Kristensen, Anders; Bjørk, Anders A.; Kjeldsen, Kristian K.; Odgaard, Bent V.; Olsen, Jesper; Kjær, Kurt H.

    2016-01-01

    Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations. PMID:26940998

  2. An Examination of the Sea Ice Rheology for Seasonal Ice Zones Based on Ice Drift and Thickness Observations

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kimura, Noriaki

    2018-02-01

    The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.

  3. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  4. Navy Sea Ice Prediction Systems

    DTIC Science & Technology

    2002-01-01

    for the IABP drifting buoys (red), the model (green), and the model with assimilation (black). 55 Oceanography • Vol. 15 • No. 1/2002 trate the need...SPECIAL ISSUE – NAVY OPERATIONAL MODELS : TEN YEARS LATER Oceanography • Vol. 15 • No. 1/2002 44 ice extent and/or ice thickness. A general trend...most often based on a combination of models and data. Modeling sea ice can be a difficult problem, as it exists in many different forms (Figure 1). It

  5. A review of the physics of ice surface friction and the development of ice skating.

    PubMed

    Formenti, Federico

    2014-01-01

    Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.

  6. Dramatic Contrasts in Arctic vs Antarctic Sea Ice Trends in 3-D Visualizations and Compilations of Monthly Record Highs and Lows

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; DiGirolamo, Nicolo E.

    2016-01-01

    New visualizations dramatically display the decreases in Arctic sea ice coverage over the years 1979-2015, apparent in each month of the year, with not a single record high in ice extents occurring in any month since 1986, a time period with 75 monthly record lows. Results are less dramatic in the Antarctic, but intriguingly in the opposite direction, with only 6 record lows since 1986 and 45 record highs.

  7. Towards development of an operational snow on sea ice product

    NASA Astrophysics Data System (ADS)

    Stroeve, J.; Liston, G. E.; Barrett, A. P.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Sea ice has been visibly changing over the past couple of decades; most notably the annual minimum extent which has shown a distinct downward, and recently accelerating, trend. September mean sea ice extent was over 7×106 km2 in the 1980's, but has averaged less than 5×106 km2 in the last decade. Should this loss continue, there will be wide-ranging impacts on marine ecosystems, coastal communities, prospects for resource extraction and marine activity, and weather conditions in the Arctic and beyond. While changes in the spatial extent of sea ice have been routinely monitored since the 1970s, less is known about how the thickness of the ice cover has changed. While estimates of ice thickness across the Arctic Ocean have become available over the past 20 years based on data from ERS-1/2, Envisat, ICESat, CryoSat-2 satellites and Operation IceBridge aircraft campaigns, the variety of these different measurement approaches, sensor technologies and spatial coverage present formidable challenges. Key among these is that measurement techniques do not measure ice thickness directly - retrievals also require snow depth and density. Towards that end, a sophisticated snow accumulation model is tested in a Lagrangian framework to map daily snow depths across the Arctic sea ice cover using atmospheric reanalysis data as input. Accuracy of the snow accumulation is assessed through comparison with Operation IceBridge data and ice mass balance buoys (IMBs). Impacts on ice thickness retrievals are further discussed.

  8. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed (Technical Monitor); Scambos, Ted

    2004-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approximately 0 deg C and persistent melt ponding is observed, a rapid retreat and disintegration begins. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', B', and Wilkins Ice shelves) in the results of a previous grant under ADRO-1. Modeling of shelf ice flow and the effects of meltwater indicated that melt ponding accelerates shelf breakup by increasing fracturing. The ADRO-2 funding (topic of this report) supported further inquiry into the evolution of ice shelves under warming conditions, and the post-breakup effects on their feeder glaciers. Also, this grant considered fast ice and sea ice characteristics, to the extent that they provide information regarding shelf stability. A major component of this work was in the form of NSIDC image data support and in situ sea ice research on the Aurora Australis 'ARISE' cruise of September 9 2003 through October 28 2003.

  9. Identifying Climate Model Teleconnection Mechanisms Between Arctic Sea Ice Loss and Mid-Latitude Winter Storms

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Mills, C.; Rasch, P. J.; Wang, H.; Yoon, J. H.

    2016-12-01

    The role of Arctic amplification, including observed decreases in sea ice concentration, thickness, and extent, with potential for exciting downstream atmospheric responses in the mid-latitudes, is a timely issue. We identify the role of the regionality of autumn sea ice loss on downstream mid-latitude responses using engineering methodologies adapted to climate modeling, which allow for multiple Arctic sea regions to be perturbed simultaneously. We evaluate downstream responses in various climate fields (e.g., temperature, precipitation, cloud cover) associated with perturbations in the Beaufort/Chukchi Seas and the Kara/Barents Seas. Simulations suggest that the United States response is primarily linked to sea ice changes in the Beaufort/Chukchi Seas, whereas Eurasian response is primarily due to Kara/Barents sea ice coverage changes. Downstream effects are most prominent approximately 6-10 weeks after the initial perturbation (sea ice loss). Our findings suggest that winter mid-latitude storms (connected to the so-called "Polar Vortex") are linked to sea ice loss in particular areas, implying that further sea ice loss associated with climate change will exacerbate these types of extreme events.

  10. Trends in the Length of the Southern Ocean Sea Ice Season: 1979-1999

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite data can be used to observe the sea ice distribution around the continent of Antarctica on a daily basis and hence to determine how many days a year have sea ice at each location. This has been done for each of the 21 years 1979-1999. Mapping the trends in these data over the 21-year period reveals a detailed pattern of changes in the length of the sea ice season around Antarctica. Most of the Ross Sea ice cover has undergone a lengthening of the sea ice season, whereas most of the Amundsen Sea ice cover and almost the entire Bellingshausen Sea ice cover have undergone a shortening of the sea ice season. Results around the rest of the continent, including in the Weddell Sea, are more mixed, but overall, more of the Southern Ocean experienced a lengthening of the sea ice season than a shortening. For instance, the area experiencing a lengthening of the sea ice season by at least 1 day per year is 5.8 x 10(exp 6) sq km, whereas the area experiencing a shortening of the sea ice season by at least 1 day per year is less than half that, at 2.8 x 10(exp 6) sq km. This contrasts sharply with what is happened over the same period in the Arctic, where, overall, there has been some depletion of the ice cover, including shortened sea ice seasons and decreased ice extents.

  11. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    PubMed

    Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S

    2018-03-05

    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.

  12. The role of feedbacks in Antarctic sea ice change

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  13. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    NASA Technical Reports Server (NTRS)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates

  14. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  15. Seasonal Ice Zone Reconnaissance Surveys Coordination

    DTIC Science & Technology

    2013-09-30

    of SIZRS are covered in separate reports. Our long-term goal is to track and understand the interplay among the ice, atmosphere, and ocean...OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Seasonal Ice Zone...sensing resources include MODIS visible and IR imagery, NSIDC ice extent charts based on a composite of passive microwave products (http://nsidc.org

  16. Ice duration drives winter nitrate accumulation in north temperate lakes

    USGS Publications Warehouse

    Powers, Steven M; Labou, Stephanie G.; Baulch, Helen M.; Hunt, Randall J.; Lottig, Noah R.; Hampton, Stephanie E.; Stanley, Emily H.

    2017-01-01

    The duration of winter ice cover on lakes varies substantially with climate variability, and has decreased over the last several decades in many temperate lakes. However, little is known of how changes in seasonal ice cover may affect biogeochemical processes under ice. We examined winter nitrogen (N) dynamics under ice using a 30+ yr dataset from five oligotrophic/mesotrophic north temperate lakes to determine how changes in inorganic N species varied with ice duration. Nitrate accumulated during winter and was strongly related to the number of days since ice-on. Exogenous inputs accounted for less than 3% of nitrate accumulation in four of the five lakes, suggesting a paramount role of nitrification in regulating N transformation and the timing of chemical conditions under ice. Winter nitrate accumulation rates ranged from 0.15 μg N L−1 d−1 to 2.7 μg N L−1 d−1 (0.011–0.19 μM d−1), and the mean for intermediate depths was 0.94 μg N L−1 d−1(0.067 μM d−1). Given that winters with shorter ice duration (< 120 d) have become more frequent in these lakes since the late 1990s, peak winter nitrate concentrations and cumulative nitrate production under ice may be declining. As ice extent and duration change, the physical and chemical conditions supporting life will shift. This research suggests we may expect changes in the form and amount of inorganic N, and altered dissolved nitrogen : phosphorus ratios, in lakes during winters with shorter ice duration.

  17. Variability and trends in the Arctic Sea ice cover: Results from different techniques

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-08-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic sea <span class="hlt">ice</span> cover, especially in the summer, has been the center of attention in recent years. Reports on the sea <span class="hlt">ice</span> cover have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000837.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000837.html"><span>Sea <span class="hlt">ice</span> around Ostrov Sakhalin, eastern Russia</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Located off the east coast of Russia, the Sea of Okhotsk stretches down to 45 degrees North latitude, and sea <span class="hlt">ice</span> forms regularly in the basin. In fact, it is the lowest latitude for seasonal sea <span class="hlt">ice</span> formation in the world. On January 4, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the <span class="hlt">ice</span>-covered Sea of Okhotsk. Every winter, winds from East Siberia, frigid air temperatures, and a large amount of freshwater flowing out from rivers promote the formation of sea <span class="hlt">ice</span> in the region. Much of the freshwater comes from the Amur River, one of the ten longest rivers in the world. From year to year, variations in temperature and wind speed can cause large fluctuations in sea <span class="hlt">ice</span> <span class="hlt">extent</span>. The sea spans more than 1,500,000 square kilometers (600,000 square miles), and <span class="hlt">ice</span> cover can spread across 50 to 90 percent of it at its annual peak. On average, that <span class="hlt">ice</span> persists for 180 days. According to research published in 2014, the region's sea <span class="hlt">ice</span> has been <span class="hlt">decreasing</span> over a 34-year period. Annual <span class="hlt">ice</span> production in the Sea of Okhotsk dropped by more than 11 percent from 1974 to 2008. The researchers suggest that this decline has, at least in part, "led to weakening of the overturning in the North Pacific." Water with less sea <span class="hlt">ice</span> is fresher, less dense, and unable to sink and circulate as well as salty, dense water. A weakened circulation in the North Pacific has implications for the supply of nutrients, such as iron, that affect biological productivity. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1499321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1499321"><span>Performance of a kinetic model for intracellular <span class="hlt">ice</span> formation based on the <span class="hlt">extent</span> of supercooling.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pitt, R E; Chandrasekaran, M; Parks, J E</p> <p>1992-06-01</p> <p>Cryomicroscopy was used to study the incidence of intracellular <span class="hlt">ice</span> formation (IIF) in protoplasts isolated from rye (Secale cereale) leaves during subfreezing isothermal periods and in in vitro mature bovine oocytes during cooling at constant rates. IIF in protoplasts occurred at random times during isothermal periods, and the kinetics of IIF were faster as isothermal temperature <span class="hlt">decreased</span>. Mean IIF times <span class="hlt">decreased</span> from approximately 1700 s at -4.0 degrees C to less than 1 s at -18.5 degrees C. Total incidence of IIF after 200 s increased from 4% at -4.0 degrees C to near 100% at -15.5 degrees C. IIF behavior in protoplasts was qualitatively similar to that for Drosophila melanogaster embryos over the same temperature ranges (Myers et al., Cryobiology 26, 472-484, 1989), but the kinetics of IIF were about five times faster in protoplasts. IIF observations in linear cooling of bovine oocytes indicated a median IIF temperature of -11 degrees C at 16 degrees C/min and total incidences of 97%, 50%, and 19% at 16, 8, and 4 degrees C/min, respectively. A stochastic model of IIF was developed which preserved certain features of an earlier model (Pitt et al. Cryobiology 28, 72-86, 1991), namely Weibull behavior in IIF temperatures during rapid linear cooling, but with a departure from the concept of a supercooling tolerance. Instead, the new model uses the osmotic state of the cell, represented by the <span class="hlt">extent</span> of supercooling, as the independent variable governing the kinetics of IIF. Two kinetic parameters are needed for the model: a scale factor tau 0 dictating the sensitivity to supercooling, and an exponent rho dictating the strength of time dependency. The model was fit to the data presented in this study as well as those from Myers et al. and Pitt et al. for D. melanogaster embryos with and without cryoprotectant, and from Toner et al. (Cryobiology 28, 55-71, 1991) for mouse oocytes. In protoplasts, D. melanogaster embryos, and mouse oocytes, the parameters were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930082126','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930082126"><span>The Calculation of the Heat Required for Wing Thermal <span class="hlt">Ice</span> Prevention in Specified <span class="hlt">Icing</span> Conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.</p> <p>1947-01-01</p> <p>Flight tests were made in natural <span class="hlt">icing</span> conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to <span class="hlt">ice</span> formation were made simultaneously with the procurement of airfoil thermal data. The <span class="hlt">extent</span> of knowledge on the meteorology of <span class="hlt">icing</span>, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6054P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6054P"><span>The Navy's First Seasonal <span class="hlt">Ice</span> Forecasts using the Navy's Arctic Cap Nowcast/Forecast System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Preller, Ruth</p> <p>2013-04-01</p> <p>As conditions in the Arctic continue to change, the Naval Research Laboratory (NRL) has developed an interest in longer-term seasonal <span class="hlt">ice</span> <span class="hlt">extent</span> forecasts. The Arctic Cap Nowcast/Forecast System (ACNFS), developed by the Oceanography Division of NRL, was run in forward model mode, without assimilation, to estimate the minimum sea <span class="hlt">ice</span> <span class="hlt">extent</span> for September 2012. The model was initialized with varying assimilative ACNFS analysis fields (June 1, July 1, August 1 and September 1, 2012) and run forward for nine simulations using the archived Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric forcing fields from 2003-2011. The mean <span class="hlt">ice</span> <span class="hlt">extent</span> in September, averaged across all ensemble members was the projected summer <span class="hlt">ice</span> <span class="hlt">extent</span>. These results were submitted to the Study of Environmental Arctic Change (SEARCH) Sea <span class="hlt">Ice</span> Outlook project (http://www.arcus.org/search/seaiceoutlook). The ACNFS is a ~3.5 km coupled <span class="hlt">ice</span>-ocean model that produces 5 day forecasts of the Arctic sea <span class="hlt">ice</span> state in all <span class="hlt">ice</span> covered areas in the northern hemisphere (poleward of 40° N). The ocean component is the HYbrid Coordinate Ocean Model (HYCOM) and is coupled to the Los Alamos National Laboratory Community <span class="hlt">Ice</span> CodE (CICE) via the Earth System Modeling Framework (ESMF). The ocean and <span class="hlt">ice</span> models are run in an assimilative cycle with the Navy's Coupled Ocean Data Assimilation (NCODA) system. Currently the ACNFS is being transitioned to operations at the Naval Oceanographic Office.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS14A..04Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS14A..04Z"><span>Local Effects of <span class="hlt">Ice</span> Floes on Skin Sea Surface Temperature in the Marginal <span class="hlt">Ice</span> Zone from UAVs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.</p> <p>2013-12-01</p> <p>Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea <span class="hlt">ice</span> <span class="hlt">extent</span>, and loss of <span class="hlt">ice</span> in areas that had been <span class="hlt">ice</span>-covered throughout human memory. Even the oldest and thickest <span class="hlt">ice</span> types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal <span class="hlt">ice</span> zones (MIZ), or areas where the "<span class="hlt">ice</span>-albedo feedback" driven by solar warming is highest and <span class="hlt">ice</span> melt is extensive, may provide insights into the <span class="hlt">extent</span> of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-<span class="hlt">ice</span> margins. It permits monitoring the <span class="hlt">ice</span> <span class="hlt">extent</span> and coverage, as well as the <span class="hlt">ice</span> and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the <span class="hlt">ice</span>-ocean interface. Here, we present measurements of visible and IR imagery of melting <span class="hlt">ice</span> floes in the marginal <span class="hlt">ice</span> zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal <span class="hlt">Ice</span> Zone Ocean and <span class="hlt">Ice</span> Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the <span class="hlt">ice</span> floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual <span class="hlt">ice</span> floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the <span class="hlt">ice</span> floe shows the coldest skin SST, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070034151','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070034151"><span>Thin Sea-<span class="hlt">Ice</span> Thickness as Inferred from Passive Microwave and In Situ Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al</p> <p>2007-01-01</p> <p>Since microwave radiometric signals from sea-<span class="hlt">ice</span> strongly reflect physical conditions of a layer near the <span class="hlt">ice</span> surface, a relationship of brightness temperature with thickness is possible especially during the early stages of <span class="hlt">ice</span> growth. Sea <span class="hlt">ice</span> is most saline during formation stage and as the salinity <span class="hlt">decreases</span> with time while at the same time the thickness of the sea <span class="hlt">ice</span> increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the <span class="hlt">extent</span> to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-<span class="hlt">ice</span>, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-<span class="hlt">ice</span> thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with <span class="hlt">ice</span> thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between <span class="hlt">ice</span> thickness and salinity in the layer near the <span class="hlt">ice</span> surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin <span class="hlt">ice</span>, passive microwave radiometric signals contain, <span class="hlt">ice</span> thickness information which can be utilized in polar process studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0750J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0750J"><span>Landfast Sea <span class="hlt">Ice</span> Breakouts: Stabilizing <span class="hlt">Ice</span> Features, Oceanic and Atmospheric Forcing at Barrow, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, J.; Eicken, H.; Mahoney, A. R.; MV, R.; Kambhamettu, C.; Fukamachi, Y.; Ohshima, K. I.; George, C.</p> <p>2016-12-01</p> <p>Landfast sea <span class="hlt">ice</span> is an important seasonal feature along most Arctic coastlines, such as that of the Chukchi Sea near Barrow, Alaska. Its stability throughout the <span class="hlt">ice</span> season is determined by many factors but grounded pressure ridges are the primary stabilizing component. Landfast <span class="hlt">ice</span> breakouts occur when these grounded ridges fail or unground, and previously stationary <span class="hlt">ice</span> detaches from the coast and drifts away. Using ground-based radar imagery from a coastal <span class="hlt">ice</span> and ocean observatory at Barrow, we have developed a method to estimate the <span class="hlt">extent</span> of grounded ridges by tracking <span class="hlt">ice</span> motion and deformation over the course of winter and have derived <span class="hlt">ice</span> keel depth and potential for grounding from cumulative convergent <span class="hlt">ice</span> motion. Estimates of landfast <span class="hlt">ice</span> grounding strength have been compared to the atmospheric and oceanic stresses acting on the landfast <span class="hlt">ice</span> before and during breakout events to determine prevailing causes for the failure of stabilizing features. Applying this approach to two case studies in 2008 and 2010, we conclude that a combination of atmospheric and oceanic stresses may have caused the breakouts analyzed in this study, with the latter as the dominant force. Preconditioning (as weakening) of grounded ridges by sea level variations may facilitate failure of the <span class="hlt">ice</span> sheet leading to breakout events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...126...50J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...126...50J"><span>Landfast sea <span class="hlt">ice</span> breakouts: Stabilizing <span class="hlt">ice</span> features, oceanic and atmospheric forcing at Barrow, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Joshua; Eicken, Hajo; Mahoney, Andrew; MV, Rohith; Kambhamettu, Chandra; Fukamachi, Yasushi; Ohshima, Kay I.; George, J. Craig</p> <p>2016-09-01</p> <p>Landfast sea <span class="hlt">ice</span> is an important seasonal feature along most Arctic coastlines, such as that of the Chukchi Sea near Barrow, Alaska. Its stability throughout the <span class="hlt">ice</span> season is determined by many factors but grounded pressure ridges are the primary stabilizing component. Landfast <span class="hlt">ice</span> breakouts occur when these grounded ridges fail or unground, and previously stationary <span class="hlt">ice</span> detaches from the coast and drifts away. Using ground-based radar imagery from a coastal <span class="hlt">ice</span> and ocean observatory at Barrow, we have developed a method to estimate the <span class="hlt">extent</span> of grounded ridges by tracking <span class="hlt">ice</span> motion and deformation over the course of winter and have derived <span class="hlt">ice</span> keel depth and potential for grounding from cumulative convergent <span class="hlt">ice</span> motion. Estimates of landfast <span class="hlt">ice</span> grounding strength have been compared to the atmospheric and oceanic stresses acting on the landfast <span class="hlt">ice</span> before and during breakout events to determine prevailing causes for the failure of stabilizing features. Applying this approach to two case studies in 2008 and 2010, we conclude that a combination of atmospheric and oceanic stresses may have caused the breakouts analyzed in this study, with the latter as the dominant force. Preconditioning (as weakening) of grounded ridges by sea level variations may facilitate failure of the <span class="hlt">ice</span> sheet leading to breakout events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6297D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6297D"><span>Interactions between Arctic sea <span class="hlt">ice</span> drift, concentration and thickness modeled by NEMO-LIM3 at different resolutions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Docquier, David; Massonnet, François; Raulier, Jonathan; Lecomte, Olivier; Fichefet, Thierry</p> <p>2016-04-01</p> <p>Sea <span class="hlt">ice</span> concentration and thickness have substantially <span class="hlt">decreased</span> in the Arctic since the beginning of the satellite era. As a result, mechanical strength has <span class="hlt">decreased</span> allowing more fracturing and leading to increased sea <span class="hlt">ice</span> drift. However, recent studies have highlighted that the interplay between sea <span class="hlt">ice</span> thermodynamics and dynamics is poorly represented in contemporary global climate model (GCM) simulations. Thus, the considerable inter-model spread in terms of future sea <span class="hlt">ice</span> <span class="hlt">extent</span> projections could be reduced by better understanding the interactions between drift, concentration and thickness. This study focuses on the results coming from the global coupled ocean-sea <span class="hlt">ice</span> model NEMO-LIM3 between 1979 and 2012. Three different simulations are forced by the Drakkar Forcing Set (DFS) 5.2 and run on the global tripolar ORCA grid at spatial resolutions of 0.25, 1° and 2°. The relation between modeled sea <span class="hlt">ice</span> drift, concentration and thickness is further analyzed, compared to observations and discussed in the framework of the above-mentioned poor representation. It is proposed as a process-based metric for evaluating model performance. This study forms part of the EU Horizon 2020 PRIMAVERA project aiming at developing a new generation of advanced and well-evaluated high-resolution GCMs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatGe...7..497B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatGe...7..497B"><span>Deformation, warming and softening of Greenland’s <span class="hlt">ice</span> by refreezing meltwater</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.</p> <p>2014-07-01</p> <p>Meltwater beneath the large <span class="hlt">ice</span> sheets can influence <span class="hlt">ice</span> flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm <span class="hlt">ice</span>. Refreezing has produced large basal <span class="hlt">ice</span> units in East Antarctica. Bubble-free basal <span class="hlt">ice</span> units also outcrop at the edge of the Greenland <span class="hlt">ice</span> sheet, but the <span class="hlt">extent</span> of refreezing and its influence on Greenland’s <span class="hlt">ice</span> flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal <span class="hlt">ice</span> units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are <span class="hlt">ice</span>. Using radar data we determine the <span class="hlt">extent</span> of the units, which significantly disrupt the overlying <span class="hlt">ice</span> sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric <span class="hlt">ice</span> derived from snowfall. We map these units along the <span class="hlt">ice</span> sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating <span class="hlt">ice</span> tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal <span class="hlt">ice</span> warms the Greenland <span class="hlt">ice</span> sheet, modifying the temperature structure of the <span class="hlt">ice</span> column and influencing <span class="hlt">ice</span> flow and grounding line melting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C42B..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C42B..02D"><span>Will sea <span class="hlt">ice</span> thickness initialisation improve Arctic seasonal-to-interannual forecast skill?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, J. J.; Hawkins, E.; Tietsche, S.</p> <p>2014-12-01</p> <p>A number of recent studies have suggested that Arctic sea <span class="hlt">ice</span> thickness is an important predictor of Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span>. However, coupled forecast systems do not currently use sea <span class="hlt">ice</span> thickness observations in their initialization and are therefore missing a potentially important source of additional skill. A set of ensemble potential predictability experiments, with a global climate model, initialized with and without knowledge of the sea <span class="hlt">ice</span> thickness initial state, have been run to investigate this. These experiments show that accurate knowledge of the sea <span class="hlt">ice</span> thickness field is crucially important for sea <span class="hlt">ice</span> concentration and <span class="hlt">extent</span> forecasts up to eight months ahead. Perturbing sea <span class="hlt">ice</span> thickness also has a significant impact on the forecast error in the 2m temperature and surface pressure fields a few months ahead. These results show that advancing capabilities to observe and assimilate sea <span class="hlt">ice</span> thickness into coupled forecast systems could significantly increase skill.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000751.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000751.html"><span>Sea <span class="hlt">Ice</span> off the Princess Astrid Coast</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-08</p> <p>On April 5, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of sea <span class="hlt">ice</span> off the coast of East Antarctica’s Princess Astrid Coast. White areas close to the continent are sea <span class="hlt">ice</span>, while white areas in the northeast corner of the image are clouds. One way to better distinguish <span class="hlt">ice</span> from clouds is with false-color imagery. In the false-color view of the scene here, <span class="hlt">ice</span> is blue and clouds are white. The image was acquired after Antarctic sea <span class="hlt">ice</span> had passed its annual minimum <span class="hlt">extent</span> (reached on February 20, 2015), and had resumed expansion toward its maximum <span class="hlt">extent</span> (usually reached in September). Credit: NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen via NASA's Earth Observatory Read more: www.nasa.gov/content/sea-<span class="hlt">ice</span>-off-east-antarcticas-princes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23D1173L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23D1173L"><span>Sparse <span class="hlt">ice</span>: Geophysical, biological and Indigenous knowledge perspectives on a habitat for <span class="hlt">ice</span>-associated fauna</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, O. A.; Eicken, H.; Weyapuk, W., Jr.; Adams, B.; Mohoney, A. R.</p> <p>2015-12-01</p> <p>The significance of highly dispersed, remnant Arctic sea <span class="hlt">ice</span> as a platform for marine mammals and indigenous hunters in spring and summer may have increased disproportionately with changes in the <span class="hlt">ice</span> cover. As dispersed remnant <span class="hlt">ice</span> becomes more common in the future it will be increasingly important to understand its ecological role for upper trophic levels such as marine mammals and its role for supporting primary productivity of <span class="hlt">ice</span>-associated algae. Potential sparse <span class="hlt">ice</span> habitat at sea <span class="hlt">ice</span> concentrations below 15% is difficult to detect using remote sensing data alone. A combination of high resolution satellite imagery (including Synthetic Aperture Radar), data from the Barrow sea <span class="hlt">ice</span> radar, and local observations from indigenous sea <span class="hlt">ice</span> experts was used to detect sparse sea <span class="hlt">ice</span> in the Alaska Arctic. Traditional knowledge on sea <span class="hlt">ice</span> use by marine mammals was used to delimit the scales where sparse <span class="hlt">ice</span> could still be used as habitat for seals and walrus. Potential sparse <span class="hlt">ice</span> habitat was quantified with respect to overall spatial <span class="hlt">extent</span>, size of <span class="hlt">ice</span> floes, and density of floes. Sparse <span class="hlt">ice</span> persistence offshore did not prevent the occurrence of large coastal walrus haul outs, but the lack of sparse <span class="hlt">ice</span> and early sea <span class="hlt">ice</span> retreat coincided with local observations of ringed seal pup mortality. Observations from indigenous hunters will continue to be an important source of information for validating remote sensing detections of sparse <span class="hlt">ice</span>, and improving understanding of marine mammal adaptations to sea <span class="hlt">ice</span> change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.3105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.3105P"><span>Sea-<span class="hlt">ice</span> evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-<span class="hlt">ice</span> model setup for the North Sea and Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari</p> <p>2017-08-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice</span>-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-<span class="hlt">ice</span> pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-<span class="hlt">ice</span> component of a new NEMO-LIM3.6-based ocean-sea-<span class="hlt">ice</span> setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-<span class="hlt">ice</span> parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-<span class="hlt">ice</span> <span class="hlt">extent</span>, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea <span class="hlt">ice</span> <span class="hlt">extent</span> is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct <span class="hlt">ice</span> thickness distribution is more challenging. Based on the simulated <span class="hlt">ice</span> thickness distribution we estimate the undeformed and deformed <span class="hlt">ice</span> thickness and concentration in the Baltic Sea, which compares reasonably well with observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9513411C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9513411C"><span>Arctic multiyear <span class="hlt">ice</span> classification and summer <span class="hlt">ice</span> cover using passive microwave satellite data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comiso, J. C.</p> <p>1990-08-01</p> <p>The ability to classify and monitor Arctic multiyear sea <span class="hlt">ice</span> cover using multispectral passive microwave data is studied. Sea <span class="hlt">ice</span> concentration maps during several summer minima have been analyzed to obtain estimates of <span class="hlt">ice</span> surviving the summer. The results are compared with multiyear <span class="hlt">ice</span> concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear <span class="hlt">ice</span>. The multiyear <span class="hlt">ice</span> cover inferred from the winter data is approximately 25 to 40% less than the summer <span class="hlt">ice</span> cover minimum, suggesting that even during winter when the emissivity of sea <span class="hlt">ice</span> is most stable, passive microwave data may account for only a fraction of the total multiyear <span class="hlt">ice</span> cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear <span class="hlt">ice</span> floes in the Arctic, especially those near the summer marginal <span class="hlt">ice</span> zone, have first-year <span class="hlt">ice</span> or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-<span class="hlt">ice</span> interface, which often occurs near the marginal <span class="hlt">ice</span> zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear <span class="hlt">ice</span>. Hence the multiyear <span class="hlt">ice</span> data should be studied in conjunction with the previous summer <span class="hlt">ice</span> data to obtain a more complete characterization of the state of the Arctic <span class="hlt">ice</span> cover. The total <span class="hlt">extent</span> and actual areas of the summertime Arctic pack <span class="hlt">ice</span> were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable <span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..187K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..187K"><span>Last Glacial-Interglacial Transition <span class="hlt">ice</span> dynamics in the Wicklow Mountains, Ireland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick</p> <p>2017-04-01</p> <p>Understanding of the <span class="hlt">extent</span> and dynamics of former <span class="hlt">ice</span> masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local <span class="hlt">ice</span> cap within the larger British-Irish <span class="hlt">Ice</span> Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of <span class="hlt">ice</span> cap disintegration to a topographically constrained <span class="hlt">ice</span> mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and <span class="hlt">extent</span> of mountain glaciation and <span class="hlt">ice</span> recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow <span class="hlt">Ice</span> Cap. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of <span class="hlt">ice</span> mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on <span class="hlt">ice</span> mass <span class="hlt">extent</span>, dynamics and retreat patterns, offering an insight into small <span class="hlt">ice</span> mass behaviour in a warming climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4366H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4366H"><span>Deciphering the evolution of the last Eurasian <span class="hlt">ice</span> sheets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge</p> <p>2016-04-01</p> <p>Glacial geologists need <span class="hlt">ice</span> sheet-scale chronological reconstructions of former <span class="hlt">ice</span> <span class="hlt">extent</span> to set individual records in a wider context and compare interpretations of <span class="hlt">ice</span> sheet response to records of past environmental changes. <span class="hlt">Ice</span> sheet modellers require empirical reconstructions on size and volume of past <span class="hlt">ice</span> sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian <span class="hlt">ice</span> sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas <span class="hlt">ice</span> sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published <span class="hlt">ice</span>-sheet margin positions to reconstruct time-slice maps of the <span class="hlt">ice</span> sheets' <span class="hlt">extent</span>, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum <span class="hlt">extent</span>, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial margin of the SIS reached its maximum <span class="hlt">extent</span> up to 7000 years later than the westernmost marine margin; iii) the combined maximum <span class="hlt">ice</span> volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012715','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012715"><span>Time-dependence of sea-<span class="hlt">ice</span> concentration and multiyear <span class="hlt">ice</span> fraction in the Arctic Basin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.</p> <p>1978-01-01</p> <p>The time variation of the sea-<span class="hlt">ice</span> concentration and multiyear <span class="hlt">ice</span> fraction within the pack <span class="hlt">ice</span> in the Arctic Basin is examined, using microwave images of sea <span class="hlt">ice</span> recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea <span class="hlt">ice</span> during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic <span class="hlt">Ice</span> Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-<span class="hlt">ice</span> concentration (divergence). These observations indicate significant variations in the sea-<span class="hlt">ice</span> concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-<span class="hlt">ice</span> pack, heretofore unobserved large areas, several hundred kilometers in <span class="hlt">extent</span>, of sea-<span class="hlt">ice</span> concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C42B..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C42B..03D"><span>Assessing deformation and morphology of Arctic landfast sea <span class="hlt">ice</span> using InSAR to support use and management of coastal <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.</p> <p>2016-12-01</p> <p>Arctic landfast sea <span class="hlt">ice</span> provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea <span class="hlt">ice</span> by all stakeholders is increasingly limited by reduced stability of the <span class="hlt">ice</span> cover, which results in more deformation and rougher <span class="hlt">ice</span> conditions as well as reduced <span class="hlt">extent</span> and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea <span class="hlt">ice</span> use, in particular <span class="hlt">ice</span> stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast <span class="hlt">ice</span> displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of <span class="hlt">ice</span> pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the <span class="hlt">extent</span> of landfast <span class="hlt">ice</span> and regions of deformation within, quantitative analysis of small-scale <span class="hlt">ice</span> motion has yet to be thoroughly validated and its potential remains largely underutilized in sea <span class="hlt">ice</span> science. Using TanDEM-X interferometry, we derive surface displacements of landfast <span class="hlt">ice</span> within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast <span class="hlt">ice</span> deformation in other regions of landfast <span class="hlt">ice</span> using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea <span class="hlt">ice</span> patterns and local in-situ observations. The utility of InSAR to quantify sea <span class="hlt">ice</span> roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the <span class="hlt">ice</span> cover. The InSAR-derived DEM shows good correlation with a high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21G1186T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21G1186T"><span>There goes the sea <span class="hlt">ice</span>: following Arctic sea <span class="hlt">ice</span> parcels and their properties.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.</p> <p>2017-12-01</p> <p>Arctic sea <span class="hlt">ice</span> distribution has changed considerably over the last couple of decades. Sea <span class="hlt">ice</span> <span class="hlt">extent</span> record minimums have been observed in recent years, the distribution of <span class="hlt">ice</span> age now heavily favors younger <span class="hlt">ice</span>, and sea <span class="hlt">ice</span> is likely thinning. This new state of the Arctic sea <span class="hlt">ice</span> cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the <span class="hlt">ice</span> pack. The shift in the state of the <span class="hlt">ice</span> cover, from a pack dominated by older <span class="hlt">ice</span>, to the current state of a pack with mostly young <span class="hlt">ice</span>, impacts specific properties of the <span class="hlt">ice</span> pack, and consequently the pack's response to the changing Arctic climate. For example, younger <span class="hlt">ice</span> typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year <span class="hlt">ice</span> is typically thinner and more fragile than multi-year <span class="hlt">ice</span>, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the <span class="hlt">ice</span> pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea <span class="hlt">ice</span> parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as <span class="hlt">ice</span> surface temperature, albedo, <span class="hlt">ice</span> concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the <span class="hlt">ice</span> surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.nsf.gov/pubs/2005/nsf0539/nsf0539_5.pdf','USGSPUBS'); return false;" href="http://www.nsf.gov/pubs/2005/nsf0539/nsf0539_5.pdf"><span>Correlated declines in Pacific arctic snow and sea <span class="hlt">ice</span> cover</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon</p> <p>2005-01-01</p> <p>Simulations of future climate suggest that global warming will reduce Arctic snow and <span class="hlt">ice</span> cover, resulting in <span class="hlt">decreased</span> surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has <span class="hlt">decreased</span>, and sea <span class="hlt">ice</span> has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea <span class="hlt">ice</span>, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea <span class="hlt">ice</span> also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the <span class="hlt">extent</span> of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea <span class="hlt">ice</span> cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013478','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013478"><span>Variability and Anomalous Trends in the Global Sea <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2012-01-01</p> <p>The advent of satellite data came fortuitously at a time when the global sea <span class="hlt">ice</span> cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea <span class="hlt">ice</span> cover. The <span class="hlt">extent</span> of the sea <span class="hlt">ice</span> in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea <span class="hlt">ice</span> area, which is the <span class="hlt">ice</span> that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial <span class="hlt">ice</span> <span class="hlt">extent</span> was almost as low as in 2007 in 2011. The multiyear <span class="hlt">ice</span>, which is the thick component of the perennial <span class="hlt">ice</span> and regarded as the mainstay of the Arctic sea <span class="hlt">ice</span> cover is declining at an even higher rate of -19% per decade. The more rapid decline of the <span class="hlt">extent</span> of this thicker <span class="hlt">ice</span> type means that the volume of the <span class="hlt">ice</span> is also declining making the survival of the Arctic <span class="hlt">ice</span> in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial <span class="hlt">ice</span> in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea <span class="hlt">ice</span> cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in <span class="hlt">ice</span> <span class="hlt">extent</span> is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the <span class="hlt">extent</span> of the sea <span class="hlt">ice</span> cover in the Ross Sea region. The results of analysis of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21E1162L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21E1162L"><span>Exploring changes in vertical <span class="hlt">ice</span> <span class="hlt">extent</span> along the margin of the East Antarctic <span class="hlt">Ice</span> Sheet in western Dronning Maud Land - initial results of the MAGIC-DML collaboration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.</p> <p>2017-12-01</p> <p>Numerical <span class="hlt">ice</span> sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past <span class="hlt">ice</span> geometries with field-based reconstructions from geological, geomorphological, and <span class="hlt">ice</span> core data. However, on the East Antarctic <span class="hlt">Ice</span> sheet, there are few empirical data with which to reconstruct changes in <span class="hlt">ice</span> sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the <span class="hlt">ice</span> sheet margin, because <span class="hlt">ice</span> core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving <span class="hlt">ice</span> sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of <span class="hlt">ice</span> surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical <span class="hlt">ice</span>-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4435194','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4435194"><span>Development of a Capacitive <span class="hlt">Ice</span> Sensor to Measure <span class="hlt">Ice</span> Growth in Real Time</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang</p> <p>2015-01-01</p> <p>This paper presents the development of the capacitive sensor to measure the growth of <span class="hlt">ice</span> on a fuel pipe surface in real time. The <span class="hlt">ice</span> sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the <span class="hlt">ice</span> formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the <span class="hlt">ice</span> formation conditions. From the humidity, a water film is formed on the <span class="hlt">ice</span> sensor, which results in an increase in capacitance. <span class="hlt">Ice</span> nucleation occurs, followed by the rapid formation of frost <span class="hlt">ice</span> that <span class="hlt">decreases</span> the capacitance suddenly. The capacitance is saturated. The developed <span class="hlt">ice</span> sensor explains the <span class="hlt">ice</span> growth providing information about the <span class="hlt">icing</span> temperature in real time. PMID:25808770</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25808770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25808770"><span>Development of a capacitive <span class="hlt">ice</span> sensor to measure <span class="hlt">ice</span> growth in real time.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang</p> <p>2015-03-19</p> <p>This paper presents the development of the capacitive sensor to measure the growth of <span class="hlt">ice</span> on a fuel pipe surface in real time. The <span class="hlt">ice</span> sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the <span class="hlt">ice</span> formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the <span class="hlt">ice</span> formation conditions. From the humidity, a water film is formed on the <span class="hlt">ice</span> sensor, which results in an increase in capacitance. <span class="hlt">Ice</span> nucleation occurs, followed by the rapid formation of frost <span class="hlt">ice</span> that <span class="hlt">decreases</span> the capacitance suddenly. The capacitance is saturated. The developed <span class="hlt">ice</span> sensor explains the <span class="hlt">ice</span> growth providing information about the <span class="hlt">icing</span> temperature in real time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920040056&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920040056&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes"><span>Effects of weather on the retrieval of sea <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> type from passive microwave data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maslanik, J. A.</p> <p>1992-01-01</p> <p>Effects of wind, water vapor, and cloud liquid water on <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> type calculated from passive microwave data are assessed through radiative transfer calculations and observations. These weather effects can cause overestimates in <span class="hlt">ice</span> concentration and more substantial underestimates in multi-year <span class="hlt">ice</span> percentage by <span class="hlt">decreasing</span> polarization and by <span class="hlt">decreasing</span> the gradient between frequencies. The effect of surface temperature and air temperature on the magnitudes of weather-related errors is small for <span class="hlt">ice</span> concentration and substantial for multiyear <span class="hlt">ice</span> percentage. The existing weather filter in the NASA Team Algorithm addresses only weather effects over open ocean; the additional use of local open-ocean tie points and an alternative weather correction for the marginal <span class="hlt">ice</span> zone can further reduce errors due to weather. <span class="hlt">Ice</span> concentrations calculated using 37 versus 18 GHz data show little difference in total <span class="hlt">ice</span> covered area, but greater differences in intermediate concentration classes. Given the magnitude of weather-related errors in <span class="hlt">ice</span> classification from passive microwave data, corrections for weather effects may be necessary to detect small trends in <span class="hlt">ice</span> covered area and <span class="hlt">ice</span> type for climate studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J"><span>Antarctic Climate Variability: Covariance of Ozone and Sea <span class="hlt">Ice</span> in Atmosphere - Ocean Coupled Model Simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jrrar, Amna; Abraham, N. Luke; Pyle, John A.; Holland, David</p> <p>2014-05-01</p> <p>Changes in sea <span class="hlt">ice</span> significantly modulate climate change because of its high reflective and insulating nature. While Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Extent</span> (SIE) shows a negative trend. Antarctic SIE shows a weak but positive trend, estimated at 0.127 x 106 km2 per decade. The trend results from large regional cancellations, more <span class="hlt">ice</span> in the Weddell and the Ross seas, and less <span class="hlt">ice</span> in the Amundsen - Bellingshausen seas. A number of studies had demonstrated that stratospheric ozone depletion has had a major impact on the atmospheric circulation, causing a positive trend in the Southern Annular Mode (SAM), which has been linked to the observed positive trend in autumn sea <span class="hlt">ice</span> in the Ross Sea. However, other modelling studies show that models forced with prescribed ozone hole simulate <span class="hlt">decreased</span> sea <span class="hlt">ice</span> in all regions comparative to a control run. A recent study has also shown that stratospheric ozone recovery will mitigate Antarctic sea <span class="hlt">ice</span> loss. To verify this assumed relationship, it is important first to investigate the covariance between ozone's natural (dynamical) variability and Antarctic sea <span class="hlt">ice</span> distribution in pre-industrial climate, to estimate the trend due to natural variability. We investigate the relationship between anomalous Antarctic ozone years and the subsequent changes in Antarctic sea <span class="hlt">ice</span> distribution in a multidecadal control simulation using the AO-UMUKCA model. The model has a horizontal resolution of 3.75 X 2.5 degrees in longitude and latitude; and 60 hybrid height levels in the vertical, from the surface up to a height of 84 km. The ocean component is the NEMO ocean model on the ORCA2 tripolar grid, and the sea <span class="hlt">ice</span> model is CICE. We evaluate the model's performance in terms of sea <span class="hlt">ice</span> distribution, and we calculate sea <span class="hlt">ice</span> <span class="hlt">extent</span> trends for composites of anomalously low versus anomalously high SH polar ozone column. We apply EOF analysis to the seasonal anomalies of sea <span class="hlt">ice</span> concentration, MSLP, and Z 500, and identify the leading climate modes controlling the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910021293','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910021293"><span>The influence of the hydrologic cycle on the <span class="hlt">extent</span> of sea <span class="hlt">ice</span> with climatic implications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dean, Ken; Gosink, Joan</p> <p>1991-01-01</p> <p>The role was analyzed of the hydrologic cycle on the distribution of sea <span class="hlt">ice</span>, and its influence on forcings and fluxes between the marine environment and the atmosphere. River discharge plays a significant role in degrading the sea <span class="hlt">ice</span> before any melting occurs elsewhere along the coast. The influence is considered of river discharge on the albedo, thermal balance, and distribution of sea <span class="hlt">ice</span>. Quantitative atmospheric-hydrologic models are being developed to describe these processes in the coastal zone. Input for the models will come from satellite images, hydrologic data, and field observations. The resulting analysis provides a basis for the study of the significance of the hydrologic cycle throughout the Arctic Basin and its influence on the regional climate as a result of possible climatic scenarios. The area offshore from the Mackenzie River delta was selected as the study area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006590','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006590"><span>Large Decadal Decline of the Arctic Multiyear <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2012-01-01</p> <p>The perennial <span class="hlt">ice</span> area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in <span class="hlt">extent</span> and area remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial <span class="hlt">ice</span>, called multiyear <span class="hlt">ice</span>, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear <span class="hlt">ice</span> <span class="hlt">extent</span> and area are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic <span class="hlt">ice</span> cover means a reduction in the average <span class="hlt">ice</span> thickness and an even more vulnerable perennial <span class="hlt">ice</span> cover. The decline of the multiyear <span class="hlt">ice</span> area from 2007 to 2008 was not as strong as that of the perennial <span class="hlt">ice</span> area from 2006 to 2007, suggesting a strong role of second-year <span class="hlt">ice</span> melt in the latter. The sea <span class="hlt">ice</span> cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear <span class="hlt">ice</span> record, which could explain, in part, the slight recovery in the last 3 yr.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008253','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008253"><span>Large Decadal Decline of the Arctic Multiyear <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2011-01-01</p> <p>The perennial <span class="hlt">ice</span> area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the <span class="hlt">extent</span> and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial <span class="hlt">ice</span>, called multiyear <span class="hlt">ice</span>, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear <span class="hlt">ice</span> <span class="hlt">extent</span> and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic <span class="hlt">ice</span> cover means a reduction in average <span class="hlt">ice</span> thickness and an even more vulnerable perennial <span class="hlt">ice</span> cover. The decline of the multiyear <span class="hlt">ice</span> area from 2007 to 2008 was not as strong as that of the perennial <span class="hlt">ice</span> area from 2006 to 2007 suggesting a strong role of second year <span class="hlt">ice</span> melt in the latter. The sea <span class="hlt">ice</span> cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear <span class="hlt">ice</span> record which could explain in part the slight recovery in the last three years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C11A0465M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C11A0465M"><span>Characteristics of basal <span class="hlt">ice</span> and subglacial water at Dome Fuji, Antarctica <span class="hlt">ice</span> sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.</p> <p>2008-12-01</p> <p> than the cutting chips has been collected. When the drilling passed 3033.46m, the amount of <span class="hlt">ice</span> chip was <span class="hlt">decreased</span>. But the amount of <span class="hlt">ice</span> chip collected increase again from 3034.59m and many large <span class="hlt">ices</span> have taken the upper part of <span class="hlt">ice</span> core. The temperature of <span class="hlt">ice</span> sheet near the bedrock is the pressure melting point. So the liquid water can exist easy there. The water like groundwater infiltrated into the borehole and froze in drilling liquid from 3031.44m to 3033.46m. Under 3034.59m, the subglacial water infiltrated into the borehole and froze in drilling liquid. The existence of water channel in the <span class="hlt">ice</span> core was found. We think that the liquid water has been flowing through the boundary of <span class="hlt">ice</span> crystal. (Characteristics of chemical constituents): The melted <span class="hlt">ice</span> was analyzed every 10cm per 50cm from 2400m to 3028m and continuously every 10cm from 3028m to 3034m. The analytical items were water isotopes (d18O and dD), micro particles (dust) and major ion components. The variations of water isotope and dust in <span class="hlt">ice</span> near the bedrock have no conspicuous change. But, the concentrations of Cl- and Na+ ions had interesting behavior. The concentration of Cl- ion increased and Na+ ion was <span class="hlt">decreased</span> deeper than 3020m. Further the concentrations of all ions were <span class="hlt">decreased</span> suddenly deeper than 3034m. The concentration of ions will be <span class="hlt">decrease</span> in turn according to the solubility of the ion. home/</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23A1220I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23A1220I"><span>Statistical prediction of September Arctic Sea <span class="hlt">Ice</span> minimum based on stable teleconnections with global climate and oceanic patterns</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.</p> <p>2016-12-01</p> <p>Sea <span class="hlt">ice</span> in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea <span class="hlt">ice</span>, its coverage, variability and long term change. Knowledge on sea <span class="hlt">ice</span> requires high quality data on <span class="hlt">ice</span> <span class="hlt">extent</span>, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea <span class="hlt">ice</span> <span class="hlt">extent</span> for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea <span class="hlt">ice</span> minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea <span class="hlt">ice</span> <span class="hlt">extent</span> can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea <span class="hlt">ice</span> <span class="hlt">extent</span> persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea <span class="hlt">ice</span> <span class="hlt">extent</span>). The results based on our statistical model contribute to the sea <span class="hlt">ice</span> prediction network for the sea <span class="hlt">ice</span> outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea <span class="hlt">ice</span> development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea <span class="hlt">ice</span> formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000037980&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000037980&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DParkinsons"><span>Observed Hemispheric Asymmetry in Global Sea <span class="hlt">Ice</span> Changes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Gloersen, P.; Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.</p> <p>1997-01-01</p> <p>From November 1978 through December 1996, the areal <span class="hlt">extent</span> of sea <span class="hlt">ice</span> <span class="hlt">decreased</span> by 2.9 +/- 0.4 percent per decade in the Arctic and increased by 1.3 +/- 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015436','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015436"><span>Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea <span class="hlt">Ice</span> Data Records</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, Donald J.; Parkinson, Claire L.; DiGirolamo, Nicolo; Ivanoff, Alvaro</p> <p>2011-01-01</p> <p>An intercalibration between F13 Special Sensor Microwave Imager (SSMI) and F17 Special Sensor Microwave Imager Sounder (SSMIS) sea <span class="hlt">ice</span> <span class="hlt">extents</span> and areas for a full year of overlap was undertaken preparatory to extending the 1979-2007 NASA Goddard Space Flight Center (GSFC) NASA Team algorithm time series of global sea <span class="hlt">ice</span> <span class="hlt">extents</span> and areas. The 1979- 2007 time series was created from Scanning Multichannel Microwave Radiometer (SMMR) and SSMI data. After intercalibration, the yearly mean F17 and F13 difference in Northern Hemisphere sea <span class="hlt">ice</span> <span class="hlt">extents</span> is -0.0156%, with a standard deviation of the differences of 0.6204%, and the yearly mean difference in Northern Hemisphere sea <span class="hlt">ice</span> areas is 0.5433%, with a standard deviation of 0.3519%. For the Southern Hemisphere, the yearly mean difference in sea <span class="hlt">ice</span> <span class="hlt">extents</span> is 0.0304% +/- 0.4880%, and the mean difference in sea <span class="hlt">ice</span> areas is 0.1550% +/- 0.3753%. This F13/F17 intercalibration enables the extension of the 28-year 1979-2007 SMMR/SSMI sea <span class="hlt">ice</span> time series for as long as there are stable F17 SSMIS brightness temperatures available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009376','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009376"><span>Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea <span class="hlt">Ice</span> Data Records</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, Donald J.; Parkinson, Claire L.; DiGirolamo, Nicolo; Ivanoff, Alvaro</p> <p>2012-01-01</p> <p>An intercalibration between F13 Special Sensor Microwave Imager (SSMI) and F17 Special Sensor Microwave Imager Sounder (SSMIS) sea <span class="hlt">ice</span> <span class="hlt">extents</span> and areas for a full year of overlap was undertaken preparatory to extending the 1979-2007 NASA Goddard Space Flight Center (GSFC) NASA Team algorithm time series of global sea <span class="hlt">ice</span> <span class="hlt">extents</span> and areas. The 1979- 2007 time series was created from Scanning Multichannel Microwave Radiometer (SMMR) and SSMI data. After intercalibration, the yearly mean F17 and F13 difference in Northern Hemisphere sea <span class="hlt">ice</span> <span class="hlt">extents</span> is -0.0156%, with a standard deviation of the differences of 0.6204%, and the yearly mean difference in Northern Hemisphere sea <span class="hlt">ice</span> areas is 0.5433%, with a standard deviation of 0.3519%. For the Southern Hemisphere, the yearly mean difference in sea <span class="hlt">ice</span> <span class="hlt">extents</span> is 0.0304% 0.4880%, and the mean difference in sea <span class="hlt">ice</span> areas is 0.1550% 0.3753%. This F13/F17 intercalibration enables the extension of the 28-year 1979-2007 SMMR/SSMI sea <span class="hlt">ice</span> time series for as long as there are stable F17 SSMIS brightness temperatures available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43J..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43J..05S"><span>Integrating Observations and Models to Better Understand a Changing Arctic Sea <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, J. C.</p> <p>2017-12-01</p> <p>TThe loss of the Arctic sea <span class="hlt">ice</span> cover has captured the world's attention. While much attention has been paid to the summer <span class="hlt">ice</span> loss, changes are not limited to summer. The last few winters have seen record low sea <span class="hlt">ice</span> <span class="hlt">extents</span>, with 2017 marking the 3rdyear in a row with a new record low for the winter maximum <span class="hlt">extent</span>. More surprising is the number of consecutive months between January 2016 through April 2017 with <span class="hlt">ice</span> <span class="hlt">extent</span> anomalies more than 2 standard deviations below the 1981-2010 mean. Additionally, October 2016 through April 2017 saw 7 consecutive months with record low <span class="hlt">extents</span>, something that had not happened before in the last 4 decades of satellite observations. As larger parts of the Arctic Ocean become <span class="hlt">ice</span>-free in summer, regional seas gradually transition from a perennial to a seasonal <span class="hlt">ice</span> cover. The Barents Sea is already only seasonally <span class="hlt">ice</span> covered, whereas the Kara Sea has recently lost most of its summer <span class="hlt">ice</span> and is thereby starting to become a seasonally <span class="hlt">ice</span> covered region. These changes serve as harbinger for what's to come for other Arctic seas. Given the rapid pace of change, there is an urgent need to improve our understanding of the drivers behind Arctic sea <span class="hlt">ice</span> loss, the implications of this <span class="hlt">ice</span> loss and to predict future changes to better inform policy makers. Climate models play a fundamental role in helping us synthesize the complex elements of the Arctic sea <span class="hlt">ice</span> system yet generally fail to simulate key features of the sea <span class="hlt">ice</span> system and the pace of sea <span class="hlt">ice</span> loss. Nevertheless, modeling advances continue to provide better means of diagnosing sea <span class="hlt">ice</span> change, and new insights are likely to be gained with model output from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The CMIP6 Sea-<span class="hlt">Ice</span> Model Intercomparison Project (SIMIP) aim is to better understand biases and errors in sea <span class="hlt">ice</span> simulations so that we can improve our understanding of the likely future evolution of the sea <span class="hlt">ice</span> cover and its impacts on global climate. To</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000613.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000613.html"><span>Approaching the 2015 Arctic Sea <span class="hlt">Ice</span> Minimum</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>As the sun sets over the Arctic, the end of this year’s melt season is quickly approaching and the sea <span class="hlt">ice</span> cover has already shrunk to the fourth lowest in the satellite record. With possibly some days of melting left, the sea <span class="hlt">ice</span> <span class="hlt">extent</span> could still drop to the second or third lowest on record. Arctic sea <span class="hlt">ice</span>, which regulates the planet’s temperature by bouncing solar energy back to space, has been on a steep decline for the last two decades. This animation shows the evolution of Arctic sea <span class="hlt">ice</span> in 2015, from its annual maximum wintertime <span class="hlt">extent</span>, reached on February 25, to September 6. Credit: NASA Scientific Visualization Studio DOWNLOAD THIS VIDEO HERE: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11999 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9972E..13B"><span>Integrated approach using multi-platform sensors for enhanced high-resolution daily <span class="hlt">ice</span> cover product</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonev, George; Gladkova, Irina; Grossberg, Michael; Romanov, Peter; Helfrich, Sean</p> <p>2016-09-01</p> <p>The ultimate objective of this work is to improve characterization of the <span class="hlt">ice</span> cover distribution in the polar areas, to improve sea <span class="hlt">ice</span> mapping and to develop a new automated real-time high spatial resolution multi-sensor <span class="hlt">ice</span> <span class="hlt">extent</span> and <span class="hlt">ice</span> edge product for use in operational applications. Despite a large number of currently available automated satellite-based sea <span class="hlt">ice</span> <span class="hlt">extent</span> datasets, analysts at the National <span class="hlt">Ice</span> Center tend to rely on original satellite imagery (provided by satellite optical, passive microwave and active microwave sensors) mainly because the automated products derived from satellite optical data have gaps in the area coverage due to clouds and darkness, passive microwave products have poor spatial resolution, automated <span class="hlt">ice</span> identifications based on radar data are not quite reliable due to a considerable difficulty in discriminating between the <span class="hlt">ice</span> cover and rough <span class="hlt">ice</span>-free ocean surface due to winds. We have developed a multisensor algorithm that first extracts maximum information on the sea <span class="hlt">ice</span> cover from imaging instruments VIIRS and MODIS, including regions covered by thin, semitransparent clouds, then supplements the output by the microwave measurements and finally aggregates the results into a cloud gap free daily product. This ability to identify <span class="hlt">ice</span> cover underneath thin clouds, which is usually masked out by traditional cloud detection algorithms, allows for expansion of the effective coverage of the sea <span class="hlt">ice</span> maps and thus more accurate and detailed delineation of the <span class="hlt">ice</span> edge. We have also developed a web-based monitoring system that allows comparison of our daily <span class="hlt">ice</span> <span class="hlt">extent</span> product with the several other independent operational daily products.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JCli...15..487K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JCli...15..487K"><span>Southern Ocean Climate and Sea <span class="hlt">Ice</span> Anomalies Associated with the Southern Oscillation.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwok, R.; Comiso, J. C.</p> <p>2002-03-01</p> <p>The anomalies in the climate and sea <span class="hlt">ice</span> cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea <span class="hlt">ice</span> dataset describes its <span class="hlt">extent</span>, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea <span class="hlt">ice</span> cover are evident. Recent anomalies in the sea <span class="hlt">ice</span> cover that are clearly associated with the SOI include the following: the record <span class="hlt">decrease</span> in the sea <span class="hlt">ice</span> <span class="hlt">extent</span> in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea <span class="hlt">ice</span> concentration in the Ross Sea; and the shortening of the <span class="hlt">ice</span> season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the <span class="hlt">ice</span> season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010028707','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010028707"><span>Southern Ocean Climate and Sea <span class="hlt">Ice</span> Anomalies Associated with the Southern Oscillation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, R.; Comiso, J. C.</p> <p>2001-01-01</p> <p>The anomalies in the climate and sea <span class="hlt">ice</span> cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea <span class="hlt">ice</span> data set describes its <span class="hlt">extent</span>, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea <span class="hlt">ice</span> cover are clearly evident. Recent anomalies in the sea <span class="hlt">ice</span> cover that are apparently associated with the SOI include: the record <span class="hlt">decrease</span> in the sea <span class="hlt">ice</span> <span class="hlt">extent</span> in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea <span class="hlt">ice</span> concentration in the Ross Sea; and, the shortening of the <span class="hlt">ice</span> season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the <span class="hlt">ice</span> season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0662C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0662C"><span>Holocene history of North <span class="hlt">Ice</span> Cap, northwestern Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.</p> <p>2013-12-01</p> <p>Although much research has focused on the past <span class="hlt">extents</span> of the Greenland <span class="hlt">Ice</span> Sheet, less is known about the smaller <span class="hlt">ice</span> caps on Greenland and how they have evolved over time. These small <span class="hlt">ice</span> caps respond sensitively to summer temperatures and, to a lesser <span class="hlt">extent</span>, winter precipitation, and provide valuable information about climatic conditions along the Greenland <span class="hlt">Ice</span> Sheet margins. Here, we investigate the Holocene history of North <span class="hlt">Ice</span> Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an <span class="hlt">extent</span> of North <span class="hlt">Ice</span> Cap ~25 m outboard of the present <span class="hlt">ice</span> margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland <span class="hlt">Ice</span> Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North <span class="hlt">Ice</span> Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent <span class="hlt">ice</span> cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North <span class="hlt">Ice</span> Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113700S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113700S"><span>Nature and History of Cenozoic Polar <span class="hlt">Ice</span> Covers: The Case of the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spielhagen, R.; Thiede, J.</p> <p>2009-04-01</p> <p>-rafting from off NE Greenland, Fram Strait and to the South of Greenland suggest the more or less continous existence of the Greenland <span class="hlt">ice</span> sheet for the past 18 Mio. years, if not more, a phantastic supplement of the Northern hemisphere glaciation deduced from the <span class="hlt">ice</span> cores. The dramatic <span class="hlt">decrease</span> of <span class="hlt">extent</span> and thickness of the Arctic sea <span class="hlt">ice</span> cover of the past decades has aroused much public and political interest because of the potentially dramatic consequences for the exploitation of living and non-living resources as well as the socio-economic, technical and commercial systems developed in the Arctic seas and in the permafrost-infested adjacent land areas. The fate of the Greenland <span class="hlt">ice</span> sheet with its impact on global sea level changes is one of the central unresolved problems. We urgently need novel marine research platforms which allow for an all-season presence of research and monitoring programs as well of scientific drilling programs in the Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17781630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17781630"><span>The surface of the <span class="hlt">ice</span>-age Earth.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1976-03-19</p> <p>In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based <span class="hlt">ice</span> sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the <span class="hlt">extent</span> of pack <span class="hlt">ice</span> and marine-based <span class="hlt">ice</span> sheets. In the Southern Hemisphere the most striking contrast was the greater <span class="hlt">extent</span> of sea <span class="hlt">ice</span>. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent <span class="hlt">ice</span> and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6085044-arctic-ice-shelves-ice-islands-origin-growth-disintegration-physical-characteristics-structural-stratigraphic-variability-dynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6085044-arctic-ice-shelves-ice-islands-origin-growth-disintegration-physical-characteristics-structural-stratigraphic-variability-dynamics"><span>Arctic <span class="hlt">ice</span> shelves and <span class="hlt">ice</span> islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jeffries, M.O.</p> <p>1992-08-01</p> <p><span class="hlt">Ice</span> shelves are thick, floating <span class="hlt">ice</span> masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic <span class="hlt">ice</span> sheet and sources of many icebergs. However, there are also <span class="hlt">ice</span> shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only <span class="hlt">ice</span> shelves in North America and the most extensive in the north polar region, the Ellesmere <span class="hlt">ice</span> shelves originate from glaciers and from sea <span class="hlt">ice</span> and are the source of <span class="hlt">ice</span> islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding ofmore » these <span class="hlt">ice</span> features is summarized in this paper. It includes historical background to the discovery and early study of <span class="hlt">ice</span> shelves and <span class="hlt">ice</span> islands, including the use of <span class="hlt">ice</span> islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former <span class="hlt">extent</span> and the twentieth century disintegration of the Ellesmere <span class="hlt">ice</span> shelves, and the processes and mechanisms of <span class="hlt">ice</span> island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of <span class="hlt">ice</span> islands are discussed. The structural-stratigraphic variability of <span class="hlt">ice</span> islands and <span class="hlt">ice</span> shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of <span class="hlt">ice</span> islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010037604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010037604"><span>Satellite Remote Sensing: Passive-Microwave Measurements of Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)</p> <p>2001-01-01</p> <p>Satellite passive-microwave measurements of sea <span class="hlt">ice</span> have provided global or near-global sea <span class="hlt">ice</span> data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea <span class="hlt">ice</span> concentrations (percent areal coverages), sea <span class="hlt">ice</span> <span class="hlt">extents</span>, the length of the sea <span class="hlt">ice</span> season, sea <span class="hlt">ice</span> temperatures, and sea <span class="hlt">ice</span> velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the <span class="hlt">ice</span>-type composition of the sea <span class="hlt">ice</span> cover. In each case, the calculations are based on the microwave emission characteristics of sea <span class="hlt">ice</span> and the important contrasts between the microwave emissions of sea <span class="hlt">ice</span> and those of the surrounding liquid-water medium.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29621173','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29621173"><span>Statistical Analysis of SSMIS Sea <span class="hlt">Ice</span> Concentration Threshold at the Arctic Sea <span class="hlt">Ice</span> Edge during Summer Based on MODIS and Ship-Based Observational Data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong</p> <p>2018-04-05</p> <p>The threshold of sea <span class="hlt">ice</span> concentration (SIC) is the basis for accurately calculating sea <span class="hlt">ice</span> <span class="hlt">extent</span> based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea <span class="hlt">ice</span> edge used in previous studies and released sea <span class="hlt">ice</span> products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea <span class="hlt">ice</span> edge during summer in recent years, we extracted sea <span class="hlt">ice</span> edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea <span class="hlt">ice</span> product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea <span class="hlt">ice</span> ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea <span class="hlt">ice</span> edge based on <span class="hlt">ice</span>-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea <span class="hlt">ice</span> edge based on <span class="hlt">ice</span>-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted <span class="hlt">ice</span> edge pixels for the same days. The average SIC of 31% at the sea <span class="hlt">ice</span> edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea <span class="hlt">ice</span> <span class="hlt">extent</span> calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea <span class="hlt">ice</span> under the rapidly changing Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1074H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1074H"><span>Mechanical sea-<span class="hlt">ice</span> strength parameterized as a function of <span class="hlt">ice</span> temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hata, Yukie; Tremblay, Bruno</p> <p>2016-04-01</p> <p>Mechanical sea-<span class="hlt">ice</span> strength is key for a better simulation of the timing of landlock <span class="hlt">ice</span> onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea <span class="hlt">ice</span> in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the <span class="hlt">ice</span> using the wind data. Next, we estimate upper (lower) bounds on the sea-<span class="hlt">ice</span> strength by identifying cases when the sea <span class="hlt">ice</span> deforms (does not deform) under the action of a given total force. Results from this analysis show that the <span class="hlt">ice</span> strength of landlock sea <span class="hlt">ice</span> in the CAA is approximately 40 kN/m on the landfast <span class="hlt">ice</span> onset (in <span class="hlt">ice</span> growth season). Additionally, it becomes approximately 10 kN/m on the landfast <span class="hlt">ice</span> break-up (in melting season). The <span class="hlt">ice</span> strength <span class="hlt">decreases</span> with <span class="hlt">ice</span> temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-<span class="hlt">ice</span> strength as a function of <span class="hlt">ice</span> temperature in a coupled slab ocean sea <span class="hlt">ice</span> model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020082883','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020082883"><span><span class="hlt">Ice</span> Shelves and Landfast <span class="hlt">Ice</span> on the Antarctic Perimeter: Revised Scope of Work</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scambos, Ted</p> <p>2002-01-01</p> <p><span class="hlt">Ice</span> shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for <span class="hlt">ice</span> shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins <span class="hlt">Ice</span> shelves) by the results of a previous grant under ADRO-1. Modeling of <span class="hlt">ice</span> flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of <span class="hlt">extent</span> and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other <span class="hlt">ice</span> shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast <span class="hlt">ice</span>. The study now considers just a few shelf and fast <span class="hlt">ice</span> areas for study, and is funded for two years. The study regions are the northeastern Ross <span class="hlt">Ice</span> Shelf, the Larsen 'B' and 'C' shelves, fast <span class="hlt">ice</span> and floating shelf <span class="hlt">ice</span> in the Pine Island Glacier area, and fast <span class="hlt">ice</span> along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast <span class="hlt">ice</span> processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast <span class="hlt">ice</span> areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast <span class="hlt">ice</span> may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1813H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1813H"><span>Sensitivity of Antarctic sea <span class="hlt">ice</span> to the Southern Annular Mode in coupled climate models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holland, Marika M.; Landrum, Laura; Kostov, Yavor; Marshall, John</p> <p>2017-09-01</p> <p>We assess the sea <span class="hlt">ice</span> response to Southern Annular Mode (SAM) anomalies for pre-industrial control simulations from the Coupled Model Intercomparison Project (CMIP5). Consistent with work by Ferreira et al. (J Clim 28:1206-1226, 2015. doi: 10.1175/JCLI-D-14-00313.1), the models generally simulate a two-timescale response to positive SAM anomalies, with an initial increase in <span class="hlt">ice</span> followed by an eventual sea <span class="hlt">ice</span> decline. However, the models differ in the cross-over time at which the change in <span class="hlt">ice</span> response occurs, in the overall magnitude of the response, and in the spatial distribution of the response. Late twentieth century Antarctic sea <span class="hlt">ice</span> trends in CMIP5 simulations are related in part to different modeled responses to SAM variability acting on different time-varying transient SAM conditions. This explains a significant fraction of the spread in simulated late twentieth century southern hemisphere sea <span class="hlt">ice</span> <span class="hlt">extent</span> trends across the model simulations. Applying the modeled sea <span class="hlt">ice</span> response to SAM variability but driven by the observed record of SAM suggests that variations in the austral summer SAM, which has exhibited a significant positive trend, have driven a modest sea <span class="hlt">ice</span> <span class="hlt">decrease</span>. However, additional work is needed to narrow the considerable model uncertainty in the climate response to SAM variability and its implications for 20th-21st century trends.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02971&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea%2Bworld','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02971&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsea%2Bworld"><span>Comparative Views of Arctic Sea <span class="hlt">Ice</span> Growth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>NASA researchers have new insights into the mysteries of Arctic sea <span class="hlt">ice</span>, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.<p/>Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete <span class="hlt">ice</span> cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.<p/>The two images above are separated by nine days (earlier image on the left). Both images represent an area (approximately 96 by 128 kilometers; 60 by 80 miles)located in the Baufort Sea, north of the Alaskan coast. The brighter features are older thicker <span class="hlt">ice</span> and the darker areas show young, recently formed <span class="hlt">ice</span>. Within the nine-day span, large and extensive cracks in the <span class="hlt">ice</span> cover have formed due to <span class="hlt">ice</span> movement. These cracks expose the open ocean to the cold, frigid atmosphere where sea <span class="hlt">ice</span> grows rapidly and thickens.<p/>Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic sea <span class="hlt">ice</span> thickness for the first time. 'Before we knew only the <span class="hlt">extent</span> of the <span class="hlt">ice</span> cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called Sea <span class="hlt">Ice</span> Thickness Derived From High Resolution Radar Imagery. 'We also knew that the sea <span class="hlt">ice</span> <span class="hlt">extent</span> had <span class="hlt">decreased</span> over the last 20 years, but we knew very little about <span class="hlt">ice</span> thickness.'<p/>'Since sea <span class="hlt">ice</span> is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'<p/>Until now, observations of polar sea <span class="hlt">ice</span> thickness have been available for specific areas, but not for the entire polar region.<p/>The new radar mapping technique has also given scientists a close look at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970009633','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970009633"><span>Characterization of <span class="hlt">Ice</span> Roughness From Simulated <span class="hlt">Icing</span> Encounters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, David N.; Shin, Jaiwon</p> <p>1997-01-01</p> <p>Detailed measurements of the size of roughness elements on <span class="hlt">ice</span> accreted on models in the NASA Lewis <span class="hlt">Icing</span> Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to <span class="hlt">decrease</span> with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between <span class="hlt">ice</span> roughness and <span class="hlt">icing</span> conditions for use in <span class="hlt">ice</span>-accretion-prediction codes. These codes now require an <span class="hlt">ice</span>-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min <span class="hlt">icing</span> spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting <span class="hlt">ice</span> shape was compared with that from a full 10-min spray at the second set of conditions. The initial <span class="hlt">ice</span> accumulation appeared to have no effect on the final <span class="hlt">ice</span> shape. From this result, it would appear the accreting <span class="hlt">ice</span> is affected very little by the initial roughness or shape features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22232652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22232652"><span>Structure of <span class="hlt">ice</span> crystallized from supercooled water.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G</p> <p>2012-01-24</p> <p>The freezing of water to <span class="hlt">ice</span> is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, <span class="hlt">ice</span> is considered to exist in two crystalline forms: stable hexagonal <span class="hlt">ice</span> and metastable cubic <span class="hlt">ice</span>. Using X-ray diffraction data and Monte Carlo simulations, we show that <span class="hlt">ice</span> that crystallizes homogeneously from supercooled water is neither of these phases. The resulting <span class="hlt">ice</span> is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this <span class="hlt">ice</span> as stacking-disordered <span class="hlt">ice</span> I. Stacking disorder and stacking faults have been reported earlier for metastable <span class="hlt">ice</span> I, but only for <span class="hlt">ice</span> crystallizing in mesopores and in samples recrystallized from high-pressure <span class="hlt">ice</span> phases rather than in water droplets. Review of the literature reveals that almost all <span class="hlt">ice</span> that has been identified as cubic <span class="hlt">ice</span> in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered <span class="hlt">ice</span> I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable <span class="hlt">ice</span> as a function of the nature and <span class="hlt">extent</span> of stacking disorder using well-characterized samples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268266','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268266"><span>Structure of <span class="hlt">ice</span> crystallized from supercooled water</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.</p> <p>2012-01-01</p> <p>The freezing of water to <span class="hlt">ice</span> is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, <span class="hlt">ice</span> is considered to exist in two crystalline forms: stable hexagonal <span class="hlt">ice</span> and metastable cubic <span class="hlt">ice</span>. Using X-ray diffraction data and Monte Carlo simulations, we show that <span class="hlt">ice</span> that crystallizes homogeneously from supercooled water is neither of these phases. The resulting <span class="hlt">ice</span> is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this <span class="hlt">ice</span> as stacking-disordered <span class="hlt">ice</span> I. Stacking disorder and stacking faults have been reported earlier for metastable <span class="hlt">ice</span> I, but only for <span class="hlt">ice</span> crystallizing in mesopores and in samples recrystallized from high-pressure <span class="hlt">ice</span> phases rather than in water droplets. Review of the literature reveals that almost all <span class="hlt">ice</span> that has been identified as cubic <span class="hlt">ice</span> in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered <span class="hlt">ice</span> I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable <span class="hlt">ice</span> as a function of the nature and <span class="hlt">extent</span> of stacking disorder using well-characterized samples. PMID:22232652</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1208882-development-global-sea-ice-cice-configuration-met-office-global-coupled-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1208882-development-global-sea-ice-cice-configuration-met-office-global-coupled-model"><span>Development of global sea <span class="hlt">ice</span> 6.0 CICE configuration for the Met Office global coupled model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; ...</p> <p>2015-03-05</p> <p>The new sea <span class="hlt">ice</span> configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea <span class="hlt">ice</span> <span class="hlt">extent</span>, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea <span class="hlt">ice</span> is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and <span class="hlt">extent</span> with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in <span class="hlt">ice</span> <span class="hlt">extent</span> and volume; further work is requiredmore » to rectify this in future configurations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.U24B..02O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.U24B..02O"><span>Summer 2007 and 2008 Arctic Sea <span class="hlt">Ice</span> Loss in Context: OUTLOOK 2008</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Overland, J. E.; Eicken, H.; Wiggins, H. V.</p> <p>2008-12-01</p> <p>The Arctic is changing faster than the publication cycle for new information. In response, the SEARCH and DAMOCLES Programs initiated an OUTLOOK 2008 to provide broad-based communication and assessment within the arctic science community on the causes of rapid summer sea <span class="hlt">ice</span> loss, synthesizing information from Arctic observing networks and model simulations. The question for summer 2008 was whether the previous loss of multi-year sea <span class="hlt">ice</span> and delay in sea <span class="hlt">ice</span> formation in autumn 2007 would still allow sufficient winter growth of sea <span class="hlt">ice</span> thickness to last through the summer 2008, potentially allowing for recovery from the 2007 minimum. The answer is no; summer 2008 was a second sequential year of extremely low minimum sea <span class="hlt">ice</span> <span class="hlt">extent</span>. To organize OUTLOOK 2008, respondents were asked in May, June and July to provide a rationale and semi-quantitative assessment of arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> anticipated for September 2008. OUTLOOK 2008 supplemented information maintained by <span class="hlt">ice</span> centers, universities and other data providers. Using a range of methods, all of the approximately 20 groups responded that summer sea <span class="hlt">ice</span> would not return to climatological mean conditions, with a median response near the 2007 <span class="hlt">extent</span>. The range of responses depended on the relative weight given to "initial conditions," e.g., age and thickness of sea <span class="hlt">ice</span> at the end of spring, versus whether summer winds in 2008 would be as supportive for <span class="hlt">ice</span> loss as in 2007. Initial conditions turned out to be a primary factor for summer 2008, with implications for continued sea <span class="hlt">ice</span> loss in future years. OUTLOOK 2008 highlighted aspects of the observation and modeling efforts that require further attention such as interpretation of summer microwave signatures, in situ buoy measurements, and data assimilation in models. We appreciate the contributions from respondents and reviewers who made OUTLOOK 2008 a success.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008E%26PSL.265..246N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008E%26PSL.265..246N"><span>Conditions for a steady <span class="hlt">ice</span> sheet <span class="hlt">ice</span> shelf junction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nowicki, S. M. J.; Wingham, D. J.</p> <p>2008-01-01</p> <p>This paper investigates the conditions under which a marine <span class="hlt">ice</span> sheet may adopt a steady profile. The <span class="hlt">ice</span> is treated as a linear viscous fluid caused to flow from a rigid base to and over water, treated as a denser but inviscid fluid. The solutions in the region around the point of flotation, or 'transition' zone, are calculated numerically. In-flow and out-flow conditions appropriate to <span class="hlt">ice</span> sheet and <span class="hlt">ice</span> shelf flow are applied at the ends of the transition zone and the rigid base is specified; the flow and steady free surfaces are determined as part of the solutions. The basal stress upstream, and the basal deflection downstream, of the flotation point are examined to determine which of these steady solutions satisfy 'contact' conditions that would prevent (i) the steady downstream basal deflection contacting the downstream base, and (ii) the upstream <span class="hlt">ice</span> commencing to float in the event it was melted at the base. In the case that the upstream bed is allowed to slide, we find only one mass flux that satisfies the contact conditions. When no sliding is allowed at the bed, however, we find a range of mass fluxes satisfy the contact conditions. The effect of 'backpressure' on the solutions is investigated, and is found to have no affect on the qualitative behaviour of the junctions. To the <span class="hlt">extent</span> that the numerical, linearly viscous treatment may be applied to the case of <span class="hlt">ice</span> flowing out over the ocean, we conclude that when sliding is present, Weertman's 'instability' hypothesis holds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000779','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000779"><span>Global Sea <span class="hlt">Ice</span> Coverage from Satellite Data: Annual Cycle and 35-Year Trends</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>2014-01-01</p> <p>Well-established satellite-derived Arctic and Antarctic sea <span class="hlt">ice</span> <span class="hlt">extents</span> are combined to create the global picture of sea <span class="hlt">ice</span> <span class="hlt">extents</span> and their changes over the 35-yr period 1979-2013. Results yield a global annual sea <span class="hlt">ice</span> cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea <span class="hlt">ice</span> <span class="hlt">extent</span> reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68,200 +/- 10,500 sq km/yr (-2.62% 6 +/- 0.40%/decade), and the yearly average trend being -35,000 +/- 5900 sq km/yr (-1.47% +/- 0.25%/decade).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021289','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021289"><span>Global Sea <span class="hlt">Ice</span> Coverage from Satellite Data: Annual Cycle and 35-Yr Trends</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>2014-01-01</p> <p>Well-established satellite-derived Arctic and Antarctic sea <span class="hlt">ice</span> <span class="hlt">extents</span> are combined to create the global picture of sea <span class="hlt">ice</span> <span class="hlt">extents</span> and their changes over the 35-yr period 1979-2013. Results yield a global annual sea <span class="hlt">ice</span> cycle more in line with the high-amplitude Antarctic annual cycle than the lower-amplitude Arctic annual cycle but trends more in line with the high-magnitude negative Arctic trends than the lower-magnitude positive Antarctic trends. Globally, monthly sea <span class="hlt">ice</span> <span class="hlt">extent</span> reaches a minimum in February and a maximum generally in October or November. All 12 months show negative trends over the 35-yr period, with the largest magnitude monthly trend being the September trend, at -68200 +/- 10500 km sq yr(exp -1) (-2.62% +/- 0.40%decade(exp -1)), and the yearly average trend being -35000 +/-5900 km sq yr(exp -1) (-1.47% +/- 0.25%decade(exp -1)).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009599','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009599"><span>Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120009599'); toggleEditAbsImage('author_20120009599_show'); toggleEditAbsImage('author_20120009599_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120009599_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120009599_hide"></p> <p>2012-01-01</p> <p>Recent drastic reduction of the older perennial sea <span class="hlt">ice</span> in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea <span class="hlt">ice</span>. This increase in the salinity of the overall <span class="hlt">ice</span> cover could impact tropospheric chemical processes. Springtime perennial <span class="hlt">ice</span> <span class="hlt">extent</span> in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal <span class="hlt">ice</span> was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea <span class="hlt">ice</span>, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen <span class="hlt">ice</span> breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with <span class="hlt">decreases</span> of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the <span class="hlt">extent</span> of perennial <span class="hlt">ice</span> was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118.5899R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118.5899R"><span>Airborne thickness and freeboard measurements over the McMurdo <span class="hlt">Ice</span> Shelf, Antarctica, and implications for <span class="hlt">ice</span> density</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.</p> <p>2013-11-01</p> <p>We present airborne measurements to investigate the thickness of the western McMurdo <span class="hlt">Ice</span> Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine <span class="hlt">ice</span> and brine intrusions conventional radar systems are limited in detecting the <span class="hlt">ice</span> thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the <span class="hlt">ice</span> shelf. The maximum electromagnetically detectable <span class="hlt">ice</span> thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of <span class="hlt">ice</span> freeboard and thickness was used to derive bulk <span class="hlt">ice</span> densities ranging from 800 to 975 kg m-3. Densities higher than those of pure <span class="hlt">ice</span> can be largely explained by the abundance of sediments accumulated at the surface and present within the <span class="hlt">ice</span> shelf, and are likely to a smaller <span class="hlt">extent</span> related to the overestimation of <span class="hlt">ice</span> thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the <span class="hlt">ice</span> shelf, similar to what is observed in front of the <span class="hlt">ice</span> shelf below the sea <span class="hlt">ice</span>, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled <span class="hlt">Ice</span> Shelf Water emerging from below the central <span class="hlt">ice</span> shelf cavity into McMurdo Sound.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982Natur.298..830T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982Natur.298..830T"><span>Space Shuttle <span class="hlt">ice</span> nuclei</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.</p> <p>1982-08-01</p> <p>Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average <span class="hlt">ice</span> nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle <span class="hlt">ice</span> nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the <span class="hlt">extent</span> of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/<span class="hlt">ice</span> supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6..479F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6..479F"><span>The safety band of Antarctic <span class="hlt">ice</span> shelves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier</p> <p>2016-05-01</p> <p>The floating <span class="hlt">ice</span> shelves along the seaboard of the Antarctic <span class="hlt">ice</span> sheet restrain the outflow of upstream grounded <span class="hlt">ice</span>. Removal of these <span class="hlt">ice</span> shelves, as shown by past <span class="hlt">ice</span>-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the <span class="hlt">extent</span> of calving that might precondition other dynamic consequences and lead to loss of <span class="hlt">ice</span>-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The <span class="hlt">ice</span> shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current <span class="hlt">ice</span>-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as <span class="hlt">ice</span> shelves have been thinning at high rates for two decades and as upstream grounded <span class="hlt">ice</span> rests on a backward sloping bed, a precondition to marine <span class="hlt">ice</span>-sheet instability. In contrast to these <span class="hlt">ice</span> shelves, Larsen C <span class="hlt">Ice</span> Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4455712','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4455712"><span>Arctic sea <span class="hlt">ice</span> trends, variability and implications for seasonal <span class="hlt">ice</span> forecasting</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Serreze, Mark C.; Stroeve, Julienne</p> <p>2015-01-01</p> <p>September Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal <span class="hlt">ice</span> forecasting. In particular, while advances in observing sea <span class="hlt">ice</span> thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C43D..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C43D..01R"><span>NASA <span class="hlt">Ice</span>Bridge: Scientific Insights from Airborne Surveys of the Polar Sea <span class="hlt">Ice</span> Covers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richter-Menge, J.; Farrell, S. L.</p> <p>2015-12-01</p> <p>The NASA Operation <span class="hlt">Ice</span>Bridge (OIB) airborne sea <span class="hlt">ice</span> surveys are designed to continue a valuable series of sea <span class="hlt">ice</span> thickness measurements by bridging the gap between NASA's <span class="hlt">Ice</span>, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea <span class="hlt">ice</span> cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal <span class="hlt">extent</span> of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea <span class="hlt">ice</span> processes across all length scales. Key scientific insights gained on the state of the sea <span class="hlt">ice</span> cover will be highlighted, including snow depth, <span class="hlt">ice</span> thickness, surface roughness and morphology, and melt pond evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912967S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912967S"><span>Sediment features at the grounding zone and beneath Ekström <span class="hlt">Ice</span> Shelf, East Antarctica, imaged using on-<span class="hlt">ice</span> vibroseis.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Emma C.; Eisen, Olaf; Hofstede, Coen; Lambrecht, Astrid; Mayer, Christoph</p> <p>2017-04-01</p> <p>The grounding zone, where an <span class="hlt">ice</span> sheet becomes a floating <span class="hlt">ice</span> shelf, is known to be a key threshold region for <span class="hlt">ice</span> flow and stability. A better understanding of <span class="hlt">ice</span> dynamics and sediment transport across such zones will improve knowledge about contemporary and palaeo <span class="hlt">ice</span> flow, as well as past <span class="hlt">ice</span> <span class="hlt">extent</span>. Here we present a set of seismic reflection profiles crossing the grounding zone and continuing to the shelf edge of Ekström <span class="hlt">Ice</span> Shelf, East Antarctica. Using an on-<span class="hlt">ice</span> vibroseis source combined with a snowstreamer we have imaged a range of sub-glacial and sub-shelf sedimentary and geomorphological features; from layered sediment deposits to elongated flow features. The acoustic properties of the features as well as their morphology allow us to draw conclusions as to their material properties and origin. These results will eventually be integrated with numerical models of <span class="hlt">ice</span> dynamics to quantify past and present interactions between <span class="hlt">ice</span> and the solid Earth in East Antarctica; leading to a better understanding of future contributions of this region to sea-level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817671S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817671S"><span>Mapping and Assessing Variability in the Antarctic Marginal <span class="hlt">Ice</span> Zone, the Pack <span class="hlt">Ice</span> and Coastal Polynyas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, Julienne; Jenouvrier, Stephanie</p> <p>2016-04-01</p> <p>Sea <span class="hlt">ice</span> variability within the marginal <span class="hlt">ice</span> zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial <span class="hlt">extent</span>, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different <span class="hlt">ice</span> types to the total Antarctic sea <span class="hlt">ice</span> cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic <span class="hlt">ice</span> cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different <span class="hlt">ice</span> types. However, estimates of the amount of MIZ, consolidated pack <span class="hlt">ice</span> and polynyas depends strongly on what sea <span class="hlt">ice</span> algorithm is used. This study uses two popular passive microwave sea <span class="hlt">ice</span> algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack <span class="hlt">ice</span> and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack <span class="hlt">ice</span> area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea <span class="hlt">ice</span> characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0603G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0603G"><span>Fast <span class="hlt">ice</span> in the Canadian Arctic: Climatology, Atmospheric Forcing and Relation to Bathymetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galley, R. J.; Barber, D. G.</p> <p>2010-12-01</p> <p>Mobile sea <span class="hlt">ice</span> in the northern hemisphere has experienced significant reductions in both <span class="hlt">extent</span> and thickness over the last thirty years, and global climate models agree that these <span class="hlt">decreases</span> will continue. However, the Canadian Arctic Archipelago (CAA) creates a much different icescape than in the central Arctic Ocean due to its distinctive topographic, bathymetric and climatological conditions. Of particular interest is the continued viability of landfast sea <span class="hlt">ice</span> as a means of transportation and platform for transportation and hunting for the Canadian Inuit that reside in the region, as is the possibility of the Northwest Passage becoming a viable shipping lane in the future. Here we determine the climatological average landfast <span class="hlt">ice</span> conditions in the Canadian Arctic Archipelago over the last 27 years, we investigate variability and trends in these landfast <span class="hlt">ice</span> conditions, and we attempt to elucidate the physical parameters conducive to landfast sea <span class="hlt">ice</span> formation in sub-regions of the CAA during different times of the year. We use the Canadian <span class="hlt">Ice</span> Service digital sea <span class="hlt">ice</span> charts between 1983 and 2009 on a 2x2km grid to determine the sea <span class="hlt">ice</span> concentration-by-type and whether the sea <span class="hlt">ice</span> in a grid cell was landfast on a weekly, bi-weekly or monthly basis depending on the time of year. North American Regional Reanalysis (NARR) atmospheric data were used in this work, including air temperature, surface level pressure and wind speed and direction. The bathymetric data employed was from the International Bathymetric Chart of the Arctic Ocean. Results indicate that the CAA sea <span class="hlt">ice</span> regime is not climatologically analogous to the mobile sea <span class="hlt">ice</span> of the central Arctic Ocean. The sea <span class="hlt">ice</span> and the atmospheric and bathymetric properties that control the amount and timing of landfast sea <span class="hlt">ice</span> within the CAA are regionally variable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187743','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187743"><span>Arctic sea <span class="hlt">ice</span> a major determinant in Mandt's black guillemot movement and distribution during non-breeding season</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Divoky, G.J.; Douglas, David C.; Stenhouse, I. J.</p> <p>2016-01-01</p> <p>Mandt's black guillemot (Cepphus grylle mandtii) is one of the few seabirds associated in all seasons with Arctic sea <span class="hlt">ice</span>, a habitat that is changing rapidly. Recent <span class="hlt">decreases</span> in summer <span class="hlt">ice</span> have reduced breeding success and colony size of this species in Arctic Alaska. Little is known about the species' movements and distribution during the nine month non-breeding period (September–May), when changes in sea <span class="hlt">ice</span> <span class="hlt">extent</span> and composition are also occurring and predicted to continue. To examine bird movements and the seasonal role of sea <span class="hlt">ice</span> to non-breeding Mandt's black guillemots, we deployed and recovered (n = 45) geolocators on individuals at a breeding colony in Arctic Alaska during 2011–2015. Black guillemots moved north to the marginal <span class="hlt">ice</span> zone (MIZ) in the Beaufort and Chukchi seas immediately after breeding, moved south to the Bering Sea during freeze-up in December, and wintered in the Bering Sea January–April. Most birds occupied the MIZ in regions averaging 30–60% sea <span class="hlt">ice</span> concentration, with little seasonal variation. Birds regularly roosted on <span class="hlt">ice</span> in all seasons averaging 5 h d−1, primarily at night. By using the MIZ, with its roosting opportunities and associated prey, black guillemots can remain in the Arctic during winter when littoral waters are completely covered by <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010002409&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010002409&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dwater"><span>The Contribution of Water <span class="hlt">Ice</span> Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bass, D. S.; Tamppari, L. K.</p> <p>2000-01-01</p> <p>While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that <span class="hlt">ice</span> hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant <span class="hlt">decrease</span> in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 <span class="hlt">ice</span>. While the detection of water <span class="hlt">ice</span> clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the <span class="hlt">extent</span> to which water <span class="hlt">ice</span> clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water <span class="hlt">ice</span> cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a <span class="hlt">decrease</span> in atmospheric water vapor may be attributed to deposition of water <span class="hlt">ice</span> onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water <span class="hlt">ice</span> clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..39.8502N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..39.8502N"><span>Observations reveal external driver for Arctic sea-<span class="hlt">ice</span> retreat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Notz, Dirk; Marotzke, Jochem</p> <p>2012-04-01</p> <p>The very low summer <span class="hlt">extent</span> of Arctic sea <span class="hlt">ice</span> that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-<span class="hlt">ice</span> retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-<span class="hlt">ice</span> minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-<span class="hlt">ice</span> <span class="hlt">extent</span> is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea <span class="hlt">ice</span> already today.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29806697','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29806697"><span>The Arctic's sea <span class="hlt">ice</span> cover: trends, variability, predictability, and comparisons to the Antarctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serreze, Mark C; Meier, Walter N</p> <p>2018-05-28</p> <p>As assessed over the period of satellite observations, October 1978 to present, there are downward linear trends in Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> for all months, largest at the end of the melt season in September. The <span class="hlt">ice</span> cover is also thinning. Downward trends in <span class="hlt">extent</span> and thickness have been accompanied by pronounced interannual and multiyear variability, forced by both the atmosphere and ocean. As the <span class="hlt">ice</span> thins, its response to atmospheric and oceanic forcing may be changing. In support of a busier Arctic, there is a growing need to predict <span class="hlt">ice</span> conditions on a variety of time and space scales. A major challenge to providing seasonal scale predictions is the 7-10 days limit of numerical weather prediction. While a seasonally <span class="hlt">ice</span>-free Arctic Ocean is likely well within this century, there is much uncertainty in the timing. This reflects differences in climate model structure, the unknown evolution of anthropogenic forcing, and natural climate variability. In sharp contrast to the Arctic, Antarctic sea <span class="hlt">ice</span> <span class="hlt">extent</span>, while highly variable, has increased slightly over the period of satellite observations. The reasons for this different behavior remain to be resolved, but responses to changing atmospheric circulation patterns appear to play a strong role. © 2018 New York Academy of Sciences.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815826M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815826M"><span>Evaluating Antarctic sea <span class="hlt">ice</span> predictability at seasonal to interannual timescales in global climate models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marchi, Sylvain; Fichefet, Thierry; Goosse, Hugues; Zunz, Violette; Tietsche, Steffen; Day, Jonny; Hawkins, Ed</p> <p>2016-04-01</p> <p>Unlike the rapid sea <span class="hlt">ice</span> losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> over recent decades. Although many processes have already been suggested to explain this positive trend, it remains the subject of current investigations. Understanding the evolution of the Antarctic sea <span class="hlt">ice</span> turns out to be more complicated than for the Arctic for two reasons: the lack of observations and the well-known biases of climate models in the Southern Ocean. Irrespective of those issues, another one is to determine whether the positive trend in sea <span class="hlt">ice</span> <span class="hlt">extent</span> would have been predictable if adequate observations and models were available some decades ago. This study of Antarctic sea <span class="hlt">ice</span> predictability is carried out using 6 global climate models (HadGEM1.2, MPI-ESM-LR, GFDL CM3, EC-Earth V2, MIROC 5.2 and ECHAM 6-FESOM) which are all part of the APPOSITE project. These models are used to perform hindcast simulations in a perfect model approach. The predictive skill is estimated thanks to the PPP (Potential Prognostic Predictability) and the ACC (Anomaly Correlation Coefficient). The former is a measure of the uncertainty of the ensemble while the latter assesses the accuracy of the prediction. These two indicators are applied to different variables related to sea <span class="hlt">ice</span>, in particular the total sea <span class="hlt">ice</span> <span class="hlt">extent</span> and the <span class="hlt">ice</span> edge location. This first model intercomparison study about sea <span class="hlt">ice</span> predictability in the Southern Ocean aims at giving a general overview of Antarctic sea <span class="hlt">ice</span> predictability in current global climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171003','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171003"><span>Role of ground <span class="hlt">ice</span> dynamics and ecological feedbacks in recent <span class="hlt">ice</span> wedge degradation and stabilization</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.</p> <p>2015-01-01</p> <p>Ground <span class="hlt">ice</span> is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. <span class="hlt">Ice</span> wedges, which form near the surface and are the dominant type of massive <span class="hlt">ice</span> in the Arctic, are particularly vulnerable to warming. Yet processes controlling <span class="hlt">ice</span> wedge degradation and stabilization are poorly understood. Here we quantified <span class="hlt">ice</span> wedge volume and degradation rates, compared ground <span class="hlt">ice</span> characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean <span class="hlt">ice</span> wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst <span class="hlt">extent</span> (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, <span class="hlt">ice</span>-poor transient layer, <span class="hlt">ice</span>-rich intermediate layer, thermokarst cave <span class="hlt">ice</span>, and wedge <span class="hlt">ice</span> varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground <span class="hlt">ice</span> to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground <span class="hlt">ice</span> dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRF..120.2280J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRF..120.2280J"><span>Role of ground <span class="hlt">ice</span> dynamics and ecological feedbacks in recent <span class="hlt">ice</span> wedge degradation and stabilization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.</p> <p>2015-11-01</p> <p>Ground <span class="hlt">ice</span> is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. <span class="hlt">Ice</span> wedges, which form near the surface and are the dominant type of massive <span class="hlt">ice</span> in the Arctic, are particularly vulnerable to warming. Yet processes controlling <span class="hlt">ice</span> wedge degradation and stabilization are poorly understood. Here we quantified <span class="hlt">ice</span> wedge volume and degradation rates, compared ground <span class="hlt">ice</span> characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean <span class="hlt">ice</span> wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst <span class="hlt">extent</span> (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, <span class="hlt">ice</span>-poor transient layer, <span class="hlt">ice</span>-rich intermediate layer, thermokarst cave <span class="hlt">ice</span>, and wedge <span class="hlt">ice</span> varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground <span class="hlt">ice</span> to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground <span class="hlt">ice</span> dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021053','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021053"><span>Sea <span class="hlt">Ice</span> Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin</p> <p>2015-01-01</p> <p>The recent decline in perennial sea <span class="hlt">ice</span> cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea <span class="hlt">ice</span> <span class="hlt">extent</span> would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the <span class="hlt">ice</span> cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> for the month of September (the month of the annual <span class="hlt">extent</span> minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea <span class="hlt">Ice</span> Outlook (SIO) but recently came under the auspices of the Sea <span class="hlt">Ice</span> Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic <span class="hlt">ice</span> <span class="hlt">extent</span> of 5.030.41 million km2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11049062','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11049062"><span>Rheological properties of <span class="hlt">ice</span> cream mixes and frozen <span class="hlt">ice</span> creams containing fat and fat replacers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adapa, S; Dingeldein, H; Schmidt, K A; Herald, T J</p> <p>2000-10-01</p> <p><span class="hlt">Ice</span> cream mixes and frozen <span class="hlt">ice</span> creams at milk fat levels of 12%, 8%, 6%, 6% plus a protein-based fat replacer, and 6% plus a carbohydrate-based fat replacer were evaluated for viscoelastic properties by dynamic testing with sinusoidal oscillatory tests at various frequencies. The storage modulus (G'), loss modulus (G"), and tan delta (G"/G') were calculated for all the treatments to determine changes in the viscous and elastic properties of the mixes and frozen <span class="hlt">ice</span> creams due to fat content. In <span class="hlt">ice</span> cream mixes, G' and G" exhibited a strong frequency dependence. The G" was higher than G' throughout the frequency range (1 to 8 Hz) examined, without any crossover, except for the 12% mix. Elastic properties of the <span class="hlt">ice</span> cream mixes <span class="hlt">decreased</span> as fat content <span class="hlt">decreased</span>. Tan delta values indicated that fat replacers did not enhance the elastic properties of the <span class="hlt">ice</span> cream mixes. In all frozen <span class="hlt">ice</span> creams, G' and G" again showed a frequency dependence throughout the range tested (0.5 to 10 Hz). The amount of fat in <span class="hlt">ice</span> creams and the degree of fat destabilization affected the elasticity in the frozen product. Even though the <span class="hlt">ice</span> creams did not have significant elastic properties, when compared as a group the samples with higher fat content had higher elastic properties. The addition of protein-based and carbohydrate-based fat replacers did not enhance the elastic properties of the <span class="hlt">ice</span> creams but did increase the viscous properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26032315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26032315"><span>Arctic sea <span class="hlt">ice</span> trends, variability and implications for seasonal <span class="hlt">ice</span> forecasting.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serreze, Mark C; Stroeve, Julienne</p> <p>2015-07-13</p> <p>September Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal <span class="hlt">ice</span> forecasting. In particular, while advances in observing sea <span class="hlt">ice</span> thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5267S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5267S"><span>Formation of melt channels on <span class="hlt">ice</span> shelves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergienko, Olga</p> <p>2013-04-01</p> <p>Melt channels have been observed on <span class="hlt">ice</span> shelves experiencing strong melting in both Greenland (Petermann Glacier) and Antarctica (Pine Island Glacier). Using a fully-couple <span class="hlt">ice-shelf/sub-ice</span>-shelf-ocean flow model, it is demonstrated that these channels can form spontaneously in laterally confined <span class="hlt">ice</span> shelves. These channels have transverse <span class="hlt">extent</span> of a few kilometers and a vertical relief of about a few hundred meters. Meltrates and sea-water transport in the channels are significantly higher than in between the channels on the smooth flat <span class="hlt">ice</span> bottom. In circumstances where an <span class="hlt">ice</span> shelf has no-slip conditions at its lateral boundaries, the <span class="hlt">ice-shelf/sub-ice</span>-shelf-cavity system exhibits equilibrium periodic states, where the same configurations repetitively appear with a periodicity of about 30-35 years. This peculiar dynamics of the system has strong implications on the interpretation of the remote and in-situ observations and inferences of the system parameters (e.g., melt rates) based on these observations. For instance, the persistent temporal changes in the <span class="hlt">ice</span>-shelf thickness are caused by internal dynamics of the melt channels, and, in contrast to traditional interpretation, can be independent of the oceanic forcings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA257132','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA257132"><span>Investigation of Antarctic Sea <span class="hlt">Ice</span> Concentration by Means of Selected Algorithms</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-05-08</p> <p>Changes in areal <span class="hlt">extent</span> and concentration of sea <span class="hlt">ice</span> around Antarctica may serve as sensitive indicators of global warming . A comparison study was...occurred from July, 1987 through June, 1990. Antarctic Ocean, Antarctic regions, Global warming , Sea <span class="hlt">ice</span>-Antarctic regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43D0577F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43D0577F"><span>Sea <span class="hlt">Ice</span> and Hydrographic Variability in the Northwest North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fenty, I. G.; Heimbach, P.; Wunsch, C. I.</p> <p>2010-12-01</p> <p> marginal <span class="hlt">ice</span> zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for <span class="hlt">ice</span> to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing <span class="hlt">ice</span> pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from <span class="hlt">ice</span> meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime <span class="hlt">ice</span> <span class="hlt">extent</span>; positive <span class="hlt">ice</span> <span class="hlt">extent</span> anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic <span class="hlt">ice</span> associated with future warming may be predicted to lead positive <span class="hlt">ice</span> <span class="hlt">extent</span> anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPa...9..969B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPa...9..969B"><span>The sensitivity of the Arctic sea <span class="hlt">ice</span> to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, M.; Brandefelt, J.; Nilsson, J.</p> <p>2013-04-01</p> <p>In the present work the Arctic sea <span class="hlt">ice</span> in the mid-Holocene and the pre-industrial climates are analysed and compared on the basis of climate-model results from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) and phase 3 (PMIP3). The PMIP3 models generally simulate smaller and thinner sea-<span class="hlt">ice</span> <span class="hlt">extents</span> than the PMIP2 models both for the pre-industrial and the mid-Holocene climate. Further, the PMIP2 and PMIP3 models all simulate a smaller and thinner Arctic summer sea-<span class="hlt">ice</span> cover in the mid-Holocene than in the pre-industrial control climate. The PMIP3 models also simulate thinner winter sea <span class="hlt">ice</span> than the PMIP2 models. The winter sea-<span class="hlt">ice</span> <span class="hlt">extent</span> response, i.e. the difference between the mid-Holocene and the pre-industrial climate, varies among both PMIP2 and PMIP3 models. Approximately one half of the models simulate a <span class="hlt">decrease</span> in winter sea-<span class="hlt">ice</span> <span class="hlt">extent</span> and one half simulates an increase. The model-mean summer sea-<span class="hlt">ice</span> <span class="hlt">extent</span> is 11 % (21 %) smaller in the mid-Holocene than in the pre-industrial climate simulations in the PMIP2 (PMIP3). In accordance with the simple model of Thorndike (1992), the sea-<span class="hlt">ice</span> thickness response to the insolation change from the pre-industrial to the mid-Holocene is stronger in models with thicker <span class="hlt">ice</span> in the pre-industrial climate simulation. Further, the analyses show that climate models for which the Arctic sea-<span class="hlt">ice</span> responses to increasing atmospheric CO2 concentrations are similar may simulate rather different sea-<span class="hlt">ice</span> responses to the change in solar forcing between the mid-Holocene and the pre-industrial. For two specific models, which are analysed in detail, this difference is found to be associated with differences in the simulated cloud fractions in the summer Arctic; in the model with a larger cloud fraction the effect of insolation change is muted. A sub-set of the mid-Holocene simulations in the PMIP ensemble exhibit open water off the north-eastern coast of Greenland in summer, which can provide a fetch for surface</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23713125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23713125"><span><span class="hlt">Ice</span> sheets and nitrogen.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolff, Eric W</p> <p>2013-07-05</p> <p>Snow and <span class="hlt">ice</span> play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar <span class="hlt">ice</span> sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic <span class="hlt">ice</span> sheet. <span class="hlt">Ice</span> cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the <span class="hlt">extent</span> of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland <span class="hlt">ice</span> rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in <span class="hlt">ice</span> cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland <span class="hlt">ice</span> show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3682747','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3682747"><span><span class="hlt">Ice</span> sheets and nitrogen</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wolff, Eric W.</p> <p>2013-01-01</p> <p>Snow and <span class="hlt">ice</span> play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar <span class="hlt">ice</span> sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic <span class="hlt">ice</span> sheet. <span class="hlt">Ice</span> cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the <span class="hlt">extent</span> of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland <span class="hlt">ice</span> rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in <span class="hlt">ice</span> cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland <span class="hlt">ice</span> show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0586E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0586E"><span>Carbon Dioxide Transfer Through Sea <span class="hlt">Ice</span>: Modelling Flux in Brine Channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.</p> <p>2010-12-01</p> <p>For many years sea <span class="hlt">ice</span> was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea <span class="hlt">ice</span> may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year <span class="hlt">ice</span>), it may also be highly permeable (e.g. thin, first year <span class="hlt">ice</span>) with some studies observing significant fluxes of CO2. Sea <span class="hlt">ice</span> covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea <span class="hlt">ice</span> and direction of flux related to sea <span class="hlt">ice</span> temperature and the presence of brine channels in the <span class="hlt">ice</span>, as well as seasonal processes such as whether the <span class="hlt">ice</span> is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea <span class="hlt">ice</span> and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea <span class="hlt">ice</span> is thought to enhance this process. Micro-organisms present within the sea <span class="hlt">ice</span> will also contribute to the CO2 flux dynamics. Recent evidence of <span class="hlt">decreasing</span> sea <span class="hlt">ice</span> <span class="hlt">extent</span> and the associated change from a multi-year <span class="hlt">ice</span> to first-year <span class="hlt">ice</span> dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea <span class="hlt">ice</span>. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea <span class="hlt">ice</span> covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea <span class="hlt">ice</span>-air flux model. In our work we use the Los Alamos sea <span class="hlt">ice</span> model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and <span class="hlt">ice</span> algae production to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919277B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919277B"><span>Quantifying model uncertainty in seasonal Arctic sea-<span class="hlt">ice</span> forecasts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin</p> <p>2017-04-01</p> <p>Dynamical model forecasts in the Sea <span class="hlt">Ice</span> Outlook (SIO) of September Arctic sea-<span class="hlt">ice</span> <span class="hlt">extent</span> over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea <span class="hlt">ice</span> using SIO dynamical models initialized with identical sea-<span class="hlt">ice</span> thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-<span class="hlt">ice</span> volume and <span class="hlt">extent</span>, this is not the case for sea-<span class="hlt">ice</span> concentration. Additionally, forecast uncertainty of sea-<span class="hlt">ice</span> thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1346837','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1346837"><span>A New Discrete Element Sea-<span class="hlt">Ice</span> Model for Earth System Modeling</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Turner, Adrian Keith</p> <p></p> <p>Sea <span class="hlt">ice</span> forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea <span class="hlt">ice</span> at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea <span class="hlt">ice</span> and inhibits its vertical growth, increases its albedo, and contributes to pooledmore » water in melt ponds that darken the Arctic <span class="hlt">ice</span> surface in the spring. <span class="hlt">Ice</span> <span class="hlt">extent</span> and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-<span class="hlt">ice</span>-ocean boundary layers, including the <span class="hlt">ice</span>-albedo feedback, whereby a reduced <span class="hlt">ice</span> cover leads to increased upper ocean heating, further enhancing sea-<span class="hlt">ice</span> melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-<span class="hlt">ice</span> during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-<span class="hlt">ice</span> <span class="hlt">extent</span> during the same period (Gagne et al., 2014).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...166....4S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...166....4S"><span>Modelling sea <span class="hlt">ice</span> formation in the Terra Nova Bay polynya</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.</p> <p>2017-02-01</p> <p> realistic polynya <span class="hlt">extent</span> estimates. The model-derived polynya <span class="hlt">extent</span> has been validated by comparing the modelled sea <span class="hlt">ice</span> concentration against MODIS high resolution satellite images, confirming that the model is able to reproduce reasonably well the TNB polynya evolution in terms of both shape and <span class="hlt">extent</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131....7H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131....7H"><span>SIPEX 2012: Extreme sea-<span class="hlt">ice</span> and atmospheric conditions off East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.</p> <p>2016-09-01</p> <p>In 2012, Antarctic sea-<span class="hlt">ice</span> coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-<span class="hlt">ice</span>-atmosphere system off East Antarctica, prior to and during the Sea <span class="hlt">Ice</span> Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-<span class="hlt">ice</span> and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-<span class="hlt">ice</span>-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-<span class="hlt">ice</span> <span class="hlt">extent</span> recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-<span class="hlt">ice</span> <span class="hlt">extent</span> and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea <span class="hlt">ice</span> appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea <span class="hlt">ice</span> from the east. This increased westward <span class="hlt">ice</span> flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea <span class="hlt">ice</span> to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-<span class="hlt">ice</span> <span class="hlt">extent</span> from the western Ross Sea during austral winter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1399D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1399D"><span>Nudging the Arctic Ocean to quantify Arctic sea <span class="hlt">ice</span> feedbacks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dekker, Evelien; Severijns, Camiel; Bintanja, Richard</p> <p>2017-04-01</p> <p>It is well-established that the Arctic is warming 2 to 3 time faster than rest of the planet. One of the great uncertainties in climate research is related to what <span class="hlt">extent</span> sea <span class="hlt">ice</span> feedbacks amplify this (seasonally varying) Arctic warming. Earlier studies have analyzed existing climate model output using correlations and energy budget considerations in order to quantify sea <span class="hlt">ice</span> feedbacks through indirect methods. From these analyses it is regularly inferred that sea <span class="hlt">ice</span> likely plays an important role, but details remain obscure. Here we will take a different and a more direct approach: we will keep the sea <span class="hlt">ice</span> constant in a sensitivity simulation, using a state-of -the-art climate model (EC-Earth), applying a technique that has never been attempted before. This experimental technique involves nudging the temperature and salinity of the ocean surface (and possibly some layers below to maintain the vertical structure and mixing) to a predefined prescribed state. When strongly nudged to existing (seasonally-varying) sea surface temperatures, ocean salinity and temperature, we force the sea <span class="hlt">ice</span> to remain in regions/seasons where it is located in the prescribed state, despite the changing climate. Once we obtain fixed' sea <span class="hlt">ice</span>, we will run a future scenario, for instance 2 x CO2 with and without prescribed sea <span class="hlt">ice</span>, with the difference between these runs providing a measure as to what <span class="hlt">extent</span> sea <span class="hlt">ice</span> contributes to Arctic warming, including the seasonal and geographical imprint of the effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..180..240L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..180..240L"><span>New age constraints for the Saalian glaciation in northern central Europe: Implications for the <span class="hlt">extent</span> of <span class="hlt">ice</span> sheets and related proglacial lake systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, Jörg; Lauer, Tobias; Winsemann, Jutta</p> <p>2018-01-01</p> <p>A comprehensive palaeogeographic reconstruction of <span class="hlt">ice</span> sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-<span class="hlt">ice</span> flow data, till provenance, facies analysis, geomorphology and new luminescence ages of <span class="hlt">ice</span>-marginal deposits. Three major <span class="hlt">ice</span> advances with different <span class="hlt">ice</span>-advance directions and source areas are indicated by palaeo-<span class="hlt">ice</span> flow directions and till provenance. The first <span class="hlt">ice</span> advance was characterised by a southwards directed <span class="hlt">ice</span> flow and a dominance of clasts derived from southern Sweden. The second <span class="hlt">ice</span> advance was initially characterised by an <span class="hlt">ice</span> flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third <span class="hlt">ice</span> advance) was characterised by <span class="hlt">ice</span> streaming (Hondsrug <span class="hlt">ice</span> stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first <span class="hlt">ice</span> advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of <span class="hlt">ice</span>-marginal deposits attributed to the second <span class="hlt">ice</span> advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The <span class="hlt">ice</span> sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive <span class="hlt">ice</span>-dammed lakes. The formation of proglacial lakes was mainly controlled by <span class="hlt">ice</span>-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated <span class="hlt">ice</span> advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. <span class="hlt">Ice</span>-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..179...87E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..179...87E"><span><span class="hlt">Ice</span> streams of the Late Wisconsin Cordilleran <span class="hlt">Ice</span> Sheet in western North America</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eyles, Nick; Arbelaez Moreno, Lina; Sookhan, Shane</p> <p>2018-01-01</p> <p>The Late Wisconsin Cordilleran <span class="hlt">Ice</span> Sheet (CIS) of western North America is thought to have reached its maximum <span class="hlt">extent</span> (∼2.5 × 106 km2) as late at c. 14.5 ka. Most (80%) of the <span class="hlt">ice</span> sheet's bed consists of high mountains but its 'core zone' sited on plateaux of the Intermontane Belt of British Columbia and coterminous parts of the USA, shows broad swaths of subglacially-streamlined rock and sediment. Broad scale mapping from new digital imagery data identifies three subglacial bed types: 1) 'hard beds' of variably streamlined bedrock; 2) drumlinized 'soft beds' of deformation till reworked from antecedent sediment, and 3) 'mixed beds' of variably-streamlined bedrock protruding through drumlinized sediment. Drumlins on soft beds appear to be erosional features cut into till and antecedent sediments, and identify the catchment areas of paleo <span class="hlt">ice</span> streams expressed downglacier as flow sets of megascale glacial lineations (MSGLs). 'Grooved' and 'cloned' drumlins appear to record the transition from drumlins to MSGLs. The location of paleo <span class="hlt">ice</span> streams reflects topographic funneling of <span class="hlt">ice</span> from plateau surfaces through outlet valleys and a soft bed that sustained fast flow; rock-cut MSGLs are also present locally on the floors of outlet valleys. CIS disintegrated in <1000 years shortly after c. 13.0 ka releasing very large volumes of meltwater and sediment to the Pacific coast. Abrupt deglaciation may reflect unsustainable calving of marine-based <span class="hlt">ice</span> streams along the glacio-isostatically depressed coast; large deep 'fiord lakes' in the <span class="hlt">ice</span> sheet's interior may have played an analogous role. Mapping of the broad scale distribution of bed types across the Cordilleran <span class="hlt">Ice</span> Sheet provides key information for paleoglaciological modelling and also for understanding the beds of modern <span class="hlt">ice</span> masses such as the Greenland <span class="hlt">Ice</span> Sheet which is of a comparable topographic setting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP41C2260G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP41C2260G"><span>The Role of Arctic Sea <span class="hlt">Ice</span> in Last Millennium Climate Variability: Model-Proxy Comparisons Using Ensemble Members and Novel Model Experiments.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gertler, C. G.; Monier, E.; Prinn, R. G.</p> <p>2016-12-01</p> <p>Variability in sea <span class="hlt">ice</span> <span class="hlt">extent</span> is a prominent feature of forced simulations of the last millennium and reconstructions of paleoclimate using proxy records. The rapid 20th century decline in sea <span class="hlt">ice</span> <span class="hlt">extent</span> is most likely due to greenhouse gas forcing, but the accuracy of future projections depend on the characterization of natural variability. Declining sea <span class="hlt">ice</span> <span class="hlt">extent</span> affects regional climate and society, but also plays a large role in Arctic amplification, with implications for mid-latitude circulation and even large-scale climate oscillations. To characterize the effects of natural and anthropogenic climate forcing on sea <span class="hlt">ice</span> and the related changes in large-scale atmospheric circulation, a combination of instrumental record, paleoclimate reconstructions, and general circulation models can be employed to recreate sea <span class="hlt">ice</span> <span class="hlt">extents</span> and the corresponding atmosphere-ocean states. Model output from the last millennium ensemble (LME) is compared to a proxy-based sea <span class="hlt">ice</span> reconstruction and a global proxy network using a variety of statistical and data assimilation techniques. Further model runs using the Community Earth Systems Model (CESM) are performed with the same inputs as LME but forced with experimental sea <span class="hlt">ice</span> <span class="hlt">extents</span>, and results are contextualized within the larger ensemble by a variety of metrics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28753208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28753208"><span><span class="hlt">Ice</span> nucleation active bacteria in precipitation are genetically diverse and nucleate <span class="hlt">ice</span> by employing different mechanisms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L</p> <p>2017-12-01</p> <p>A growing body of circumstantial evidence suggests that <span class="hlt">ice</span> nucleation active (<span class="hlt">Ice</span> + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of <span class="hlt">Ice</span> + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for <span class="hlt">ice</span> nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of <span class="hlt">Ice</span> + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most <span class="hlt">Ice</span> + bacteria were identified as members of known and unknown <span class="hlt">Ice</span> + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate <span class="hlt">ice</span> employing the well-characterized membrane-bound INA protein. Two <span class="hlt">Ice</span> + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include <span class="hlt">Ice</span> + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. <span class="hlt">Ice</span> + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what <span class="hlt">extent</span> the concentration of culturable <span class="hlt">Ice</span> + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for <span class="hlt">Ice</span> + bacteria in the initiation of precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040070783','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040070783"><span>Representation of <span class="hlt">Ice</span> Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of <span class="hlt">Ice</span> Roughness--Year 1: Approximating NURBS Curves</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dill, Loren H.; Choo, Yung K. (Technical Monitor)</p> <p>2004-01-01</p> <p>Software was developed to construct approximating NURBS curves for <span class="hlt">iced</span> airfoil geometries. Users specify a tolerance that determines the <span class="hlt">extent</span> to which the approximating curve follows the rough <span class="hlt">ice</span>. The user can therefore smooth the <span class="hlt">ice</span> geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the <span class="hlt">ice</span> geometry will permit studies of the effects of smoothing upon the aerodynamics of <span class="hlt">iced</span> airfoils. The software was applied to several different types of <span class="hlt">iced</span> airfoil data collected in the <span class="hlt">Icing</span> Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC44B..02K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC44B..02K"><span>Quantifying the <span class="hlt">ice</span>-albedo feedback through decoupling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kravitz, B.; Rasch, P. J.</p> <p>2017-12-01</p> <p>The <span class="hlt">ice</span>-albedo feedback involves numerous individual components, whereby warming induces sea <span class="hlt">ice</span> melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea <span class="hlt">ice</span> albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea <span class="hlt">ice</span> on surface energy and moisture fluxes by allowing sea <span class="hlt">ice</span> thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the <span class="hlt">ice</span>-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea <span class="hlt">ice</span> <span class="hlt">extent</span>/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the <span class="hlt">ice</span>-albedo feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730015654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730015654"><span>Sea <span class="hlt">ice</span> and surface water circulation, Alaskan Continental Shelf</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.</p> <p>1973-01-01</p> <p>The author has identified the following significant results. The boundaries of land-fast <span class="hlt">ice</span>, distribution of pack <span class="hlt">ice</span>, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack <span class="hlt">ice</span> during 24 hours was determined by plotting the distinctly identifiable <span class="hlt">ice</span> floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast <span class="hlt">ice</span>. This <span class="hlt">ice</span> hinders the movement of <span class="hlt">ice</span> formed in eastern Chukchi Sea southward through the Bering Strait. The movement of <span class="hlt">ice</span> along the Russian coast is relatively faster. Plotting of some of the <span class="hlt">ice</span> floes indicated movement of <span class="hlt">ice</span> in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of <span class="hlt">ice</span> observed during March 6 and 7 considerably altered the distribution and <span class="hlt">extent</span> of polynya. These features when continually plotted should be of considerable aid in navigation of <span class="hlt">ice</span> breakers. The movement of <span class="hlt">ice</span> will also help delineate the migration and distribution of sea mammals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AtmEn..41.6156F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AtmEn..41.6156F"><span>Laboratory studies on the uptake of aromatic hydrocarbons by <span class="hlt">ice</span> crystals during vapor depositional crystal growth</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fries, Elke; Starokozhev, Elena; Haunold, Werner; Jaeschke, Wolfgang; Mitra, Subir K.; Borrmann, Stephan; Schmidt, Martin U.</p> <p></p> <p>Uptake of aromatic hydrocarbons (AH) by <span class="hlt">ice</span> crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. <span class="hlt">Ice</span> crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C 6H 6), toluene (methylbenzene, C 7H 8), the C 8H 10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C 9H 12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C 10H 14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3-20.8 μg m -3. Uptake of AH was detected by analyzing vapor deposited <span class="hlt">ice</span> with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS). <span class="hlt">Ice</span> crystal size was lower than 1 cm. At water vapor <span class="hlt">extents</span> of 5.8, 6.0 and 8.1 g m -3, <span class="hlt">ice</span> crystal shape changed with <span class="hlt">decreasing</span> temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed <span class="hlt">ice</span> growth rates were between 3.3 and 13.3×10 -3 g s -1 m -2 and <span class="hlt">decreased</span> at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher. Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in <span class="hlt">ice</span> above their detection limits (DLs) of 25 pg g <span class="hlt">ice</span>-1 (toluene, ethylbenzene, xylenes) and 125 pg g <span class="hlt">ice</span>-1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg g <span class="hlt">ice</span>-1 at gas concentrations of 10.3-10.7 μg m -3 calculated at 295 K. Uptake coefficients ( K) defined as the product of concentration of AH in <span class="hlt">ice</span> and density of <span class="hlt">ice</span> related to the product of their concentration in the gas phase and <span class="hlt">ice</span> mass varied between 0.40 and 10.23. K increased with <span class="hlt">decreasing</span> temperatures. Values of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27812435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27812435"><span>Loitering of the retreating sea <span class="hlt">ice</span> edge in the Arctic Seas.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steele, Michael; Ermold, Wendy</p> <p>2015-12-01</p> <p>Each year, the arctic sea <span class="hlt">ice</span> edge retreats from its winter maximum <span class="hlt">extent</span> through the Seasonal <span class="hlt">Ice</span> Zone (SIZ) to its summer minimum <span class="hlt">extent</span>. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan-arctic <span class="hlt">ice</span> edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior "<span class="hlt">ice</span> edge loitering," and identify areas that are more prone to loitering than others. Generally, about 20-25% of the SIZ area experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in areas from which the <span class="hlt">ice</span> has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force <span class="hlt">ice</span> floes into this water cause melting. Thus, while individual <span class="hlt">ice</span> floes are moving, the <span class="hlt">ice</span> edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the area of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ area has grown. This is because rapid <span class="hlt">ice</span> retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the <span class="hlt">ice</span> edge during the retreat season.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003112&hterms=core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcore','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003112&hterms=core&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcore"><span>Holocene Accumulation and <span class="hlt">Ice</span> Flow near the West Antarctic <span class="hlt">Ice</span> Sheet Divide <span class="hlt">Ice</span> Core Site</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.</p> <p>2016-01-01</p> <p>The West Antarctic <span class="hlt">Ice</span> Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the <span class="hlt">ice</span> core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the <span class="hlt">ice</span>-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern <span class="hlt">ice</span> divide, advection of <span class="hlt">ice</span> from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and <span class="hlt">decreased</span> by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic <span class="hlt">ice</span>-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the <span class="hlt">ice</span>-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale <span class="hlt">ice</span>-sheet models used for reconstructions of West Antarctic <span class="hlt">ice</span> volume should incorporate this accumulation history.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13I0797F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13I0797F"><span><span class="hlt">ICE</span>911 Research: Preserving and Rebuilding Reflective <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.</p> <p>2014-12-01</p> <p>We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year <span class="hlt">ice</span> using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective <span class="hlt">ice</span> has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid <span class="hlt">decrease</span> of summer-time <span class="hlt">ice</span>. As summer-time bright <span class="hlt">ice</span> disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based <span class="hlt">ice</span> melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and <span class="hlt">ice</span> preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and <span class="hlt">ice</span> from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and <span class="hlt">ice</span> preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve <span class="hlt">ice</span>, glaciers, permafrost and seasonal snow areas, and perhaps aid natural <span class="hlt">ice</span> formation processes. If this method is deployed on a large enough scale, it could conceivably</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013007','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013007"><span>Arctic Sea <span class="hlt">Ice</span> in Transformation: A Review of Recent Observed Changes and Impacts on Biology and Human Activity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meier, Walter N.; Hovelsrud, Greta K.; van Oort, Bob E. H.; Key, Jeffrey R.; Kovacs, Kit M.; Michel, Christine; Haas, Christian; Granskog, Mats A.; Gerland, Sebastian; Perovich, Donald K.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140013007'); toggleEditAbsImage('author_20140013007_show'); toggleEditAbsImage('author_20140013007_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140013007_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140013007_hide"></p> <p>2014-01-01</p> <p>Sea <span class="hlt">ice</span> in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal <span class="hlt">extent</span> has declined over 30, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea <span class="hlt">ice</span> thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40 decline in thickness, due in large part to the loss of thicker, older <span class="hlt">ice</span> cover. The changes in sea <span class="hlt">ice</span> are happening faster than models have projected. With continued increasing temperatures, summer <span class="hlt">ice</span>-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea <span class="hlt">ice</span> <span class="hlt">decreases</span>. The changes in Arctic sea <span class="hlt">ice</span> are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting peoples living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990109666','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990109666"><span>The Formation each Winter of the Circumpolar Wave in the Sea <span class="hlt">Ice</span> around Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, Per; White, Warren B.</p> <p>1999-01-01</p> <p>Seeking to improve upon the visualization of the Antarctic Circumpolar Wave (ACW) , we compare a 16-year sequence of 6-month winter averages of Antarctic sea <span class="hlt">ice</span> <span class="hlt">extents</span> and concentrations with those of adjacent sea surface temperatures (SSTs). Here we follow SSTs around the globe along the maximum sea <span class="hlt">ice</span> edge rather than in a zonal band equatorward of it. The results are similar to the earlier ones, but the ACWs do not propagate with equal amplitude or speed. Additionally in a sequence of 4 polar stereographic plots of these SSTs and sea <span class="hlt">ice</span> concentrations, we find a remarkable correlation between SST minima and sea <span class="hlt">ice</span> concentration maxima, even to the <span class="hlt">extent</span> of matching contours across the <span class="hlt">ice</span>-sea boundary, in the sector between 900E and the Palmer Peninsula. Based on these observations, we suggest that the memory of the ACW in the sea <span class="hlt">ice</span> is carried from one Austral winter to the next by the neighboring SSTS, since the sea <span class="hlt">ice</span> is nearly absent in the Austral summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C31A..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C31A..03A"><span>Interactions Between <span class="hlt">Ice</span> Thickness, Bottom <span class="hlt">Ice</span> Algae, and Transmitted Spectral Irradiance in the Chukchi Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.</p> <p>2015-12-01</p> <p>The amount of light that penetrates the Arctic sea <span class="hlt">ice</span> cover impacts sea-<span class="hlt">ice</span> mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, <span class="hlt">ice</span> thickness, and bottom <span class="hlt">ice</span> algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom <span class="hlt">ice</span> algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and <span class="hlt">ice</span> thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea <span class="hlt">ice</span> in varying time and space may impact new trends in Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> and the progression of melt.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31B0742N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31B0742N"><span>A Quantitative Proxy for Sea-<span class="hlt">Ice</span> Based on Diatoms: A Cautionary Tale.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nesterovich, A.; Caissie, B.</p> <p>2016-12-01</p> <p>Sea <span class="hlt">ice</span> in the Polar Regions supports unique and productive ecosystems, but the current decline in the Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> prompts questions about previous sea <span class="hlt">ice</span> declines and the response of <span class="hlt">ice</span> related ecosystems. Since satellite data only extend back to 1978, the study of sea <span class="hlt">ice</span> before this time requires a proxy. Being one of the most productive, diatom-dominated regions in the world and having a wide range of sea <span class="hlt">ice</span> concentrations, the Bering and Chukchi seas are a perfect place to find a relationship between the presence of sea <span class="hlt">ice</span> and diatom community composition. The aim of this work is to develop a diatom-based proxy for the sea <span class="hlt">ice</span> <span class="hlt">extent</span>. A total of 473 species have been identified in 104 sediment samples, most of which were collected on board the US Coast Guard Cutter Healy <span class="hlt">ice</span> breaker (2006, 2007) and the Norseman II (2008). The study also included some of the archived diatom smear slides made from sediments collected in 1969. The assemblages were compared to satellite-derived sea <span class="hlt">ice</span> <span class="hlt">extent</span> data averaged over the 10 years preceding the sampling. Previous studies in the Arctic and Antarctic regions demonstrated that the Generalized Additive Model (GAM) is one of the best choices for proxy construction. It has the advantage of using only several species instead of the whole assemblage, thus including only sea <span class="hlt">ice</span>-associated species and minimizing the noise created by species responding to other environmental factors. Our GAM on three species (Connia compita, Fragilariopsis reginae-jahniae, and Neodenticula seminae) has low standard deviation, high level of explained variation, and holds under the ten-fold cross-validation; the standard residual analysis is acceptable. However, a spatial residual analysis revealed that the model consistently over predicts in the Chukchi Sea and under predicts in the Bering Sea. Including a spatial model into the GAM didn't improve the situation. This has led us to test other methods, including a non-parametric model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EOSTr..90R.169P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EOSTr..90R.169P"><span>Developing and Implementing Protocols for Arctic Sea <span class="hlt">Ice</span> Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perovich, Donald K.; Gerland, Sebastian</p> <p>2009-05-01</p> <p>Arctic Surface-Based Sea <span class="hlt">Ice</span> Observations: Integrated Protocols and Coordinated Data Acquisition; Tromsø, Norway, 26-27 January 2009; The Arctic sea <span class="hlt">ice</span> cover is diminishing. Over the past several years, not only has <span class="hlt">ice</span> thinned but the <span class="hlt">extent</span> of <span class="hlt">ice</span> at the end of summer, and hence perennial <span class="hlt">ice</span>, has declined markedly. These changes affect a wide range of issues and are important for a varied group of stakeholders, including Arctic coastal communities, policy makers, industry, the scientific community, and the public. Concerns range from the role of sea <span class="hlt">ice</span> cover as an indicator and amplifier of climate change to marine transportation, resource extraction, and coastal erosion. To understand and respond to these ongoing changes, it is imperative to develop and implement consistent and robust observational protocols that can be used to describe the current state of the <span class="hlt">ice</span> cover as well as future changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..795D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..795D"><span>Response of Antarctic <span class="hlt">ice</span> shelf melt to SAM trend and possible feedbacks with the <span class="hlt">ice</span>-dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert; Spence, Paul; Cornford, Stephen L.; Le Sommer, Julien; Durand, Gaël</p> <p>2017-04-01</p> <p>The observed positive trend in the Southern Annular Mode (SAM) may warm the Southern Ocean sub-surface through <span class="hlt">decreased</span> Ekman downward pumping. Subsequent change in <span class="hlt">ice</span>-shelves melt has been suggested to trigger glacier acceleration in West Antarctica. Here we use a regional ocean model configuration of the Amundsen Sea that includes interactive <span class="hlt">ice</span>-shelf cavities. Our results show that the inclusion of <span class="hlt">ice</span>-shelves changes the ocean response to the projected SAM trend, i.e. it typically inhibits a part of the SAM-induced subsurface warming. Heat budget analysis has been used to propose responsible mechanisms. Regarding Thwaites and Pine Island, sub <span class="hlt">ice</span>-shelf melt increases above 400m by approximately 40% for Thwaites and 10% for Pine Island and <span class="hlt">decreases</span> by up to 10% below in response to ocean temperature changes driven by the projected SAM trend. The melt sensitivity to poleward shifting winds is nonetheless small compared to the sensitivity to an <span class="hlt">ice</span>-sheet instability, i.e. to a projected change in the shape of <span class="hlt">ice</span>-shelf cavities. For instance, the sub <span class="hlt">ice</span>-shelf melt are doubled near the grounding line of some glaciers in response to the largest grounding line retreat projected for 2100. Large increase in basal melt close to the grounding line could largely impact instability and glacier acceleration. Our work suggests the need for including <span class="hlt">ice</span> shelves into ocean models, and to couple ocean models to <span class="hlt">ice</span>-sheet models in climate projections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000025583','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000025583"><span>LWC and Temperature Effects on <span class="hlt">Ice</span> Accretion Formation on Swept Wings at Glaze <span class="hlt">Ice</span> Conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vargas, Mario; Reshotko, Eli</p> <p>2000-01-01</p> <p>An experiment was conducted to study the effect of liquid water content and temperature on the critical distance in <span class="hlt">ice</span> accretion formation on swept wings at glaze <span class="hlt">ice</span> conditions. The critical distance is defined as the distance from the attachment line to tile beginning of the zone where roughness elements develop into glaze <span class="hlt">ice</span> feathers. A baseline case of 150 mph, 25 F, 0.75 g/cu m. Cloud Liquid Water Content (LWC) and 20 micrometers in Water Droplet Median Volume Diameter (MVD) was chosen. <span class="hlt">Icing</span> runs were performed on a NACA 0012 swept wing tip at 150 mph and MVD of 20 micrometers for liquid water contents of 0.5 g/cu m, 0.75 g/cu m, and 1.0 g/cu m, and for total temperatures of 20 F, 25 F and 30 F. At each tunnel condition, the sweep angle was changed from 0 deg to 45 deg in 5 deg increments. Casting data, <span class="hlt">ice</span> shape tracings, and close-up photographic data were obtained. The results showed that <span class="hlt">decreasing</span> the LWC to 0.5 g/cu m <span class="hlt">decreases</span> the value of the critical distance at a given sweep angle compared to the baseline case, and starts the formation of complete scallops at 30 sweep angle. Increasing the LWC to 1.0 g/cu m increases the value of the critical distance compared to the baseline case, the critical distance remains always above 0 millimeters and complete scallops are not formed. <span class="hlt">Decreasing</span> the total temperature to 20 F <span class="hlt">decreases</span> the critical distance with respect to the baseline case and formation of complete scallops begins at 25 deg sweep angle. When the total temperature is increased to 30 F, bumps covered with roughness elements appear on the <span class="hlt">ice</span> accretion at 25 deg and 30 deg sweep angles, large <span class="hlt">ice</span> structures appear at 35 deg and 40 deg sweep angles, and complete scallops are formed at 45 deg sweep angle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28135412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28135412"><span><span class="hlt">Ice</span> Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to <span class="hlt">Ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K; Paesani, Francesco; DeMott, Paul J; Molinero, Valeria</p> <p>2017-03-01</p> <p>Heterogeneous nucleation of <span class="hlt">ice</span> induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic <span class="hlt">ice</span>-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of <span class="hlt">ice</span>, it was proposed that lattice matching between <span class="hlt">ice</span> and the surface controls their <span class="hlt">ice</span>-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of <span class="hlt">ice</span>. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate <span class="hlt">ice</span>. We find that these surfaces order interfacial water to form domains with <span class="hlt">ice</span>-like order that are the birthplace of <span class="hlt">ice</span>. Both mismatch and fluctuations <span class="hlt">decrease</span> the size of the preordered domains and monotonously <span class="hlt">decrease</span> the <span class="hlt">ice</span> freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to <span class="hlt">ice</span>. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to <span class="hlt">ice</span>. This study provides a general framework to relate the equilibrium thermodynamics of <span class="hlt">ice</span> binding to a surface and the nonequilibrium <span class="hlt">ice</span> freezing temperature and suggests that these could be predicted from the structure of interfacial water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.</p> <p>2016-12-01</p> <p>The observed reduction of Arctic summertime sea <span class="hlt">ice</span> <span class="hlt">extent</span> and expansion of the marginal <span class="hlt">ice</span> zone (MIZ) have profound impacts on the balance of processes controlling sea <span class="hlt">ice</span> evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea <span class="hlt">ice</span>. Spatial and temporal variability in <span class="hlt">ice</span> properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing <span class="hlt">ice</span> cover, how the balance of processes shift as a function of <span class="hlt">ice</span> fraction and distance from open water, and how these processes impact sea <span class="hlt">ice</span> evolution, a network of autonomous platforms sampled the atmosphere-<span class="hlt">ice</span>-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal <span class="hlt">ice</span> zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the <span class="hlt">ice</span> pack, under complete <span class="hlt">ice</span> cover for up to 10 consecutive days. Sections reveal strong fronts where cold, <span class="hlt">ice</span>-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the <span class="hlt">ice</span> edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the <span class="hlt">ice</span> edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840025846&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmicrowaves%2Bwater%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840025846&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmicrowaves%2Bwater%2Bstructure"><span>Passive microwave characteristics of the Bering Sea <span class="hlt">ice</span> cover during Marginal <span class="hlt">Ice</span> Zone Experiment (MIZEX) West</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T.; Calhoon, C.</p> <p>1984-01-01</p> <p>Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal <span class="hlt">ice</span> zone delineating regions of open water, <span class="hlt">ice</span> compactness, and <span class="hlt">ice</span>-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a <span class="hlt">decrease</span> in <span class="hlt">ice</span> thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year sea <span class="hlt">ice</span> types.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000037971&hterms=round&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dround','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000037971&hterms=round&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dround"><span>Year-Round Pack <span class="hlt">Ice</span> in the Weddell Sea, Antarctica: Response and Sensitivity to Atmospheric and Oceanic Forcing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III</p> <p>1997-01-01</p> <p>Using a dynamic-thermodynamic numerical sea-<span class="hlt">ice</span> model, external oceanic and atmospheric forcings on sea <span class="hlt">ice</span> in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack <span class="hlt">ice</span>, and to identify further the parameters that coupled models need to consider in predicting the response of the pack <span class="hlt">ice</span> to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter <span class="hlt">ice</span>-edge maximum <span class="hlt">extent</span> is air temperature. Ocean heat flux has more impact on the minimum-<span class="hlt">ice</span>-edge <span class="hlt">extent</span> and in reducing pack-<span class="hlt">ice</span> thickness, especially in the eastern-Weddell Sea. Low relative humidity enhances <span class="hlt">ice</span> growth in thin <span class="hlt">ice</span> and open-water regions, producing a more realistic <span class="hlt">ice</span> edge along the coastal areas of the western-Weddell Sea where dry continental air has an impact. The modeled <span class="hlt">extent</span> of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall <span class="hlt">ice</span> thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2064S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2064S"><span>Using the glacial geomorphology of palaeo-<span class="hlt">ice</span> streams to understand mechanisms of <span class="hlt">ice</span> sheet collapse</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev</p> <p>2017-04-01</p> <p>Processes which bring about <span class="hlt">ice</span> sheet deglaciation are critical to our understanding of glacial-interglacial cycles and <span class="hlt">ice</span> sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day <span class="hlt">ice</span> sheet stability and concerns over global sea level rise. Mass loss from <span class="hlt">ice</span> sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing <span class="hlt">ice</span> streams/outlet glaciers transfer <span class="hlt">ice</span> from the interior to the oceans. Surface and basal melting (e.g. of <span class="hlt">ice</span> shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in <span class="hlt">ice</span> stream discharge are more complex, which generates much larger uncertainties about their future contribution to <span class="hlt">ice</span> sheet mass loss and sea level rise. A major problem is that observations of modern-day <span class="hlt">ice</span> streams typically span just a few decades and, at the <span class="hlt">ice</span>-sheet scale, it is unclear how the entire drainage network of <span class="hlt">ice</span> streams evolves during deglaciation. A key question is whether <span class="hlt">ice</span> streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand <span class="hlt">ice</span> stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 <span class="hlt">ice</span> streams in the North American Laurentide <span class="hlt">Ice</span> Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). <span class="hlt">Ice</span> stream activity was characterised by high variability in both time and space, with <span class="hlt">ice</span> streams switching on and off in different locations. During deglaciation, we find that their overall number <span class="hlt">decreased</span>, they occupied a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........38L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........38L"><span>A model of the Greenland <span class="hlt">ice</span> sheet deglaciation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lecavalier, Benoit</p> <p></p> <p>The goal of this thesis is to improve our understanding of the Greenland <span class="hlt">ice</span> sheet (GrIS) and how it responds to climate change. This was achieved using <span class="hlt">ice</span> core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the <span class="hlt">ice</span> sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These <span class="hlt">ice</span>-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical <span class="hlt">ice</span> sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of <span class="hlt">ice</span> thickness and <span class="hlt">extent</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003226','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003226"><span>Does a Relationship Between Arctic Low Clouds and Sea <span class="hlt">Ice</span> Matter?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Patrick C.</p> <p>2016-01-01</p> <p>Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea <span class="hlt">ice</span> <span class="hlt">extent</span> and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea <span class="hlt">ice</span> concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea <span class="hlt">ice</span> <span class="hlt">extent</span>, our results indicate a potentially significant amplifying sea <span class="hlt">ice</span>-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea <span class="hlt">ice</span> <span class="hlt">extent</span> and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/26834','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/26834"><span>Anti-<span class="hlt">icing</span> and de-<span class="hlt">icing</span> superhydrophobic concrete to improve the safety on critical elements on roadway pavements.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-09-01</p> <p>Icy roads lead to treacherous driving conditions in regions of the U.S. resulting in over 450 fatalities per year. Deicing chemicals, such as rock salt help to reduce <span class="hlt">ice</span> formation on roadways to an <span class="hlt">extent</span>, however also result in detrimental effects ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29209024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29209024"><span>Future loss of Arctic sea-<span class="hlt">ice</span> cover could drive a substantial <span class="hlt">decrease</span> in California's rainfall.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cvijanovic, Ivana; Santer, Benjamin D; Bonfils, Céline; Lucas, Donald D; Chiang, John C H; Zimmerman, Susan</p> <p>2017-12-05</p> <p>From 2012 to 2016, California experienced one of the worst droughts since the start of observational records. As in previous dry periods, precipitation-inducing winter storms were steered away from California by a persistent atmospheric ridging system in the North Pacific. Here we identify a new link between Arctic sea-<span class="hlt">ice</span> loss and the North Pacific geopotential ridge development. In a two-step teleconnection, sea-<span class="hlt">ice</span> changes lead to reorganization of tropical convection that in turn triggers an anticyclonic response over the North Pacific, resulting in significant drying over California. These findings suggest that the ability of climate models to accurately estimate future precipitation changes over California is also linked to the fidelity with which future sea-<span class="hlt">ice</span> changes are simulated. We conclude that sea-<span class="hlt">ice</span> loss of the magnitude expected in the next decades could substantially impact California's precipitation, thus highlighting another mechanism by which human-caused climate change could exacerbate future California droughts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.1823S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.1823S"><span>Mapping and assessing variability in the Antarctic marginal <span class="hlt">ice</span> zone, pack <span class="hlt">ice</span> and coastal polynyas in two sea <span class="hlt">ice</span> algorithms with implications on breeding success of snow petrels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine</p> <p>2016-08-01</p> <p>Sea <span class="hlt">ice</span> variability within the marginal <span class="hlt">ice</span> zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial <span class="hlt">extent</span> as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack <span class="hlt">ice</span> and coastal polynyas in the total Antarctic sea <span class="hlt">ice</span> cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic <span class="hlt">ice</span> cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea <span class="hlt">ice</span> cover that is covered by each of these <span class="hlt">ice</span> categories. However, estimates of the amount of MIZ, consolidated pack <span class="hlt">ice</span> and polynyas depend strongly on which sea <span class="hlt">ice</span> algorithm is used. This study uses two popular passive microwave sea <span class="hlt">ice</span> algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea <span class="hlt">ice</span> concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack <span class="hlt">ice</span> and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack <span class="hlt">ice</span> is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack <span class="hlt">ice</span> area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack <span class="hlt">ice</span> area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken <span class="hlt">ice</span> within the consolidated <span class="hlt">ice</span> pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1238997-doped-colloidal-artificial-spin-ice','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1238997-doped-colloidal-artificial-spin-ice"><span>Doped colloidal artificial spin <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.</p> <p>2015-10-07</p> <p>We examine square and kagome artificial spin <span class="hlt">ice</span> for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin <span class="hlt">ices</span>, unlike colloidal and vortex artificial spin <span class="hlt">ice</span> realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome <span class="hlt">ice</span> geometries produces opposite effects. For square <span class="hlt">ice</span>, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome <span class="hlt">ice</span> ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square <span class="hlt">ice</span>, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome <span class="hlt">ice</span>, which has a highly degenerate ground state, doping locally <span class="hlt">decreases</span> the degeneracy and creates local hard regions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1238997-doped-colloidal-artificial-spin-ice','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1238997-doped-colloidal-artificial-spin-ice"><span>Doped colloidal artificial spin <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.</p> <p></p> <p>We examine square and kagome artificial spin <span class="hlt">ice</span> for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin <span class="hlt">ices</span>, unlike colloidal and vortex artificial spin <span class="hlt">ice</span> realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome <span class="hlt">ice</span> geometries produces opposite effects. For square <span class="hlt">ice</span>, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome <span class="hlt">ice</span> ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square <span class="hlt">ice</span>, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome <span class="hlt">ice</span>, which has a highly degenerate ground state, doping locally <span class="hlt">decreases</span> the degeneracy and creates local hard regions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SolE....5..371S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SolE....5..371S"><span>Comparing a thermo-mechanical Weichselian <span class="hlt">Ice</span> Sheet reconstruction to reconstructions based on the sea level equation: aspects of <span class="hlt">ice</span> configurations and glacial isostatic adjustment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.</p> <p>2014-05-01</p> <p>In this study we compare a recent reconstruction of the Weichselian <span class="hlt">Ice</span> Sheet as simulated by the University of Maine <span class="hlt">ice</span> sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: <span class="hlt">ICE</span>-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and <span class="hlt">ICE</span>-5G are global models based on the sea level equation. The three models of the Weichselian <span class="hlt">Ice</span> Sheet are compared directly in terms of <span class="hlt">ice</span> volume, <span class="hlt">extent</span> and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal <span class="hlt">extent</span> of the <span class="hlt">ICE</span>-5G <span class="hlt">ice</span> sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and <span class="hlt">ICE</span>-5G melt relatively uniformly over the entire <span class="hlt">ice</span> sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, <span class="hlt">ICE</span>-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and <span class="hlt">ICE</span>-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by <span class="hlt">ICE</span>-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190395','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190395"><span>Polar bears and sea <span class="hlt">ice</span> habitat change</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Durner, George M.; Atwood, Todd C.; Butterworth, Andy</p> <p>2017-01-01</p> <p>The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea <span class="hlt">ice</span> and as such can be affected by climate warming-induced changes in the <span class="hlt">extent</span> and composition of pack <span class="hlt">ice</span> and its impacts on their seal prey. Sea <span class="hlt">ice</span> declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater <span class="hlt">ice</span> drift, <span class="hlt">ice</span> fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea <span class="hlt">ice</span> that has been typical in that region is being replaced by thinner annual <span class="hlt">ice</span>. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea <span class="hlt">ice</span> will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986JGR....9110661E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986JGR....9110661E"><span>Classification of sea <span class="hlt">ice</span> types with single-band (33.6 GHz) airborne passive microwave imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn</p> <p>1986-09-01</p> <p>During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of <span class="hlt">ice</span> along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old <span class="hlt">ice</span>, and young/first-year <span class="hlt">ice</span>. New <span class="hlt">ice</span> (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old <span class="hlt">ice</span> and, to a lesser <span class="hlt">extent</span>, young/first-year <span class="hlt">ice</span>. Scenes in which a new <span class="hlt">ice</span> or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new <span class="hlt">ice</span>, however, differ significantly from textural features characteristic of other <span class="hlt">ice</span> types and probably can be used with brightness temperature data to classify <span class="hlt">ice</span> type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal <span class="hlt">extent</span> of open water based on only 33.6-GHz brightness temperatures are accurate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica"><span>Breakup of the Larsen <span class="hlt">Ice</span> Shelf, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and <span class="hlt">Ice</span> Data Center revealed that the northern section of the Larsen B <span class="hlt">ice</span> shelf, a large floating <span class="hlt">ice</span> mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered <span class="hlt">ice</span> formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf area disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable <span class="hlt">extent</span>. <span class="hlt">Ice</span> shelves are thick plates of <span class="hlt">ice</span>, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of <span class="hlt">ice</span> flow and sediment thickness beneath the <span class="hlt">ice</span> shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the area lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of <span class="hlt">ice</span> released in this short time is 720 billion tons--enough <span class="hlt">ice</span> for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by <span class="hlt">ice</span> shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the <span class="hlt">extent</span> of seven <span class="hlt">ice</span> shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes areas that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and <span class="hlt">Ice</span> Data Center (NSIDC) at</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRA..114.0I06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRA..114.0I06L"><span>Stratospheric and solar cycle effects on long-term variability of mesospheric <span class="hlt">ice</span> clouds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lübken, F.-J.; Berger, U.; Baumgarten, G.</p> <p>2009-11-01</p> <p>Model results of mesospheric <span class="hlt">ice</span> layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures <span class="hlt">decrease</span> until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser <span class="hlt">extent</span>, in PMC altitudes (-0.0166 km/yr). <span class="hlt">Ice</span> layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and <span class="hlt">decreases</span> above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on <span class="hlt">ice</span> layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on <span class="hlt">ice</span> layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on <span class="hlt">ice</span> layers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRD..114.0I06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRD..114.0I06L"><span>Stratospheric and solar cycle effects on long-term variability of mesospheric <span class="hlt">ice</span> clouds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lübken, F.-J.; Berger, U.; Baumgarten, G.</p> <p>2009-01-01</p> <p>Model results of mesospheric <span class="hlt">ice</span> layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures <span class="hlt">decrease</span> until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser <span class="hlt">extent</span>, in PMC altitudes (-0.0166 km/yr). <span class="hlt">Ice</span> layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and <span class="hlt">decreases</span> above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on <span class="hlt">ice</span> layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on <span class="hlt">ice</span> layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on <span class="hlt">ice</span> layers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41B0700O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41B0700O"><span>Light Absorption in Arctic Sea <span class="hlt">Ice</span> - Black Carbon vs Chlorophyll</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.</p> <p>2015-12-01</p> <p>The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea <span class="hlt">ice</span> surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-<span class="hlt">ice</span> physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic <span class="hlt">ice</span> predictions. Here we develop a dynamic <span class="hlt">ice</span> system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea <span class="hlt">Ice</span> Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea <span class="hlt">ice</span> and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the <span class="hlt">ice</span>-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea <span class="hlt">ice</span> by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are <span class="hlt">decreasing</span> with time on interannual timescale. We expect a continuous increase in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12210855K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12210855K"><span>Vertical thermodynamic structure of the troposphere during the Norwegian young sea <span class="hlt">ICE</span> expedition (N-<span class="hlt">ICE</span>2015)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.</p> <p>2017-10-01</p> <p>The Norwegian young sea <span class="hlt">ICE</span> (N-<span class="hlt">ICE</span>2015) expedition was designed to investigate the atmosphere-snow-<span class="hlt">ice</span>-ocean interactions in the young and thin sea <span class="hlt">ice</span> regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-<span class="hlt">ICE</span>2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer <span class="hlt">extent</span>. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-<span class="hlt">ICE</span>2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-<span class="hlt">ICE</span>2015 and SHEBA throughout the troposphere, despite differences in location, sea <span class="hlt">ice</span> thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and <span class="hlt">ice</span>-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-<span class="hlt">ICE</span>2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6760381-iceberg-severity-off-eastern-north-america-its-relationship-sea-ice-variability-climate-change','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6760381-iceberg-severity-off-eastern-north-america-its-relationship-sea-ice-variability-climate-change"><span>Iceberg severity off eastern North America: Its relationship to sea <span class="hlt">ice</span> variability and climate change</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marko, J.R.; Fissel, D.B.; Wadhams, P.</p> <p>1994-09-01</p> <p>Iceberg trajectory, deterioration (mass loss), and sea <span class="hlt">ice</span> data are reviewed to identify the sources of observed interannual and seasonal variations in the numbers of icebergs passing south of 48[degrees]N off eastern North America. The results show the dominant role of sea <span class="hlt">ice</span> in the observed variations. Important mechanisms involved include both seasonal modulation of the southerly iceberg flow by <span class="hlt">ice</span> cover control of probabilities for entrapment and decay in shallow water, and the suppression of iceberg melt/deterioration rates by high concentrations of sea <span class="hlt">ice</span>. The Labrador spring <span class="hlt">ice</span> <span class="hlt">extent</span>, shown to be the critical parameter in interannual iceberg numbermore » variability, was found to be either determined by or closely correlated with midwinter Davis Strait <span class="hlt">ice</span> <span class="hlt">extents</span>. Agreement obtained between observed year-to-year and seasonal number variations with computations based upon a simple iceberg dissipation model suggests that downstream iceberg numbers are relatively insensitive to iceberg production rates and to fluctuations in southerly iceberg fluxes in areas north of Baffin Island. Past variations in the Davis Strait <span class="hlt">ice</span> index and annual <span class="hlt">ice</span> <span class="hlt">extents</span> are studied to identify trends and relationships between regional and larger-scale global climate parameters. It was found that, on decadal timescales in the post-1960 period of reasonable data quality, regional climate parameters have varied, roughly, out of phase with corresponding global and hemispheric changes. These observations are compared with expectations in terms of model results to evaluate current GCM-based capabilities for simulating recent regional behavior. 64 refs., 11 figs., 3 tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.5204H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.5204H"><span>The Unprecedented 2016-2017 Arctic Sea <span class="hlt">Ice</span> Growth Season: The Crucial Role of Atmospheric Rivers and Longwave Fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hegyi, Bradley M.; Taylor, Patrick C.</p> <p>2018-05-01</p> <p>The 2016-2017 Arctic sea <span class="hlt">ice</span> growth season (October-March) exhibited one of the lowest values for end-of-season sea <span class="hlt">ice</span> volume and <span class="hlt">extent</span> of any year since 1979. An analysis of Modern-Era Retrospective Analysis for Research and Applications, Version 2 atmospheric reanalysis data and Clouds and the Earth's Radiant Energy System radiative flux data reveals that a record warm and moist Arctic atmosphere supported the reduced sea <span class="hlt">ice</span> growth. Numerous regional episodes of increased atmospheric temperature and moisture, transported from lower latitudes, increased the cumulative energy input from downwelling longwave surface fluxes. In those same episodes, the efficiency of the atmosphere cooling radiatively to space was reduced, increasing the amount of energy retained in the Arctic atmosphere and reradiated back toward the surface. Overall, the Arctic radiative cooling efficiency shows a <span class="hlt">decreasing</span> trend since 2000. The results presented highlight the increasing importance of atmospheric forcing on sea <span class="hlt">ice</span> variability demonstrating that episodic Arctic atmospheric rivers, regions of elevated poleward water vapor transport, and the subsequent surface energy budget response is a critical mechanism actively contributing to the evolution of Arctic sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920051541&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920051541&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DParkinsons"><span>Interannual variability of monthly Southern Ocean sea <span class="hlt">ice</span> distributions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>1992-01-01</p> <p>The interannual variability of the Southern-Ocean sea-<span class="hlt">ice</span> distributions was mapped and analyzed using data from Nimbus-5 ESMR and Nimbus-7 SMMR, collected from 1973 to 1987. The set of 12 monthly maps obtained reveals many details on spatial variability that are unobtainable from time series of <span class="hlt">ice</span> <span class="hlt">extents</span>. These maps can be used as baseline maps for comparisons against future Southern Ocean sea <span class="hlt">ice</span> distributions. The maps are supplemented by more detailed maps of the frequency of <span class="hlt">ice</span> coverage, presented in this paper for one month within each of the four seasons, and by the breakdown of these results to the periods covered individually by each of the two passive-microwave imagers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JChPh.125i1102M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JChPh.125i1102M"><span><span class="hlt">Ice</span>-surface adsorption enhanced colligative effect of antifreeze proteins in <span class="hlt">ice</span> growth inhibition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, Yougang; Ba, Yong</p> <p>2006-09-01</p> <p>This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of <span class="hlt">ice</span> crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an <span class="hlt">ice</span> surface induces a dense AFP-water layer, which can significantly <span class="hlt">decrease</span> the mole fraction of the interfacial water and, thus, lower the temperature for a seed <span class="hlt">ice</span> crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the <span class="hlt">ice</span> crystal due to the AFP's <span class="hlt">ice</span>-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the <span class="hlt">ice</span>-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's <span class="hlt">ice</span>-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060017828','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060017828"><span>Evaluation of the Simulation of Arctic and Antarctic Sea <span class="hlt">Ice</span> Coverages by Eleven Major Global Climate Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parksinson, Claire; Vinnikov, Konstantin Y.; Cavalieri, Donald J.</p> <p>2005-01-01</p> <p>Comparison of polar sea <span class="hlt">ice</span> results from 11 major global climate models and satellite-derived observations for 1979-2004 reveals that each of the models is simulating seasonal cycles that are phased at least approximately correctly in both hemispheres. Each is also simulating various key aspects of the observed <span class="hlt">ice</span> cover distributions, such as winter <span class="hlt">ice</span> not only throughout the central Arctic basin but also throughout Hudson Bay, despite its relatively low latitudes. However, some of the models simulate too much <span class="hlt">ice</span>, others too little <span class="hlt">ice</span> (in some cases varying depending on hemisphere and/or season), and some match the observations better in one season versus another. Several models do noticeably better in the Northern Hemisphere than in the Southern Hemisphere, and one does noticeably better in the Southern Hemisphere. In the Northern Hemisphere all simulate monthly average <span class="hlt">ice</span> <span class="hlt">extents</span> to within +/-5.1 x 10(exp 6)sq km of the observed <span class="hlt">ice</span> <span class="hlt">extent</span> throughout the year; and in the Southern Hemisphere all except one simulate the monthly averages to within +/-6.3 x 10(exp 6) sq km of the observed values. All the models properly simulate a lack of winter <span class="hlt">ice</span> to the west of Norway; however, most do not obtain as much absence of <span class="hlt">ice</span> immediately north of Norway as the observations show, suggesting an under simulation of the North Atlantic Current. The spread in monthly averaged <span class="hlt">ice</span> <span class="hlt">extents</span> amongst the 11 model simulations is greater in the Southern Hemisphere than in the Northern Hemisphere and greatest in the Southern Hemisphere winter and spring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170009008&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsea"><span>Variability and Trends in the Arctic Sea <span class="hlt">Ice</span> Cover: Results from Different Techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert</p> <p>2017-01-01</p> <p>Variability and trend studies of sea <span class="hlt">ice</span> in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea <span class="hlt">Ice</span> Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea <span class="hlt">ice</span> cover. All four provide generally similar <span class="hlt">ice</span> patterns but significant disagreements in <span class="hlt">ice</span> concentration distributions especially in the marginal <span class="hlt">ice</span> zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new <span class="hlt">ice</span> and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea <span class="hlt">ice</span> cover. Hadley and NT1 data usually provide the highest and lowest monthly <span class="hlt">ice</span> <span class="hlt">extents</span>, respectively. The Hadley data also show the lowest trends in <span class="hlt">ice</span> <span class="hlt">extent</span> and <span class="hlt">ice</span> area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea <span class="hlt">ice</span> has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea <span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14749827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14749827"><span>Enhanced <span class="hlt">ice</span> sheet growth in Eurasia owing to adjacent <span class="hlt">ice</span>-dammed lakes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I</p> <p>2004-01-29</p> <p>Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large <span class="hlt">ice</span>-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an <span class="hlt">ice</span> sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the <span class="hlt">ice</span> sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of <span class="hlt">ice</span> sheet melting at the southern margin of the Barents-Kara <span class="hlt">ice</span> sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced <span class="hlt">decreases</span> in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated <span class="hlt">ice</span> sheet growth and delayed <span class="hlt">ice</span> sheet decay in Eurasia and probably also in North America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.4599S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.4599S"><span>Tropically driven and externally forced patterns of Antarctic sea <span class="hlt">ice</span> change: reconciling observed and modeled trends</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, David P.; Deser, Clara</p> <p>2018-06-01</p> <p>Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> during 1979-2013. The <span class="hlt">ice</span> <span class="hlt">extent</span> has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea <span class="hlt">ice</span> trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea <span class="hlt">ice</span> change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional <span class="hlt">ice</span> <span class="hlt">extent</span> due to enhanced <span class="hlt">ice</span> motion and sea surface cooling. However, the overall sea <span class="hlt">ice</span> trend in every ensemble member of both experiments is characterized by <span class="hlt">ice</span> loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive <span class="hlt">ice</span> loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea <span class="hlt">ice</span> expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..676S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..676S"><span>Tropically driven and externally forced patterns of Antarctic sea <span class="hlt">ice</span> change: reconciling observed and modeled trends</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, David P.; Deser, Clara</p> <p>2017-09-01</p> <p>Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> during 1979-2013. The <span class="hlt">ice</span> <span class="hlt">extent</span> has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea <span class="hlt">ice</span> trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea <span class="hlt">ice</span> change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional <span class="hlt">ice</span> <span class="hlt">extent</span> due to enhanced <span class="hlt">ice</span> motion and sea surface cooling. However, the overall sea <span class="hlt">ice</span> trend in every ensemble member of both experiments is characterized by <span class="hlt">ice</span> loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive <span class="hlt">ice</span> loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea <span class="hlt">ice</span> expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000945.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000945.html"><span>Operation <span class="hlt">Ice</span>Bridge Turns Five</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>In May 2014, two new studies concluded that a section of the land-based West Antarctic <span class="hlt">ice</span> sheet had reached a point of inevitable collapse. Meanwhile, fresh observations from September 2014 showed sea <span class="hlt">ice</span> around Antarctica had reached its greatest <span class="hlt">extent</span> since the late 1970s. To better understand such dynamic and dramatic differences in the region's land and sea <span class="hlt">ice</span>, researchers are travelling south to Antarctica this month for the sixth campaign of NASA’s Operation <span class="hlt">Ice</span>Bridge. The airborne campaign, which also flies each year over Greenland, makes annual surveys of the <span class="hlt">ice</span> with instrumented research aircraft. Instruments range from lasers that map the elevation of the <span class="hlt">ice</span> surface, radars that "see" below it, and downward looking cameras to provide a natural-color perspective. The Digital Mapping System (DMS) camera acquired the above photo during the mission’s first science flight on October 16, 2009. At the time of the image, the DC-8 aircraft was flying at an altitude of 515 meters (1,700 feet) over heavily compacted first-year sea <span class="hlt">ice</span> along the edge of the Amundsen Sea. Since that first flight, much has been gleaned from <span class="hlt">Ice</span>Bridge data. For example, images from an <span class="hlt">Ice</span>Bridge flight in October 2011 revealed a massive crack running about 29 kilometers (18 miles) across the floating tongue of Antarctica's Pine Island Glacier. The crack ultimately led to a 725-square-kilometer (280-square-mile) iceberg. In 2012, <span class="hlt">Ice</span>Bridge data was a key part of a new map of Antarctica called Bedmap2. By combining surface elevation, <span class="hlt">ice</span> thickness, and bedrock topography, Bedmap2 gives a clearer picture of Antarctica from the <span class="hlt">ice</span> surface down to the land surface. Discoveries have been made in Greenland, too, including the identification of a 740-kilometer-long (460-mile-long) mega canyon below the <span class="hlt">ice</span> sheet. Repeated measurements of land and sea <span class="hlt">ice</span> from aircraft extend the record of observations once made by NASA’s <span class="hlt">Ice</span>, Cloud, and Land Elevation Satellite, or ICESat, which</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1023C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1023C"><span>A New Attempt of 2-D Numerical <span class="hlt">Ice</span> Flow Model to Reconstruct Paleoclimate from Mountain Glaciers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Candaş, Adem; Akif Sarıkaya, Mehmet</p> <p>2017-04-01</p> <p>A new two dimensional (2D) numerical <span class="hlt">ice</span> flow model is generated to simulate the steady-state glacier <span class="hlt">extent</span> for a wide range of climate conditions. The simulation includes the flow of <span class="hlt">ice</span> enforced by the annual mass balance gradient of a valley glacier. The annual mass balance is calculated by the difference of the net accumulation and ablation of snow and (or) <span class="hlt">ice</span>. The generated model lets users to compare the simulated and field observed <span class="hlt">ice</span> <span class="hlt">extent</span> of paleoglaciers. As a result, model results provide the conditions about the past climates since simulated <span class="hlt">ice</span> <span class="hlt">extent</span> is a function of predefined climatic conditions. To predict the glacier shape and distribution in two dimension, time dependent partial differential equation (PDE) is solved. Thus, a 2D glacier flow model code is constructed in MATLAB and a finite difference method is used to solve this equation. On the other hand, Parallel <span class="hlt">Ice</span> Sheet Model (PISM) is used to regenerate paleoglaciers in the same area where the MATLAB code is applied. We chose the Mount Dedegöl, an extensively glaciated mountain in SW Turkey, to apply both models. Model results will be presented and discussed in this presentation. This study was supported by TÜBİTAK 114Y548 project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840002650','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840002650"><span>Antartic sea <span class="hlt">ice</span>, 1973 - 1976: Satellite passive-microwave observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.</p> <p>1983-01-01</p> <p>Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the <span class="hlt">extent</span> and distribution of Antarctic sea <span class="hlt">ice</span>. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea <span class="hlt">ice</span> concentrations, the general characteristics of the seasonal sea <span class="hlt">ice</span> growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the <span class="hlt">ice</span> cover are discussed. The sea <span class="hlt">ice</span> data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack <span class="hlt">ice</span> averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea <span class="hlt">ice</span> as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea <span class="hlt">ice</span> conditions for determining climatic conditions in polar regions and possible global climatic changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE14B1411P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE14B1411P"><span>Atmospheric form drag over Arctic sea <span class="hlt">ice</span> derived from high-resolution <span class="hlt">Ice</span>Bridge elevation data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petty, A.; Tsamados, M.; Kurtz, N. T.</p> <p>2016-02-01</p> <p>Here we present a detailed analysis of atmospheric form drag over Arctic sea <span class="hlt">ice</span>, using high resolution, three-dimensional surface elevation data from the NASA Operation <span class="hlt">Ice</span>Bridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea <span class="hlt">ice</span> cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear <span class="hlt">ice</span> regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in <span class="hlt">ice</span> type/age. The transition from a perennial to a seasonal <span class="hlt">ice</span> cover therefore suggest a <span class="hlt">decrease</span> in the atmospheric form drag coefficients over Arctic sea <span class="hlt">ice</span> in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea <span class="hlt">ice</span> model CICE, to improve the representation of form drag over Arctic sea <span class="hlt">ice</span> in global climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010048416&hterms=hydrometer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhydrometer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010048416&hterms=hydrometer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhydrometer"><span><span class="hlt">Ice</span> Nucleation in Deep Convection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)</p> <p>2001-01-01</p> <p>The processes controlling production of <span class="hlt">ice</span> crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of <span class="hlt">ice</span> crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the <span class="hlt">ice</span> surface area <span class="hlt">decreases</span>, the relative humidity can increase well above <span class="hlt">ice</span> saturation, resulting in bursts of <span class="hlt">ice</span> nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, <span class="hlt">ice</span> crystals, and mixed-phase (<span class="hlt">ice</span>/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous <span class="hlt">ice</span> nucleation. We are focusing on the importance of <span class="hlt">ice</span> nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these <span class="hlt">ice</span> nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814695S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814695S"><span>N-<span class="hlt">ICE</span>2015: Multi-disciplinary study of the young sea <span class="hlt">ice</span> system north of Svalbard from winter to summer.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steen, Harald; Granskog, Mats; Assmy, Philipp; Duarte, Pedro; Hudson, Stephen; Gerland, Sebastian; Spreen, Gunnar; Smedsrud, Lars H.</p> <p>2016-04-01</p> <p>The Arctic Ocean is shifting to a new regime with a thinner and smaller sea-<span class="hlt">ice</span> area cover. Until now, winter sea <span class="hlt">ice</span> <span class="hlt">extent</span> has changed less than during summer, as the heat loss to the atmosphere during autumn and winter is large enough form an <span class="hlt">ice</span> cover in most regions. The insulating snow cover also heavily influences the winter <span class="hlt">ice</span> growth. Consequently, the older, thicker multi-year sea <span class="hlt">ice</span> has been replace by a younger and thinner sea. These large changes in the sea <span class="hlt">ice</span> cover may have dramatic consequences for ecosystems, energy fluxes and ultimately atmospheric circulation and the Northern Hemisphere climate. To study the effects of the changing Arctic the Norwegian Polar Institute, together with national and international partners, launched from January 11 to June 24, 2015 the Norwegian Young Sea <span class="hlt">ICE</span> cruise 2015 (N-<span class="hlt">ICE</span>2015). N-<span class="hlt">ICE</span>2015 was a multi-disciplinary cruise aimed at simultaneously studying the effect of the Arctic Ocean changes in the sea <span class="hlt">ice</span>, the atmosphere, in radiation, in ecosystems. as well as water chemistry. R/V Lance was frozen into the drift <span class="hlt">ice</span> north of Svalbard at about N83 E25 and drifted passively southwards with the <span class="hlt">ice</span> until she was broken loose. When she was loose, R/V Lance was brought back north to a similar starting position. While fast in the <span class="hlt">ice</span>, she served as a living and working platform for 100 scientist and engineers from 11 countries. One aim of N-<span class="hlt">ICE</span>2015 is to present a comprehensive data-set on the first year <span class="hlt">ice</span> dominated system available for the scientific community describing the state and changes of the Arctic sea <span class="hlt">ice</span> system from freezing to melt. Analyzing the data is progressing and some first results will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4921418S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4921418S"><span>Water <span class="hlt">ice</span> and sub-micron <span class="hlt">ice</span> particles on Tethys and Mimas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.</p> <p>2017-10-01</p> <p>IntroductionWe present our ongoing work, mapping the variation of the main water <span class="hlt">ice</span> absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-<span class="hlt">ice</span> absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm <span class="hlt">decreases</span>; (iv) the reflection peak at 2.6 µm <span class="hlt">decreases</span>; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is <span class="hlt">decreased</span> relative to the 3.6 µm peak. To characterize the global variation of water-<span class="hlt">ice</span> band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water <span class="hlt">ice</span> abundance, the trailing portion having water <span class="hlt">ice</span> absorption bands lightly more suppressed than the leading side</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.2275T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.2275T"><span>The EUMETSAT sea <span class="hlt">ice</span> concentration climate data record</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas; Dybkjær, Gorm; Toudal Pedersen, Leif; Høyer, Jacob L.; Kern, Stefan</p> <p>2016-09-01</p> <p>An Arctic and Antarctic sea <span class="hlt">ice</span> area and <span class="hlt">extent</span> dataset has been generated by EUMETSAT's Ocean and Sea <span class="hlt">Ice</span> Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea <span class="hlt">ice</span> concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea <span class="hlt">ice</span>, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea <span class="hlt">ice</span> concentration algorithm using the Bristol algorithm over <span class="hlt">ice</span> and the Bootstrap algorithm in frequency mode over open water. A new sea <span class="hlt">ice</span> concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea <span class="hlt">ice</span> concentration retrieval accuracy. A comparison to US National <span class="hlt">Ice</span> Center sea <span class="hlt">ice</span> charts from the Arctic and the Antarctic shows that <span class="hlt">ice</span> concentrations are higher in the <span class="hlt">ice</span> charts than estimated from the radiometer data at intermediate sea <span class="hlt">ice</span> concentrations between open water and 100 % <span class="hlt">ice</span>. The sea <span class="hlt">ice</span> concentration climate data record is available for download at <a href=" http://www.osi-saf.org"target="_blank">www.osi-saf.org</a>, including documentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C23B0610L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C23B0610L"><span>Late glacial and Early Holocene climatic conditions along the margin of the Greenland <span class="hlt">Ice</span> Sheet, registered by glacial <span class="hlt">extents</span> in Milne Land, east Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, L.; Kelly, M. A.; Lowell, T. V.</p> <p>2010-12-01</p> <p>Determining the mechanisms that caused past abrupt climate changes is important for understanding today’s rapidly warming climate and, in particular, whether we may be faced with abrupt climate change in the future. Scientists, policy makers and the public are concerned about ongoing warming because it is sending our climate into unprecedented territory at a rapid pace. The Younger Dryas cold event (~12,850-11,650 cal yr B.P.) was an abrupt climate event that occurred during the last transition from glacial to interglacial conditions. Due to its abrupt nature and the magnitude of temperature change that occurred, the Younger Dryas has been the focus of extensive research, however, the mechanisms that caused this cold event are still not well understood. Wide belts (up to 5 km) of moraines, known as the Milne Land stade moraines, are present in the Scoresby Sund region of central east Greenland. Previous work in the region using a combination of equilibrium line altitudes, surface exposure dating of moraines, and relative sea level changes indicates that mountain glacier advances during Younger Dryas time represent only moderate summer temperature cooling (~3-4C colder than at present). In contrast, Greenland <span class="hlt">ice</span> cores, which register mean annual temperatures, indicate that Younger Dryas temperatures over the <span class="hlt">ice</span> sheet were ~15C colder than at present. This mismatch between the two nearby paleoclimate records is interpreted to result from strong seasonality (very cold winters and only moderately cold summers) during Younger Dryas time. We are examining seasonality during Younger Dryas time by developing records of summer temperatures from local glaciers in Milne Land (71.0°N, 25.6°W). These mountain glaciers are located adjacent to the Greenland <span class="hlt">Ice</span> Sheet, less than 50 km from the location of Renland <span class="hlt">Ice</span> core and only ~250 km from the locations of the GISP2 and GRIP cores. We present new 10Be ages of local glacial <span class="hlt">extents</span> in Milne Land. Ages range from 11,880 yr</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......131M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......131M"><span>Investigating the Effects of Environmental Solutes on the Reaction Environment in <span class="hlt">Ice</span> and at <span class="hlt">Ice</span> Surfaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malley, Philip Patrick Anthony</p> <p></p> <p>The reaction environments present in water, <span class="hlt">ice</span>, and at <span class="hlt">ice</span> surfaces are physically distinct from one another and studies have shown that photolytic reactions can take place at different rates in the different media. Kinetics of reactions in frozen media are measured in snow and <span class="hlt">ice</span> prepared from deionized water. This reduces experimental artifacts, but is not relevant to snow in the environment, which contains solutes. We have monitored the effect of nonchromophoric (will not absorb sunlight) organic matter on the photolytic fate of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene, pyrene, and anthracene in <span class="hlt">ice</span> and at <span class="hlt">ice</span> surfaces. Nonchromophoric organic matter reduced photolysis rates to below our detection limit in bulk <span class="hlt">ice</span>, and reduced rates at <span class="hlt">ice</span> surfaces to a lesser <span class="hlt">extent</span> due to the PAHs partially partitioning to the organics present. In addition, we have monitored the effect of chromophoric (will absorb sunlight) dissolved organic matter (cDOM) on the fate of anthracene in water, <span class="hlt">ice</span>, and <span class="hlt">ice</span> surfaces. cDOM reduced rates in all three media. Suppression in liquid water was due to physical interactions between anthracene and the cDOM, rather than to competitive photon absorbance. More suppression was observed in <span class="hlt">ice</span> cubes and <span class="hlt">ice</span> granules than in liquid water due to a freeze concentrating effect. Sodium Chloride (NaCl) is another ubiquitous environmental solute that can influence reaction kinetics in water, <span class="hlt">ice</span>, and at <span class="hlt">ice</span> surfaces. Using Raman microscopy, we have mapped the surface of <span class="hlt">ice</span> of frozen NaCl solutions at 0.02M and 0.6M, as well as the surface of frozen samples of Sargasso Sea Water. At temperatures above and below the eutectic temperature (-21.1°C). Above the eutectic, regions of <span class="hlt">ice</span> and liquid water were observed in all samples. Liquid regions generally took the form of channels. Channel widths and fractional liquid surface coverage increased with NaCl concentration and temperature. Volume maps of the three samples at temperatures</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN53B1627C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN53B1627C"><span>Nimbus Satellite Data Rescue Project for Sea <span class="hlt">Ice</span> <span class="hlt">Extent</span>: Data Processing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, G. G.; Sandler, M.; Moses, J. F.; Gallaher, D. W.</p> <p>2011-12-01</p> <p> scanning and simple quality control of more than 200,000 pictures. Preliminary results from September 1964, 1966 and 1969 data analysis will be discussed in this presentation. Our scientific use of the data will focus on recovering the sea <span class="hlt">ice</span> <span class="hlt">extent</span> around the poles. We especially welcome new users interested in the meteorology from 50N to 50S in the 1960's. Lessons and examples of the scanning and quality control procedures will be highlighted in the presentation. Illustrations will include mapped and reformatted data. When the project is finished a public archive from September 1964, April to November 1966 and May to December 1969 will be available for general use.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28835469','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28835469"><span>Sea-<span class="hlt">ice</span> induced growth decline in Arctic shrubs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forchhammer, Mads</p> <p>2017-08-01</p> <p>Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-<span class="hlt">ice</span>. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-<span class="hlt">ice</span> and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica , S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-<span class="hlt">ice</span> <span class="hlt">extent</span> was found on the annual growth. The negative effect of the retreating June sea-<span class="hlt">ice</span> was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth. © 2017 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29567186','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29567186"><span>Electrophoresis in <span class="hlt">ice</span> surface grooves for probing protein affinity to a specific plane of <span class="hlt">ice</span> crystal.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inagawa, Arinori; Okada, Yusuke; Okada, Tetsuo</p> <p>2018-06-01</p> <p>Channel-like grooves are formed on the surface of frozen aqueous sucrose. They are filled with a freeze concentrated solution (FCS) and act as an efficient size-tunable separation field for micro and nanoparticles. The width of the channel can be easily varied by changing the temperature. Because the channel width <span class="hlt">decreases</span> with <span class="hlt">decreasing</span> temperature, particles become immobilized due to physical interference from the <span class="hlt">ice</span> wall when the temperature reaches a threshold point specific to the particle size. Surface modification of particles can add a factor of chemical interaction between the particles and <span class="hlt">ice</span> walls. In this study, anti-freeze proteins (AFPs) are anchored on 1µm-polystyrene (PS) particles, and their behavior in the surface grooves on the <span class="hlt">ice</span> is studied. The threshold temperature is an effective criterion for evaluating chemical interactions between particles and <span class="hlt">ice</span> walls. The AFP binding on 1µm PS particles lowers the threshold temperature by 2.5°C, indicating interactions between AFPs on the PS particles and the <span class="hlt">ice</span> wall. Because the AFPs studied here show selectivity towards the prism plane, it is critical that the prism plane of the <span class="hlt">ice</span> crystal is in contact with the FCS in the surface grooves. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000757.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000757.html"><span>Arctic Sea <span class="hlt">Ice</span> Sets New Record Winter Low</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-03-19</p> <p>The sea <span class="hlt">ice</span> cap of the Arctic appeared to reach its annual maximum winter <span class="hlt">extent</span> on February 25, according to data from the NASA-supported National Snow and <span class="hlt">Ice</span> Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum <span class="hlt">extent</span> was the smallest on the satellite record and also one of the earliest. Credit: NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21B0326B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21B0326B"><span>Antarctic <span class="hlt">Ice</span> Mass Balance from GRACE</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boening, C.; Firing, Y. L.; Wiese, D. N.; Watkins, M. M.; Schlegel, N.; Larour, E. Y.</p> <p>2014-12-01</p> <p>The Antarctic <span class="hlt">ice</span> mass balance and rates of change of <span class="hlt">ice</span> mass over the past decade are analyzed based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, in the form of JPL RL05M mascon solutions. Surface mass balance (SMB) fluxes from ERA-Interim and other atmospheric reanalyses successfully account for the seasonal GRACE-measured mass variability, and explain 70-80% of the continent-wide mass variance at interannual time scales. Trends in the residual (GRACE mass - SMB accumulation) mass time series in different Antarctic drainage basins are consistent with time-mean <span class="hlt">ice</span> discharge rates based on radar-derived <span class="hlt">ice</span> velocities and thicknesses. GRACE also resolves accelerations in regional <span class="hlt">ice</span> mass change rates, including increasing rates of mass gain in East Antarctica and accelerating <span class="hlt">ice</span> mass loss in West Antarctica. The observed East Antarctic mass gain is only partially explained by anomalously large SMB events in the second half of the record, potentially implying that <span class="hlt">ice</span> discharge rates are also <span class="hlt">decreasing</span> in this region. Most of the increasing mass loss rate in West Antarctica, meanwhile, is explained by <span class="hlt">decreasing</span> SMB (principally precipitation) over this time period, part of the characteristic decadal variability in regional SMB. The residual acceleration of 2+/-1 Gt/yr, which is concentrated in the Amundsen Sea Embayment (ASE) basins, represents the contribution from increasing <span class="hlt">ice</span> discharge rates. An <span class="hlt">Ice</span> Sheet System Model (ISSM) run with constant ocean forcing and stationary grounding lines both underpredicts the largest trends in the ASE and produces negligible acceleration or interannual variability in discharge, highlighting the potential importance of ocean forcing for setting <span class="hlt">ice</span> discharge rates at interannual to decadal time scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JCli...10..593W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JCli...10..593W"><span>Modeling of Antarctic Sea <span class="hlt">Ice</span> in a General Circulation Model.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Xingren; Simmonds, Ian; Budd, W. F.</p> <p>1997-04-01</p> <p>A dynamic-thermodynamic sea <span class="hlt">ice</span> model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea <span class="hlt">ice</span> distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea <span class="hlt">ice</span> model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified <span class="hlt">ice</span> rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the <span class="hlt">ice</span>/snow, the <span class="hlt">ice</span>/water interface, and the open water area to determine the <span class="hlt">ice</span> formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the <span class="hlt">ice</span> floes. The dynamic calculation determines the motion of <span class="hlt">ice</span>, which is forced with the atmospheric wind, taking account of <span class="hlt">ice</span> resistance and rafting. The simulated sea <span class="hlt">ice</span> distribution compares reasonably well with observations. The seasonal cycle of <span class="hlt">ice</span> <span class="hlt">extent</span> is well simulated in phase as well as in magnitude. Simulated sea <span class="hlt">ice</span> thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea <span class="hlt">ice</span> distribution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/484365-modeling-antarctic-sea-ice-general-circulation-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/484365-modeling-antarctic-sea-ice-general-circulation-model"><span>Modeling of Antarctic sea <span class="hlt">ice</span> in a general circulation model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, Xingren; Budd, W.F.; Simmonds, I.</p> <p>1997-04-01</p> <p>A dynamic-thermodynamic sea <span class="hlt">ice</span> model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea <span class="hlt">ice</span> distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea <span class="hlt">ice</span> model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified <span class="hlt">ice</span> rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the <span class="hlt">ice</span>/snow, the <span class="hlt">ice</span>/water interface, and the open water area to determine the <span class="hlt">ice</span> formation, accretion, and ablation. Amore » lead parameterization is introduced with an effective partitioning scheme for freezing between and under the <span class="hlt">ice</span> floes. The dynamic calculation determines the motion of <span class="hlt">ice</span>, which is forced with the atmospheric wind, taking account of <span class="hlt">ice</span> resistance and rafting. The simulated sea <span class="hlt">ice</span> distribution compares reasonably well with observations. The seasonal cycle of <span class="hlt">ice</span> <span class="hlt">extent</span> is well simulated in phase as well as in magnitude. Simulated sea <span class="hlt">ice</span> thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea <span class="hlt">ice</span> distribution. 64 refs., 15 figs., 2 tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1222091-marine-biogenic-source-atmospheric-ice-nucleating-particles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1222091-marine-biogenic-source-atmospheric-ice-nucleating-particles"><span>A marine biogenic source of atmospheric <span class="hlt">ice</span>-nucleating particles</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.</p> <p>2015-09-09</p> <p>The formation of <span class="hlt">ice</span> in clouds is facilitated by the presence of airborne <span class="hlt">ice</span> nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what <span class="hlt">extent</span> these particles are capable of nucleating <span class="hlt">ice</span>3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates <span class="hlt">ice</span> under conditions that occur in mixed-phase clouds and high-altitude <span class="hlt">ice</span> clouds. The <span class="hlt">ice</span> active material is likely biogenic and is less than ~0.2 ?m in size. We also showmore » that organic material (exudate) released by a common marine diatom nucleates <span class="hlt">ice</span> when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed <span class="hlt">ice</span> nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that <span class="hlt">ice</span> nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25978903','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25978903"><span>Molecular simulations of heterogeneous <span class="hlt">ice</span> nucleation. II. Peeling back the layers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cox, Stephen J; Kathmann, Shawn M; Slater, Ben; Michaelides, Angelos</p> <p>2015-05-14</p> <p>Coarse grained molecular dynamics simulations are presented in which the sensitivity of the <span class="hlt">ice</span> nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting <span class="hlt">ice</span> nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of interfacial water plays in heterogeneous <span class="hlt">ice</span> nucleation and demonstrate that the <span class="hlt">extent</span> of layering is not a good indicator of <span class="hlt">ice</span> nucleating ability for all surfaces. Our results suggest that to be an efficient <span class="hlt">ice</span> nucleating agent, a surface should not bind water too strongly if it is able to accommodate high coverages of water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23211302G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23211302G"><span>What Governs <span class="hlt">Ice</span>-Sticking in Planetary Science Experiments?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaertner, Sabrina; Gundlach, B.; Blum, J.; Fraser, H. J.</p> <p>2018-06-01</p> <p>Water <span class="hlt">ice</span> plays an important role, alongside dust, in current theories of planet formation. Decades of laboratory experiments have proven that water <span class="hlt">ice</span> is far stickier in particle collisions than dust. However, water <span class="hlt">ice</span> is known to be a metastable material. Its physical properties strongly depend on its environmental parameters, the foremost being temperature and pressure. As a result, the properties of <span class="hlt">ice</span> change not only with the environment it is observed in, but also with its thermal history.The abundance of <span class="hlt">ice</span> structures that can be created by different environments likely explains the discrepancies observed across the multitude of collisional laboratory studies in the past [1-16]; unless the <span class="hlt">ices</span> for such experiments have been prepared in the same way and are collided under the same environmental conditions, these experiments simply do not collide the same <span class="hlt">ices</span>.This raises several questions:1. Which conditions and <span class="hlt">ice</span> properties are most favourable for <span class="hlt">ice</span> sticking?2. Which conditions and <span class="hlt">ice</span> properties are closest to the ones observed in protoplanetary disks?3. To what <span class="hlt">extent</span> do these two regimes overlap?4. Consequently, which collisional studies are most relevant to planetary science and therefore best suited to inform models of planet formation?In this presentation, I will give a non-exhaustive overview of what we already know about the properties of <span class="hlt">ice</span> particles, covering those used in planetary science experiments and those observed in planet forming regions. I will discuss to what <span class="hlt">extent</span> we can already answer questions 1-3, and what information we still need to obtain from observations, laboratory experiments, and modelling to be able to answer question 4.References:1. Bridges et al. 1984 Natur 309.2. Bridges et al. 1996 Icar 123.3. Deckers & Teiser 2016 MNRAS 456.4. Dilley & Crawford 1996 JGRE 101.5. Gundlach & Blum 2015 ApJ 798.6. Hatzes et al. 1991 Icar 89.7. Hatzes et al. 1988 MNRAS 231.8. Heißelmann et al. 2010 Icar 206.9. Higa et al. 1996 P</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.740E.346P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.740E.346P"><span>Remote Oil Spill Detection and Monitoring Beneath Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.</p> <p>2016-08-01</p> <p>The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full <span class="hlt">extent</span> of the oil seepage beneath the sea <span class="hlt">ice</span>. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea <span class="hlt">ice</span>. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin <span class="hlt">ice</span> layer as opposed to the other sample with <span class="hlt">ice</span> only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C32B..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C32B..01T"><span>Some Results on Sea <span class="hlt">Ice</span> Rheology for the Seasonal <span class="hlt">Ice</span> Zone, Obtained from the Deformation Field of Sea <span class="hlt">Ice</span> Drift Pattern</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toyota, T.; Kimura, N.</p> <p>2017-12-01</p> <p>Sea <span class="hlt">ice</span> rheology which relates sea <span class="hlt">ice</span> stress to the large-scale deformation of the <span class="hlt">ice</span> cover has been a big issue to numerical sea <span class="hlt">ice</span> modelling. At present the treatment of internal stress within sea <span class="hlt">ice</span> area is based mostly on the rheology formulated by Hibler (1979), where the whole sea <span class="hlt">ice</span> area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea <span class="hlt">ice</span> area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial <span class="hlt">ice</span> in the Arctic Ocean. As for its applicability to the seasonal <span class="hlt">ice</span> zones (SIZ), where various types of sea <span class="hlt">ice</span> are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk <span class="hlt">ice</span>, typical of the SIZ, based on the AMSR-derived <span class="hlt">ice</span> drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. <span class="hlt">Ice</span> drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the <span class="hlt">ice</span> areas. Since this result corresponds with the yield criterion by Tresca and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C21C0622M"><span>Meteorological conditions influencing the formation of level <span class="hlt">ice</span> within the Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazur, A. K.; Krezel, A.</p> <p>2012-12-01</p> <p>The Baltic Sea is covered by <span class="hlt">ice</span> every winter and on average, the <span class="hlt">ice</span>-covered area is 45% of the total area of the Baltic Sea. The beginning of <span class="hlt">ice</span> season usually starts in the end of November, <span class="hlt">ice</span> <span class="hlt">extent</span> is the largest between mid-February and mid-March and sea <span class="hlt">ice</span> disappears completely in May. The <span class="hlt">ice</span> covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea <span class="hlt">ice</span> in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea <span class="hlt">ice</span> can be formed. From the point of winter shipping it is important to locate level and deformed <span class="hlt">ice</span> areas (rafted <span class="hlt">ice</span>, ridged <span class="hlt">ice</span>, and hummocked <span class="hlt">ice</span>). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea <span class="hlt">ice</span> observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea <span class="hlt">ice</span> classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea <span class="hlt">ice</span> studies but they seem to accurately separate level <span class="hlt">ice</span> within the <span class="hlt">ice</span> pack. The data were segmented and classified using eCognition Developer software. Level <span class="hlt">ice</span> were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea <span class="hlt">ice</span> conditions have been already studied. They include date of freezing, date of break-up, sea <span class="hlt">ice</span> <span class="hlt">extent</span> and some of work also <span class="hlt">ice</span> thickness. There is a little knowledge about the relationship of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002001.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002001.html"><span>Sea <span class="hlt">Ice</span> in McClure Strait</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired August 17, 2010 In mid-August 2010, the Northwest Passage was almost—but not quite—free of <span class="hlt">ice</span>. The <span class="hlt">ice</span> content in the northern route through the passage (through the Western Parry Channel) was very light, but <span class="hlt">ice</span> remained in McClure (or M’Clure) Strait. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 17, 2010. Although most of McClure Strait looks perfectly <span class="hlt">ice</span>-free, immediately west of Prince Patrick Island, a band of sea <span class="hlt">ice</span> stretches southward across the strait (left edge of the image). The National Snow and <span class="hlt">Ice</span> Data Center Sea <span class="hlt">Ice</span> News and Analysis blog reported that even more <span class="hlt">ice</span> remained in the southern route (through Amundsen’s Passage) of the Northwest Passage in mid-August 2010. Nevertheless, the <span class="hlt">ice</span> content in the northern route was not only well below the 1968–2000 average, but also nearly a month ahead of the clearing observed in 2007, when Arctic sea <span class="hlt">ice</span> set a record low. As of mid-August 2010, however, overall sea <span class="hlt">ice</span> <span class="hlt">extent</span> was higher than it had been at the same time of year in 2007. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Caption by Michon Scott. To learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=45333 Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Click here to see more images from NASA Goddard’s Earth Observatory</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760011494','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760011494"><span>Skylab floating <span class="hlt">ice</span> experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.</p> <p>1975-01-01</p> <p>The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating <span class="hlt">ice</span>. In both sea and lake <span class="hlt">ice</span>, it was possible to distinguish a wide variety of thin <span class="hlt">ice</span> types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the <span class="hlt">ice</span> increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations <span class="hlt">decreased</span>. It appears that the horizontally polarized data is the most sensitive to variations in <span class="hlt">ice</span> type for both fresh water and sea <span class="hlt">ice</span>. The study also showed the great amount of information on <span class="hlt">ice</span> surface roughness and deformation patterns that can be obtained from X-band SLAR observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.547...49L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.547...49L"><span>Climate change drives expansion of Antarctic <span class="hlt">ice</span>-free habitat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Jasmine R.; Raymond, Ben; Bracegirdle, Thomas J.; Chadès, Iadine; Fuller, Richard A.; Shaw, Justine D.; Terauds, Aleks</p> <p>2017-07-01</p> <p>Antarctic terrestrial biodiversity occurs almost exclusively in <span class="hlt">ice</span>-free areas that cover less than 1% of the continent. Climate change will alter the <span class="hlt">extent</span> and configuration of <span class="hlt">ice</span>-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on <span class="hlt">ice</span>-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, <span class="hlt">ice</span>-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in <span class="hlt">ice</span>-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated <span class="hlt">ice</span>-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28658207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28658207"><span>Climate change drives expansion of Antarctic <span class="hlt">ice</span>-free habitat.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jasmine R; Raymond, Ben; Bracegirdle, Thomas J; Chadès, Iadine; Fuller, Richard A; Shaw, Justine D; Terauds, Aleks</p> <p>2017-07-06</p> <p>Antarctic terrestrial biodiversity occurs almost exclusively in <span class="hlt">ice</span>-free areas that cover less than 1% of the continent. Climate change will alter the <span class="hlt">extent</span> and configuration of <span class="hlt">ice</span>-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on <span class="hlt">ice</span>-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, <span class="hlt">ice</span>-free areas could expand by over 17,000 km 2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in <span class="hlt">ice</span>-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated <span class="hlt">ice</span>-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP11B1783E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP11B1783E"><span>An unusual early Holocene diatom event north of the Getz <span class="hlt">Ice</span> Shelf (Amundsen Sea): Implications for West Antarctic <span class="hlt">Ice</span> Sheet development</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.</p> <p>2011-12-01</p> <p>Modern global change affects not only the polar north but also, and to increasing <span class="hlt">extent</span>, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic <span class="hlt">Ice</span> Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz <span class="hlt">Ice</span> Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded <span class="hlt">ice</span> and below an <span class="hlt">ice</span> shelf or perennial sea <span class="hlt">ice</span> cover (possibly fast <span class="hlt">ice</span>), respectively, a sediment section with diatom assemblages dominated by sea <span class="hlt">ice</span> taxa indicates <span class="hlt">ice</span> shelf retreat and seasonal <span class="hlt">ice</span>-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea <span class="hlt">ice</span>. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27355985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27355985"><span>What Determines the <span class="hlt">Ice</span> Polymorph in Clouds?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hudait, Arpa; Molinero, Valeria</p> <p>2016-07-20</p> <p><span class="hlt">Ice</span> crystals in the atmosphere nucleate from supercooled liquid water and grow by vapor uptake. The structure of the <span class="hlt">ice</span> polymorph grown has strong impact on the morphology and light scattering of the <span class="hlt">ice</span> crystals, modulates the amount of water vapor in <span class="hlt">ice</span> clouds, and can impact the molecular uptake and reactivity of atmospheric aerosols. Experiments and molecular simulations indicate that <span class="hlt">ice</span> nucleated and grown from deeply supercooled liquid water is metastable stacking disordered <span class="hlt">ice</span>. The <span class="hlt">ice</span> polymorph grown from vapor has not yet been determined. Here we use large-scale molecular simulations to determine the structure of <span class="hlt">ice</span> that grows as a result of uptake of water vapor in the temperature range relevant to cirrus and mixed-phase clouds, elucidate the molecular mechanism of the formation of <span class="hlt">ice</span> at the vapor interface, and compute the free energy difference between cubic and hexagonal <span class="hlt">ice</span> interfaces with vapor. We find that vapor deposition results in growth of stacking disordered <span class="hlt">ice</span> only under conditions of extreme supersaturation, for which a nonequilibrium liquid layer completely wets the surface of <span class="hlt">ice</span>. Such extreme conditions have been used to produce stacking disordered frost <span class="hlt">ice</span> in experiments and may be plausible in the summer polar mesosphere. Growth of <span class="hlt">ice</span> from vapor at moderate supersaturations in the temperature range relevant to cirrus and mixed-phase clouds, from 200 to 260 K, produces exclusively the stable hexagonal <span class="hlt">ice</span> polymorph. Cubic <span class="hlt">ice</span> is disfavored with respect to hexagonal <span class="hlt">ice</span> not only by a small penalty in the bulk free energy (3.6 ± 1.5 J mol(-1) at 260 K) but also by a large free energy penalty at the <span class="hlt">ice</span>-vapor interface (89.7 ± 12.8 J mol(-1) at 260 K). The latter originates in higher vibrational entropy of the hexagonal-terminated <span class="hlt">ice</span>-vapor interface. We predict that the free energy penalty against the cubic <span class="hlt">ice</span> interface should <span class="hlt">decrease</span> strongly with temperature, resulting in some degree of stacking disorder in <span class="hlt">ice</span> grown from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29741089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29741089"><span>Molecular Insight into the Slipperiness of <span class="hlt">Ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel</p> <p>2018-05-16</p> <p>Measurements of the friction coefficient of steel-on-<span class="hlt">ice</span> over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep <span class="hlt">decrease</span> in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for <span class="hlt">ice</span> skating. The strong <span class="hlt">decrease</span> in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the <span class="hlt">ice</span>-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery <span class="hlt">ice</span> arises from the high mobility of its surface molecules, making the <span class="hlt">ice</span> surface smooth and the shearing of the weakly bonded surface molecules easy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE34A1450N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE34A1450N"><span>Export of Algal Communities from Land Fast Arctic Sea <span class="hlt">Ice</span> Influenced by Overlying Snow Depth and Episodic Rain Events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neuer, S.; Juhl, A. R.; Aumack, C.; McHugh, C.; Wolverton, M. A.; Kinzler, K.</p> <p>2016-02-01</p> <p>Sea <span class="hlt">ice</span> algal communities dominate primary production of the coastal Arctic Ocean in spring. As the sea <span class="hlt">ice</span> bloom terminates, algae are released from the <span class="hlt">ice</span> into the underlying, nutrient-rich waters, potentially seeding blooms and feeding higher trophic levels in the water column and benthos. We studied the sea <span class="hlt">ice</span> community including export events over four consecutive field seasons (2011-2014) during the spring <span class="hlt">ice</span> algae bloom in land-fast <span class="hlt">ice</span> near Barrow, Alaska, allowing us to investigate both seasonal and interannual differences. Within each year, we observed a delay in algal export from <span class="hlt">ice</span> in areas covered by thicker snow compared to areas with thinner snow coverage. Variability in snow cover therefore resulted in a prolonged supply of organic matter to the underlying water column. Earlier export in 2012 was followed by a shift in the diatom community within the <span class="hlt">ice</span> from pennates to centrics. During an unusual warm period in early May 2014, precipitation falling as rain substantially <span class="hlt">decreased</span> the snow cover thickness (from snow depth > 20 cm down to 0-2 cm). After the early snowmelt, algae were rapidly lost from the sea <span class="hlt">ice</span>, and a subsequent bloom of taxonomically-distinct, under-<span class="hlt">ice</span> phytoplankton developed a few days later. The typical immured sea <span class="hlt">ice</span> diatoms never recovered in terms of biomass, though pennate diatoms (predominantly Nitzschia frigida) did regrow to some <span class="hlt">extent</span> near the <span class="hlt">ice</span> bottom. Sinking rates of the under-<span class="hlt">ice</span> phytoplankton were much more variable than those of <span class="hlt">ice</span> algae particles, which would potentially impact residence time in the water column, and fluxes to the benthos. Thus, the early melt episode, triggered by rain, transitioned directly into the seasonal melt and the release of biomass from the <span class="hlt">ice</span>, shifting production from sea <span class="hlt">ice</span> to the water column, with as-of-yet unknown consequences for the springtime Arctic food web.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21B0673W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21B0673W"><span>Damage Mechanics in the Community <span class="hlt">Ice</span> Sheet Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitcomb, R.; Cathles, L. M. M., IV; Bassis, J. N.; Lipscomb, W. H.; Price, S. F.</p> <p>2016-12-01</p> <p>Half of the mass that floating <span class="hlt">ice</span> shelves lose to the ocean comes from iceberg calving, which is a difficult process to simulate accurately. This is especially true in the large-scale <span class="hlt">ice</span> dynamics models that couple changes in the cryosphere to climate projections. Damage mechanics provide a powerful technique with the potential to overcome this obstacle by describing how fractures in <span class="hlt">ice</span> evolve over time. Here, we demonstrate the application of a damage model to <span class="hlt">ice</span> shelves that predicts realistic geometries. We incorporated this solver into the Community <span class="hlt">Ice</span> Sheet Model, a three dimensional <span class="hlt">ice</span> sheet model developed at Los Alamos National Laboratory. The damage mechanics formulation that we use comes from a first principles-based evolution law for the depth of basal and surface crevasses and depends on the large scale strain rate, stress state, and basal melt. We show that under idealized conditions it produces <span class="hlt">ice</span> tongue lengths that match well with observations for a selection of natural <span class="hlt">ice</span> tongues, including Erebus, Drygalski, and Pine Island in Antarctica, as well as Petermann in Greenland. We also apply the model to more generalized ideal <span class="hlt">ice</span> shelf geometries and show that it produces realistic calving front positions. Although our results are preliminary, the damage mechanics model that we developed provides a promising first principles method for predicting <span class="hlt">ice</span> shelf <span class="hlt">extent</span> and how the calving margins of <span class="hlt">ice</span> shelves respond to climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..261...14F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..261...14F"><span>Kinetics of hydrogen/deuterium exchanges in cometary <span class="hlt">ices</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faure, Mathilde; Quirico, Eric; Faure, Alexandre; Schmitt, Bernard; Theulé, Patrice; Marboeuf, Ulysse</p> <p>2015-11-01</p> <p>The D/H composition of volatile molecules composing cometary <span class="hlt">ices</span> brings key constraints on the origin of comets, on the <span class="hlt">extent</span> of their presolar heritage, as well as on the origin of atmospheres and hydrospheres of terrestrial planets. Nevertheless, the D/H composition may have been modified to various <span class="hlt">extents</span> in the nucleus when a comet approaches the Sun and experiences deep physical and chemical modifications in its subsurface. We question here the evolution of the D/H ratio of organic species by proton exchanges with water <span class="hlt">ice</span>. We experimentally studied the kinetics of D/H exchanges on the <span class="hlt">ice</span> mixtures H2O:CD3OD, H2O:CD3ND2 and D2O:HCN. Our results show that fast exchanges occur on the -OH and -NH2 chemical groups, which are processed through hydrogen bonds exchanges with water and by the molecular mobility triggered by structural changes, such as glass transition or crystallization. D/H exchanges kinetic is best described by a second-order kinetic law with activation energies of 4300 ± 900 K and 3300 ± 100 K for H2O:CD3OD and H2O:CD3ND2 <span class="hlt">ice</span> mixtures, respectively. The corresponding pre-exponential factors ln(A(s-1)) are 25 ± 7 and 20 ± 1, respectively. No exchange was observed in the case of HCN trapped in D2O <span class="hlt">ice</span>. These results strongly suggest that upon thermal heating (1) -OH and -NH2 chemical groups of any organic molecules loose their primordial D/H composition and equilibrate with water <span class="hlt">ice</span>, (2) HCN does not experience proton transfer and keeps a primordial D/H composition and (3) C-H chemical groups are not isotopically modified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21637255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21637255"><span>A dynamic early East Antarctic <span class="hlt">Ice</span> Sheet suggested by <span class="hlt">ice</span>-covered fjord landscapes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Young, Duncan A; Wright, Andrew P; Roberts, Jason L; Warner, Roland C; Young, Neal W; Greenbaum, Jamin S; Schroeder, Dustin M; Holt, John W; Sugden, David E; Blankenship, Donald D; van Ommen, Tas D; Siegert, Martin J</p> <p>2011-06-02</p> <p>The first Cenozoic <span class="hlt">ice</span> sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of <span class="hlt">ice</span>-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. <span class="hlt">Ice</span>-sheet models show that the nature of such oscillations is critically dependent on the pattern and <span class="hlt">extent</span> of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of <span class="hlt">ice</span>, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from <span class="hlt">ice</span>-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of <span class="hlt">ice</span>-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic <span class="hlt">Ice</span> Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815224A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815224A"><span>Numerical modeling of Drangajökull <span class="hlt">Ice</span> Cap, NW Iceland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Leif S.; Jarosch, Alexander H.; Flowers, Gwenn E.; Aðalgeirsdóttir, Guðfinna; Magnússon, Eyjólfur; Pálsson, Finnur; Muñoz-Cobo Belart, Joaquín; Þorsteinsson, Þorsteinn; Jóhannesson, Tómas; Sigurðsson, Oddur; Harning, David; Miller, Gifford H.; Geirsdóttir, Áslaug</p> <p>2016-04-01</p> <p>Over the past century the Arctic has warmed twice as fast as the global average. This discrepancy is likely due to feedbacks inherent to the Arctic climate system. These Arctic climate feedbacks are currently poorly quantified, but are essential to future climate predictions based on global circulation modeling. Constraining the magnitude and timing of past Arctic climate changes allows us to test climate feedback parameterizations at different times with different boundary conditions. Because Holocene Arctic summer temperature changes have been largest in the North Atlantic (Kaufman et al., 2004) we focus on constraining the paleoclimate of Iceland. Glaciers are highly sensitive to changes in temperature and precipitation amount. This sensitivity allows for the estimation of paleoclimate using glacier models, modern glacier mass balance data, and past glacier <span class="hlt">extents</span>. We apply our model to the Drangajökull <span class="hlt">ice</span> cap (~150 sq. km) in NW Iceland. Our numerical model is resolved in two-dimensions, conserves mass, and applies the shallow-<span class="hlt">ice</span>-approximation. The bed DEM used in the model runs was constructed from radio echo data surveyed in spring 2014. We constrain the modern surface mass balance of Drangajökull using: 1) ablation and accumulation stakes; 2) <span class="hlt">ice</span> surface digital elevation models (DEMs) from satellite, airborne LiDAR, and aerial photographs; and 3) full-stokes model-derived vertical <span class="hlt">ice</span> velocities. The modeled vertical <span class="hlt">ice</span> velocities and <span class="hlt">ice</span> surface DEMs are combined to estimate past surface mass balance. We constrain Holocene glacier geometries using moraines and trimlines (e.g., Brynjolfsson, etal, 2014), proglacial-lake cores, and radiocarbon-dated dead vegetation emerging from under the modern glacier. We present a sensitivity analysis of the model to changes in parameters and show the effect of step changes of temperature and precipitation on glacier <span class="hlt">extent</span>. Our results are placed in context with local lacustrine and marine climate proxies as well</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813991B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813991B"><span>Evolution of a Greenland <span class="hlt">Ice</span> sheet Including Shelves and Regional Sea Level Variations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko</p> <p>2016-04-01</p> <p>Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland <span class="hlt">ice</span> sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing <span class="hlt">ice</span> streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide <span class="hlt">ice</span> sheet (LIS) coalesced during glacial maximums, and if so, did a significant <span class="hlt">ice</span> shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these <span class="hlt">ice</span> sheets to eustatic sea level (ESL). Most previous paleo <span class="hlt">ice</span> sheet modelling simulations of the GIS recreated an <span class="hlt">ice</span> sheet that either did not extend out onto the continental shelf or utilised a simplified marine <span class="hlt">ice</span> parameterisation to recreate an extended GIS, and therefore did not fully include <span class="hlt">ice</span> shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-<span class="hlt">ice</span>; a 3D thermodynamical <span class="hlt">ice</span> sheet model which fully accounts for grounded and floating <span class="hlt">ice</span>, calculates grounding line migration and <span class="hlt">ice</span> shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-<span class="hlt">ice</span> controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the <span class="hlt">ice</span> sheet dynamics, timing and spatial <span class="hlt">extent</span> of the GIS at the glacial maximums, but also on the rate of retreat and spatial <span class="hlt">extent</span> at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of <span class="hlt">ice</span> shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP43C2299B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP43C2299B"><span>Evolution of a Greenland <span class="hlt">Ice</span> sheet Including Shelves and Regional Sea Level Variations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.</p> <p>2015-12-01</p> <p>Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland <span class="hlt">ice</span> sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing <span class="hlt">ice</span> streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide <span class="hlt">ice</span> sheet (LIS) coalesced during glacial maximums, and if so, did a significant <span class="hlt">ice</span> shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these <span class="hlt">ice</span> sheets to eustatic sea level (ESL). Most previous paleo <span class="hlt">ice</span> sheet modelling simulations of the GIS recreated an <span class="hlt">ice</span> sheet that either did not extend out onto the continental shelf or utilised a simplified marine <span class="hlt">ice</span> parameterisation to recreate an extended GIS, and therefore did not fully include <span class="hlt">ice</span> shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-<span class="hlt">ice</span>; a 3D thermodynamical <span class="hlt">ice</span> sheet model which fully accounts for grounded and floating <span class="hlt">ice</span>, calculates grounding line migration and <span class="hlt">ice</span> shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-<span class="hlt">ice</span> related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the <span class="hlt">ice</span> sheet dynamics, timing and spatial <span class="hlt">extent</span> of the GIS at the glacial maximums, but also on the rate of retreat and spatial <span class="hlt">extent</span> at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of <span class="hlt">ice</span> shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860014106','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860014106"><span>Analytical determination of propeller performance degradation due to <span class="hlt">ice</span> accretion</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, T. L.</p> <p>1986-01-01</p> <p>A computer code has been developed which is capable of computing propeller performance for clean, glaze, or rime <span class="hlt">iced</span> propeller configurations, thereby providing a mechanism for determining the degree of performance degradation which results from a given <span class="hlt">icing</span> encounter. The inviscid, incompressible flow field at each specified propeller radial location is first computed using the Theodorsen transformation method of conformal mapping. A droplet trajectory computation then calculates droplet impingement points and airfoil collection efficiency for each radial location, at which point several user-selectable empirical correlations are available for determining the aerodynamic penalities which arise due to the <span class="hlt">ice</span> accretion. Propeller performance is finally computed using strip analysis for either the clean or <span class="hlt">iced</span> propeller. In the <span class="hlt">iced</span> mode, the differential thrust and torque coefficient equations are modified by the drag and lift coefficient increments due to <span class="hlt">ice</span> to obtain the appropriate <span class="hlt">iced</span> values. Comparison with available experimental propeller <span class="hlt">icing</span> data shows good agreement in several cases. The code's capability to properly predict <span class="hlt">iced</span> thrust coefficient, power coefficient, and propeller efficiency is shown to be dependent on the choice of empirical correlation employed as well as proper specification of radial <span class="hlt">icing</span> <span class="hlt">extent</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal <span class="hlt">Ice</span> Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Craig; Rainville, Luc; Perry, Mary Jane</p> <p>2016-04-01</p> <p>The observed reduction of Arctic summertime sea <span class="hlt">ice</span> <span class="hlt">extent</span> and expansion of the marginal <span class="hlt">ice</span> zone (MIZ) have profound impacts on the balance of processes controlling sea <span class="hlt">ice</span> evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea <span class="hlt">ice</span>. Spatial and temporal variability in <span class="hlt">ice</span> properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing <span class="hlt">ice</span> cover, and how the balance of processes shift as a function of <span class="hlt">ice</span> fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal <span class="hlt">ice</span> zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, <span class="hlt">ice</span>-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the <span class="hlt">ice</span> edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the <span class="hlt">ice</span> edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea <span class="hlt">ice</span> <span class="hlt">extent</span>, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal <span class="hlt">Ice</span> Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Perry, M. J.</p> <p>2016-02-01</p> <p>The observed reduction of Arctic summertime sea <span class="hlt">ice</span> <span class="hlt">extent</span> and expansion of the marginal <span class="hlt">ice</span> zone (MIZ) have profound impacts on the balance of processes controlling sea <span class="hlt">ice</span> evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea <span class="hlt">ice</span>. Spatial and temporal variability in <span class="hlt">ice</span> properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing <span class="hlt">ice</span> cover, and how the balance of processes shift as a function of <span class="hlt">ice</span> fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal <span class="hlt">ice</span> zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, <span class="hlt">ice</span>-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the <span class="hlt">ice</span> edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the <span class="hlt">ice</span> edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea <span class="hlt">ice</span> <span class="hlt">extent</span>, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP43A1341N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP43A1341N"><span>Spatial and temporal dependence on sea <span class="hlt">ice</span> algae in the Chukchi Sea, Arctic Ocean, inferred from bivalve stable isotopic composition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, H. M.; Black, B.; Dunton, K. H.; von Biela, V. R.</p> <p>2017-12-01</p> <p>The Chukchi Sea is one of the most productive Arctic seas in the world. Around 10% of its net primary production originates from sea <span class="hlt">ice</span> algae, much of which falls ungrazed to a relatively shallow (40-50m) shelf. The chlorophyll a derived from sinking <span class="hlt">ice</span> algae is thought to supports a robust macrobenthic faunal community, dominated by bivalves, which in turn supports higher trophic organisms such as Pacific walrus (Odibenus rosmarus divergens), and bearded seal (Erignathus barbatus). However, recent reductions in <span class="hlt">ice</span> <span class="hlt">extent</span> and thickness could shift primary production from under-<span class="hlt">ice</span> to open-water environment, thus reducing <span class="hlt">ice</span> algal production and delivery to benthic biota. We used stable isotope analyses on benthic bivalve samples, collected in summer between 2002 and 2015, to identify contributions of <span class="hlt">ice</span> algal production to benthic organisms and track their spatial and temporal variations. <span class="hlt">Ice</span> algae contributions were indicated by δ13C values in bivalves, as <span class="hlt">ice</span> algae are isotopically heavy compared to phytoplankton and would be reflected in consumers. This 14-yr period was marked by an 8%, <span class="hlt">decrease</span> in Arctic <span class="hlt">ice</span> <span class="hlt">extent</span>, which was especially pronounced and spatially variable in the Chukchi Sea. We examined variability in the δ13C values in the common bivalves Astarte spp., Ennucula tenuis and Macoma spp. over space and time using one-way ANOVAs with Bonferroni correction to consider the potential for variation in <span class="hlt">ice</span> algae contributions. All bivalve δ13C values were within a range (-21.84‰ to -17.62‰) that suggests some <span class="hlt">ice</span> algal contribution. Among stations, E. tenuis and Astarte spp. did not significantly differ in their individual δ13C values. In contrast, Macoma spp. had significantly enriched δ13C values at one station south of Point Hope (δ13C = -17.75‰, F5,8 = 1.211, P < 0.05) in 2015. There were no significant (P > 0.05) differences in δ13C values from year to year for samples pooled across stations within a taxon. As the only taxon</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24A2918F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24A2918F"><span>Simulating hydrodynamics and <span class="hlt">ice</span> cover in Lake Erie using an unstructured grid model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujisaki-Manome, A.; Wang, J.</p> <p>2016-02-01</p> <p>An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal <span class="hlt">ice</span> cover. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea <span class="hlt">Ice</span> Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the <span class="hlt">ice</span> model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed <span class="hlt">ice</span> <span class="hlt">extent</span>, water surface temperature, <span class="hlt">ice</span> thickness, currents, and water temperature profiles. Seasonal and interannual variation of <span class="hlt">ice</span> <span class="hlt">extent</span> and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled <span class="hlt">ice</span> thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7955M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7955M"><span>Remarkable separability of circulation response to Arctic sea <span class="hlt">ice</span> loss and greenhouse gas forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.</p> <p>2017-08-01</p> <p>Arctic sea <span class="hlt">ice</span> loss may influence midlatitude climate by changing large-scale circulation. The <span class="hlt">extent</span> to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea <span class="hlt">ice</span> nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea <span class="hlt">ice</span> loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The <span class="hlt">extent</span> to which the regional response to sea <span class="hlt">ice</span> loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31D..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31D..01S"><span>The Sea-<span class="hlt">Ice</span> Floe Size Distribution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.</p> <p>2017-12-01</p> <p>The size distribution of <span class="hlt">ice</span> floes in the polar seas affects the dynamics and thermodynamics of the <span class="hlt">ice</span> cover and its interaction with the ocean and atmosphere. <span class="hlt">Ice</span>-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our <span class="hlt">ice</span>-ocean model, we calculated the FSD in the Beaufort and Chukchi seas over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 <span class="hlt">ice</span> floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our <span class="hlt">ice</span>-ocean model resulted in reduced sea-<span class="hlt">ice</span> thickness, mainly in the marginal <span class="hlt">ice</span> zone, which improved the simulation of sea-<span class="hlt">ice</span> <span class="hlt">extent</span> and yielded an earlier <span class="hlt">ice</span> retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000643.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000643.html"><span>Sea <span class="hlt">ice</span> in the Greenland Sea</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>As the northern hemisphere experiences the heat of summer, <span class="hlt">ice</span> moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea <span class="hlt">ice</span> off Greenland on July 16, 2015. Large chunks of melting sea <span class="hlt">ice</span> can be seen in the sea <span class="hlt">ice</span> off the coast, and to the south spirals of <span class="hlt">ice</span> have been shaped by the winds and currents that move across the Greenland Sea. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the sea, as do newly calved icebergs. Frigid air from interior Greenland pushes the <span class="hlt">ice</span> away from the shoreline, and the mixing of cold water and air allows some sea <span class="hlt">ice</span> to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer sea <span class="hlt">ice</span> cover. The past ten years have included nine of the lowest <span class="hlt">ice</span> <span class="hlt">extents</span> on record. The annual minimum typically occurs in late August or early September. The amount of Arctic sea <span class="hlt">ice</span> cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000582.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000582.html"><span>Sea <span class="hlt">Ice</span> in the Bellingshausen Sea</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Antarctica—the continent at the southernmost reach of the planet—is fringed by cold, often frozen waters of the Southern Ocean. The <span class="hlt">extent</span> of sea <span class="hlt">ice</span> around the continent typically reaches a peak in September and a minimum in February. The photograph above shows Antarctic sea <span class="hlt">ice</span> on November 5, 2014, during the annual cycle of melt. The image was acquired by the Digital Mapping System (DMS), a digital camera installed in the belly of research aircraft to capture images of terrain below. In this case, the system flew on the DC-8 during a flight as part of NASA’s Operation <span class="hlt">Ice</span>Bridge. Most of the view shows first-year sea <span class="hlt">ice</span> in the Bellingshausen Sea, as it appeared from an altitude of 328 meters (1,076 feet). The block of <span class="hlt">ice</span> on the right side of the image is older, thicker, and was once attached to the Antarctic <span class="hlt">Ice</span> Sheet. By the time this image was acquired, however, the <span class="hlt">ice</span> had broken away to form an iceberg. Given its close proximity to the <span class="hlt">ice</span> sheet, this could have been a relatively new berg. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=86721 Credit: NASA/Goddard/<span class="hlt">Ice</span>Bridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team and the NASA DAAC at the National Snow and <span class="hlt">Ice</span> Data Center Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........29K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........29K"><span>Arctic landfast sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konig, Christof S.</p> <p></p> <p> well as the strength of offshore winds during nine out of the twelve months each year. Additionally, I identify regions where landfast <span class="hlt">ice</span> appearance has been increasing or <span class="hlt">decreasing</span> over the observed time span.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27660738','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27660738"><span>Influence of <span class="hlt">ice</span> thickness and surface properties on light transmission through Arctic sea <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R</p> <p>2015-09-01</p> <p>The observed changes in physical properties of sea <span class="hlt">ice</span> such as <span class="hlt">decreased</span> thickness and increased melt pond cover severely impact the energy budget of Arctic sea <span class="hlt">ice</span>. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-<span class="hlt">ice</span>-melt and under-<span class="hlt">ice</span> primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea <span class="hlt">ice</span>. We measured spectral under-<span class="hlt">ice</span> radiance and irradiance using the new Nereid Under-<span class="hlt">Ice</span> (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea <span class="hlt">ice</span>. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-<span class="hlt">ice</span> optical measurements with three dimensional under-<span class="hlt">ice</span> topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying <span class="hlt">ice</span>-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-<span class="hlt">ice</span> light field on small scales (<1000 m 2 ), while sea <span class="hlt">ice</span>-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea <span class="hlt">ice</span> thickness and surface albedo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235897-development-global-sea-ice-cice-configuration-met-office-global-coupled-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235897-development-global-sea-ice-cice-configuration-met-office-global-coupled-model"><span>Development of the global sea <span class="hlt">ice</span> 6.0 CICE configuration for the Met Office global coupled model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; ...</p> <p>2015-07-24</p> <p>The new sea <span class="hlt">ice</span> configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea <span class="hlt">ice</span> <span class="hlt">extent</span>, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea <span class="hlt">ice</span> is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and <span class="hlt">extent</span> with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in <span class="hlt">ice</span> extentmore » and volume; further work is required to rectify this in future configurations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1235897','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1235897"><span>Development of the global sea <span class="hlt">ice</span> 6.0 CICE configuration for the Met Office global coupled model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.</p> <p></p> <p>The new sea <span class="hlt">ice</span> configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea <span class="hlt">ice</span> <span class="hlt">extent</span>, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea <span class="hlt">ice</span> is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and <span class="hlt">extent</span> with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in <span class="hlt">ice</span> extentmore » and volume; further work is required to rectify this in future configurations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040015278&hterms=BALANCE+SHEET&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DBALANCE%2BSHEET','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040015278&hterms=BALANCE+SHEET&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DBALANCE%2BSHEET"><span>Antarctic <span class="hlt">Ice</span>-Sheet Mass Balance from Satellite Altimetry 1992 to 2001</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui</p> <p>2003-01-01</p> <p>A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic <span class="hlt">ice</span> sheets. Estimates of the current mass balance of the Antarctic <span class="hlt">ice</span> sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery <span class="hlt">ice</span> shelves, the W d t are small or near zero. In contrast, the <span class="hlt">ice</span> shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation <span class="hlt">decrease</span> on the Larsen <span class="hlt">ice</span> shelf and a 65 +/- 4 cm per year <span class="hlt">decrease</span> on the Dotson <span class="hlt">ice</span> shelf. On the grounded <span class="hlt">ice</span>, significant elevation <span class="hlt">decreases</span> are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the <span class="hlt">ice</span> sheet. Farther inland, the changes are a mixed pattern of increases and <span class="hlt">decreases</span> with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of <span class="hlt">ice</span> thickness change. The <span class="hlt">ice</span> thickness changes enable estimates of the <span class="hlt">ice</span> mass balances for the major drainage basins, the overall mass balance, and the current contribution of the <span class="hlt">ice</span> sheet to global sea level change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........48D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........48D"><span>Arctic Sea <span class="hlt">Ice</span> Trafficability - New Strategies for a Changing Icescape</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dammann, Dyre Oliver</p> <p></p> <p>Sea <span class="hlt">ice</span> is an important part of the Arctic social-environmental system, in part because it provides a platform for human transportation and for marine flora and fauna that use the <span class="hlt">ice</span> as a habitat. Sea <span class="hlt">ice</span> loss projected for coming decades is expected to change <span class="hlt">ice</span> conditions throughout the Arctic, but little is known about the nature and <span class="hlt">extent</span> of anticipated changes and in particular potential implications for over-<span class="hlt">ice</span> travel and <span class="hlt">ice</span> use as a platform. This question has been addressed here through an extensive effort to link sea <span class="hlt">ice</span> use and key geophysical properties of sea <span class="hlt">ice</span>, drawing upon extensive field surveys around on-<span class="hlt">ice</span> operations and local and Indigenous knowledge for the widely different <span class="hlt">ice</span> uses and <span class="hlt">ice</span> regimes of Utqiagvik, Kotzebue, and Nome, Alaska.. A set of nine parameters that constrain landfast sea <span class="hlt">ice</span> use has been derived, including spatial <span class="hlt">extent</span>, stability, and timing and persistence of landfast <span class="hlt">ice</span>. This work lays the foundation for a framework to assess and monitor key <span class="hlt">ice</span>-parameters relevant in the context of <span class="hlt">ice</span>-use feasibility, safety, and efficiency, drawing on different remote-sensing techniques. The framework outlines the steps necessary to further evaluate relevant parameters in the context of user objectives and key stakeholder needs for a given <span class="hlt">ice</span> regime and <span class="hlt">ice</span> use scenario. I have utilized this framework in case studies for three different <span class="hlt">ice</span> regimes, where I find uses to be constrained by <span class="hlt">ice</span> thickness, roughness, and fracture potential and develop assessment strategies with accuracy at the relevant spatial scales. In response to the widely reported importance of high-confidence <span class="hlt">ice</span> thickness measurements, I have developed a new strategy to estimate appropriate thickness compensation factors. Compensation factors have the potential to reduce risk of misrepresenting areas of thin <span class="hlt">ice</span> when using point-based in-situ assessment methods along a particular route. This approach was tested on an <span class="hlt">ice</span> road near Kotzebue, Alaska, where</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92R..88S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92R..88S"><span>Research Spotlight: No tipping point for Arctic Ocean <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Colin</p> <p>2011-03-01</p> <p>Declines in the summer sea <span class="hlt">ice</span> <span class="hlt">extent</span> have led to concerns within the scientific community that the Arctic Ocean may be nearing a tipping point, beyond which the sea <span class="hlt">ice</span> cap could not recover. In such a scenario, greenhouse gases in the atmosphere trap outgoing radiation, and as the Sun beats down 24 hours a day during the Arctic summer, temperatures rise and melt what remains of the polar sea <span class="hlt">ice</span> cap. The Arctic Ocean, now less reflective, would absorb more of the Sun’s warmth, a feedback loop that would keep the ocean <span class="hlt">ice</span> free. However, new research by Tietsche et al. suggests that even if the Arctic Ocean sees an <span class="hlt">ice</span>-free summer, it would not lead to catastrophic runaway <span class="hlt">ice</span> melt. The researchers, using a general circulation model of the global ocean and the atmosphere, found that Arctic sea <span class="hlt">ice</span> recovers within 2 years of an imposed <span class="hlt">ice</span>-free summer to the conditions dictated by general climate conditions during that time. Furthermore, they found that this quick recovery occurs whether the <span class="hlt">ice</span>-free summer is triggered in 2000 or in 2060, when global temperatures are predicted to be 2°C warmer. (Geophysical Research Letters, doi:10.1029/2010GL045698, 2011)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031244','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031244"><span>Changes in <span class="hlt">ice</span>-margin processes and sediment routing during <span class="hlt">ice</span>-sheet advance across a marginal moraine</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.</p> <p>2007-01-01</p> <p>Advance of part of the margin of the Greenland <span class="hlt">ice</span> sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal <span class="hlt">ice</span> formation, debris release, <span class="hlt">ice</span>-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the <span class="hlt">ice</span> margin is behind the moraine, most of the sediment released from the glacier is stored close to the <span class="hlt">ice</span> margin. As the margin advances across the moraine the potential for <span class="hlt">ice</span>-proximal sediment storage <span class="hlt">decreases</span> and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the <span class="hlt">ice</span> margin, the debris-rich basal <span class="hlt">ice</span>, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C52B..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C52B..05L"><span>Tracking sea <span class="hlt">ice</span> floes from the Lincoln Sea to Nares Strait and deriving large scale melt from coincident spring and summer (2009) aerial EM thickness surveys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, B. A.; Haas, C.; Beckers, J.; Hendricks, S.</p> <p>2011-12-01</p> <p>Satellite observations demonstrate a <span class="hlt">decreasing</span> summer Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> over the past ~40 years, as well as a smaller perennial sea <span class="hlt">ice</span> zone, with a significantly accelerated decline in the last decade. Recent <span class="hlt">ice</span> <span class="hlt">extent</span> observations are significantly lower than predicted by any model employed by the Intergovernmental Panel on Climate Change. The disagreement of the modeled and observed results, along with the large variability of model results, can be in part attributed to a lack of consistent and long term sea <span class="hlt">ice</span> mass balance observations for the High Arctic. This study presents the derivation of large scale (individual floe) seasonal sea <span class="hlt">ice</span> mass balance in the Lincoln Sea and Nares Strait. Large scale melt estimates are derived by comparing aerial borne electromagnetic induction thickness surveys conducted in spring with surveys conducted in summer 2009. The comparison of coincident floes is ensured by tracking sea <span class="hlt">ice</span> using ENIVSAT ASAR and MODIS satellite imagery. Only EM thickness survey sections of floes that were surveyed in both spring and summer are analyzed and the resulting modal thicknesses of the distributions, which represent the most abundant <span class="hlt">ice</span> type, are compared to determine the difference in thickness and therefore total melt (snow+basal <span class="hlt">ice</span>+surface <span class="hlt">ice</span> melt). Preliminary analyses demonstrate a bulk (regional <span class="hlt">ice</span> tracking) seasonal total thickness variability of 1.1m, Lincoln Sea modal thickness 3.7m (April, 2009) and Nares Strait modal thickness 2.6m (August 2009)(Fig1). More detailed floe tracking, in depth analysis of EM surveys and removal of deformed ridged/rafted sea <span class="hlt">ice</span> (due to inaccuracies over deformed <span class="hlt">ice</span>) will result in more accurate melt estimates for this region and will be presented. The physical structure of deformed sea <span class="hlt">ice</span> and the footprint of the EM instrument typically underestimate the total thicknesses observed. Seasonal variations of sea <span class="hlt">ice</span> properties can add additional uncertainty to the response of the EM</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30b7101J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30b7101J"><span>Mixed <span class="hlt">ice</span> accretion on aircraft wings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So</p> <p>2018-02-01</p> <p><span class="hlt">Ice</span> accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime <span class="hlt">ice</span> or runback as water along the wing to form glaze <span class="hlt">ice</span>. Most models to date have ignored the accretion of mixed <span class="hlt">ice</span>, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion <span class="hlt">ice</span> to explore the concept of mixed <span class="hlt">ice</span> accretion. Additionally we consider different "packing densities" of rime <span class="hlt">ice</span>, mimicking the different bulk rime densities observed in nature. <span class="hlt">Ice</span> accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze <span class="hlt">ice</span>. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed <span class="hlt">ice</span> formulation however provides additional insight into the composition of the overall <span class="hlt">ice</span> structure, which ultimately influences adhesion and <span class="hlt">ice</span> thickness, and shows that for similar atmospheric parameter ranges, this simple mixed <span class="hlt">ice</span> description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with <span class="hlt">decrease</span> in atmospheric temperature, with lower freezing fraction promoting glaze <span class="hlt">ice</span> accretion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.G52B..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.G52B..03B"><span>The East Antarctic <span class="hlt">Ice</span> Sheet and the Gamburtsev Subglacial Mountains (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.</p> <p>2009-12-01</p> <p>Models of the onset of glaciation in Antarctica routinely document the early growth of the <span class="hlt">ice</span> sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While <span class="hlt">ice</span> sheet models replicate the formation of the East Antarctic <span class="hlt">ice</span> sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic <span class="hlt">ice</span> sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future <span class="hlt">ice</span> core and bedrock drilling. A major new airborne data set including gravity; magnetics; <span class="hlt">ice</span> thickness; SAR images of the <span class="hlt">ice</span>-bed interface; near-surface and deep internal layers; and <span class="hlt">ice</span> surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental <span class="hlt">ice</span> sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland <span class="hlt">extent</span> of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the <span class="hlt">ice</span> sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027099&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmicrowaves%2Bwater%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027099&hterms=microwaves+water+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmicrowaves%2Bwater%2Bstructure"><span>Satellite microwave and in situ observations of the Weddell Sea <span class="hlt">ice</span> cover and its marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, J. C.; Sullivan, C. W.</p> <p>1986-01-01</p> <p>The radiative and physical characteristics of the Weddell Sea <span class="hlt">ice</span> cover and its marginal <span class="hlt">ice</span> zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated <span class="hlt">ice</span> in winter and spring cyclic increases and <span class="hlt">decrease</span> in brightness temperatures of consolidated <span class="hlt">ice</span> with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. <span class="hlt">Ice</span> concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the <span class="hlt">ice</span> margin structure and the mass balance of fresh water and of biological features of the marginal <span class="hlt">ice</span> zone are studied.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C54A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C54A..08S"><span>Tropical pacing of Antarctic sea <span class="hlt">ice</span> increase</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, D. P.</p> <p>2015-12-01</p> <p>One reason why coupled climate model simulations generally do not reproduce the observed increase in Antarctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> may be that their internally generated climate variability does not sync with the observed phases of phenomena like the Pacific Decadal Oscillation (PDO) and ENSO. For example, it is unlikely for a free-running coupled model simulation to capture the shift of the PDO from its positive to negative phase during 1998, and the subsequent ~15 year duration of the negative PDO phase. In previously presented work based on atmospheric models forced by observed tropical SSTs and stratospheric ozone, we demonstrated that tropical variability is key to explaining the wind trends over the Southern Ocean during the past ~35 years, particularly in the Ross, Amundsen and Bellingshausen Seas, the regions of the largest trends in sea <span class="hlt">ice</span> <span class="hlt">extent</span> and <span class="hlt">ice</span> season duration. Here, we extend this idea to coupled model simulations with the Community Earth System Model (CESM) in which the evolution of SST anomalies in the central and eastern tropical Pacific is constrained to match the observations. This ensemble of 10 "tropical pacemaker" simulations shows a more realistic evolution of Antarctic sea <span class="hlt">ice</span> anomalies than does its unconstrained counterpart, the CESM Large Ensemble (both sets of runs include stratospheric ozone depletion and other time-dependent radiative forcings). In particular, the pacemaker runs show that increased sea <span class="hlt">ice</span> in the eastern Ross Sea is associated with a deeper Amundsen Sea Low (ASL) and stronger westerlies over the south Pacific. These circulation patterns in turn are linked with the negative phase of the PDO, characterized by negative SST anomalies in the central and eastern Pacific. The timing of tropical decadal variability with respect to ozone depletion further suggests a strong role for tropical variability in the recent acceleration of the Antarctic sea <span class="hlt">ice</span> trend, as ozone depletion stabilized by late 1990s, prior to the most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23246475','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23246475"><span>Controlled <span class="hlt">ice</span> nucleation in cryopreservation--a review.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morris, G John; Acton, Elizabeth</p> <p>2013-04-01</p> <p>We review here for the first time, the literature on control of <span class="hlt">ice</span> nucleation in cryopreservation. Water and aqueous solutions have a tendency to undercool before <span class="hlt">ice</span> nucleation occurs. Control of <span class="hlt">ice</span> nucleation has been recognised as a critical step in the cryopreservation of embryos and oocytes but is largely ignored for other cell types. We review the processes of <span class="hlt">ice</span> nucleation and crystal growth in the solution around cells and tissues during cryopreservation with an emphasis on non IVF applications. The <span class="hlt">extent</span> of undercooling that is encountered during the cooling of various cryocontainers is defined and the methods that have been employed to control the nucleation of <span class="hlt">ice</span> are examined. The effects of controlled <span class="hlt">ice</span> nucleation on the structure of the sample and the outcome of cryopreservation of a range of cell types and tissues are presented and the physical events which define the cellular response are discussed. Nucleation of <span class="hlt">ice</span> is the most significant uncontrolled variable in conventional cryopreservation leading to sample to sample variation in cell recovery, viability and function and should be controlled to allow standardisation of cryopreservation protocols for cells for biobanking, cell based assays or clinical application. This intervention allows a way of increasing viability of cells and reducing variability between samples and should be included as standard operating procedures are developed. Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21E..02I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21E..02I"><span>Measurements of sea <span class="hlt">ice</span> mass redistribution during <span class="hlt">ice</span> deformation event in Arctic winter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.</p> <p>2016-12-01</p> <p>Sea-<span class="hlt">ice</span> growth during high winter is governed by <span class="hlt">ice</span> dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally <span class="hlt">ice</span> thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-<span class="hlt">ice</span> growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-<span class="hlt">ICE</span>2015 expedition in the area north of Svalbard. Between the two overflights an <span class="hlt">ice</span> deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-<span class="hlt">ice</span> area of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea <span class="hlt">ice</span> plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to <span class="hlt">ice</span> thickness. The snow depth is estimated from in-situ measurements. Sea <span class="hlt">ice</span> thickness measurements were made in the same area as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-<span class="hlt">ice</span> thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a <span class="hlt">decrease</span> in the thin <span class="hlt">ice</span> classes and an increase of the thick <span class="hlt">ice</span> classes. While there was no observable snowfall and a very low sea-<span class="hlt">ice</span> growth of older level <span class="hlt">ice</span> during this period, an autonomous buoy array deployed in the surroundings of the area measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea <span class="hlt">ice</span> deformation with the associated sea-<span class="hlt">ice</span> thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the area between the buoys and calculate the strain rates and freeboard change for each individual triangle</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29195456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29195456"><span>Monitoring <span class="hlt">ice</span> thickness and elastic properties from the measurement of leaky guided waves: A laboratory experiment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moreau, Ludovic; Lachaud, Cédric; Théry, Romain; Predoi, Mihai V; Marsan, David; Larose, Eric; Weiss, Jérôme; Montagnat, Maurine</p> <p>2017-11-01</p> <p>The decline of Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that is not reproduced by climate models. To improve these models, relying on comprehensive and accurate field data is essential. While sea <span class="hlt">ice</span> <span class="hlt">extent</span> and concentration are accurately monitored from microwave imagery, an accurate measure of its thickness is still lacking. Moreover, measuring observables related to the mechanical behavior of the <span class="hlt">ice</span> (such as Young's modulus, Poisson's ratio, etc.) could provide better insights in the understanding of sea <span class="hlt">ice</span> decline, by completing current knowledge so far acquired mostly from radar and sonar data. This paper aims at demonstrating on the laboratory scale that these can all be estimated simultaneously by measuring seismic waves guided in the <span class="hlt">ice</span> layer. The experiment consisted of leaving a water tank in a cold room in order to grow an <span class="hlt">ice</span> layer at its surface. While its thickness was increasing, ultrasonic guided waves were generated with a piezoelectric source, and measurements were subsequently inverted to infer the thickness and mechanical properties of the <span class="hlt">ice</span> with very good accuracy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1047G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1047G"><span>Implementing an empirical scalar constitutive relation for <span class="hlt">ice</span> with flow-induced polycrystalline anisotropy in large-scale <span class="hlt">ice</span> sheet models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam</p> <p>2018-03-01</p> <p>The microstructure of polycrystalline <span class="hlt">ice</span> evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the <span class="hlt">ice</span> flow relation most commonly used in large-scale <span class="hlt">ice</span> sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the <span class="hlt">Ice</span> Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when <span class="hlt">ice</span> is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on <span class="hlt">ice</span> flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed <span class="hlt">ice</span> shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the <span class="hlt">ice</span> shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic <span class="hlt">ice</span> in a physically realistic manner, and have implications for simulations of <span class="hlt">ice</span> sheet evolution used to reconstruct paleo-<span class="hlt">ice</span> sheet <span class="hlt">extent</span> and predict future <span class="hlt">ice</span> sheet contributions to sea level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001849','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001849"><span>The Kinematic and Microphysical Control of Storm Integrated Lightning Flash <span class="hlt">Extent</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont</p> <p>2012-01-01</p> <p>The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and <span class="hlt">extent</span>. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between <span class="hlt">ice</span> particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or <span class="hlt">ice</span> mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation <span class="hlt">ice</span> mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash <span class="hlt">extent</span>, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multicell) and 6 July 2007</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20020695-arctic-sea-ice-variability-context-recent-atmospheric-circulation-trends','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20020695-arctic-sea-ice-variability-context-recent-atmospheric-circulation-trends"><span>Arctic sea <span class="hlt">ice</span> variability in the context of recent atmospheric circulation trends</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deser, C.; Walsh, J.E.; Timlin, M.S.</p> <p></p> <p>, there appears to be a local response of the atmospheric circulation to the changing sea <span class="hlt">ice</span> cover east of Greenland. Specifically, cyclone frequencies have increased and mean SLPs have <span class="hlt">decreased</span> over the retracted <span class="hlt">ice</span> margin in the Greenland Sea, and these changes differ from those associated directly with the North Atlantic oscillation. The dominant mode of sea <span class="hlt">ice</span> variability in summer (July-September) is more spatially uniform than that in winter. Summer <span class="hlt">ice</span> <span class="hlt">extent</span> for the Arctic as a whole has exhibited a nearly monotonic decline (-4% decade{sup {minus}1}) during the past 40 yr. Summer sea <span class="hlt">ice</span> variations appear to be initiated by atmospheric circulation anomalies over the high Arctic in late spring. Positive <span class="hlt">ice</span>-albedo feedback may account for the relatively long delay (2--3 months) between the time of atmospheric forcing and the maximum <span class="hlt">ice</span> response, and it may have served to amplify the summer <span class="hlt">ice</span> retreat.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARB29010Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARB29010Z"><span>Honeycomb artificial spin <span class="hlt">ice</span> at low temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeissler, Katharina; Chadha, Megha; Cohen, Lesley; Branford, Will</p> <p>2015-03-01</p> <p>Artificial spin <span class="hlt">ice</span> is a macroscopic playground for magnetically frustrated systems. It consists of a geometrically ordered but magnetically frustrated arrangement of ferromagnetic macros spins, e.g. an arrangement of single domain ferromagnetic nanowires on a honeycomb lattice. Permalloy and cobalt which have critical temperature scales far above 290 K, are commonly used in the construction of such systems. Previous measurements have shown unusual features in the magnetotransport signature of cobalt honeycomb artificial spin <span class="hlt">ice</span> at temperatures below 50 K which are due to changes in the artificial spin <span class="hlt">ice</span>'s magnetic reversal. In that case, the artificial spin <span class="hlt">ice</span> bars were 1 micron long, 100 nm wide and 20 nm thick. Here we explore the low temperature magnetic behavior of honeycomb artificial spin <span class="hlt">ice</span> structures with a variety of bar dimensions, indirectly via electrical transport, as well as, directly using low temperature magnetic imaging techniques. We discuss the <span class="hlt">extent</span> to which this change in the magnetic reversal at low temperatures is generic to the honeycomb artificial spin <span class="hlt">ice</span> geometry and whether the bar dimensions have an influence on its onset temperature. The EPSRC (Grant No. EP/G004765/1; Grant No. EP/L504786/1) and the Leverhulme Trust (Grant No. RPG 2012-692) funded this scientific work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19278447','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19278447"><span>Bacteria beneath the West Antarctic <span class="hlt">ice</span> sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lanoil, Brian; Skidmore, Mark; Priscu, John C; Han, Sukkyun; Foo, Wilson; Vogel, Stefan W; Tulaczyk, Slawek; Engelhardt, Hermann</p> <p>2009-03-01</p> <p>Subglacial environments, particularly those that lie beneath polar <span class="hlt">ice</span> sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-<span class="hlt">ice</span> sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb <span class="hlt">Ice</span> Stream, West Antarctic <span class="hlt">Ice</span> Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic <span class="hlt">Ice</span> Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the <span class="hlt">extent</span> of wet sediments beneath the Antarctic <span class="hlt">ice</span> sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1791S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1791S"><span>Warm winter, thin <span class="hlt">ice</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroeve, Julienne C.; Schroder, David; Tsamados, Michel; Feltham, Daniel</p> <p>2018-05-01</p> <p>Winter 2016/2017 saw record warmth over the Arctic Ocean, leading to the least amount of freezing degree days north of 70° N since at least 1979. The impact of this warmth was evaluated using model simulations from the Los Alamos sea <span class="hlt">ice</span> model (CICE) and CryoSat-2 thickness estimates from three different data providers. While CICE simulations show a broad region of anomalously thin <span class="hlt">ice</span> in April 2017 relative to the 2011-2017 mean, analysis of three CryoSat-2 products show more limited regions with thin <span class="hlt">ice</span> and do not always agree with each other, both in magnitude and direction of thickness anomalies. CICE is further used to diagnose feedback processes driving the observed anomalies, showing 11-13 cm reduced thermodynamic <span class="hlt">ice</span> growth over the Arctic domain used in this study compared to the 2011-2017 mean, and dynamical contributions of +1 to +4 cm. Finally, CICE model simulations from 1985 to 2017 indicate the negative feedback relationship between <span class="hlt">ice</span> growth and winter air temperatures may be starting to weaken, showing <span class="hlt">decreased</span> winter <span class="hlt">ice</span> growth since 2012, as winter air temperatures have increased and the freeze-up has been further delayed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C51A0254Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C51A0254Y"><span>Modelling the Climate - Greenland <span class="hlt">Ice</span> Sheet Interaction in the Coupled <span class="hlt">Ice</span>-sheet/Climate Model EC-EARTH - PISM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.</p> <p>2014-12-01</p> <p>Recent observations show that the Greenland <span class="hlt">ice</span> sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent <span class="hlt">ice</span> sheet module. A fully coupled global climate model with a dynamical <span class="hlt">ice</span> sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea <span class="hlt">ice</span> model system, and the Parallel <span class="hlt">Ice</span> Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land <span class="hlt">ice</span> surface over glaciated regions in Greenland. The PISM <span class="hlt">ice</span> sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and <span class="hlt">ice</span> over land <span class="hlt">ice</span>. PISM returns the simulated basal melt, <span class="hlt">ice</span> discharge and <span class="hlt">ice</span> cover (<span class="hlt">extent</span> and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of <span class="hlt">ice</span> sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive <span class="hlt">ice</span> sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland <span class="hlt">ice</span> sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland <span class="hlt">ice</span> sheet melt to the Arctic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP21B1327O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP21B1327O"><span><span class="hlt">Ice</span> Core Records of Recent Northwest Greenland Climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osterberg, E. C.; Wong, G. J.; Ferris, D.; Lutz, E.; Howley, J. A.; Kelly, M. A.; Axford, Y.; Hawley, R. L.</p> <p>2014-12-01</p> <p>Meteorological station data from NW Greenland indicate a 3oC temperature rise since 1990, with most of the warming occurring in fall and winter. According to remote sensing data, the NW Greenland <span class="hlt">ice</span> sheet (GIS) and coastal <span class="hlt">ice</span> caps are responding with <span class="hlt">ice</span> mass loss and margin retreat, but the cryosphere's response to previous climate variability is poorly constrained in this region. We are developing multi-proxy records (lake sediment cores, <span class="hlt">ice</span> cores, glacial geologic data, glaciological models) of Holocene climate change and cryospheric response in NW Greenland to improve projections of future <span class="hlt">ice</span> loss and sea level rise in a warming climate. As part of our efforts to develop a millennial-length <span class="hlt">ice</span> core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 21 m) from the coastal region of the GIS (2Barrel site; 76.9317o N, 63.1467o W, 1685 m el.) and the summit of North <span class="hlt">Ice</span> Cap (76.938o N, 67.671o W, 1273 m el.) in 2011, 2012 and 2014. The 2Barrel <span class="hlt">ice</span> core record has statistically significant relationships with regional spring and fall Baffin Bay sea <span class="hlt">ice</span> <span class="hlt">extent</span>, summertime temperature, and annual precipitation. Here we evaluate relationships between the 2014 North <span class="hlt">Ice</span> Cap firn core glaciochemical record and climate variability from regional instrumental stations and reanalysis datasets. We compare the coastal North <span class="hlt">Ice</span> Cap record to more inland records from 2Barrel, Camp Century and NEEM to evaluate spatial and elevational gradients in recent NW Greenland climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C42A..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C42A..04B"><span>Endmembers of <span class="hlt">Ice</span> Shelf Melt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.</p> <p>2017-12-01</p> <p>Studies of surface melt on <span class="hlt">ice</span> shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger <span class="hlt">ice</span> shelf collapse as in the 2002 event leading to the disintegration of the Larsen B <span class="hlt">Ice</span> Shelf. On the other, meltwater export by rivers can stabilize an <span class="hlt">ice</span> shelf as was recently shown on the Nansen <span class="hlt">Ice</span> Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating <span class="hlt">ice</span> shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation <span class="hlt">Ice</span>Bridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of <span class="hlt">ice</span> shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on <span class="hlt">ice</span> shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater <span class="hlt">extent</span>, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037558','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037558"><span>On the nature of the dirty <span class="hlt">ice</span> at the bottom of the GISP2 <span class="hlt">ice</span> core</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.</p> <p>2010-01-01</p> <p>We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed <span class="hlt">ice</span> between 2800 and 3040m depth in the GISP2 <span class="hlt">ice</span> core, and from basal dirty <span class="hlt">ice</span> from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty <span class="hlt">ice</span>. The Ar/N2 ratio of dirty basal <span class="hlt">ice</span>, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty <span class="hlt">ice</span> originate from the assimilation of clean <span class="hlt">ice</span> of the overlying glacier, which comprises most of the <span class="hlt">ice</span> in the dirty bottom layer. O2 is partly to completely depleted in basal <span class="hlt">ice</span>, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which <span class="hlt">decreases</span> with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed <span class="hlt">ice</span>. In basal <span class="hlt">ice</span>, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal <span class="hlt">ice</span>, and the distribution of dirt, indicate mixing within the basal <span class="hlt">ice</span>, while various published lines of evidence indicate mixing within the overlying clean, disturbed <span class="hlt">ice</span>. Excess CH4, which reaches thousands of ppm in basal dirty <span class="hlt">ice</span> at GRIP, is virtually absent in overlying clean disturbed <span class="hlt">ice</span>, demonstrating that mixing of dirty basal <span class="hlt">ice</span> into the overlying clean <span class="hlt">ice</span>, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean <span class="hlt">ice</span> into dirty <span class="hlt">ice</span> is sufficient to maintain a steady thickness of dirty <span class="hlt">ice</span> against thinning from the mean <span class="hlt">ice</span> flow. The dirty <span class="hlt">ice</span> appears to consist of two or more basal components in addition to clean glacial <span class="hlt">ice</span>. A small amount of soil or permafrost, plus preglacial snow, lake or ground <span class="hlt">ice</span> could explain the observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015528','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015528"><span>Mass balance and sliding velocity of the Puget lobe of the cordilleran <span class="hlt">ice</span> sheet during the last glaciation</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Booth, D.B.</p> <p>1986-01-01</p> <p>An estimate of the sliding velocity and basal meltwater discharge of the Puget lobe of the Cordilleran <span class="hlt">ice</span> sheet can be calculated from its reconstructed <span class="hlt">extent</span>, altitude, and mass balance. Lobe dimensions and surface altitudes are inferred from <span class="hlt">ice</span> limits and flow-direction indicators. Net annual mass balance and total ablation are calculated from relations empirically derived from modern maritime glaciers. An equilibrium-line altitude between 1200 and 1250 m is calculated for the maximum glacial advance (ca. 15,000 yr B.P.) during the Vashon Stade of the Fraser Glaciation. This estimate is in accord with geologic data and is insensitive to plausible variability in the parameters used in the reconstruction. Resultant sliding velocities are as much as 650 m/a at the equilibrium line, <span class="hlt">decreasing</span> both up- and downglacier. Such velocities for an <span class="hlt">ice</span> sheet of this size are consistent with nonsurging behavior. Average meltwater discharge increases monotonically downglacier to 3000 m3/sec at the terminus and is of a comparable magnitude to <span class="hlt">ice</span> discharge over much of the glacier's ablation area. Palcoclimatic inferences derived from this reconstruction are consistent with previous, independently derived studies of late Pleistocene temperature and precipitation in the Pacific Northwest. ?? 1986.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23E..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23E..01R"><span>Variational Ridging in Sea <span class="hlt">Ice</span> Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.</p> <p>2017-12-01</p> <p>This work presents the results of a new development to make basin-scale sea <span class="hlt">ice</span> models aware of the shape, porosity and <span class="hlt">extent</span> of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea <span class="hlt">ice</span> field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea <span class="hlt">ice</span> as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea <span class="hlt">ice</span> models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea <span class="hlt">ice</span> code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea <span class="hlt">ice</span> ridges, and points to the need for improved measurements of the evolution of porosity of deformed <span class="hlt">ice</span> in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea <span class="hlt">ice</span> volume derived from altimetric measurements of sea <span class="hlt">ice</span> freeboard.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.P32B..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.P32B..02H"><span>Geological Evidence for Recent <span class="hlt">Ice</span> Ages on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Head, J. W.; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R.</p> <p>2003-12-01</p> <p>A primary cause of <span class="hlt">ice</span> ages on Earth is orbital forcing from variations in orbital parameters of the planet. On Mars such variations are known to be much more extreme. Recent exploration of Mars has revealed abundant water <span class="hlt">ice</span> in the near-surface at high latitudes in both hemispheres. We outline evidence that these near-surface, water-<span class="hlt">ice</span> rich mantling deposits represent a mixture of <span class="hlt">ice</span> and dust that is layered, meters thick, and latitude dependent. These units were formed during a geologically recent major martian <span class="hlt">ice</span> age, and were emplaced in response to the changing stability of water <span class="hlt">ice</span> and dust on the surface during variations in orbital parameters. Evidence for these units include a smoothing of topography at subkilometer baselines from about 30o north and south latitudes to the poles, a distinctive dissected texture in MOC images in the +/-30o-60o latitude band, latitude-dependent sets of topographic characteristics and morphologic features (e.g., polygons, 'basketball' terrain texture, gullies, viscous flow features), and hydrogen concentrations consistent with the presence of abundant <span class="hlt">ice</span> at shallow depths above 60o latitude. The most equatorward <span class="hlt">extent</span> of these <span class="hlt">ice</span>-rich deposits was emplaced down to latitudes equivalent to Saudi Arabia and the southern United States on Earth during the last major martian <span class="hlt">ice</span> age, probably about 0.4-2.1 million years ago. Mars is currently in an inter-<span class="hlt">ice</span> age period and the <span class="hlt">ice</span>-rich deposits are presently undergoing reworking, degradation and retreat in response to the current stability relations of near-surface <span class="hlt">ice</span>. Unlike Earth, martian <span class="hlt">ice</span> ages are characterized by warmer climates in the polar regions and the enhanced role of atmospheric water <span class="hlt">ice</span> and dust transport and deposition to produce widespread and relatively evenly distributed smooth deposits at mid-latitudes during obliquity maxima.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0684F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0684F"><span><span class="hlt">Ice</span>911 Research: Preserving and Rebuilding Multi-Year <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Chetty, S.; Manzara, A.</p> <p>2013-12-01</p> <p>A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year <span class="hlt">ice</span> using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year <span class="hlt">ice</span> has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid <span class="hlt">decrease</span> of summer-time <span class="hlt">ice</span>. As summer-time <span class="hlt">ice</span> disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based <span class="hlt">ice</span> melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and <span class="hlt">ice</span> preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and <span class="hlt">ice</span> preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and <span class="hlt">ice</span> from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C53A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C53A..05S"><span>Discharge of New Subglacial Lake on Whillians <span class="hlt">Ice</span> Stream: Implication for <span class="hlt">Ice</span> Stream Flow Dynamics.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.</p> <p>2006-12-01</p> <p>One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians <span class="hlt">Ice</span> Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the <span class="hlt">ice</span> stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major <span class="hlt">ice</span> stream raises questions about their effects on <span class="hlt">ice</span>-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the <span class="hlt">ice</span> stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the <span class="hlt">ice</span> surface flat, thereby locally <span class="hlt">decreasing</span> the <span class="hlt">ice</span> stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and <span class="hlt">ice</span> stream using a two dimensional, vertically integrated, <span class="hlt">ice</span>-stream model. The model is forced by the basal friction, <span class="hlt">ice</span> thickness and surface elevation. The basal friction is obtained by inversion of the <span class="hlt">ice</span> surface velocity, <span class="hlt">ice</span> thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the <span class="hlt">ice</span> stream at the site of the lake. Sensitivity studies of the response of the surrounding <span class="hlt">ice</span> stream and <span class="hlt">ice</span> shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for <span class="hlt">ice</span> streams in general.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDA34007M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDA34007M"><span>Turbulent properties under sloping <span class="hlt">Ice</span>-wall in polar water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mondal, Mainak; Gayen, Bishakhdatta; Griffiths, Ross W.; Kerr, Ross C.</p> <p>2017-11-01</p> <p><span class="hlt">Ice</span>-shelves around West Antarctic basins are the most vulnerable to melting in the presence of warmer continental shelf water. A large <span class="hlt">extent</span> of slope exists under these <span class="hlt">ice</span>-shelves, where turbulent transport of salt and heat into the <span class="hlt">ice</span> wall drives a convective melt-water plume against it. Large scale <span class="hlt">ice</span>-ocean models neglect the effect of convection which can lead to a wrong estimation of melt rate. We perform direct numerical simulations under sloping <span class="hlt">ice</span>-shelves with realistic ambient conditions. We estimated the melt rates, boundary layer thicknesses and entrainment coefficients as a function of slope angle. The numerical results are further supported by theoretical predictions. Over the range of slope angles, different mechanisms are active for sustaining turbulence. For near vertical case, buoyancy production is the primary source of turbulent kinetic energy whereas for shallower angles turbulence is produced by velocity shear in the meltwater plume. Australian Research Council.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070017895','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070017895"><span>Abrupt Decline in the Arctic Winter Sea <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2007-01-01</p> <p>Maximum <span class="hlt">ice</span> <span class="hlt">extents</span> in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial <span class="hlt">ice</span> area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative <span class="hlt">ice</span> anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea <span class="hlt">ice</span> and surface temperature anomaly data but may explain the recent shift in the perennial <span class="hlt">ice</span> cover towards the western region. Results suggest that the trend in winter <span class="hlt">ice</span> is finally in the process of catching up with that of the summer <span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C31A0435M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C31A0435M"><span>Help, I don’t know which sea <span class="hlt">ice</span> algorithm to use?!: Developing an authoritative sea <span class="hlt">ice</span> climate data record</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.</p> <p>2009-12-01</p> <p>The declining Arctic sea <span class="hlt">ice</span> is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea <span class="hlt">ice</span> data is expanding well beyond the sea <span class="hlt">ice</span> community. The most comprehensive sea <span class="hlt">ice</span> data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea <span class="hlt">ice</span> concentration and <span class="hlt">extent</span> since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise <span class="hlt">ice</span> edge determination and lack of small-scale detail (e.g., lead detection) within the <span class="hlt">ice</span> pack; surface melt depresses concentration values during summer; thin <span class="hlt">ice</span> is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea <span class="hlt">ice</span> concentration products and outline the future steps needed to complete a sea <span class="hlt">ice</span> climate data record.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........10G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........10G"><span>Software Requirements Specification for Lunar <span class="hlt">Ice</span>Cube</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glaser-Garbrick, Michael R.</p> <p></p> <p>Lunar <span class="hlt">Ice</span>Cube is a 6U satellite that will orbit the moon to measure water volatiles as a function of position, altitude, and time, and measure in its various phases. Lunar <span class="hlt">Ice</span>Cube, is a collaboration between Morehead State University, Vermont Technical University, Busek, and NASA. The Software Requirements Specification will serve as contract between the overall team and the developers of the flight software. It will provide a system's overview of the software that will be developed for Lunar <span class="hlt">Ice</span>Cube, in that it will detail all of the interconnects and protocols for each subsystem's that Lunar <span class="hlt">Ice</span>Cube will utilize. The flight software will be written in SPARK to the fullest <span class="hlt">extent</span>, due to SPARK's unique ability to make software free of any errors. The LIC flight software does make use of a general purpose, reusable application framework called CubedOS. This framework imposes some structuring requirements on the architecture and design of the flight software, but it does not impose any high level requirements. It will also detail the tools that we will be using for Lunar <span class="hlt">Ice</span>Cube, such as why we will be utilizing VxWorks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2675B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2675B"><span>Detecting high spatial variability of <span class="hlt">ice</span> shelf basal mass balance, Roi Baudouin <span class="hlt">Ice</span> Shelf, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, Sophie; Drews, Reinhard; Helm, Veit; Sun, Sainan; Pattyn, Frank</p> <p>2017-11-01</p> <p><span class="hlt">Ice</span> shelves control the dynamic mass loss of <span class="hlt">ice</span> sheets through buttressing and their integrity depends on the spatial variability of their basal mass balance (BMB), i.e. the difference between refreezing and melting. Here, we present an improved technique - based on satellite observations - to capture the small-scale variability in the BMB of <span class="hlt">ice</span> shelves. As a case study, we apply the methodology to the Roi Baudouin <span class="hlt">Ice</span> Shelf, Dronning Maud Land, East Antarctica, and derive its yearly averaged BMB at 10 m horizontal gridding. We use mass conservation in a Lagrangian framework based on high-resolution surface velocities, atmospheric-model surface mass balance and hydrostatic <span class="hlt">ice</span>-thickness fields (derived from TanDEM-X surface elevation). Spatial derivatives are implemented using the total-variation differentiation, which preserves abrupt changes in flow velocities and their spatial gradients. Such changes may reflect a dynamic response to localized basal melting and should be included in the mass budget. Our BMB field exhibits much spatial detail and ranges from -14.7 to 8.6 m a-1 <span class="hlt">ice</span> equivalent. Highest melt rates are found close to the grounding line where the pressure melting point is high, and the <span class="hlt">ice</span> shelf slope is steep. The BMB field agrees well with on-site measurements from phase-sensitive radar, although independent radar profiling indicates unresolved spatial variations in firn density. We show that an elliptical surface depression (10 m deep and with an <span class="hlt">extent</span> of 0.7 km × 1.3 km) lowers by 0.5 to 1.4 m a-1, which we tentatively attribute to a transient adaptation to hydrostatic equilibrium. We find evidence for elevated melting beneath <span class="hlt">ice</span> shelf channels (with melting being concentrated on the channel's flanks). However, farther downstream from the grounding line, the majority of <span class="hlt">ice</span> shelf channels advect passively (i.e. no melting nor refreezing) toward the <span class="hlt">ice</span> shelf front. Although the absolute, satellite-based BMB values remain uncertain, we have</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C31C..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C31C..05L"><span>A comparison of Holocene fluctuations of the eastern and western margins of the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.</p> <p>2013-12-01</p> <p>Determining how the Greenland <span class="hlt">Ice</span> Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene <span class="hlt">extents</span> of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne <span class="hlt">ice</span> cap (71°N, 25.6° W), a small <span class="hlt">ice</span> cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past <span class="hlt">ice</span> margin fluctuations. The past <span class="hlt">extents</span> of the Bregne <span class="hlt">ice</span> cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current <span class="hlt">ice</span> margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current <span class="hlt">ice</span> margin date to AD 1830-1950 and are likely associated with advances during the Little <span class="hlt">Ice</span> Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne <span class="hlt">ice</span> cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the <span class="hlt">ice</span> cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire <span class="hlt">ice</span> cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne <span class="hlt">ice</span> cap. Fresh moraines ≤200 m of Bregne <span class="hlt">ice</span> cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne <span class="hlt">ice</span> cap were influenced by Northern Hemisphere summer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A"><span>Controls on Arctic sea <span class="hlt">ice</span> from first-year and multi-year <span class="hlt">ice</span> survival rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.</p> <p>2009-12-01</p> <p>The recent <span class="hlt">decrease</span> in Arctic sea <span class="hlt">ice</span> cover has transpired with a significant loss of multi-year (MY) <span class="hlt">ice</span>. The transition to an Arctic that is populated by thinner first-year (FY) sea <span class="hlt">ice</span> has important implications for future trends in area and volume. We develop a reduced model for Arctic sea <span class="hlt">ice</span> with which we investigate how the survivability of FY and MY <span class="hlt">ice</span> control various aspects of the sea-<span class="hlt">ice</span> system. We demonstrate that Arctic sea-<span class="hlt">ice</span> area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-<span class="hlt">ice</span> in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY <span class="hlt">ice</span>. This model, used in concert with a sea-<span class="hlt">ice</span> simulation that traces FY and MY <span class="hlt">ice</span> areas to estimate the survival rates, reveals that small trends in the <span class="hlt">ice</span> survival rates explain the decline in total Arctic <span class="hlt">ice</span> area, and the relatively larger loss of MY <span class="hlt">ice</span> area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for <span class="hlt">ice</span> area (~ 1 year) implies that Arctic <span class="hlt">ice</span> area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for <span class="hlt">ice</span> volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in <span class="hlt">ice</span> volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of <span class="hlt">ice</span> area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September <span class="hlt">ice</span> area and volume will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNG31A1833A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNG31A1833A"><span>The statistical properties of sea <span class="hlt">ice</span> velocity fields</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agarwal, S.; Wettlaufer, J. S.</p> <p>2016-12-01</p> <p>Thorndike and Colony (1982) showed that more than 70% of the variance of the <span class="hlt">ice</span> motion can be explained by the geostrophic winds. This conclusion was reached by analyzing only 2 years of data. Due to the importance of <span class="hlt">ice</span> motion in Arctic climate we ask how persistent is such a prediction. In so doing, we study and develop a stochastic model for the Arctic sea <span class="hlt">ice</span> velocity fields based on the observed sea <span class="hlt">ice</span> velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic Sea Equivalent <span class="hlt">Ice</span> <span class="hlt">Extent</span> (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et. al. 2012), we assess the connection to <span class="hlt">ice</span> motion. We divide the Arctic into dynamic and thermodynamic components, with focus on the dynamic part i.e. the velocity fields of sea <span class="hlt">ice</span> driven by the geostrophic winds over the Arctic. We show (1) the stationarity of the spatial correlation structure of the velocity fields, and (2) the robustness of white noise structure present in the velocity fields on annual to bi-annual time scales, which combine to explain the white noise characteristics of the EIE on these time scales. S. Agarwal, W. Moon and J.S. Wettlaufer, Trends, noise and reentrant long-term persistence in Arctic sea <span class="hlt">ice</span>, Proc. R. Soc. A, 468, 2416 (2012). A.S. Thorndike and R. Colony, Sea <span class="hlt">ice</span> motion in response to geostrophic winds, J. Geophys. Res. 87, 5845 (1982).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51E..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51E..08S"><span>Seasonal Climate Profiles of an <span class="hlt">Ice</span>-free Arctic Based on Intra-ring Analyses of δ18O Value in Fossil Wood</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schubert, B.; Jahren, A. H.</p> <p>2017-12-01</p> <p>Arctic sea <span class="hlt">ice</span> thickness and <span class="hlt">extent</span> are projected to continue their substantial decline during this century, with an 80% reduction in sea-<span class="hlt">ice</span> <span class="hlt">extent</span> by 2050. While there is a clear relationship between mean annual temperature (MAT) and the concentration of atmospheric carbon dioxide (pCO2) across both glacial and interglacial periods, data on seasonal fluctuations is limited. Here we report seasonal temperature estimates for the Arctic during the <span class="hlt">ice</span>-free conditions of the late early to middle Eocene based upon exquisitely preserved, mummified wood collected from Banks Island, Northwest Territories, Canada ( 74 oN). Annual growth rings identified in the wood specimens were subdivided by hand at sub-millimeter resolution and cellulose was extracted from each sub-sample for determination of stable oxygen isotope (δ18O) value (n = 81). The data reveal a consistent, cyclic pattern of <span class="hlt">decreasing</span> and increasing δ18O value up to 3‰ across growth rings that was consistent with patterns observed in other modern and fossil wood, including from other high latitude sites. From these data we quantified cold month and warm month seasonal temperatures using a previously published model (Schubert and Jahren, 2015, QSR, 125: 1-14). Our calculations revealed low overall seasonality in the Arctic during the Eocene with above-freezing winters and mild summers, consistent with the presence of high biomass temperate rainforests. These results highlight the importance of warm winters in maintaining <span class="hlt">ice</span>-free conditions in the Arctic and suggest that increased winter temperatures in today's Arctic in response to rising pCO2 will be of particular importance for Arctic <span class="hlt">ice</span>-loss.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29192142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29192142"><span><span class="hlt">Ice</span> nucleation triggered by negative pressure.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marcolli, Claudia</p> <p>2017-11-30</p> <p>Homogeneous <span class="hlt">ice</span> nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both <span class="hlt">decrease</span>. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous <span class="hlt">ice</span> nucleation temperatures from positive to negative pressures as a basis for further exploration of <span class="hlt">ice</span> nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous <span class="hlt">ice</span> nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous <span class="hlt">ice</span> nucleation at large supercooling in the absence of <span class="hlt">ice</span>-nucleating surfaces. In addition, negative pressure can act together with <span class="hlt">ice</span>-inducing surfaces to enhance their intrinsic <span class="hlt">ice</span> nucleation efficiency. Dynamic <span class="hlt">ice</span> nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26912699','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26912699"><span>Holocene deceleration of the Greenland <span class="hlt">Ice</span> Sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad</p> <p>2016-02-05</p> <p>Recent peripheral thinning of the Greenland <span class="hlt">Ice</span> Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the <span class="hlt">ice</span> sheet's radiostratigraphy, <span class="hlt">ice</span> flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The <span class="hlt">ice</span> sheet's dynamic response to the <span class="hlt">decreasing</span> proportion of softer <span class="hlt">ice</span> from the last glacial period and the deglacial collapse of the <span class="hlt">ice</span> bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland <span class="hlt">Ice</span> Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C23B0494D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C23B0494D"><span>Improved parameterization of marine <span class="hlt">ice</span> dynamics and flow instabilities for simulation of the Austfonna <span class="hlt">ice</span> cap using a large-scale <span class="hlt">ice</span> sheet model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.</p> <p>2009-12-01</p> <p>The Austfonna <span class="hlt">ice</span> cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine <span class="hlt">ice</span> dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the <span class="hlt">ice</span> cap. We employ the thermodynamic, large-scale <span class="hlt">ice</span> sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-<span class="hlt">ice</span> approximation. We present improved parameterizations of (a) the marine <span class="hlt">extent</span> and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing <span class="hlt">ice</span> thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar <span class="hlt">ice</span> cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick <span class="hlt">ice</span> column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the <span class="hlt">ice</span> cap and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16905428','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16905428"><span>Crustacea in Arctic and Antarctic sea <span class="hlt">ice</span>: distribution, diet and life history strategies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arndt, Carolin E; Swadling, Kerrie M</p> <p>2006-01-01</p> <p>This review concerns crustaceans that associate with sea <span class="hlt">ice</span>. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea <span class="hlt">ice</span> habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea <span class="hlt">ice</span> is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea <span class="hlt">ice</span> over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major differences between the two regions: The Antarctic experiences greater seasonal change in its sea <span class="hlt">ice</span> <span class="hlt">extent</span>, much of the <span class="hlt">ice</span> is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea <span class="hlt">ice</span> often covers comparatively shallow water, doubles in its <span class="hlt">extent</span> on an annual cycle and the <span class="hlt">ice</span> may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea <span class="hlt">ice</span> zone at both poles, either living within the brine channel system of the <span class="hlt">ice</span>-crystal matrix or inhabiting the <span class="hlt">ice</span>-water interface. Many species associate with <span class="hlt">ice</span> for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many differences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea <span class="hlt">ice</span> copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the <span class="hlt">ice</span>. In the Arctic, the <span class="hlt">ice</span>-associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the <span class="hlt">ice</span>, while harpacticoids and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19295607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19295607"><span>Obliquity-paced Pliocene West Antarctic <span class="hlt">ice</span> sheet oscillations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naish, T; Powell, R; Levy, R; Wilson, G; Scherer, R; Talarico, F; Krissek, L; Niessen, F; Pompilio, M; Wilson, T; Carter, L; DeConto, R; Huybers, P; McKay, R; Pollard, D; Ross, J; Winter, D; Barrett, P; Browne, G; Cody, R; Cowan, E; Crampton, J; Dunbar, G; Dunbar, N; Florindo, F; Gebhardt, C; Graham, I; Hannah, M; Hansaraj, D; Harwood, D; Helling, D; Henrys, S; Hinnov, L; Kuhn, G; Kyle, P; Läufer, A; Maffioli, P; Magens, D; Mandernack, K; McIntosh, W; Millan, C; Morin, R; Ohneiser, C; Paulsen, T; Persico, D; Raine, I; Reed, J; Riesselman, C; Sagnotti, L; Schmitt, D; Sjunneskog, C; Strong, P; Taviani, M; Vogel, S; Wilch, T; Williams, T</p> <p>2009-03-19</p> <p>Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the <span class="hlt">ice</span> ages, fundamental questions remain over the response of the Antarctic <span class="hlt">ice</span> sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic <span class="hlt">ice</span> sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of <span class="hlt">ice</span>-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross <span class="hlt">ice</span> shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in <span class="hlt">ice</span>-sheet <span class="hlt">extent</span> linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded <span class="hlt">ice</span>, or <span class="hlt">ice</span> shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new <span class="hlt">ice-sheet/ice</span>-shelf model that simulates fluctuations in Antarctic <span class="hlt">ice</span> volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic <span class="hlt">ice</span> sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea <span class="hlt">ice</span> and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000190.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000190.html"><span>Arctic Sea <span class="hlt">Ice</span> Is Losing Its Bulwark Against Warming Summers</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Arctic sea <span class="hlt">ice</span>, the vast sheath of frozen seawater floating on the Arctic Ocean and its neighboring seas, has been hit with a double whammy over the past decades: as its <span class="hlt">extent</span> shrunk, the oldest and thickest <span class="hlt">ice</span> has either thinned or melted away, leaving the sea <span class="hlt">ice</span> cap more vulnerable to the warming ocean and atmosphere. “What we’ve seen over the years is that the older <span class="hlt">ice</span> is disappearing,” said Walt Meier, a sea <span class="hlt">ice</span> researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This older, thicker <span class="hlt">ice</span> is like the bulwark of sea <span class="hlt">ice</span>: a warm summer will melt all the young, thin <span class="hlt">ice</span> away but it can’t completely get rid of the older <span class="hlt">ice</span>. But this older <span class="hlt">ice</span> is becoming weaker because there’s less of it and the remaining old <span class="hlt">ice</span> is more broken up and thinner, so that bulwark is not as good as it used to be.” Read more: go.nasa.gov/2dPJ9zT NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP33A2284K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP33A2284K"><span>Holocene Fluctuations of North <span class="hlt">Ice</span> Cap, a Proxy for Climate Conditions along the Northwestern Margin of the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelly, M. A.; Osterberg, E. C.; Lasher, G. E.; Farnsworth, L. B.; Howley, J. A.; Axford, Y.; Zimmerman, S. R. H.</p> <p>2015-12-01</p> <p>North <span class="hlt">Ice</span> Cap (~76.9°N, 68°W, summit elevation 1322 m asl), a small, independent <span class="hlt">ice</span> cap in northwestern Greenland, is located within ~25 km of the Greenland <span class="hlt">Ice</span> Sheet margin and Harald Molkte Bræ outlet glacier. We present geochronological, geomorphic and sedimentological data constraining the Holocene <span class="hlt">extents</span> of North <span class="hlt">Ice</span> Cap and suggest that its past fluctuations can be used as a proxy for climate conditions along the northwestern margin of the Greenland <span class="hlt">Ice</span> Sheet. Prior work by Goldthwait (1960) used glacial geomorphology and radiocarbon ages of subfossil plants emerging along shear planes in the <span class="hlt">ice</span> cap margin to suggest that that North <span class="hlt">Ice</span> Cap was not present during the early Holocene and nucleated in the middle to late Holocene time, with the onset of colder conditions. Subfossil plants emerging at shear planes in the North <span class="hlt">Ice</span> Cap margin yield radiocarbon ages of ~4.8-5.9 cal kyr BP (Goldthwait, 1960) and ~AD 1000-1350 (950-600 cal yr BP), indicating times when the <span class="hlt">ice</span> cap was smaller than at present. In situ subfossil plants exposed by recent <span class="hlt">ice</span> cap retreat date to ~AD 1500-1840 (450-110 cal yr BP) and indicate small fluctuations of the <span class="hlt">ice</span> cap margin. 10Be ages of an unweathered, lichen-free drift <100 m from the present North <span class="hlt">Ice</span> Cap margin range from ~500 to 8000 yrs ago. We suggest that the drift was deposited during the last ~500 yrs and that the older 10Be ages are influenced by 10Be inherited from a prior period of exposure. We also infer <span class="hlt">ice</span> cap fluctuations using geochemical data from a Holocene-long sediment core from Deltasø, a downstream lake that currently receives meltwater from North <span class="hlt">Ice</span> Cap. The recent recession of the North <span class="hlt">Ice</span> Cap margin influenced a catastrophic drainage of a large proglacial lake, Søndre Snesø, that our field team documented in August 2012. To our knowledge, this is the first significant lowering of Søndre Snesø in historical time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21E..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21E..08S"><span>Rate and state dependent processes in sea <span class="hlt">ice</span> deformation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sammonds, P. R.; Scourfield, S.; Lishman, B.</p> <p>2014-12-01</p> <p>Realistic models of sea <span class="hlt">ice</span> processes and properties are needed to assess sea <span class="hlt">ice</span> thickness, <span class="hlt">extent</span> and concentration and, when run within GCMs, provide prediction of climate change. The deformation of sea <span class="hlt">ice</span> is a key control on the Arctic Ocean dynamics. But the deformation of sea <span class="hlt">ice</span> is dependent not only on the rate of the processes involved but also the state of the sea <span class="hlt">ice</span> and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction to block sliding in <span class="hlt">ice</span> ridges. The shear deformation will not only depend on the speed of movement of <span class="hlt">ice</span> surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and sea <span class="hlt">ice</span> properties such as size distribution of interfacial broken <span class="hlt">ice</span>, angularity, porosity, salinity, etc. We review experimental results in sea <span class="hlt">ice</span> mechanics from mid-scale experiments, conducted in the Hamburg model ship <span class="hlt">ice</span> tank, simulating sea <span class="hlt">ice</span> floe motion and interaction and compare these with laboratory experiments on <span class="hlt">ice</span> friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of sea <span class="hlt">ice</span> friction made during experiments in the Barents Sea to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/984088-modeling-fracture-ice-sheets-parallel-computers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/984088-modeling-fracture-ice-sheets-parallel-computers"><span>Modeling the fracture of <span class="hlt">ice</span> sheets on parallel computers.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Waisman, Haim; Bell, Robin; Keyes, David</p> <p>2010-03-01</p> <p>The objective of this project is to investigate the complex fracture of <span class="hlt">ice</span> and understand its role within larger <span class="hlt">ice</span> sheet simulations and global climate change. At the present time, <span class="hlt">ice</span> fracture is not explicitly considered within <span class="hlt">ice</span> sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences <span class="hlt">ice</span> dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of <span class="hlt">ice</span> shelves inmore » Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing <span class="hlt">extent</span> of the Larsen B shelf from 1998 to 2002). Other fracture examples include <span class="hlt">ice</span> calving (fracture of icebergs) which is presently approximated in simplistic ways within <span class="hlt">ice</span> sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called <span class="hlt">ice</span> sheet plumbing system, that is believed to cause accelerated <span class="hlt">ice</span> sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing <span class="hlt">ice</span>. To model <span class="hlt">ice</span> fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..981T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..981T"><span>Human impacts on river <span class="hlt">ice</span> regime in the Carpathian Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takács, Katalin; Nagy, Balázs; Kern, Zoltán</p> <p>2014-05-01</p> <p>River <span class="hlt">ice</span> is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of <span class="hlt">ice</span> phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river <span class="hlt">ice</span> freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river <span class="hlt">ice</span> regime. The <span class="hlt">ice</span> regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular <span class="hlt">ice</span> phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river <span class="hlt">ice</span> regime (Ashton, 1986). To <span class="hlt">decrease</span> the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river <span class="hlt">ice</span> congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river <span class="hlt">ice</span> appearance and freeze-up (Starosolsky, 1990). Water pollution affects <span class="hlt">ice</span> regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river <span class="hlt">ice</span> regime. Selected</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41B0699A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41B0699A"><span>Impact of weather events on Arctic sea <span class="hlt">ice</span> albedo evolution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.</p> <p>2015-12-01</p> <p>Arctic sea <span class="hlt">ice</span> undergoes a seasonal evolution from cold snow-covered <span class="hlt">ice</span> to melting snow to bare <span class="hlt">ice</span> with melt ponds. Associated with this physical evolution is a <span class="hlt">decrease</span> in the albedo of the <span class="hlt">ice</span> cover. While the change in albedo is often considered as a steady seasonal <span class="hlt">decrease</span>, weather events during melt, such as rain or snow, can impact the albedo evolution. Measurements on first year <span class="hlt">ice</span> in the Chukchi Sea showed a <span class="hlt">decrease</span> in visible albedo to 0.77 during the onset of melt. New snow from 4 - 6 June halted melting and increased the visible albedo to 0.87. It took 12 days for the albedo to <span class="hlt">decrease</span> to levels prior to the snowfall. Incident solar radiation is large in June and thus a change in albedo has a large impact on the surface heat budget. The snowfall increased the albedo by 0.1 and reduced the absorbed sunlight from 5 June to 17 June by approximately 32 MJ m-2. The total impact of the snowfall will be even greater, since the delay in albedo reduction will be propagated throughout the entire summer. A rain event would have the opposite impact, increasing solar heat input and accelerating melting. Snow or rain in May or June can impact the summer melt cycle of Arctic sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178178','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178178"><span>Subsea <span class="hlt">ice</span>-bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward <span class="hlt">extent</span> defined from multichannel seismic reflection data</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brothers, Laura; Herman, Bruce M.; Hart, Patrick E.; Ruppel, Carolyn D.</p> <p>2016-01-01</p> <p>Subsea <span class="hlt">ice</span>-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s−1. The monotonic, cross-shore pattern in velocity distribution suggests that the seaward <span class="hlt">extent</span> of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016760','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016760"><span>Influence of <span class="hlt">ice</span> thickness and surface properties on light transmission through Arctic sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.</p> <p>2015-01-01</p> <p>Abstract The observed changes in physical properties of sea <span class="hlt">ice</span> such as <span class="hlt">decreased</span> thickness and increased melt pond cover severely impact the energy budget of Arctic sea <span class="hlt">ice</span>. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea‐ice‐melt and under‐<span class="hlt">ice</span> primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea <span class="hlt">ice</span>. We measured spectral under‐<span class="hlt">ice</span> radiance and irradiance using the new Nereid Under‐<span class="hlt">Ice</span> (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H‐ROV) designed for both remotely piloted and autonomous surveys underneath land‐fast and moving sea <span class="hlt">ice</span>. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under‐<span class="hlt">ice</span> optical measurements with three dimensional under‐<span class="hlt">ice</span> topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice‐thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under‐<span class="hlt">ice</span> light field on small scales (<1000 m2), while sea ice‐thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea <span class="hlt">ice</span> thickness and surface albedo. PMID:27660738</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..302..560P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..302..560P"><span>Magnetospheric considerations for solar system <span class="hlt">ice</span> state</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paranicas, C.; Hibbitts, C. A.; Kollmann, P.; Ligier, N.; Hendrix, A. R.; Nordheim, T. A.; Roussos, E.; Krupp, N.; Blaney, D.; Cassidy, T. A.; Clark, G.</p> <p>2018-03-01</p> <p>The current lattice configuration of the water <span class="hlt">ice</span> on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water <span class="hlt">ice</span> from crystalline to amorphous. It is not known to what <span class="hlt">extent</span> this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water <span class="hlt">ice</span> may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous <span class="hlt">ice</span> content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline <span class="hlt">ice</span> is by far the dominant <span class="hlt">ice</span> state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the <span class="hlt">ice</span> on the Saturnian satellites also corroborates the correlation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11C0929S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11C0929S"><span>Collaborations for Arctic Sea <span class="hlt">Ice</span> Information and Tools</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.</p> <p>2017-12-01</p> <p>The dramatic and rapid changes in Arctic sea <span class="hlt">ice</span> require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea <span class="hlt">ice</span> knowledge. Sea <span class="hlt">Ice</span> for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea <span class="hlt">ice</span> conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-<span class="hlt">ice</span> experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea <span class="hlt">Ice</span> Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea <span class="hlt">ice</span> predictions. The goals of SIPN include: coordinate and evaluate Arctic sea <span class="hlt">ice</span> predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea <span class="hlt">Ice</span> Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea <span class="hlt">Ice</span> Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea <span class="hlt">ice</span> experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea <span class="hlt">ice</span>. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..189....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..189....1M"><span>Reconciling records of <span class="hlt">ice</span> streaming and <span class="hlt">ice</span> margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margold, Martin; Stokes, Chris R.; Clark, Chris D.</p> <p>2018-06-01</p> <p> rates markedly increased after the YD and the <span class="hlt">ice</span> sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of <span class="hlt">ice</span> streaming, which became less frequent but generated much broader terrestrial <span class="hlt">ice</span> streams. The final collapse of the <span class="hlt">ice</span> sheet saw a series of small ephemeral <span class="hlt">ice</span> streams that resulted from the rapidly changing <span class="hlt">ice</span> sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled <span class="hlt">ice</span> drainage network at the LGM to an <span class="hlt">ice</span> drainage network characterised by less frequent, broad <span class="hlt">ice</span> streams during the later stages of deglaciation. These deglacial <span class="hlt">ice</span> streams are mostly interpreted as a reaction to localised <span class="hlt">ice</span>-dynamical forcing (flotation and calving of the <span class="hlt">ice</span> front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in <span class="hlt">ice</span> sheet geometry) rather than as conveyors of excess mass from the accumulation area of the <span class="hlt">ice</span> sheet. At an <span class="hlt">ice</span> sheet scale, the <span class="hlt">ice</span> stream drainage network became less widespread and less efficient with the <span class="hlt">decreasing</span> size of the deglaciating <span class="hlt">ice</span> sheet, the final elimination of which was mostly driven by surface melt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21C0714O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21C0714O"><span>Global mapping of sea-<span class="hlt">ice</span> production from the satellite microwaves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohshima, K. I.; Nihashi, S.; Iwamoto, K.; Tamaru, N.; Nakata, K.; Tamura, T.</p> <p>2016-12-01</p> <p>Global overturning circulation is driven by density differences. Saline water rejected by sea-<span class="hlt">ice</span> production in coastal polynyas is the main source of dense water, and thus sea-<span class="hlt">ice</span> production is a key factor in the overturning circulation. However, until recently sea-<span class="hlt">ice</span> production and its interannual variability have not been well understood due to difficulties of in situ observation. The most effective means of detection of thin-<span class="hlt">ice</span> area and estimation of sea-<span class="hlt">ice</span> production on large scales is satellite remote sensing using passive microwave sensors, specifically the Special Sensor Microwave/Imager and Advanced Microwave Scanning Radiometer. This is based upon their ability to gain complete polar coverage on a daily basis irrespective of clouds and darkness. We have estimated sea-<span class="hlt">ice</span> production globally based on heat flux calculations using the satellite-derived thin <span class="hlt">ice</span> thickness data. The mapping demonstrates that <span class="hlt">ice</span> production rate is high in Antarctic coastal polynyas, in contrast to Arctic coastal polynyas. This is consistent with the formation of Antarctic Bottom Water (AABW). The Ross <span class="hlt">Ice</span> Shelf polynya has by far the highest <span class="hlt">ice</span> production in the Southern Hemisphere. The mapping has revealed that the Cape Darnley polynya is the second highest production area, leading to the discovery of the missing (fourth) source of AABW in this region. In the region off the Mertz Glacier Tongue, sea-<span class="hlt">ice</span> production <span class="hlt">decreased</span> by as much as 40 %, due to the glacier calving in early 2010, resulting in a significant <span class="hlt">decrease</span> in AABW production. The Okhotsk Northwestern polynya exhibits the highest <span class="hlt">ice</span> production in the Northern Hemisphere, and the resultant dense water formation leads to overturning in the North Pacific. Estimates of its <span class="hlt">ice</span> production show a significant <span class="hlt">decrease</span> over the past 30-50 years, likely causing the weakening of the North Pacific overturning. The mapping also provides surface boundary conditions and validation data of heat- and salt-flux associated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711856','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711856"><span>Influence of sea <span class="hlt">ice</span> on Arctic precipitation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kopec, Ben G.; Feng, Xiahong; Michel, Fred A.; Posmentier, Eric S.</p> <p>2016-01-01</p> <p>Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea <span class="hlt">ice</span> through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea <span class="hlt">ice</span> <span class="hlt">extent</span> is poorly constrained. Here we present observational evidence for the response of precipitation to sea <span class="hlt">ice</span> reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea <span class="hlt">ice</span> change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea <span class="hlt">ice</span> on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km2 sea <span class="hlt">ice</span> lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51B0698C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51B0698C"><span>Supraglacial Lakes in the Percolation Zone of the Western Greenland <span class="hlt">Ice</span> Sheet: Formation and Development using Operation <span class="hlt">Ice</span>Bridge Snow Radar and ATM (2009-2014)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, C.; Howat, I. M.; de la Peña, S.</p> <p>2015-12-01</p> <p>Surface meltwater lakes on the Greenland <span class="hlt">Ice</span> Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland <span class="hlt">Ice</span> Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation <span class="hlt">Ice</span>Bridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland <span class="hlt">extent</span> and suggest behaviors of persistence and lake drainage are due to differences in regional <span class="hlt">ice</span> dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24820354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24820354"><span><span class="hlt">Ice</span> crystallization in ultrafine water-salt aerosols: nucleation, <span class="hlt">ice</span>-solution equilibrium, and internal structure.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hudait, Arpa; Molinero, Valeria</p> <p>2014-06-04</p> <p>Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both <span class="hlt">ice</span> crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous <span class="hlt">ice</span> in coexistence with vitrified solute rich aqueous glass. The melting temperature of <span class="hlt">ice</span> in the aerosols <span class="hlt">decreases</span> monotonically with an increase of solute fraction and <span class="hlt">decrease</span> of radius. The simulations reveal that nucleation of <span class="hlt">ice</span> occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent <span class="hlt">ice</span> growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like <span class="hlt">ice</span> nanophase. The surface of the crystallized aerosols is heterogeneous, with <span class="hlt">ice</span> and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of <span class="hlt">ice</span> is fully surrounded by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RvGeo..56..142P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RvGeo..56..142P"><span>Ocean Tide Influences on the Antarctic and Greenland <span class="hlt">Ice</span> Sheets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.</p> <p>2018-03-01</p> <p>Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of <span class="hlt">ice</span> sheets near their marine margins. Floating <span class="hlt">ice</span> shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of <span class="hlt">ice</span> sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect <span class="hlt">ice</span> sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of <span class="hlt">ice</span> shelves and grounded <span class="hlt">ice</span>, and spatial variability of ocean tide heights and currents around the <span class="hlt">ice</span> sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, <span class="hlt">ice</span> shelf thickness, and <span class="hlt">ice</span> sheet mass and <span class="hlt">extent</span>. We then describe coupled <span class="hlt">ice</span>-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency <span class="hlt">ice</span> sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future <span class="hlt">ice</span> sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, <span class="hlt">ice</span> shelf draft, spatial variability of the drag coefficient at the <span class="hlt">ice</span>-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C32B..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C32B..05B"><span>Expanding Antarctic Sea <span class="hlt">Ice</span>: Anthropogenic or Natural Variability?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bitz, C. M.</p> <p>2016-12-01</p> <p>Antarctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-<span class="hlt">ice</span> expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea <span class="hlt">ice</span> and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea <span class="hlt">ice</span> and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea <span class="hlt">ice</span> and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-<span class="hlt">ice</span> concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-<span class="hlt">ice</span> concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CliPa..11.1165W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CliPa..11.1165W"><span>Coupled Northern Hemisphere permafrost-<span class="hlt">ice</span>-sheet evolution over the last glacial cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Willeit, M.; Ganopolski, A.</p> <p>2015-09-01</p> <p>Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and <span class="hlt">ice</span> sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-<span class="hlt">ice</span>-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost <span class="hlt">extent</span> and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost <span class="hlt">extent</span> at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH <span class="hlt">ice</span> sheet volume except at LGM, when including permafrost increases <span class="hlt">ice</span> volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the <span class="hlt">ice</span> base from below by the geothermal heat flux when the <span class="hlt">ice</span> sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects <span class="hlt">ice</span> sheet dynamics only when <span class="hlt">ice</span> extends over areas covered by thick sediments, which is the case at LGM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3567S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3567S"><span>Would limiting global warming to 1.5 or 2°C prevent an <span class="hlt">ice</span>-free Arctic?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Screen, James; Williamson, Daniel</p> <p>2017-04-01</p> <p>The Paris Agreement to combat climate change includes an aspirational goal to limit global warming to 1.5°C above pre-industrial levels, substantially more ambitious than the previous target of 2°C. One of the most visible and iconic aspects of recent climate change is the dramatic loss of Arctic sea-<span class="hlt">ice</span>, which is having profound implications on the environment, ecosystems and human inhabitants of this region and beyond. The concept of an '<span class="hlt">ice</span>-free Arctic' has captured scientific attention and public imagination. Scientists commonly define this as when the Arctic first becomes <span class="hlt">ice</span>-free at the end of summer. Without efforts to slow manmade global warming, an <span class="hlt">ice</span>-free Arctic would likely occur in summer by the middle of this century. But would limiting warming to 1.5°C, or even 2°C, prevent the Arctic ever going <span class="hlt">ice</span>-free? Different climate models give vastly different projections of the lowest sea-<span class="hlt">ice</span> <span class="hlt">extent</span> given global warming of up to 1.5°C or up to 2°C. Models that over-estimate (or under-estimate) sea-<span class="hlt">ice</span> <span class="hlt">extent</span> in the last ten years are also those that project more <span class="hlt">ice</span> (or less <span class="hlt">ice</span>) remaining into the future. Here we use this relationship to observationally constrain climate model projections of future Arctic sea-<span class="hlt">ice</span> cover. We obtain an observationally-constrained central prediction of 2.9 million square kilometres for the minimum sea-<span class="hlt">ice</span> <span class="hlt">extent</span> if global warming is limited to 1.5°C, or 1.2 million square kilometres if global warming remains below 2°C. Using Bayesian statistics allows us to compare estimates of the probability of an <span class="hlt">ice</span>-free Arctic for the 1.5°C or 2°C target. We estimate there is less than a 1-in-100000 (exceptionally unlikely in IPCC parlance) chance of an <span class="hlt">ice</span>-free Arctic if global warming is stays below 1.5°C, and around a 1-in-3 chance (39%; about as likely as not) if global warming is limited to 2.0°C. We suppose then that a summer <span class="hlt">ice</span>-free Arctic is virtually certain to be avoided if the 1.5°C target of the Paris Agreement is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.131...28T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.131...28T"><span>Formation processes of sea <span class="hlt">ice</span> floe size distribution in the interior pack and its relationship to the marginal <span class="hlt">ice</span> zone off East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.</p> <p>2016-09-01</p> <p>To understand the behavior of the Seasonal <span class="hlt">Ice</span> Zone (SIZ), which is composed of sea-<span class="hlt">ice</span> floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal <span class="hlt">Ice</span> Zone (MIZ), controlled by wave-<span class="hlt">ice</span> interaction, plays an important role in determining the retreating rates of sea-<span class="hlt">ice</span> <span class="hlt">extent</span> on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-<span class="hlt">ice</span> interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea <span class="hlt">Ice</span> Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior <span class="hlt">ice</span> regions, FSD in the interior <span class="hlt">ice</span> region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-<span class="hlt">ice</span> interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior <span class="hlt">ice</span> region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-<span class="hlt">ice</span> interaction is to modulate the FSD that already exists in the interior <span class="hlt">ice</span> region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18936855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18936855"><span>A calorimetric study on the low temperature dynamics of doped <span class="hlt">ice</span> V and its reversible phase transition to hydrogen ordered <span class="hlt">ice</span> XIII.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin</p> <p>2008-11-07</p> <p>Doped <span class="hlt">ice</span> V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered <span class="hlt">ice</span> XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible <span class="hlt">ice</span> XIII <--> <span class="hlt">ice</span> V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered <span class="hlt">ice</span> XIII --> disordered <span class="hlt">ice</span> V phase transition, and an exothermic peak on subsequent cooling due to the <span class="hlt">ice</span> V --> <span class="hlt">ice</span> XIII phase transition. The equilibrium temperature (T(o)) for the <span class="hlt">ice</span> V <--> <span class="hlt">ice</span> XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the <span class="hlt">ice</span> XIII --> <span class="hlt">ice</span> V phase transition and T(o) of 112 K, the change in configurational entropy for the <span class="hlt">ice</span> XIII --> <span class="hlt">ice</span> V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of <span class="hlt">ice</span> XIII was determined: on <span class="hlt">decreasing</span> the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl <span class="hlt">decrease</span> to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of <span class="hlt">ice</span> XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure <span class="hlt">ice</span> V at approximately 132 K, whereas in acid doped <span class="hlt">ice</span> XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered <span class="hlt">ice</span> XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not <span class="hlt">ice</span> XIII has a stable region in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........69M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........69M"><span>Arctic Sea <span class="hlt">Ice</span>: Trends, Stability and Variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moon, Woosok</p> <p></p> <p>A stochastic Arctic sea-<span class="hlt">ice</span> model is derived and analyzed in detail to interpret the recent decay and associated variability of Arctic sea-<span class="hlt">ice</span> under changes in greenhouse gas forcing widely referred to as global warming. The approach begins from a deterministic model of the heat flux balance through the air/sea/<span class="hlt">ice</span> system, which uses observed monthly-averaged heat fluxes to drive a time evolution of sea-<span class="hlt">ice</span> thickness. This model reproduces the observed seasonal cycle of the <span class="hlt">ice</span> cover and it is to this that stochastic noise---representing high frequency variability---is introduced. The model takes the form of a single periodic non-autonomous stochastic ordinary differential equation. Following an introductory chapter, the two that follow focus principally on the properties of the deterministic model in order to identify the main properties governing the stability of the <span class="hlt">ice</span> cover. In chapter 2 the underlying time-dependent solutions to the deterministic model are analyzed for their stability. It is found that the response time-scale of the system to perturbations is dominated by the destabilizing sea-<span class="hlt">ice</span> albedo feedback, which is operative in the summer, and the stabilizing long wave radiative cooling of the <span class="hlt">ice</span> surface, which is operative in the winter. This basic competition is found throughout the thesis to define the governing dynamics of the system. In particular, as greenhouse gas forcing increases, the sea-<span class="hlt">ice</span> albedo feedback becomes more effective at destabilizing the system. Thus, any projections of the future state of Arctic sea-<span class="hlt">ice</span> will depend sensitively on the treatment of the <span class="hlt">ice</span>-albedo feedback. This in turn implies that the treatment a fractional <span class="hlt">ice</span> cover as the <span class="hlt">ice</span> areal <span class="hlt">extent</span> changes rapidly, must be handled with the utmost care. In chapter 3, the idea of a two-season model, with just winter and summer, is revisited. By breaking the seasonal cycle up in this manner one can simplify the interpretation of the basic dynamics. Whereas in the fully</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP43B2319S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP43B2319S"><span>Interpreting the Holocene fluctuations of Quelccaya <span class="hlt">Ice</span> Cap, Peru: using a combination of glacial and non-glacial lake records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Smith, C.; Beal, S. A., Jr.; Tapia, P. M.</p> <p>2016-12-01</p> <p>The past fluctuations of Quelccaya <span class="hlt">Ice</span> Cap (QIC) are an indicator of tropical paleoclimate. At QIC, <span class="hlt">ice</span> core and glacial geological records provide late Holocene climate constraints. However, early and middle Holocene QIC fluctuations are less well-known. To interpret past QIC fluctuations, we present Holocene-long lake sediment records from Challpacocha, a lake fed by QIC meltwater, and Yanacocha, a lake that has not received meltwater during the Holocene. To assess the clastic sediment delivered to Challpacocha by QIC meltwater, we compare visual stratigraphy, X-ray fluorescence chemistry, grainsize, loss on ignition and clastic flux records from both lakes (additional Yanacocha proxies are presented by Axford et al. (this meeting, abstract 157985)). We compare the meltwater derived clastic sediment record from Challpacocha with moraine and stratigraphic records of past <span class="hlt">ice</span> <span class="hlt">extents</span> during the late Holocene. This comparison indicates that clastic sediment flux in Challpacocha increased during QIC recession and <span class="hlt">decreased</span> during QIC advance, or significantly reduced QIC <span class="hlt">extent</span>. We then use the Challpacocha clastic sediment record to interpret early and middle Holocene QIC fluctuations. Based on the Challpacocha sediment record, combined with prior work, we suggest that from 11 to 6.5 ka QIC was similar to or smaller than its late Holocene <span class="hlt">extent</span>. From 6.9 to 6.5 ka QIC may have been absent from the landscape. At 3-2.4 and 0.62-0.31 ka QIC experienced the most extensive Holocene fluctuations. We compare the clastic sediment fluxes from Challpacocha and Pacococha (a nearby lake fed by QIC; Rodbell et al., 2008) to infer QIC expansion between 6.5-5 ka. This is supported by 14C ages of in-situ subfossil plants which indicate <span class="hlt">ice</span> advance at 6.3-4.7 ka (Thompson et al., 2006, 2013; Buffen et al., 2009). Our study highlights the value of using multiple datasets to improve lake sediment record interpretations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4821401L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4821401L"><span>The heterogeneous <span class="hlt">ice</span> shell thickness of Enceladus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucchetti, Alice; Pozzobon, Riccardo; Mazzarini, Francesco; Cremonese, Gabriele; Massironi, Matteo</p> <p>2016-10-01</p> <p>Saturn's moon Enceladus is the smallest Solar System body that presents an intense geologic activity on its surface. Plumes erupting from Enceladus' South Polar terrain (SPT) provide direct evidence of a reservoir of liquid below the surface. Previous analysis of gravity data determined that the <span class="hlt">ice</span> shell above the liquid ocean must be 30-40 km thick from the South Pole up to 50° S latitude (Iess et al., 2014), however, understand the global or regional nature of the ocean beneath the <span class="hlt">ice</span> crust is still challenging. To infer the thickness of the outer <span class="hlt">ice</span> shell and prove the global <span class="hlt">extent</span> of the ocean, we used the self-similar clustering method (Bonnet et al., 2001; Bour et al., 2002) to analyze the widespread fractures of the Enceladus's surface. The spatial distribution of fractures has been analyzed in terms of their self-similar clustering and a two-point correlation method was used to measure the fractal dimension of the fractures population (Mazzarini, 2004, 2010). A self-similar clustering of fractures is characterized by a correlation coefficient with a size range defined by a lower and upper cut-off, that represent a mechanical discontinuity and the thickness of the fractured icy crust, thus connected to the liquid reservoir. Hence, this method allowed us to estimate the icy shell thickness values in different regions of Enceladus from SPT up to northern regions.We mapped fractures in ESRI ArcGis environment in different regions of the satellite improving the recently published geological map (Crow-Willard and Pappalardo, 2015). On these regions we have taken into account the fractures, such as wide troughs and narrow troughs, located in well-defined geological units. Firstly, we analyzed the distribution of South Polar Region fracture patterns finding an <span class="hlt">ice</span> shell thickness of ~ 31 km, in agreement with gravity measurements (Iess et al., 2014). Then, we applied the same approach to other four regions of the satellite inferring an increasing of the <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC24B..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC24B..02L"><span>Holocene Activity of the Quelccaya <span class="hlt">Ice</span> Cap: A Working Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowell, T. V.; Smith, C. A.; Kelly, M. A.; Stroup, J. S.</p> <p>2012-12-01</p> <p>The patterns and magnitudes of past climate change in the topics are still under discussion. We contribute here by reporting on patterns of glacier length changes of the largest glacier in the tropics, Quelccaya <span class="hlt">Ice</span> Cap (~13.9°S, 70.9°W, summit at 5645 m). This <span class="hlt">ice</span> cap has several local domes that may have different patterns of length changes because of differing elevations of the domes (high to the north, lower to the south). Prior work (Mark et al. 2003, Abbott et al., 2004; Thompson et al., 2005; Buffen, et al., 2009), new radiocarbon ages, and stratigraphic and geomorphic relationships are used to determine the general pattern of length changes for the outlets from this <span class="hlt">ice</span> cap. We exploit geomorphic relationships and present new radiocarbon ages on interpreted stratigraphic sections to determine the pattern of length changes for this <span class="hlt">ice</span> cap. <span class="hlt">Ice</span> retreated during late glacial times (Rodbell and Seltzer, 2000; Kelly et al., in press). By 11,400 yr BP it had reached a position ~1.2 km beyond its present (2000 AD) <span class="hlt">extent</span>. While length during the early Holocene is problematic, present evidence permits, but does not prove, <span class="hlt">extents</span> of 0.5 to 1.0 km down-valley from the present margin. Between 6400 and 4400 yr BP the <span class="hlt">ice</span> cap was smaller than present, but it advanced multiple times during the late Holocene. Lengths of up to 1 km beyond present were achieved at 3400 yr BP and ~500 yr BP. Additionally, the <span class="hlt">ice</span> advanced to 0.8 km beyond its present margin at 1600 yr BP. Because these glaciers were temperate, we take these lengths to represent primarily changes in temperature. This may suggest that lowering insolation values in the northern hemisphere during the Holocene provide a first order control on tropical temperatures. Alternatively, it may be that major reorganization of the topical circulation belts about 5000 yr BP yields two configurations of the QIC and hence Holocene temperatures - one at the present <span class="hlt">ice</span> margin and and the second about 1 km beyond the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25279921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25279921"><span>Direct observations of evolving subglacial drainage beneath the Greenland <span class="hlt">Ice</span> Sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A</p> <p>2014-10-02</p> <p>Seasonal acceleration of the Greenland <span class="hlt">Ice</span> Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the <span class="hlt">ice</span> sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, <span class="hlt">decreasing</span> basal water pressure and moderating the <span class="hlt">ice</span> velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that <span class="hlt">ice</span> velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in <span class="hlt">ice</span> velocity. Our simultaneous measurements of moulin and borehole hydraulic head and <span class="hlt">ice</span> velocity in the Paakitsoq region of western Greenland show that <span class="hlt">decreasing</span> trends in <span class="hlt">ice</span> velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that <span class="hlt">decreasing</span> late-season <span class="hlt">ice</span> velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect <span class="hlt">ice</span> velocity beyond the conclusion of the melt season.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.4953B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.4953B"><span>Skillful regional prediction of Arctic sea <span class="hlt">ice</span> on seasonal timescales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bushuk, Mitchell; Msadek, Rym; Winton, Michael; Vecchi, Gabriel A.; Gudgel, Rich; Rosati, Anthony; Yang, Xiaosong</p> <p>2017-05-01</p> <p>Recent Arctic sea <span class="hlt">ice</span> seasonal prediction efforts and forecast skill assessments have primarily focused on pan-Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> (SIE). In this work, we move toward stakeholder-relevant spatial scales, investigating the regional forecast skill of Arctic sea <span class="hlt">ice</span> in a Geophysical Fluid Dynamics Laboratory (GFDL) seasonal prediction system. Using a suite of retrospective initialized forecasts spanning 1981-2015 made with a coupled atmosphere-ocean-sea <span class="hlt">ice</span>-land model, we show that predictions of detrended regional SIE are skillful at lead times up to 11 months. Regional prediction skill is highly region and target month dependent and generically exceeds the skill of an anomaly persistence forecast. We show for the first time that initializing the ocean subsurface in a seasonal prediction system can yield significant regional skill for winter SIE. Similarly, as suggested by previous work, we find that sea <span class="hlt">ice</span> thickness initial conditions provide a crucial source of skill for regional summer SIE.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325643','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325643"><span>Uncertainty quantification and global sensitivity analysis of the Los Alamos sea <span class="hlt">ice</span> model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare</p> <p></p> <p>Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea <span class="hlt">ice</span> and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea <span class="hlt">ice</span> models. We characterize parametric uncertainty in the Los Alamos sea <span class="hlt">ice</span> model (CICE) in a standalone configuration and quantify the sensitivity of sea <span class="hlt">ice</span> area, <span class="hlt">extent</span>, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea <span class="hlt">ice</span> model whose predictions of sea <span class="hlt">ice</span> <span class="hlt">extent</span>, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea <span class="hlt">ice</span> model.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1325643-uncertainty-quantification-global-sensitivity-analysis-los-alamos-sea-ice-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1325643-uncertainty-quantification-global-sensitivity-analysis-los-alamos-sea-ice-model"><span>Uncertainty quantification and global sensitivity analysis of the Los Alamos sea <span class="hlt">ice</span> model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...</p> <p>2016-04-01</p> <p>Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea <span class="hlt">ice</span> and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea <span class="hlt">ice</span> models. We characterize parametric uncertainty in the Los Alamos sea <span class="hlt">ice</span> model (CICE) in a standalone configuration and quantify the sensitivity of sea <span class="hlt">ice</span> area, <span class="hlt">extent</span>, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea <span class="hlt">ice</span> model whose predictions of sea <span class="hlt">ice</span> <span class="hlt">extent</span>, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea <span class="hlt">ice</span> model.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.2709U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.2709U"><span>Uncertainty quantification and global sensitivity analysis of the Los Alamos sea <span class="hlt">ice</span> model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole</p> <p>2016-04-01</p> <p>Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea <span class="hlt">ice</span> and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea <span class="hlt">ice</span> models. We characterize parametric uncertainty in the Los Alamos sea <span class="hlt">ice</span> model (CICE) in a standalone configuration and quantify the sensitivity of sea <span class="hlt">ice</span> area, <span class="hlt">extent</span>, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea <span class="hlt">ice</span> model whose predictions of sea <span class="hlt">ice</span> <span class="hlt">extent</span>, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea <span class="hlt">ice</span> model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP31A1826A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP31A1826A"><span>Holocene temperature history at the west Greenland <span class="hlt">Ice</span> Sheet margin reconstructed from lake sediments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.</p> <p>2011-12-01</p> <p>Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland <span class="hlt">Ice</span> Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland <span class="hlt">Ice</span> Sheet <span class="hlt">extent</span>, thus empirically characterizing the <span class="hlt">ice</span> sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western <span class="hlt">ice</span> sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland <span class="hlt">Ice</span> Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little <span class="hlt">Ice</span> Age cooling that drove <span class="hlt">ice</span> sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local <span class="hlt">ice</span> margin positions through the Holocene. Such reconstructions of paleoclimate and past <span class="hlt">ice</span> sheet <span class="hlt">extent</span> provide targets for testing and improving <span class="hlt">ice</span> sheet models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.1035T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.1035T"><span>Seasonal to interannual Arctic sea <span class="hlt">ice</span> predictability in current global climate models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tietsche, S.; Day, J. J.; Guemas, V.; Hurlin, W. J.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Collins, M.; Hawkins, E.</p> <p>2014-02-01</p> <p>We establish the first intermodel comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> and volume, there is potential predictive skill for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea <span class="hlt">ice</span> concentration errors are largest in the marginal <span class="hlt">ice</span> zone, and in winter they are almost zero away from the <span class="hlt">ice</span> edge. Sea <span class="hlt">ice</span> thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea <span class="hlt">ice</span> advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4822592','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4822592"><span>Dynamic Antarctic <span class="hlt">ice</span> sheet during the early to mid-Miocene</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>DeConto, Robert M.; Pollard, David; Levy, Richard H.</p> <p>2016-01-01</p> <p>Geological data indicate that there were major variations in Antarctic <span class="hlt">ice</span> sheet volume and <span class="hlt">extent</span> during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the <span class="hlt">ice</span> sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic <span class="hlt">ice</span> sheet because of three developments in our modeling approach. (i) We use a climate–<span class="hlt">ice</span> sheet coupling method utilizing a high-resolution atmospheric component to account for <span class="hlt">ice</span> sheet–climate feedbacks. (ii) The <span class="hlt">ice</span> sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by <span class="hlt">ice</span>-cliff failure and <span class="hlt">ice</span>-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the <span class="hlt">ice</span> sheet by using isotope-enabled climate and <span class="hlt">ice</span> sheet models. We compare our modeling results with <span class="hlt">ice</span>-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic <span class="hlt">ice</span> volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52–0.66‰, or a sea level equivalent change of 30–36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic <span class="hlt">ice</span> sheet and sea level variability. PMID:26903645</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..169...13D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..169...13D"><span>Current state and future perspectives on coupled <span class="hlt">ice</span>-sheet - sea-level modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.</p> <p>2017-08-01</p> <p>The interaction between <span class="hlt">ice</span>-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine <span class="hlt">ice</span> sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled <span class="hlt">ice</span>-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine <span class="hlt">ice</span>-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling <span class="hlt">ice</span>-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in <span class="hlt">ice</span>-sheet <span class="hlt">extent</span>. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled <span class="hlt">ice</span>-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled <span class="hlt">ice</span>-sheet - sea-level model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.429...60S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.429...60S"><span>Unstable AMOC during glacial intervals and millennial variability: The role of mean sea <span class="hlt">ice</span> <span class="hlt">extent</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sévellec, Florian; Fedorov, Alexey V.</p> <p>2015-11-01</p> <p>A striking feature of paleoclimate records is the greater stability of the Holocene epoch relative to the preceding glacial interval, especially apparent in the North Atlantic region. In particular, strong irregular variability with an approximately 1500 yr period, known as the Dansgaard-Oeschger (D-O) events, punctuates the last glaciation, but is absent during the interglacial. Prevailing theories, modeling and data suggest that these events, seen as abrupt warming episodes in Greenland <span class="hlt">ice</span> cores and sea surface temperature records in the North Atlantic, are linked to reorganizations of the Atlantic Meridional Overturning Circulation (AMOC). In this study, using a new low-order ocean model that reproduces a realistic power spectrum of millennial variability, we explore differences in the AMOC stability between glacial and interglacial intervals of the 100 kyr glacial cycle of the Late Pleistocene (1 kyr = 1000 yr). Previous modeling studies show that the edge of sea <span class="hlt">ice</span> in the North Atlantic shifts southward during glacial intervals, moving the region of the North Atlantic Deep Water formation and the AMOC also southward. Here we demonstrate that, by shifting the AMOC with respect to the mean atmospheric precipitation field, such a displacement makes the system unstable, which explains chaotic millennial variability during the glacials and the persistence of stable ocean conditions during the interglacials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26339489','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26339489"><span><span class="hlt">Ice</span> swimming - '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event'.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A</p> <p>2015-01-01</p> <p><span class="hlt">Ice</span> swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('<span class="hlt">Ice</span> Mile') and 1 km ('1 km <span class="hlt">Ice</span> event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one '<span class="hlt">Ice</span> Mile' and 26 men and 13 completed one '1 km <span class="hlt">Ice</span> event' in water colder than +5 °C following the rules of International <span class="hlt">Ice</span> Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For '<span class="hlt">Ice</span> Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event', the best men were faster than the best women. In '<span class="hlt">Ice</span> Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event'. In water colder than 5 °C, men were faster than women in '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event'. Water temperature showed no correlation to swimming speed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17488946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17488946"><span>Human locomotion on <span class="hlt">ice</span>: the evolution of <span class="hlt">ice</span>-skating energetics through history.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Formenti, Federico; Minetti, Alberto E</p> <p>2007-05-01</p> <p>More than 3000 years ago, peoples living in the cold North European regions started developing tools such as <span class="hlt">ice</span> skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of <span class="hlt">ice</span>-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of <span class="hlt">ice</span> skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on <span class="hlt">ice</span> <span class="hlt">decreased</span> dramatically through history, the metabolic cost of modern <span class="hlt">ice</span>-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on <span class="hlt">ice</span> was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. <span class="hlt">Ice</span> skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038175&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbalance%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038175&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbalance%2Bsheet"><span>Snowmelt on the Greenland <span class="hlt">Ice</span> Sheet as Derived From Passive Microwave Satellite Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdalati, Waleed; Steffen, Konrad</p> <p>1997-01-01</p> <p>The melt <span class="hlt">extent</span> of the snow on the Greenland <span class="hlt">ice</span> sheet is of considerable importance to the <span class="hlt">ice</span> sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt <span class="hlt">extent</span> have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt <span class="hlt">extent</span> of the <span class="hlt">ice</span> sheet are studied. The melt is found to be most extensive on the western side of the <span class="hlt">ice</span> sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0587P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0587P"><span>A Changing Arctic Sea <span class="hlt">Ice</span> Cover and the Partitioning of Solar Radiation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perovich, D. K.; Light, B.; Polashenski, C.; Nghiem, S. V.</p> <p>2010-12-01</p> <p>Certain recent changes in the Arctic sea <span class="hlt">ice</span> cover are well established. There has been a reduction in sea <span class="hlt">ice</span> <span class="hlt">extent</span>, an overall thinning of the <span class="hlt">ice</span> cover, reduced prevalence of perennial <span class="hlt">ice</span> with accompanying increases in seasonal <span class="hlt">ice</span>, and a lengthening of the summer melt season. Here we explore the effects of these changes on the partitioning of solar energy between reflection to the atmosphere, absorption within the <span class="hlt">ice</span>, and transmission to the ocean. The physical changes in the <span class="hlt">ice</span> cover result in less light reflected and more light absorbed in the <span class="hlt">ice</span> and transmitted to the ocean. These changes directly affect the heat and mass balance of the <span class="hlt">ice</span> as well as the amount of light available for photosynthesis within and beneath the <span class="hlt">ice</span> cover. The central driver is that seasonal <span class="hlt">ice</span> covers tend to have lower albedo than perennial <span class="hlt">ice</span> throughout the melt season, permitting more light to penetrate into the <span class="hlt">ice</span> and ocean. The enhanced light penetration increases the amount of internal melting of the <span class="hlt">ice</span> and the heat content of the upper ocean. The physical changes in the <span class="hlt">ice</span> cover mentioned above have affected both the amount and the timing of the photosynthetically active radiation (PAR) transmitted into the <span class="hlt">ice</span> and ocean, increasing transmitted PAR, particularly in the spring. A comparison of the partitioning of solar irradiance and PAR for both historical and recent <span class="hlt">ice</span> conditions will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030022773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030022773"><span>Snow and <span class="hlt">Ice</span> Products from the Moderate Resolution Imaging Spectroradiometer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Klein, Andrew G.</p> <p>2003-01-01</p> <p>Snow and sea <span class="hlt">ice</span> products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, flown on the Terra and Aqua satellites, are or will be available through the National Snow and <span class="hlt">Ice</span> Data Center Distributed Active Archive Center (DAAC). The algorithms that produce the products are automated, thus providing a consistent global data set that is suitable for climate studies. The suite of MODIS snow products begins with a 500-m resolution, 2330-km swath snow-cover map that is then projected onto a sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to daily and 8-day composite climate-modeling grid (CMG) products at 0.05 resolution. A daily snow albedo product will be available in early 2003 as a beta test product. The sequence of sea <span class="hlt">ice</span> products begins with a swath product at 1-km resolution that provides sea <span class="hlt">ice</span> <span class="hlt">extent</span> and <span class="hlt">ice</span>-surface temperature (IST). The sea <span class="hlt">ice</span> swath products are then mapped onto the Lambert azimuthal equal area or EASE-Grid projection to create a daily and 8-day composite sea <span class="hlt">ice</span> tile product, also at 1 -km resolution. Climate-Modeling Grid (CMG) sea <span class="hlt">ice</span> products in the EASE-Grid projection at 4-km resolution are planned for early 2003.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-200910220008HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-200910220008HQ.html"><span><span class="hlt">Ice</span> Bridge Antarctic Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-10-21</p> <p>Sea <span class="hlt">ice</span> is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation <span class="hlt">Ice</span> Bridge airborne Earth science mission to study Antarctic <span class="hlt">ice</span> sheets, sea <span class="hlt">ice</span>, and <span class="hlt">ice</span> shelves. Photo Credit: (NASA/Jane Peterson)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4311913S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4311913S"><span>A global view of atmospheric <span class="hlt">ice</span> particle complexity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin</p> <p>2016-11-01</p> <p>Atmospheric <span class="hlt">ice</span> particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric <span class="hlt">ice</span> particles are much more complex. <span class="hlt">Ice</span> particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and <span class="hlt">ice</span> particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of <span class="hlt">decreasing</span> transition size with <span class="hlt">decreasing</span> temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28932624','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28932624"><span>Staphylococci on <span class="hlt">ICE</span>: Overlooked agents of horizontal gene transfer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sansevere, Emily A; Robinson, D Ashley</p> <p>2017-01-01</p> <p>Horizontal gene transfer plays a significant role in spreading antimicrobial resistance and virulence genes throughout the genus Staphylococcus , which includes species of clinical relevance to humans and animals. While phages and plasmids are the most well-studied agents of horizontal gene transfer in staphylococci, the contribution of integrative conjugative elements (<span class="hlt">ICEs</span>) has been mostly overlooked. Experimental work demonstrating the activity of <span class="hlt">ICEs</span> in staphylococci remained frozen for years after initial work in the 1980s that showed Tn 916 was capable of transfer from Enterococcus to Staphylococcus . However, recent work has begun to thaw this field. To date, 2 families of <span class="hlt">ICEs</span> have been identified among staphylococci - Tn 916 that includes the Tn 5801 subfamily, and <span class="hlt">ICE</span> 6013 that includes at least 7 subfamilies. Both Tn 5801 and <span class="hlt">ICE</span> 6013 commonly occur in clinical strains of S. aureus . Tn 5801 is the most studied of the Tn 916 family elements in staphylococci and encodes tetracycline resistance and a protein that, when expressed in Escherichia coli , inhibits restriction barriers to incoming DNA. <span class="hlt">ICE</span> 6013 is among the shortest known <span class="hlt">ICEs</span>, but it still includes many uncharacterized open reading frames. This element uses an IS 30 -like transposase as its recombinase, providing some versatility in integration sites. <span class="hlt">ICE</span> 6013 also conjugatively transfers among receptive S. aureus strains at relatively higher frequency than Tn 5801 . Continued study of these mobile genetic elements may reveal the full <span class="hlt">extent</span> to which <span class="hlt">ICEs</span> impact horizontal gene transfer and the evolution of staphylococci.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017491','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017491"><span>NASA Team 2 Sea <span class="hlt">Ice</span> Concentration Algorithm Retrieval Uncertainty</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro</p> <p>2014-01-01</p> <p>Satellite microwave radiometers are widely used to estimate sea <span class="hlt">ice</span> cover properties (concentration, <span class="hlt">extent</span>, and area) through the use of sea <span class="hlt">ice</span> concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus <span class="hlt">extent</span> and area), and to improve sea <span class="hlt">ice</span> predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior <span class="hlt">ice</span> pack, and it increases in the marginal <span class="hlt">ice</span> zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 <span class="hlt">ice</span> types associated with deep snow and new <span class="hlt">ice</span>. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.1553S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.1553S"><span>Sea-<span class="hlt">ice</span> deformation in a coupled ocean-sea-<span class="hlt">ice</span> model and in satellite remote sensing data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.</p> <p>2017-07-01</p> <p>A realistic representation of sea-<span class="hlt">ice</span> deformation in models is important for accurate simulation of the sea-<span class="hlt">ice</span> mass balance. Simulated sea-<span class="hlt">ice</span> deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-<span class="hlt">ice</span> rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale <span class="hlt">ice</span> deformation patterns, but small-scale sea-<span class="hlt">ice</span> deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-<span class="hlt">ice</span> total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-<span class="hlt">ice</span> zone. A <span class="hlt">decrease</span> in model grid spacing, however, produces a higher density and more localized <span class="hlt">ice</span> deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-<span class="hlt">ice</span> simulations based on spatial distribution, time series, and power-law scaling metrics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100032968','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100032968"><span>CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ <span class="hlt">Ice</span> Camp Measurements Over Arctic Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten</p> <p>2010-01-01</p> <p>The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea <span class="hlt">ice</span> monitoring beyond the traditional surface <span class="hlt">extent</span> measurements and into estimates of sea <span class="hlt">ice</span> thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea <span class="hlt">ice</span> thickness. The complexity of polar environments, however, continues to make sea <span class="hlt">ice</span> thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea <span class="hlt">ice</span> hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea <span class="hlt">ice</span> elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and <span class="hlt">ice</span> drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea <span class="hlt">Ice</span> Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation <span class="hlt">Ice</span> Bridge, a gap-filling mission intended to supplement sea and land <span class="hlt">ice</span> monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc <span class="hlt">Ice</span> Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930066535&hterms=sea+ice+albedo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bice%2Balbedo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930066535&hterms=sea+ice+albedo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bice%2Balbedo"><span>Operational satellites and the global monitoring of snow and <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, John E.</p> <p>1991-01-01</p> <p>The altitudinal dependence of the global warming projected by global climate models is at least partially attributable to the albedo-temperature feedback involving snow and <span class="hlt">ice</span>, which must be regarded as key variables in the monitoring for global change. Statistical analyses of data from IR and microwave sensors monitoring the areal coverage and <span class="hlt">extent</span> of sea <span class="hlt">ice</span> have led to mixed conclusions about recent trends of hemisphere sea <span class="hlt">ice</span> coverage. Seasonal snow cover has been mapped for over 20 years by NOAA/NESDIS on the basis of imagery from a variety of satellite sensors. Multichannel passive microwave data show some promise for the routine monitoring of snow depth over unforested land areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060026203&hterms=sauber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsauber','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060026203&hterms=sauber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsauber"><span><span class="hlt">Ice</span> Mass Fluctuations and Earthquake Hazard</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sauber, J.</p> <p>2006-01-01</p> <p>In south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing <span class="hlt">ice</span> wastage over the last 100-150 years [Sauber et al., 2000; Sauber and Molnia, 2004]. In this study we focus on the region referred to as the Yakataga segment of the Pacific-North American plate boundary zone in Alaska. In this region, the Bering and Malaspina glacier ablation zones have average <span class="hlt">ice</span> elevation <span class="hlt">decreases</span> from 1-3 meters/year (see summary and references in Molnia, 2005). The elastic response of the solid Earth to this <span class="hlt">ice</span> mass <span class="hlt">decrease</span> alone would cause several mm/yr of horizontal motion and uplift rates of up to 10-12 mm/yr. In this same region observed horizontal rates of tectonic deformation range from 10 to 40 mm/yr to the north-northwest and the predicted tectonic uplift rates range from -2 mm/year near the Gulf of Alaska coast to 12mm/year further inland [Savage and Lisowski, 1988; Ma et al, 1990; Sauber et al., 1997, 2000, 2004; Elliot et al., 2005]. The large <span class="hlt">ice</span> mass changes associated with glacial wastage and surges perturb the tectonic rate of deformation at a variety of temporal and spatial scales. The associated incremental stress change may enhance or inhibit earthquake occurrence. We report recent (seasonal to decadal) <span class="hlt">ice</span> elevation changes derived from data from NASA's ICESat satellite laser altimeter combined with earlier DEM's as a reference surface to illustrate the characteristics of short-term <span class="hlt">ice</span> elevation changes [Sauber et al., 2005, Muskett et al., 2005]. Since we are interested in evaluating the effect of <span class="hlt">ice</span> changes on faulting potential, we calculated the predicted surface displacement changes and incremental stresses over a specified time interval and calculated the change in the fault stability margin using the approach given by Wu and Hasegawa [1996]. Additionally, we explored the possibility that these <span class="hlt">ice</span> mass fluctuations altered the seismic rate of background seismicity. Although we primarily focus on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11D..02K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11D..02K"><span>How robust is the atmospheric circulation response to Arctic sea-<span class="hlt">ice</span> loss in isolation?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kushner, P. J.; Hay, S. E.; Blackport, R.; McCusker, K. E.; Oudar, T.</p> <p>2017-12-01</p> <p>It is now apparent that active dynamical coupling between the ocean and atmosphere determines a good deal of how Arctic sea-<span class="hlt">ice</span> loss changes the large-scale atmospheric circulation. In coupled ocean-atmosphere models, Arctic sea-<span class="hlt">ice</span> loss indirectly induces a 'mini' global warming and circulation changes that extend into the tropics and the Southern Hemisphere. Ocean-atmosphere coupling also amplifies by about 50% Arctic free-tropospheric warming arising from sea-<span class="hlt">ice</span> loss (Deser et al. 2015, 2016). The mechanisms at work and how to separate the response to sea-<span class="hlt">ice</span> loss from the rest of the global warming process remain poorly understood. Different studies have used distinctive numerical approaches and coupled ocean-atmosphere models to address this problem. We put these studies on comparable footing using pattern scaling (Blackport and Kushner 2017) to separately estimate the part of the circulation response that scales with sea-<span class="hlt">ice</span> loss in the absence of low-latitude warming from the part that scales with low-latitude warming in the absence of sea-<span class="hlt">ice</span> loss. We consider well-sampled simulations from three different coupled ocean-atmosphere models (CESM1, CanESM2, CNRM-CM5), in which greenhouse warming and sea-<span class="hlt">ice</span> loss are driven in different ways (sea <span class="hlt">ice</span> albedo reduction/transient RCP8.5 forcing for CESM1, nudged sea <span class="hlt">ice</span>/CO2 doubling for CanESM2, heat-flux forcing/constant RCP8.5-derived forcing for CNRM-CM5). Across these different simulations, surprisingly robust influences of Arctic sea-<span class="hlt">ice</span> loss on atmospheric circulation can be diagnosed using pattern scaling. For boreal winter, the isolated sea-<span class="hlt">ice</span> loss effect acts to increase warming in the North American Sub-Arctic, <span class="hlt">decrease</span> warming of the Eurasian continent, enhance precipitation over the west coast of North America, and strengthen the Aleutian Low and the Siberian High. We will also discuss how Arctic free tropospheric warming might be enhanced via midlatitude ocean surface warming induced by sea-<span class="hlt">ice</span> loss</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19759618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19759618"><span>Holocene thinning of the Greenland <span class="hlt">ice</span> sheet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M</p> <p>2009-09-17</p> <p>On entering an era of global warming, the stability of the Greenland <span class="hlt">ice</span> sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS <span class="hlt">ice</span> cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS <span class="hlt">ice</span> cores with delta(18)O from <span class="hlt">ice</span> cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from <span class="hlt">ice</span> cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of <span class="hlt">ice</span> cores, a proxy for surface elevation. State-of-the-art <span class="hlt">ice</span> sheet models are generally found to be underestimating the <span class="hlt">extent</span> and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.488...36L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.488...36L"><span>Precession and atmospheric CO2 modulated variability of sea <span class="hlt">ice</span> in the central Okhotsk Sea since 130,000 years ago</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo, Li; Belt, Simon T.; Lattaud, Julie; Friedrich, Tobias; Zeeden, Christian; Schouten, Stefan; Smik, Lukas; Timmermann, Axel; Cabedo-Sanz, Patricia; Huang, Jyh-Jaan; Zhou, Liping; Ou, Tsong-Hua; Chang, Yuan-Pin; Wang, Liang-Chi; Chou, Yu-Min; Shen, Chuan-Chou; Chen, Min-Te; Wei, Kuo-Yen; Song, Sheng-Rong; Fang, Tien-Hsi; Gorbarenko, Sergey A.; Wang, Wei-Lung; Lee, Teh-Quei; Elderfield, Henry; Hodell, David A.</p> <p>2018-04-01</p> <p>Recent reduction in high-latitude sea <span class="hlt">ice</span> <span class="hlt">extent</span> demonstrates that sea <span class="hlt">ice</span> is highly sensitive to external and internal radiative forcings. In order to better understand sea <span class="hlt">ice</span> system responses to external orbital forcing and internal oscillations on orbital timescales, here we reconstruct changes in sea <span class="hlt">ice</span> <span class="hlt">extent</span> and summer sea surface temperature (SSST) over the past 130,000 yrs in the central Okhotsk Sea. We applied novel organic geochemical proxies of sea <span class="hlt">ice</span> (IP25), SSST (TEX86L) and open water marine productivity (a tri-unsaturated highly branched isoprenoid and biogenic opal) to marine sediment core MD01-2414 (53°11.77‧N, 149°34.80‧E, water depth 1123 m). To complement the proxy data, we also carried out transient Earth system model simulations and sensitivity tests to identify contributions of different climatic forcing factors. Our results show that the central Okhotsk Sea was <span class="hlt">ice</span>-free during Marine Isotope Stage (MIS) 5e and the early-mid Holocene, but experienced variable sea <span class="hlt">ice</span> cover during MIS 2-4, consistent with intervals of relatively high and low SSST, respectively. Our data also show that the sea <span class="hlt">ice</span> <span class="hlt">extent</span> was governed by precession-dominated insolation changes during intervals of atmospheric CO2 concentrations ranging from 190 to 260 ppm. However, the proxy record and the model simulation data show that the central Okhotsk Sea was near <span class="hlt">ice</span>-free regardless of insolation forcing throughout the penultimate interglacial, and during the Holocene, when atmospheric CO2 was above ∼260 ppm. Past sea <span class="hlt">ice</span> conditions in the central Okhotsk Sea were therefore strongly modulated by both orbital-driven insolation and CO2-induced radiative forcing during the past glacial/interglacial cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880035556&hterms=Functions+helicopter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DFunctions%2Bhelicopter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880035556&hterms=Functions+helicopter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DFunctions%2Bhelicopter"><span>Model helicopter performance degradation with simulated <span class="hlt">ice</span> shapes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tinetti, Ana F.; Korkan, Kenneth D.</p> <p>1987-01-01</p> <p>An experimental program using a commercially available model helicopter has been conducted in the Texas A&M University Subsonic Wind Tunnel to investigate main rotor performance degradation due to generic <span class="hlt">ice</span>. The simulated <span class="hlt">ice</span>, including both primary and secondary formations, was scaled by chord from previously documented artificial <span class="hlt">ice</span> accretions. Base and <span class="hlt">iced</span> performance data were gathered as functions of fuselage incidence, blade collective pitch, main rotor rotational velocity, and freestream velocity. It was observed that the presence of simulated <span class="hlt">ice</span> tends to <span class="hlt">decrease</span> the lift to equivalent drag ratio, as well as thrust coefficient for the range of velocity ratios tested. Also, increases in torque coefficient due to the generic <span class="hlt">ice</span> formations were observed. Evaluation of the data has indicated that the addition of roughness due to secondary <span class="hlt">ice</span> formations is crucial for proper evaluation of the degradation in main rotor performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33B0821P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33B0821P"><span>RADARSAT-2 Polarimetric Radar Imaging for Lake <span class="hlt">Ice</span> Mapping</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, F.; Kang, K.; Duguay, C. R.</p> <p>2016-12-01</p> <p>Changes in lake <span class="hlt">ice</span> dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake <span class="hlt">ice</span> cover observations are also a valuable data source for predictions with numerical <span class="hlt">ice</span> and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake <span class="hlt">ice</span> cover <span class="hlt">extent</span> for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake <span class="hlt">ice</span> mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake <span class="hlt">ice</span> from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different <span class="hlt">ice</span> types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying <span class="hlt">ice</span> and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-<span class="hlt">ice</span>/water interactions and can be used successfully for water-<span class="hlt">ice</span> segmentation, including different <span class="hlt">ice</span> types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake <span class="hlt">ice</span> for consideration by <span class="hlt">ice</span> services.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC13C1092S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC13C1092S"><span>Impacts of projected sea <span class="hlt">ice</span> changes on trans-Arctic navigation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephenson, S. R.; Smith, L. C.</p> <p>2012-12-01</p> <p>Reduced Arctic sea <span class="hlt">ice</span> continues to be a palpable signal of global change. Record lows in September sea <span class="hlt">ice</span> <span class="hlt">extent</span> from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly <span class="hlt">ice</span>-free Arctic Ocean in summer by mid-century; however, how reduced sea <span class="hlt">ice</span> will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (<span class="hlt">ice</span>) conditions and vessel class. Simulations are based on sea <span class="hlt">ice</span> projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no <span class="hlt">ice</span>-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding <span class="hlt">ice</span> impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea <span class="hlt">ice</span> including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.C21B1106R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.C21B1106R"><span>Antarctic Sea <span class="hlt">Ice</span>-Atmosphere Interactions: A Self-organizing Map-based Perspective</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reusch, D. B.</p> <p>2005-12-01</p> <p>Interactions between the ocean, sea <span class="hlt">ice</span> and the atmosphere are a significant component of the dynamic nature of the Earth's climate system. Self-organizing maps (SOMs), an analysis tool from the field of artificial neural networks, have been used to study variability in Antarctic sea <span class="hlt">ice</span> <span class="hlt">extent</span> and the West Antarctic atmospheric circulation, plus the relationship and interactions between these two systems. Self-organizing maps enable unsupervised classification of large, multivariate/multidimensional data sets, e.g., time series of the atmospheric circulation or sea-<span class="hlt">ice</span> <span class="hlt">extent</span>, into a fixed number of distinct generalized states or modes, organized spatially as a two-dimensional grid, that are representative of the input data. When applied to atmospheric data, the analysis yields a nonlinear classification of the continuum of atmospheric conditions. In contrast to principal component analysis, SOMs do not force orthogonality or require subjective rotations to produce interpretable patterns. Twenty four years (1973-96) of monthly sea <span class="hlt">ice</span> <span class="hlt">extent</span> data (10 deg longitude bands; Simmonds and Jacka, 1995) were analyzed with a 30-node SOM. The resulting set of generalized patterns concisely captures the spatial and temporal variability in this data. An example of the former is variability in the longitudinal region of greatest <span class="hlt">extent</span>. The SOM patterns readily show that there are multiple spatial patterns corresponding to "greatest <span class="hlt">extent</span> conditions". Temporal variability is examined by creating frequency maps (i.e., which patterns occur most often) by month. With the annual cycle still in the data, the monthly frequency maps show a cycle moving from least <span class="hlt">extent</span>, through expansion to greatest <span class="hlt">extent</span> and back through retreat. When plotted in "SOM space", month-to-month transitions occur at different rates of change, suggesting that there is variability in the rate of change in <span class="hlt">extent</span> at different times of the year, e.g., retreat in January is faster than November. Twenty</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23344358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23344358"><span>Eemian interglacial reconstructed from a Greenland folded <span class="hlt">ice</span> core.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>2013-01-24</p> <p>Efforts to extract a Greenland <span class="hlt">ice</span> core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland <span class="hlt">ice</span> sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian <span class="hlt">Ice</span> Drilling ('NEEM') <span class="hlt">ice</span> core and show only a modest <span class="hlt">ice</span>-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded <span class="hlt">ice</span> using globally homogeneous parameters known from dated Greenland and Antarctic <span class="hlt">ice</span>-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the <span class="hlt">decreasing</span> summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland <span class="hlt">ice</span> sheet <span class="hlt">decreased</span> by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>