Sample records for ice extent observed

  1. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  2. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  3. Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2000-01-01

    Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major

  4. Global Warming and Northern Hemisphere Sea Ice Extent.

    PubMed

    Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov

    1999-12-03

    Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.

  5. Large-scale variations in observed Antarctic Sea ice extent and associated atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.

    1981-01-01

    The 1974 Antarctic large scale sea ice extent is studied from data from Nimbus 2 and 5 and temperature and sea level pressure fields from the Australian Meteorological Data Set. Electrically Scanning Microwave Radiometer data were three-day averaged and compared with 1000 mbar atmospheric pressure and sea level pressure data, also in three-day averages. Each three-day period was subjected to a Fourier analysis and included the mean latitude of the ice extent and the phases and percent variances in terms of the first six Fourier harmonics. Centers of low pressure were found to be generally east of regions which displayed rapid ice growth, and winds acted to extend the ice equatorward. An atmospheric response was also noted as caused by the changing ice cover.

  6. Reconstruction of past equilibrium line altitude using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri

    2017-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.

  7. Studies of the Antarctic Sea Ice Edges and Ice Extents from Satellite and Ship Observations

    NASA Technical Reports Server (NTRS)

    Worby, Anthony P.; Comiso, Josefino C.

    2003-01-01

    Passive-microwave derived ice edge locations in Antarctica are assessed against other satellite data as well as in situ observations of ice edge location made between 1989 and 2000. The passive microwave data generally agree with satellite and ship data but the ice concentration at the observed ice edge varies greatly with averages of 14% for the TEAM algorithm and 19% for the Bootstrap algorithm. The comparisons of passive microwave with the field data show that in the ice growth season (March - October) the agreement is extremely good, with r(sup 2) values of 0.9967 and 0.9797 for the Bootstrap and TEAM algorithms respectively. In the melt season however (November - February) the passive microwave ice edge is typically 1-2 degrees south of the observations due to the low concentration and saturated nature of the ice. Sensitivity studies show that these results can have significant impact on trend and mass balance studies of the sea ice cover in the Southern Ocean.

  8. Moving beyond the total sea ice extent in gauging model biases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.

    Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less

  9. Moving beyond the total sea ice extent in gauging model biases

    DOE PAGES

    Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; ...

    2016-11-29

    Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less

  10. Probabilistic Forecasting of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Slater, A. G.

    2013-12-01

    Sea ice in the Arctic is changing rapidly. Most noticeable has been the series of record, or near-record, annual minimums in sea ice extent in the past six years. The changing regime of sea ice has prompted much interest in seasonal prediction of sea ice extent, particularly as opportunities for Arctic shipping and resource exploration or extraction increase. This study presents a daily sea ice extent probabilistic forecast method with a 50-day lead time. A base projection is made from historical data and near-real-time sea ice concentration is assimilated on the issue date of the forecast. When considering the September mean ice extent for the period 1995-2012, the performance of the 50-day lead time forecast is very good: correlation=0.94, Bias = 0.14 ×106 km^2 and RMSE = 0.36 ×106 km^2. Forecasts for the daily minimum contains equal skill levels. The system is highly competitive with any of the SEARCH Sea Ice Outlook estimates. The primary finding of this study is that large amounts of forecast skill can be gained from knowledge of the initial conditions of concentration (perhaps more than previously thought). Given the simplicity of the forecast model, improved skill should be available from system refinement and with suitable proxies for large scale atmosphere and ocean circulation.

  11. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    NASA Astrophysics Data System (ADS)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  12. Towards Improving Sea Ice Predictabiity: Evaluating Climate Models Against Satellite Sea Ice Observations

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.

    2014-12-01

    The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the

  13. Springtime atmospheric transport controls Arctic summer sea-ice extent

    NASA Astrophysics Data System (ADS)

    Kapsch, Marie; Graversen, Rune; Tjernström, Michael

    2013-04-01

    The sea-ice extent in the Arctic has been steadily decreasing during the satellite remote sensing era, 1979 to present, with the highest rate of retreat found in September. Contributing factors causing the ice retreat are among others: changes in surface air temperature (SAT; Lindsay and Zhang, 2005), ice circulation in response to winds/pressure patterns (Overland et al., 2008) and ocean currents (Comiso et al., 2008), as well as changes in radiative fluxes (e.g. due to changes in cloud cover; Francis and Hunter, 2006; Maksimovich and Vihma, 2012) and ocean conditions. However, large interannual variability is superimposed onto the declining trend - the ice extent by the end of the summer varies by several million square kilometer between successive years (Serreze et al., 2007). But what are the processes causing the year-to-year ice variability? A comparison of years with an anomalously large September sea-ice extent (HIYs - high ice years) with years showing an anomalously small ice extent (LIYs - low ice years) reveals that the ice variability is most pronounced in the Arctic Ocean north of Siberia (which became almost entirely ice free in September of 2007 and 2012). Significant ice-concentration anomalies of up to 30% are observed for LIYs and HIYs in this area. Focusing on this area we find that the greenhouse effect associated with clouds and water-vapor in spring is crucial for the development of the sea ice during the subsequent months. In years where the end-of-summer sea-ice extent is well below normal, a significantly enhanced transport of humid air is evident during spring into the region where the ice retreat is encountered. The anomalous convergence of humidity increases the cloudiness, resulting in an enhancement of the greenhouse effect. As a result, downward longwave radiation at the surface is larger than usual. In mid May, when the ice anomaly begins to appear and the surface albedo therefore becomes anomalously low, the net shortwave radiation

  14. Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Doddridge, Edward W.; Marshall, John

    2017-10-01

    Through analysis of remotely sensed sea surface temperature (SST) and sea ice concentration data, we investigate the impact of winds related to the Southern Annular Mode (SAM) on sea ice extent around Antarctica. We show that positive SAM anomalies in the austral summer are associated with anomalously cold SSTs that persist and lead to anomalous ice growth in the following autumn, while negative SAM anomalies precede warm SSTs and a reduction in sea ice extent during autumn. The largest effect occurs in April, when a unit change in the detrended summertime SAM is followed by a 1.8±0.6 ×105 km2 change in detrended sea ice extent. We find no evidence that sea ice extent anomalies related to the summertime SAM affect the wintertime sea ice extent maximum. Our analysis shows that the wind anomalies related to the negative SAM during the 2016/2017 austral summer contributed to the record minimum Antarctic sea ice extent observed in March 2017.

  15. Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Stewart, A.

    2017-12-01

    Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.

  16. Record low lake ice thickness and bedfast ice extent on Alaska's Arctic Coastal Plain in 2017 exemplify the value of monitoring freshwater ice to understand sea-ice forcing and predict permafrost dynamics

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Alexeev, V. A.; Bondurant, A. C.; Creighton, A.; Engram, M. J.; Jones, B. M.; Parsekian, A.

    2017-12-01

    The winter of 2016/2017 was exceptionally warm and snowy along the coast of Arctic Alaska partly due to low fall sea ice extent. Based on several decades of field measurements, we documented a new record low maximum ice thickness (MIT) for lakes on the Barrow Peninsula, averaging 1.2 m. This is in comparison to a long-term average MIT of 1.7 m stretching back to 1962 with a maximum of 2.1 m in 1970 and previous minimum of 1.3 m in 2014. The relevance of thinner lake ice in arctic coastal lowlands, where thermokarst lakes cover greater than 20% of the land area, is that permafrost below lakes with bedfast ice is typically preserved. Lakes deeper than the MIT warm and thaw sub-lake permafrost forming taliks. Remote sensing analysis using synthetic aperture radar (SAR) is a valuable tool for scaling the field observations of MIT to the entire freshwater landscape to map bedfast ice. A new, long-term time-series of late winter multi-platform SAR from 1992 to 2016 shows a large dynamic range of bedfast ice extent, 29% of lake area or 6% of the total land area over this period, and adding 2017 to this record is expected to extend this range further. Empirical models of lake mean annual bed temperature suggest that permafrost begins to thaw at depths less than 60% of MIT. Based on this information and knowledge of average lake ice growth trajectories, we suggest that future SAR analysis of lake ice should focus on mid-winter (January) to evaluate the extent of bedfast ice and corresponding zones of sub-lake permafrost thaw. Tracking changes in these areas from year to year in mid-winter may provide the best landscape-scale evaluation of changing permafrost conditions in lake-rich arctic lowlands. Because observed changes in MIT coupled with mid-winter bedfast ice extent provide much information on permafrost stability, we suggest that these measurements can serve as Essential Climate Variables (EVCs) to indicate past and future changes in lake-rich arctic regions. The

  17. The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange

    NASA Astrophysics Data System (ADS)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-04-01

    Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent

  18. Observations reveal external driver for Arctic sea-ice retreat

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Marotzke, Jochem

    2012-04-01

    The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.

  19. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  20. Change in the Extent of Baffin Island's Penny Ice Cap in Response to Regional Warming, 1969 - 2014

    NASA Astrophysics Data System (ADS)

    Cox, M. C.; Cormier, H. M.; Gardner, A. S.

    2014-12-01

    Glaciers are retreating globally in response to warmer atmospheric temperatures, adding large volumes of melt water to the world's oceans. The largest glacierized region and present-day contributor to sea level rise outside of the massive ice sheets is the Canadian Arctic. Recent work has shown that the glaciers of the southern Canadian Arctic (Baffin and Bylot Island) have experienced accelerated rates of ice loss in recent decades, but little is known regarding the spatial and temporal variations in rates of loss. For this study we examine in detail changes in the extent of the Penny Ice Cap (a proxy for ice loss) between 1969 and 2014 to better understand the climatic drivers of the recently observed accelerated rates of ice loss on Baffin Island. To do this, we reconstruct the extent of the ice cap for the year 1969 from historical maps and for the years 1985, 1995, 2010, and 2014 from Landsat 5 TM and Landsat 8 OLI imagery. We use 2009 SPOT HRS imagery and a novel extent comparison algorithm to assess the accuracy of glacier extents derived from Landsat imagery. Regional temperature and precipitation records were used to explain the spatial pattern of change. Due to large variation in elevations, hypsometry was also investigated as a contributor to differences in rates of change across the ice cap. Preliminary results show overall retreat throughout the ice cap but with regional differences in area and length change on either side of the Ice Cap divide.

  1. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  2. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  3. Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration

    NASA Astrophysics Data System (ADS)

    Edinburgh, Tom; Day, Jonathan J.

    2016-11-01

    In stark contrast to the sharp decline in Arctic sea ice, there has been a steady increase in ice extent around Antarctica during the last three decades, especially in the Weddell and Ross seas. In general, climate models do not to capture this trend and a lack of information about sea ice coverage in the pre-satellite period limits our ability to quantify the sensitivity of sea ice to climate change and robustly validate climate models. However, evidence of the presence and nature of sea ice was often recorded during early Antarctic exploration, though these sources have not previously been explored or exploited until now. We have analysed observations of the summer sea ice edge from the ship logbooks of explorers such as Robert Falcon Scott, Ernest Shackleton and their contemporaries during the Heroic Age of Antarctic Exploration (1897-1917), and in this study we compare these to satellite observations from the period 1989-2014, offering insight into the ice conditions of this period, from direct observations, for the first time. This comparison shows that the summer sea ice edge was between 1.0 and 1.7° further north in the Weddell Sea during this period but that ice conditions were surprisingly comparable to the present day in other sectors.

  4. Predicting the Extent of Summer Sea Ice in the Arctic

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Wallace, J. M.

    2003-12-01

    The summers of 1998 and 2002 had the least sea ice extent (SIE) in the Arctic. These observations seem to agree with the trends noted by Parkinson, et al. (1999, hereafter P99) for the period 1979-1997, but the spatial pattern of these recent decreases in summer SIE were different. The summer trends shown by P99, exhibit large decreases in SIE primarily in the East Siberian Sea (ESS), while the decreases observed during 1998 and 2002 were much larger in the Beaufort and Chukchi seas (BCS). We now show that the trends for the period 1979 - 2002 are much smaller in the ESS than the trends shown by P99, and the largest decreasing trends have shifted from the ESS to the BCS. Rigor, et al. (2002) showed that the changes in SIE that P99 noted were driven by changes in atmospheric circulation related to the phase of the prior winter Arctic Oscillation (AO, Thompson and Wallace, 1998) index. Given that the latest trends in SIE are different than those shown by P99, one could ask whether the affect of the AO on sea ice noted by Rigor, et al. (2002) has also changed, and whether some large scale climate modes other than the AO has influenced the climate of the Arctic Ocean more? To answer these questions, we applied Empirical Orthogonal Function (EOF) analysis on the September SIE data from microwave satellites, and found that the first two modes SIE were most highly correlated to the prior winter AO, and the AO index of the summer months just prior to each September. These modes explain more than 45% of the variance in SIE, and show that the influence of the winter and summer AO dominates Arctic climate from 1979 - 2002. Using data from the International Arctic Buoy Programme and the National Centers for Environmental Prediction, we will show that the changes in sea ice extent are primarily driven by dynamic changes in sea ice thickness and discuss the implications for predicting summer SIE.

  5. Recalculated Areas for Maximum Ice Extents of the Baltic Sea During Winters 1971-2008

    NASA Astrophysics Data System (ADS)

    Niskanen, T.; Vainio, J.; Eriksson, P.; Heiler, I.

    2009-04-01

    Publication of operational ice charts in Finland was started from the Baltic Sea in a year 1915. Until year 1993 all ice charts were hand drawn paper copies but in the year 1993 ice charting software IceMap was introduced. Since then all ice charts were produced digitally. Since the year 1996 IceMap has had an option that user can calculate areas of single ice area polygons in the chart. Using this option the area of the maximum ice extent can be easily solved fully automatically. Before this option was introduced (and in full operation) all maximum extent areas were calculated manually by a planimeter. During recent years it has become clear that some areas calculated before 1996 don't give the same result as IceMap. Differences can come from for example inaccuracy of old coastlines, map projections, the calibration of the planimeter or interpretation of old ice area symbols. Old ice charts since winter 1970-71 have now been scanned, rectified and re-drawn. New maximum ice extent areas for Baltic Sea have now been re-calculated. By these new technological tools it can be concluded that in some cases clear differences can be found.

  6. A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Kingslake, J.

    2017-12-01

    It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.

  7. Data-adaptive Harmonic Decomposition and Real-time Prediction of Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael

    2017-04-01

    Decline in the Arctic sea ice extent (SIE) has profound socio-economic implications and is a focus of active scientific research. Of particular interest is prediction of SIE on subseasonal time scales, i.e. from early summer into fall, when sea ice coverage in Arctic reaches its minimum. However, subseasonal forecasting of SIE is very challenging due to the high variability of ocean and atmosphere over Arctic in summer, as well as shortness of observational data and inadequacies of the physics-based models to simulate sea-ice dynamics. The Sea Ice Outlook (SIO) by Sea Ice Prediction Network (SIPN, http://www.arcus.org/sipn) is a collaborative effort to facilitate and improve subseasonal prediction of September SIE by physics-based and data-driven statistical models. Data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) techniques [Chekroun and Kondrashov, 2017], have been successfully applied to the nonlinear stochastic modeling, as well as retrospective and real-time forecasting of Multisensor Analyzed Sea Ice Extent (MASIE) dataset in key four Arctic regions. In particular, DAH-MSLM predictions outperformed most statistical models and physics-based models in real-time 2016 SIO submissions. The key success factors are associated with DAH ability to disentangle complex regional dynamics of MASIE by data-adaptive harmonic spatio-temporal patterns that reduce the data-driven modeling effort to elemental MSLMs stacked per frequency with fixed and small number of model coefficients to estimate.

  8. Update on the Greenland Ice Sheet Melt Extent: 1979-1999

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed; Steffen, Konrad

    2000-01-01

    Analysis of melt extent on the Greenland ice sheet is updated to span the time period 1979-1999 is examined along with its spatial and temporal variability using passive microwave satellite data. In order to acquire the full record, the issue of continuity between previous passive microwave sensors (SMMR, SSM/I F-8, and SSM/I F-11), and the most recent SSM/I F-13 sensor is addressed. The F-13 Cross-polarized gradient ratio (XPGR) melt-classification threshold is determined to be -0.0154. Results show that for the 21-year record, an increasing melt trend of nearly 1 %/yr is observed, and this trend is driven by conditions on in the western portion of the ice sheet, rather than the east, where melt appears to have decreased slightly. Moreover, the eruption of Mt. Pinatubo in 1991 is likely to have had some impact the melt, but not as much as previously suspected. The 1992 melt anomaly is 1.7 standard deviations from the mean. Finally, the relationship between coastal temperatures and melt extent suggest an increase in surface runoff contribution to sea level of 0.31 mm/yr for a 1 C temperature rise.

  9. The role of declining summer sea ice extent in increasing Arctic winter precipitation

    NASA Astrophysics Data System (ADS)

    Hamman, J.; Roberts, A.; Cassano, J. J.; Nijssen, B.

    2016-12-01

    In the past three decades, the Arctic has experienced large declines in summer sea ice cover, permafrost extent, and spring snow cover, and increases in winter precipitation. This study explores the relationship between declining Arctic sea ice extent (IE) and winter precipitation (WP) across the Arctic land masses. The first part of this presentation presents the observed relationship between IE and WP. Using satellite estimates of IE and WP data based on a combination of in-situ observations and global reanalyses, we show that WP is negatively correlated with summer IE and that this relationship is strongest before the year 2000. After 2000, around the time IE minima began to decline most rapidly, the relationship between IE and WP degenerates. This indicates that other processes are driving changes in IE and WP. We hypothesize that positive anomalies in poleward moisture transport have historically driven anomalously low IE and high WP, and that since the significant decline in IE, moisture divergence from the central Arctic has been a larger contributor to WP over land. To better understand the physical mechanisms driving the observed changes in the Arctic climate system and the sensitivity of the Arctic climate system to declining sea ice, we have used the fully-coupled Regional Arctic System Model (RASM) to simulate two distinct sea ice climates. The first climate represents normal IE, while the second includes reduced summer IE. The second portion of this presentation analyzes these two RASM simulations, in conjunction with our observation-based analysis, to understand the coupled relationship between poleward moisture transport, IE, evaporation from the Arctic Ocean, and precipitation. We will present the RASM-simulated Arctic water budget and demonstrate the role of IE in driving WP anomalies. Finally, a spatial correlation analysis identifies characteristic patterns in IE, ocean evaporation, and polar cap convergence that contribute to anomalies in WP.

  10. Developing and Implementing Protocols for Arctic Sea Ice Observations

    NASA Astrophysics Data System (ADS)

    Perovich, Donald K.; Gerland, Sebastian

    2009-05-01

    Arctic Surface-Based Sea Ice Observations: Integrated Protocols and Coordinated Data Acquisition; Tromsø, Norway, 26-27 January 2009; The Arctic sea ice cover is diminishing. Over the past several years, not only has ice thinned but the extent of ice at the end of summer, and hence perennial ice, has declined markedly. These changes affect a wide range of issues and are important for a varied group of stakeholders, including Arctic coastal communities, policy makers, industry, the scientific community, and the public. Concerns range from the role of sea ice cover as an indicator and amplifier of climate change to marine transportation, resource extraction, and coastal erosion. To understand and respond to these ongoing changes, it is imperative to develop and implement consistent and robust observational protocols that can be used to describe the current state of the ice cover as well as future changes.

  11. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-01-01

    In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

  12. Bellingshausen Sea Ice Extent Recorded in an Antarctic Peninsula Ice Core

    NASA Technical Reports Server (NTRS)

    Porter, Stacy E.; Parkinson, Claire L.; Mosley-Thompson, Ellen

    2016-01-01

    Annual net accumulation (A(sub n)) from the Bruce Plateau (BP) ice core retrieved from the Antarctic Peninsula exhibits a notable relationship with sea ice extent (SIE) in the Bellingshausen Sea. Over the satellite era, both BP A(sub n) and Bellingshausen SIE are influenced by large-scale climatic factors such as the Amundsen Sea Low, Southern Annular Mode, and Southern Oscillation. In addition to the direct response of BP A(sub n) to Bellingshausen SIE (e.g., more open water as a moisture source), these large-scale climate phenomena also link the BP and the Bellingshausen Sea indirectly such that they exhibit similar responses (e.g., northerly wind anomalies advect warm, moist air to the Antarctic Peninsula and neighboring Bellingshausen Sea, which reduces SIE and increases A(sub n)). Comparison with a time series of fast ice at South Orkney Islands reveals a relationship between BP A(sub n) and sea ice in the northern Weddell Sea that is relatively consistent over the twentieth century, except when it is modulated by atmospheric wave patterns described by the Trans-Polar Index. The trend of increasing accumulation on the Bruce Plateau since approximately 1970 agrees with other climate records and reconstructions in the region and suggests that the current rate of sea ice loss in the Bellingshausen Sea is unrivaled in the twentieth century.

  13. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  14. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Douglas, David C.

    2010-01-01

    among models. High agreement also accompanies projections that the Chukchi Sea will be completely ice covered during February, March, and April at the end of the century. Large uncertainties, however, are associated with the timing and amount of partial ice cover during the intervening periods of melt and freeze. For the Bering Sea, median March ice extent is projected to be about 25 percent less than the 1979-1988 average by mid-century and 60 percent less by the end of the century. The ice-free season in the Bering Sea is projected to increase from its contemporary average of 5.5 months to a median of about 8.5 months by the end of the century. A 3-month longer ice- free season in the Bering Sea is attained by a 1-month advance in melt and a 2-month delay in freeze, meaning the ice edge typically will pass through the Bering Strait in May and January at the end of the century rather than June and November as presently observed.

  15. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  16. Observed and Modeled Trends in Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2003-01-01

    Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong

  17. Evidence for smaller extents of the northwestern Greenland Ice Sheet and North Ice Cap during the Holocene

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.

    2013-12-01

    The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica

  18. Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent

    NASA Astrophysics Data System (ADS)

    Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.

    2018-05-01

    East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.

  19. Revisiting the Potential of Melt Pond Fraction as a Predictor for the Seasonal Arctic Sea Ice Extent Minimum

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2015-01-01

    The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.

  20. Skillful Spring Forecasts of September Arctic Sea Ice Extent Using Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Petty, A. A.; Schroder, D.; Stroeve, J. C.; Markus, Thorsten; Miller, Jeffrey A.; Kurtz, Nathan Timothy; Feltham, D. L.; Flocco, D.

    2017-01-01

    In this study, we demonstrate skillful spring forecasts of detrended September Arctic sea ice extent using passive microwave observations of sea ice concentration (SIC) and melt onset (MO). We compare these to forecasts produced using data from a sophisticated melt pond model, and find similar to higher skill values, where the forecast skill is calculated relative to linear trend persistence. The MO forecasts shows the highest skill in March-May, while the SIC forecasts produce the highest skill in June-August, especially when the forecasts are evaluated over recent years (since 2008). The high MO forecast skill in early spring appears to be driven primarily by the presence and timing of open water anomalies, while the high SIC forecast skill appears to be driven by both open water and surface melt processes. Spatial maps of detrended anomalies highlight the drivers of the different forecasts, and enable us to understand regions of predictive importance. Correctly capturing sea ice state anomalies, along with changes in open water coverage appear to be key processes in skillfully forecasting summer Arctic sea ice.

  1. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    NASA Astrophysics Data System (ADS)

    Schneider, David P.; Deser, Clara

    2018-06-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  2. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    NASA Astrophysics Data System (ADS)

    Schneider, David P.; Deser, Clara

    2017-09-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  3. Response of Arctic Snow and Sea Ice Extents to Melt Season Atmospheric Forcing Across the Land-Ocean Boundary

    NASA Astrophysics Data System (ADS)

    Bliss, A. C.; Anderson, M. R.

    2011-12-01

    Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, however, the analysis of these data averaged spatially over three study regions located in North America and Eastern and Western Russia, reveals a distinct difference in the response of anomalous snow and sea ice conditions to the atmospheric forcing. This study compares the monthly continental snow cover and sea ice extent loss in the Arctic, during the melt season months (May-August) for the period 1979-2007, with regional atmospheric conditions known to influence summer melt including: mean sea level pressures, 925 hPa air temperatures, and mean 2 m U and V wind vectors from NCEP/DOE Reanalysis 2. The monthly hemispheric snow cover extent data used are from the Rutgers University Global Snow Lab and sea ice extents for this study are derived from the monthly passive microwave satellite Bootstrap algorithm sea ice concentrations available from the National Snow and Ice Data Center. Three case study years (1985, 1996, and 2007) are used to compare the direct response of monthly anomalous sea ice and snow cover areal extents to monthly mean atmospheric forcing averaged spatially over the extent of each study region. This comparison is then expanded for all summer months over the 29 year study period where the monthly persistence of sea ice and snow cover extent anomalies and changes in the sea ice and snow conditions under differing atmospheric conditions are explored further. The monthly anomalous atmospheric conditions are classified into four categories including: warmer temperatures with higher pressures, warmer temperatures with lower pressures, cooler temperatures with higher pressures, and cooler temperatures with lower pressures. Analysis of the atmospheric conditions surrounding anomalous loss of snow and ice cover over the independent study regions indicates that conditions of warmer temperatures

  4. Correlating Ice Cores from Quelccaya Ice Cap with Chronology from Little Ice Age Glacial Extents

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.

    2010-12-01

    Proxy records indicate Southern Hemisphere climatic changes during the Little Ice Age (LIA; ~1300-1850 AD). In particular, records of change in and around the tropical latitudes require attention because these areas are sensitive to climatic change and record the dynamic interplay between hemispheres (Oerlemans, 2005). Despite this significance, relatively few records exist for the southern tropics. Here we present a reconstruction of glacial fluctuations of Quelccaya Ice Cap (QIC), Peruvian Andes, from pre-LIA up to the present day. In the Qori Kalis valley, extensive sets of moraines exist beginning with the 1963 AD ice margin (Thompson et al., 2006) and getting progressively older down valley. Several of these older moraines can be traced and are continuous with moraines in the Challpa Cocha valley. These moraines have been dated at <1050-1350-AD (Mercer and Palacios, 1977) and interpreted to have been deposited during the Little Ice Age. We present a new suite of surface exposure and radiocarbon dates collected in 2008 and 2009 that constrain the ages of these moraines. Preliminary 10Be ages of boulder surfaces atop the moraines range from ~350-1370 AD. Maximum and minimum-limiting radiocarbon ages bracketing the moraines are ~0-1800 AD. The chronology of past ice cap extents are correlated with ice core records from QIC which show an accumulation increase during ~1500-1700 AD and an accumulation decrease during ~1720-1860 AD (Thompson et al., 1985; 1986; 2006). In addition, other proxy records from Peru and the tropics are correlated with the records at QIC as a means to understand climate conditions during the LIA. This work forms the basis for future modeling of the glacial system during the LIA at QIC and for modeling of past temperature and precipitation regimes at high altitude in the tropics.

  5. Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013

    NASA Astrophysics Data System (ADS)

    Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.

    2015-12-01

    Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.

  6. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  7. Wind, current and swell influences on the ice extent and flux in the Grand Banks-Labrador sea area as observed in the LIMEX '87 experiment

    NASA Technical Reports Server (NTRS)

    Argus, Susan Digby; Carsey, Frank; Holt, Benjamin

    1988-01-01

    This paper presents data collected by airborne and satellite instruments during the Labrador Ice Margin Experiment, that demonstrate the effects of oceanic and atmospheric processes on the ice conditions in the Grand Banks-Labrador sea area. Special consideration is given to the development of algorithms for extracting information from SAR data. It is shown that SAR data can be used to monitor ice extent, determine ice motion, locate shear zones, monitor the penetration of swell into the ice, estimate floe sizes, and establish the dimensions of the ice velocity zones. It is also shown that the complex interaction of the ice cover with winds, currents, swell, and coastlines is similar to the dynamics established for a number of sites in both polar regions.

  8. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  9. Contribution of Increasing Glacial Freshwater Fluxes to Observed Trends in Antarctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Le Sommer, J.; Merino, N.; Durand, G.; Jourdain, N.; Goosse, H.; Mathiot, P.; Gurvan, M.

    2016-02-01

    Southern Ocean sea-ice extent has experienced an overall positive trend over recent decades. While the amplitude of this trend is open to debate, the geographical pattern of regional changes has been clearly identified by observations. Mechanisms driving changes in the Antarctic Sea Ice Extent (SIE) are not fully understood and climate models fail to simulate these trends. Changes in different atmospheric features such as SAM or ENSO seem to explain the observed trend of Antartic sea ice, but only partly, since they can not account for the actual amplitude of the observed signal. The increasing injection of freshwater due to the accelerating ice discharge from Antarctica Ice Sheet (AIS) during the last two decades has been proposed as another candidate to contribute to SIE trend. However, the quantity and the distribution of the extra freshwater injection were not properly constrained. Recent glaciological estimations may improve the way the glacial freshwater is injected in the model. Here, we study the role of the glacial freshwater into the observed SIE trend, using the state-of-the-art Antarctic mass loss estimations. Ocean/sea-ice model simulations have been carried out with two different Antarctic freshwater scenarios corresponding to 20-years of Antarctic Ice Sheet evolution. The combination of an improved iceberg model with the most recent glaciological estimations has been applied to account for the most realistic possible Antarctic freshwater evolution scenarios. Results suggest that Antarctica has contributed to almost a 30% of the observed trend in regions of the South Pacific and South East Indian sectors, but has little impact in the South Atlantic sector. We conclude that the observed SIE trend over the last decades is due to a combination of both an atmospheric forcing and the extra freshwater injection. Our results advocates that the evolution of glacial freshwater needs to be correctly represented in climate models.

  10. Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.

    2012-12-01

    Numerous recent studies have done an excellent job capturing and quantifying the complex pattern of dynamic changes of the Greenland Ice Sheet (GrIS) over the past several decades. The timing of changes in ice velocities and mass balance indicate that the mechanisms controlling these behaviors, both external and internal, act over variable spatial and temporal regimes, can change in rapid and complex fashion, and have significant effect on ice sheet behavior as well as sea level rise. With roughly half of the estimated ice loss from the GrIS attributed to dynamic processes, these changes account for about 250 Gt/yr (2003-2008), equivalence to 0.6 mm/yr sea level rise. One of the primary influences of dynamic ice behavior is ice sheet hydrology, including the storage and transport of water from the supraglacial to subglacial environment, and the subsequent development of water transport pathways, thus demonstrating the need for further characterization of the subglacial environment. Enhanced dynamic flow of ice due to the influence of meltwater distribution on the subglacial environment has been reported, including In-SAR observations of large velocity increases over short periods of time, suggesting regions where dynamic changes are likely being caused by changes in hydrology. Additionally, building upon the 1993-2011 laser altimetry record, analyzed by our Surface Elevation Reconstruction And Change detection (SERAC) procedure, we have detected complex patterns of rapid thickening and thinning patterns over several outlet glaciers. This study presents a comprehensive investigation of hydrologic control on dynamic glacier behavior for several key sites in Greenland. We combine a high resolution surface digital elevation model (DEM) derived by fusing space- and airborne laser altimetry observations and SPIRIT SPOT DEMs, with a high resolution, hydrologically-corrected bedrock DEM derived from a combination of CResIS and Operation Icebridge ice penetrating radar data

  11. 2015 Arctic Sea Ice Maximum Annual Extent Is Lowest On Record

    NASA Image and Video Library

    2015-03-19

    The sea ice cap of the Arctic appeared to reach its annual maximum winter extent on Feb. 25, according to data from the NASA-supported National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.61 million square miles (14.54 million square kilometers), this year’s maximum extent was the smallest on the satellite record and also one of the earliest. Read more: 1.usa.gov/1Eyvelz Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season

    NASA Astrophysics Data System (ADS)

    Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.

    2017-09-01

    The 2016 austral spring was characterized by the lowest Southern Hemisphere (SH) sea ice extent seen in the satellite record (1979 to present) and coincided with anomalously warm surface waters surrounding most of Antarctica. We show that two distinct processes contributed to this event: First, the extreme El Niño event peaking in December-February 2015/2016 contributed to pronounced extratropical SH sea surface temperature and sea ice extent anomalies in the eastern Ross, Amundsen, and Bellingshausen Seas that persisted in part until the following 2016 austral spring. Second, internal unforced atmospheric variability of the Southern Annular Mode promoted the exceptional low sea ice extent in November-December 2016. These results suggest that a combination of tropically forced and internal SH atmospheric variability contributed to the unprecedented sea ice decline during the 2016 austral spring, on top of a background of slow changes expected from greenhouse gas and ozone forcing.

  13. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  14. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiquan; Zib, Benjamin J.; Xi, Baike

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extentmore » from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat

  15. Integrating Observations and Models to Better Understand a Changing Arctic Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.

    2017-12-01

    TThe loss of the Arctic sea ice cover has captured the world's attention. While much attention has been paid to the summer ice loss, changes are not limited to summer. The last few winters have seen record low sea ice extents, with 2017 marking the 3rdyear in a row with a new record low for the winter maximum extent. More surprising is the number of consecutive months between January 2016 through April 2017 with ice extent anomalies more than 2 standard deviations below the 1981-2010 mean. Additionally, October 2016 through April 2017 saw 7 consecutive months with record low extents, something that had not happened before in the last 4 decades of satellite observations. As larger parts of the Arctic Ocean become ice-free in summer, regional seas gradually transition from a perennial to a seasonal ice cover. The Barents Sea is already only seasonally ice covered, whereas the Kara Sea has recently lost most of its summer ice and is thereby starting to become a seasonally ice covered region. These changes serve as harbinger for what's to come for other Arctic seas. Given the rapid pace of change, there is an urgent need to improve our understanding of the drivers behind Arctic sea ice loss, the implications of this ice loss and to predict future changes to better inform policy makers. Climate models play a fundamental role in helping us synthesize the complex elements of the Arctic sea ice system yet generally fail to simulate key features of the sea ice system and the pace of sea ice loss. Nevertheless, modeling advances continue to provide better means of diagnosing sea ice change, and new insights are likely to be gained with model output from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP) aim is to better understand biases and errors in sea ice simulations so that we can improve our understanding of the likely future evolution of the sea ice cover and its impacts on global climate. To

  16. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  17. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    PubMed Central

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  18. Reconstruction of the extent and variability of late Quaternary ice sheets and Arctic sea ice: Insights from new mineralogical and geochemical proxy records

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Niessen, F.; Fahl, K.; Forwick, M.; Kudriavtseva, A.; Ponomarenko, E.; Prim, A. K.; Quatmann-Hense, A.; Spielhagen, R. F.; Zou, H.

    2016-12-01

    The Arctic Ocean and surrounding continents are key areas within the Earth system and very sensitive to present and past climate change. In this context, the timing and extent of circum-Arctic ice sheets and its interaction with oceanic and sea-ice dynamics are major interest and focus of international research. New sediment cores recovered during the Polarstern Expeditions PS87 (Lomonosov Ridge/2014) and PS93.1 (Fram Strait/2015) together with several sediment cores available from previous Polarstern expeditions allow to carry out a detailed sedimentological and geochemical study that may help to unravel the changes in Arctic sea ice and circum-Arctic ice sheets during late Quaternary times. Our new data include biomarkers indicative for past sea-ice extent, phytoplankton productivity and terrigenous input as well as grain size, physical property, XRD and XRF data indicative for sources and pathways of terrigenous sediments (ice-rafted debris/IRD) related to glaciations in Eurasia, East Siberia, Canada and Greenland. Here, we present examples from selected sediment cores that give new insights into the timing and extent of sea ice and glaciations during MIS 6 to MIS 2. To highlight one example: SE-NW oriented, streamlined landforms have been mapped on top of the southern Lomonosov Ridge (LR) at water depths between 800 and 1000 m over long distances during Polarstern Expedition PS87, interpreted to be glacial lineations that formed beneath grounded ice sheets and ice streams. The orientations of the lineations identified are similar to those on the East Siberian continental margin, suggesting an East Siberian Chukchi Ice Sheet extended far to the north on LR during times of extreme Quaternary glaciations. Based on our new biomarker records from Core PS2757 (located on LR near 81°N) indicating a MIS 6 ice-edge situation with some open-water phytoplankton productivity, the glacial erosional event should have been older than MIS 6 (e.g., MIS 12?).

  19. Statistical Analysis of SSMIS Sea Ice Concentration Threshold at the Arctic Sea Ice Edge during Summer Based on MODIS and Ship-Based Observational Data.

    PubMed

    Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong

    2018-04-05

    The threshold of sea ice concentration (SIC) is the basis for accurately calculating sea ice extent based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea ice edge used in previous studies and released sea ice products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea ice edge during summer in recent years, we extracted sea ice edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea ice product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea ice ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea ice edge based on ice-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea ice edge based on ice-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted ice edge pixels for the same days. The average SIC of 31% at the sea ice edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea ice extent calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea ice under the rapidly changing Arctic.

  20. Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas

    USGS Publications Warehouse

    Harada, Naomi; Katsuki, Kota; Nakagawa, Mitsuhiro; Matsumoto, Akiko; Seki, Osamu; Addison, Jason A.; Finney, Bruce P.; Sato, Miyako

    2014-01-01

    Accurate prediction of future climate requires an understanding of the mechanisms of the Holocene climate; however, the driving forces, mechanisms, and processes of climate change in the Holocene associated with different time scales remain unclear. We investigated the drivers of Holocene sea surface temperature (SST) and sea ice extent in the North Pacific Ocean, and the Okhotsk and Bering Seas, as inferred from sediment core records, by using the alkenone unsaturation index as a biomarker of SST and abundances of sea ice-related diatoms (F. cylindrus and F. oceanica) as an indicator of sea ice extent to explore controlling mechanisms in the high-latitude Pacific. Temporal changes in alkenone content suggest that alkenone production was relatively high during the middle Holocene in the Okhotsk Sea and the western North Pacific, but highest in the late Holocene in the eastern Bering Sea and the eastern North Pacific. The Holocene variations of alkenone-SSTs at sites near Kamchatka in the Northwest Pacific, as well as in the western and eastern regions of the Bering Sea, and in the eastern North Pacific track the changes of Holocene summer insolation at 50°N, but at other sites in the western North Pacific, in the southern Okhotsk Sea, and the eastern Bering Sea they do not. In addition to insolation, other atmosphere and ocean climate drivers, such as sea ice distribution and changes in the position and activity of the Aleutian Low, may have systematically influenced the timing and magnitude of warming and cooling during the Holocene within the subarctic North Pacific. Periods of high sea ice extent in both the Okhotsk and Bering Seas may correspond to some periods of frequent or strong winter–spring dust storms in the Mongolian Gobi Desert, particularly one centered at ∼4–3 thousand years before present (kyr BP). Variation in storm activity in the Mongolian Gobi Desert region may reflect changes in the strength and positions of the Aleutian Low and Siberian

  1. Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent.

    PubMed

    Severi, M; Becagli, S; Caiazzo, L; Ciardini, V; Colizza, E; Giardi, F; Mezgec, K; Scarchilli, C; Stenni, B; Thomas, E R; Traversi, R; Udisti, R

    2017-06-01

    Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa + flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3

    PubMed Central

    Pico, T; Creveling, J. R.; Mitrovica, J. X.

    2017-01-01

    The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet's peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately −40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables. PMID:28555637

  3. Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data

    NASA Technical Reports Server (NTRS)

    Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.

    2014-01-01

    The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are signicant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10 km +/- 0.3x10 km. This is more the 250,000 km greater than the 19.44x10 km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10 km +/- 0.3x10 km. This is more than 1.5x10 km below the passive microwave record of 17.5x10 km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10 km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.

  4. Ice conditions on the Chesapeake Bay as observed from LANDSAT during the winters of 1977, 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1980-01-01

    The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.

  5. Atmospheric icing of structures: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Ágústsson, H.; Elíasson, Á. J.; Thorsteins, E.; Rögnvaldsson, Ó.; Ólafsson, H.

    2012-04-01

    This study compares observed icing in a test span in complex orography at Hallormsstaðaháls (575 m) in East-Iceland with parameterized icing based on an icing model and dynamically downscaled weather at high horizontal resolution. Four icing events have been selected from an extensive dataset of observed atmospheric icing in Iceland. A total of 86 test-spans have been erected since 1972 at 56 locations in complex terrain with more than 1000 icing events documented. The events used here have peak observed ice load between 4 and 36 kg/m. Most of the ice accretion is in-cloud icing but it may partly be mixed with freezing drizzle and wet snow icing. The calculation of atmospheric icing is made in two steps. First the atmospheric data is created by dynamically downscaling the ECMWF-analysis to high resolution using the non-hydrostatic mesoscale Advanced Research WRF-model. The horizontal resolution of 9, 3, 1 and 0.33 km is necessary to allow the atmospheric model to reproduce correctly local weather in the complex terrain of Iceland. Secondly, the Makkonen-model is used to calculate the ice accretion rate on the conductors based on the simulated temperature, wind, cloud and precipitation variables from the atmospheric data. In general, the atmospheric model correctly simulates the atmospheric variables and icing calculations based on the atmospheric variables correctly identify the observed icing events, but underestimate the load due to too slow ice accretion. This is most obvious when the temperature is slightly below 0°C and the observed icing is most intense. The model results improve significantly when additional observations of weather from an upstream weather station are used to nudge the atmospheric model. However, the large variability in the simulated atmospheric variables results in high temporal and spatial variability in the calculated ice accretion. Furthermore, there is high sensitivity of the icing model to the droplet size and the possibility that

  6. Paleo ice-cap surfaces and extents

    NASA Astrophysics Data System (ADS)

    Gillespie, A.; Pieri, D.

    2008-12-01

    The distribution, equilibrium-line altitude (ELA) and timing of Pleistocene alpine glaciers are used to constrain paleoclimatic reconstructions. Attention has largely focused on the geomorphic evidence for the former presence of simple valley glaciers; paleo alpine ice caps and their outlet glaciers have proven to be more problematical. This is especially so in the remote continental interior of Asia, where the research invested in the Alps or Rocky Mountains has yet to be duplicated. Even the putative existence and size of paleo ice caps in Tibet and the Kyrgyz Tien Shan is controversial. Remote sensing offers the opportunity to assess vast tracts of land quickly, with images and co-registered digital elevation models (DEMs) offering the most information for studies of paleoglaciers. We pose several questions: (1) With what confidence can nunataks be identified remotely? (2) What insights do their physiographic characteristics offer? (3) What characteristics of the bed of a paleo ice cap can be used to identify its former presence remotely? and (4) Can the geomorphic signatures of the edges of paleo ice caps be recognized and mapped? Reconstruction of the top surface of a paleo ice cap depends on the recognition of nunataks, typically rougher at 1 m to 100 m scales than their surroundings. Nunataks in southern Siberia are commonly notched by multiple sub- horizontal bedrock terraces. These step terraces appear to originate from freeze-thaw action on the rock-ice interface during periods of stability, and presence of multiple terraces suggests stepwise lowering of ice surfaces during deglaciation. An older generation of step-terraced nunataks, distinguished by degraded and eroded terraces, delineates a larger paleo ice cap in the Sayan Range (Siberian - Mongolian border) that significantly pre-dates the last glacial maximum (LGM). Large ice caps can experience pressure melting at their base and can manifest ice streams within the ice cap. Valleys left behind differ

  7. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  8. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  9. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea-ice to open ocean

    NASA Astrophysics Data System (ADS)

    Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.

    2016-04-01

    The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime

  10. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  11. Anomalous Variability in Antarctic Sea Ice Extents During the 1960s With the Use of Nimbus Data

    NASA Technical Reports Server (NTRS)

    Gallaher, David W.; Campbell, G. Garrett; Meier, Walter N.

    2013-01-01

    The Nimbus I, II, and III satellites provide a new opportunity for climate studies in the 1960s. The rescue of the visible and infrared imager data resulted in the utilization of the early Nimbus data to determine sea ice extent. A qualitative analysis of the early NASA Nimbus missions has revealed Antarctic sea ice extents that are significant larger and smaller than the historic 1979-2012 passive microwave record. The September 1964 ice mean area is 19.7x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more the 250,000 sq. km greater than the 19.44x10(exp 6) sq. km seen in the new 2012 historic maximum. However, in August 1966 the maximum sea ice extent fell to 15.9x10(exp 6) sq. km +/- 0.3x10(exp 6) sq. km. This is more than 1.5x10(exp 6) sq. km below the passive microwave record of 17.5x10(exp 6) sq. km set in September of 1986. This variation between 1964 and 1966 represents a change of maximum sea ice of over 3x10(exp 6) sq. km in just two years. These inter-annual variations while large, are small when compared to the Antarctic seasonal cycle.

  12. Seasonal regional forecast of the minimum sea ice extent in the LapteV Sea

    NASA Astrophysics Data System (ADS)

    Tremblay, B.; Brunette, C.; Newton, R.

    2017-12-01

    Late winter anomaly of sea ice export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea ice extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian Ice Tracking System (LITS) forced with satellite derived sea-ice drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal ice divergence leads to formation of thinner ice that melts earlier in early summer, hence creating areas of open water that have a lower albedo and trigger an ice-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea ice export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al

  13. ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.

    USGS Publications Warehouse

    Ling, Chi-Hai; Parkinson, Claire L.

    1986-01-01

    A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.

  14. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  15. Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008-2013

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward

    2014-04-01

    Since 2008, the Study of Environmental Arctic Change Sea Ice Outlook has solicited predictions of September sea-ice extent from the Arctic research community. Individuals and teams employ a variety of modeling, statistical, and heuristic approaches to make these predictions. Viewed as monthly ensembles each with one or two dozen individual predictions, they display a bimodal pattern of success. In years when observed ice extent is near its trend, the median predictions tend to be accurate. In years when the observed extent is anomalous, the median and most individual predictions are less accurate. Statistical analysis suggests that year-to-year variability, rather than methods, dominate the variation in ensemble prediction success. Furthermore, ensemble predictions do not improve as the season evolves. We consider the role of initial ice, atmosphere and ocean conditions, and summer storms and weather in contributing to the challenge of sea-ice prediction.

  16. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.

    PubMed

    Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L

    2016-06-01

    Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    USGS Publications Warehouse

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  18. Observed Hemispheric Asymmetry in Global Sea Ice Changes

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Gloersen, P.; Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.

    1997-01-01

    From November 1978 through December 1996, the areal extent of sea ice decreased by 2.9 +/- 0.4 percent per decade in the Arctic and increased by 1.3 +/- 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated.

  19. Earth Observing System (EOS) Snow and Ice Products for Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Hall, D.; Kaminski, M.; Cavalieri, D.; Dickinson, R.; Marquis, M.; Riggs, G.; Robinson, D.; VanWoert, M.; Wolfe, R.

    2005-01-01

    Snow and ice are the key components of the Earth's cryosphere, and their influence on the Earth's energy balance is very significant due at least in part to the large areal extent and high albedo characterizing these features. Large changes in the cryosphere have been measured over the last century and especially over the past decade, and remote sensing plays a pivotal role in documenting these changes. Many of NASA's Earth Observing System (EOS) products derived from instruments on the Terra, Aqua, and Ice, Cloud and land Elevation Satellite (ICESat) satellites are useful for measuring changes in features that are associated with climate change. The utility of the products is continually enhanced as the length of the time series increases. To gain a more coherent view of the cryosphere and its historical and recent changes, the EOS products may be employed together, in conjunction with other sources of data, and in models. To further this goal, the first EOS Snow and Ice Products Workshop was convened. The specific goals of the workshop were to provide current and prospective users of EOS snow and ice products up-to-date information on the products, their validation status and future enhancements, to help users utilize the data products through hands-on demonstrations, and to facilitate the integration of EOS products into models. Oral and poster sessions representing a wide variety of snow and ice topics were held; three panels were also convened to discuss workshop themes. Panel discussions focused on data fusion and assimilation of the products into models. Approximately 110 people attended, representing a wide array of interests and organizations in the cryospheric community.

  20. Seasonal and Interannual Variability of the Arctic Sea Ice: A Comparison between AO-FVCOM and Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, C.; Beardsley, R. C.; Gao, G.; Qi, J.; Lin, H.

    2016-02-01

    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the Arctic sea ice over the period 1978-2014. Good agreements were found between simulated and observed sea ice extent, concentration, drift velocity and thickness, indicating that the AO-FVCOM captured not only the seasonal and interannual variability but also the spatial distribution of the sea ice in the Arctic in the past 37 years. Compared with other six Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME and UW), the AO-FVCOM-simulated ice thickness showed a higher correlation coefficient and a smaller difference with observations. An effort was also made to examine the physical processes attributing to the model-produced bias in the sea ice simulation. The error in the direction of the ice drift velocity was sensitive to the wind turning angle; smaller when the wind was stronger, but larger when the wind was weaker. This error could lead to the bias in the near-surface current in the fully or partially ice-covered zone where the ice-sea interfacial stress was a major driving force.

  1. Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC

    NASA Astrophysics Data System (ADS)

    Ono, Jun; Tatebe, Hiroaki; Komuro, Yoshiki; Nodzu, Masato I.; Ishii, Masayoshi

    2018-02-01

    To assess the skill of seasonal to inter-annual predictions of the detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on 1 January, 1 April, 1 July and 1 October for each year from 1980 to 2011, for lead times up to three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialised with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to two months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian seas initialised in July, as suggested by previous studies.

  2. Observed ices in the Solar System

    USGS Publications Warehouse

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  3. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the

  4. An Examination of the Sea Ice Rheology for Seasonal Ice Zones Based on Ice Drift and Thickness Observations

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kimura, Noriaki

    2018-02-01

    The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.

  5. Sensitivity of Totten Glacier Ice Shelf extent and grounding line to oceanic forcing

    NASA Astrophysics Data System (ADS)

    Pelle, T.; Morlighem, M.; Choi, Y.

    2017-12-01

    Totten Glacier is a major outlet glacier of the East Antarctic Ice Sheet and has been shown to be vulnerable to ocean-induced melt in both its past and present states. The intrusion of warm, circumpolar deep water beneath the Totten Glacier Ice Shelf (TGIS) has been observed to accelerate ice shelf thinning and promote iceberg calving, a primary mechanism of mass discharge from Totten. As such, accurately simulating TGIS's ice front dynamics is crucial to the predictive capabilities of ice sheet models in this region. Here, we study the TGIS using the Ice Sheet System Model (ISSM) and test the applicability of three calving laws: Crevasse Formation calving, Eigen calving, and Tensile Stress calving. We simulate the evolution of Totten Glacier through 2100 under enhanced oceanic forcing in order to investigate both future changes in ice front dynamics and possible thresholds of instability. In addition, we artificially retreat Totten's ice front position and allow the model to proceed dynamically in order to analyze the response of the glacier to calving events. Our analyses show that Tensile Stress calving most accurately reproduces Totten Glacier's observed ice front position. Furthermore, unstable grounding line retreat is projected when Totten is simulated under stronger oceanic thermal forcing scenarios and when the calving front is significantly retreated.

  6. Polar Climate: Arctic sea ice

    USGS Publications Warehouse

    Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.

    2005-01-01

    Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).

  7. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  8. Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al

    2007-01-01

    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.

  9. Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; hide

    2012-01-01

    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.

  10. Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages

    USGS Publications Warehouse

    Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.

    2008-01-01

    The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.

  11. Wave-ice interaction, observed and modelled

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes

    2017-04-01

    The need for wide-spread, up-to-date sea state predictions and observations in the emerging ice-free Arctic will further increase as the region will open up to marine operations. Wave models for arctic regions have to capture the additional wave physics associated with wave-ice interactions, and different prediction schemes have to be tested against observations. Here we present examples of spatial wave field parameters obtained from TerraSAR-X StripMap swaths in the southern Beaufort Sea taken as part of the "Arctic Sea State and Boundary Layer DRI". Fetch evolution of the significant wave height and length in open waters, and dominant wave lengths and the high frequency cut-off of the wave spectrum in ice are readily extracted from the SAR (synthetic aperture radar) data. A surprising result is that wave evolution in off-ice wind conditions is more rapidly than the fetch evolution in off-land cases, suggesting seeding of the wave field within the ice-covered region.

  12. The role of sea ice in 2 x CO2 climate model sensitivity. Part 1: The total influence of sea ice thickness and extent

    NASA Technical Reports Server (NTRS)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1995-01-01

    As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. Thinner ice amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner ice to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater sea ice extent in the control run, which provides more opportunity for sea ice reduction. An experiment with sea ice not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of sea ice on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to sea ice variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the sea ice impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying sea level increases of varying magnitude or no change. These results highlight the importance of properly constraining the sea ice response to climate perturbations, necessitating the use of more realistic sea ice and ocean models.

  13. Tracking the seasonal cycle of coastal sea ice: Community-based observations and satellite remote sensing in service of societal needs

    NASA Astrophysics Data System (ADS)

    Eicken, Hajo; Lee, Olivia A.; Johnson, Mark A.; Pulsifer, Peter; Danielsen, Finn

    2017-04-01

    Break-up and freeze-up of coastal sea ice determine the timing and extent of a number of human activities, ranging from ice use by Indigenous hunters to coastal shipping. Yet, while major reductions in the extent of Arctic summer sea ice have been well studied, changes in its seasonal cycle have received less attention. Here, we discuss decadal scale changes and interannual variability in the timing of spring break-up and fall freeze-up, with a focus on coastal communities in Arctic Alaska. Observations of ice conditions by Indigenous sea-ice experts since 2006 indicate significant interannual variability in both the character and timing of freeze-up and break-up in the region. To aid in the archival and sharing of such observations, we have developed a database for community ice observations (eloka-arctic.org/sizonet). Development of this database addressed key questions ranging from community guidance on different levels of data sharing and access to the development of protocols that may lend themselves for implementation in the context of operational programs such as Global Cryosphere Watch. The lessons learned and tools developed through this effort may help foster the emergence of common observation protocols and sharing practices across the Arctic, as explored jointly with the Greenlandic PISUNA initiative and the European INTAROS project. For the Arctic Alaska region, we developed an algorithm to extract the timing of break-up and freeze-up from passive microwave satellite data, drawing on community-based observations. Data from 1979 to 2013 show break-up start arriving earlier by 5-9 days per decade and freeze-up start arriving later by 7-14 days per decade in the Chukchi and Beaufort Seas. The trends towards a shorter ice season observed over the past several decades point towards a substantial change in the winter ice regime by mid-century with incipient overlap of the end of the freeze-up and start of the break-up season as defined by coastal ice users.

  14. McMurdo Ice Shelf Sounding and Radar Statistical Reconnaissance at 60-MHz: Brine Infiltration Extent and Surface Properties

    NASA Astrophysics Data System (ADS)

    Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.

    2014-12-01

    McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert

  15. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  16. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1986-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  17. Seasonal and interannual variability of the Arctic sea ice: A comparison between AO-FVCOM and observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Chen, Changsheng; Beardsley, Robert C.; Gao, Guoping; Qi, Jianhua; Lin, Huichan

    2016-11-01

    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978-2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ˜0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.

  18. Arctic sea ice concentration observed with SMOS during summer

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Martinez, Justino; Turiel, Antonio

    2017-04-01

    The Arctic Ocean is under profound transformation. Observations and model predictions show dramatic decline in sea ice extent and volume [1]. A retreating Arctic ice cover has a marked impact on regional and global climate, and vice versa, through a large number of feedback mechanisms and interactions with the climate system [2]. The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution, continuous multi-angle viewing, large wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. A novel radiometric method to determine sea ice concentration (SIC) from SMOS is presented. The method uses the Bayesian-based Maximum Likelihood Estimation (MLE) approach to retrieve SIC. The advantage of this approach with respect to the classical linear inversion is that the former takes into account the uncertainty of the tie-point measured data in addition to the mean value, while the latter only uses a mean value of the tie-point data. When thin ice is present, the SMOS algorithm underestimates the SIC due to the low opacity of the ice at this frequency. However, using a synergistic approach with data from other satellite sensors, it is possible to obtain accurate thin ice thickness estimations with the Bayesian-based method. Despite its lower spatial resolution relative to SSMI or AMSR-E, SMOS-derived SIC products are little affected by the atmosphere and the snow (almost transparent at L-band). Moreover L-band measurements are more robust in front of the

  19. Ice Sheet and Sea Ice Observations from Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, R. I.; Maslanik, J. A.

    2011-12-01

    A suite of sensors has been assembled to map ice sheet and sea ice surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map ice sheet elevations near Jakobshavn Isbræ in Greenland, and to measure sea ice freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait sea ice conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.

  20. An observational search for CO2 ice clouds on Mars

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Calvin, Wendy M.; Pollack, James B.; Crisp, David

    1993-01-01

    CO2 ice clouds were first directly identified on Mars by the Mariner 6 and 7 infrared spectrometer limb scans. These observations provided support for early theoretical modeling efforts of CO2 condensation. Mariner 9 IRIS temperature profiles of north polar hood clouds were interpreted as indicating that these clouds were composed of H2O ice at lower latitudes and CO2 ice at higher latitudes. The role of CO2 condensation on Mars has recently received increased attention because (1) Kasting's model results indicated that CO2 cloud condensation limits the magnitude of the proposed early Mars CO2/H2O greenhouse, and (2) Pollack el al.'s GCM results indicated that the formation of CO2 ice clouds is favorable at all polar latitudes during the fall and winter seasons. These latter authors have shown that CO2 clouds play an important role in the polar energy balance, as the amount of CO2 contained in the polar caps is constrained by a balance between latent heat release, heat advected from lower latitudes, and thermal emission to space. The polar hood clouds reduce the amount of CO2 condensation on the polar caps because they reduce the net emission to space. There have been many extensive laboratory spectroscopic studies of H2O and CO2 ices and frosts. In this study, we use results from these and other sources to search for the occurrence of diagnostic CO2 (and H2O) ice and/or frost absorption features in ground based near-infrared imaging spectroscopic data of Mars. Our primary goals are (1) to try to confirm the previous direct observations of CO2 clouds on Mars; (2) to determine the spatial extent, temporal variability, and composition (H2O/CO2 ratio) of any clouds detected; and (3) through radiative transfer modeling, to try to determine the mean particle size and optical depth of polar hood clouds, thus, assessing their role in the polar heat budget.

  1. Water ice clouds observations with PFS on Mars Express

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  2. Observing Ice in Clouds from Space

    NASA Technical Reports Server (NTRS)

    Ackerman, S.; Star, D. O'C.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Norris, P.; daSilva, A.; Soden, B.

    2006-01-01

    There are many satellite observations of cloud top properties and the liquid and rain content of clouds, however, we do not yet quantitatively understand the processes that control the water budget of the upper troposphere where ice is the predominant phase, and how these processes are linked to precipitation processes and the radiative energy budget. The ice in clouds in the upper troposphere either melts into rain or is detrained, and persists, as cirrus clouds affecting the hydrological and energy cycle, respectively. Fully modeling the Earth's climate and improving weather and climate forecasts requires accurate satellite measurements of various cloud properties at the temporal and spatial scales of cloud processes. These properties include cloud horizontal and vertical structure, cloud water content and some measure of particle sizes and shapes. The uncertainty in knowledge of these ice characteristics is reflected in the large discrepancies in model simulations of the upper tropospheric water budget. Model simulations are sensitive to the partition of ice between precipitation and outflow processes, i.e., to the parameterization of ice clouds and ice processes. One barrier to achieving accurate global ice cloud properties is the lack of adequate observations at millimeter and submillimeter wavelengths (183-874 GHz). Recent advances in instrumentation have allowed for the development and implementation of an airborne submillimeter-wave radiometer. The brightness temperatures at these frequencies are especially sensitive to cirrus ice particle sizes (because they are comparable to the wavelength). This allows for more accurate ice water path estimates when multiple channels are used to probe into the cloud layers. Further, submillimeter wavelengths offer simplicity in the retrieval algorithms because they do not probe into the liquid and near surface portions of clouds, thus requiring only one term of the radiative transfer equation (ice scattering) to relate

  3. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  4. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  5. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean

    PubMed Central

    Horvat, Christopher; Jones, David Rees; Iams, Sarah; Schroeder, David; Flocco, Daniela; Feltham, Daniel

    2017-01-01

    In July 2011, the observation of a massive phytoplankton bloom underneath a sea ice–covered region of the Chukchi Sea shifted the scientific consensus that regions of the Arctic Ocean covered by sea ice were inhospitable to photosynthetic life. Although the impact of widespread phytoplankton blooms under sea ice on Arctic Ocean ecology and carbon fixation is potentially marked, the prevalence of these events in the modern Arctic and in the recent past is, to date, unknown. We investigate the timing, frequency, and evolution of these events over the past 30 years. Although sea ice strongly attenuates solar radiation, it has thinned significantly over the past 30 years. The thinner summertime Arctic sea ice is increasingly covered in melt ponds, which permit more light penetration than bare or snow-covered ice. Our model results indicate that the recent thinning of Arctic sea ice is the main cause of a marked increase in the prevalence of light conditions conducive to sub-ice blooms. We find that as little as 20 years ago, the conditions required for sub-ice blooms may have been uncommon, but their frequency has increased to the point that nearly 30% of the ice-covered Arctic Ocean in July permits sub-ice blooms. Recent climate change may have markedly altered the ecology of the Arctic Ocean. PMID:28435859

  6. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    NASA Astrophysics Data System (ADS)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  7. On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.

    1987-01-01

    The influence of the hemispheric atmospheric circulation on the sea ice covers of the Bering Sea and the Sea of Okhotsk is examined using data obtained with the Nimbus 5 electrically scanning microwave radiometer for the four winters of the 1973-1976 period. The 3-day averaged sea ice extent data were used to establish periods for which there is an out-of-phase relationship between fluctuations of the two ice covers. A comparison of the sea-level atmospheric pressure field with the seasonal, interannual, and short-term sea ice fluctuations reveal an association between changes in the phase and the amplitude of the long waves in the atmosphere and advance and retreat of Arctic ice covers.

  8. Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John

    2016-01-01

    ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.

  9. Observations of the Sea Ice Cover Using Satellite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    1995-01-01

    The fringes observed in repeat pass interferograms are expressions of surface relief and relative displacements. The limiting condition in the application of spaceborne radar interferometry to the remote sensing of the sea ice cover is the large magnitude of motion between repeat passes. The translation and rotation of ice floes tend to decorrelate the observations rendering radar interferometry ineffective. In our study, we have located three images in the high Arctic during a period when there was negligible motion between repeat observations. The fringes obtained from these images show a wealth of information about the sea ice cover which is important in atmosphere-ice interactions and sea ice mechanics. These measurements provide the first detailed remote sensing view of the sea ice cover. Ridges can be observed and their heights estimated if the interferometric baseline allows. We have observed ridges with heights greater than 4m. The variability in the phase measurements over an area provides an indication of the large scale roughness. Relative centimetric displacements between rigid ice floes have been observed. We illustrate these observations with examples extracted from the interferograms formed from this set of ERS-1 SAR images.

  10. 30-Year Satellite Record Reveals Accelerated Arctic Sea Ice Loss, Antarctic Sea Ice Trend Reversal

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    Arctic sea ice extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent observed in the early 1970's.

  11. Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David

    2015-11-01

    During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM

  12. Extent and relevance of stacking disorder in “ice Ic”

    PubMed Central

    Kuhs, Werner F.; Sippel, Christian; Falenty, Andrzej; Hansen, Thomas C.

    2012-01-01

    A solid water phase commonly known as “cubic ice” or “ice Ic” is frequently encountered in various transitions between the solid, liquid, and gaseous phases of the water substance. It may form, e.g., by water freezing or vapor deposition in the Earth’s atmosphere or in extraterrestrial environments, and plays a central role in various cryopreservation techniques; its formation is observed over a wide temperature range from about 120 K up to the melting point of ice. There was multiple and compelling evidence in the past that this phase is not truly cubic but composed of disordered cubic and hexagonal stacking sequences. The complexity of the stacking disorder, however, appears to have been largely overlooked in most of the literature. By analyzing neutron diffraction data with our stacking-disorder model, we show that correlations between next-nearest layers are clearly developed, leading to marked deviations from a simple random stacking in almost all investigated cases. We follow the evolution of the stacking disorder as a function of time and temperature at conditions relevant to atmospheric processes; a continuous transformation toward normal hexagonal ice is observed. We establish a quantitative link between the crystallite size established by diffraction and electron microscopic images of the material; the crystallite size evolves from several nanometers into the micrometer range with progressive annealing. The crystallites are isometric with markedly rough surfaces parallel to the stacking direction, which has implications for atmospheric sciences. PMID:23236184

  13. Ocean Wave-to-Ice Energy Transfer Determined from Seafloor Pressure and Ice Shelf Seismic Observations

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2017-12-01

    Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in ice shelves that may trigger tabular iceberg calving and/or ice shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross Ice Shelf (RIS) and on the Pine Island Glacier (PIG) ice shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic ice shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-ice seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the ice-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these ice shelf parameters from observations will improve modeling of ice shelf response to ocean forcing, and ice shelf evolution.

  14. Observations of brine plumes below melting Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  15. Sea-ice anomalies observed in the Greenland and Labrador seas during 1901 1984 and their relation to an interdecadal Arctic climate cycle

    NASA Astrophysics Data System (ADS)

    Mysak, L. A.; Manak, D. K.; Marsden, R. F.

    1990-12-01

    Two independent ice data sets from the Greenland and Labrador Seas have been analyzed for the purpose of characterizing interannual and decadal time scale sea-ice extent anomalies during this century. Sea-ice concentration data for the 1953 1984 period revealed the presence of a large positive anomaly in the Greenland Sea during the 1960s which coincided with the “great salinity anomaly”, an upper-ocean low-salinity water mass that was observed to travel cyclonically around the northern North Atlantic during 1968 1982. This ice anomaly as well as several smaller ones propagated into the Labrador Sea and then across to the Labrador and east Newfoundland coast, over a period of 3 to 5 years. A complex empirical orthogonal function analysis of the same data also confirmed this propagation phenomenon. An inverse relation between sea-ice and salinity anomalies in the Greenland-Labrador Sea region was also generally found. An analysis of spring and summer ice-limit data obtained from Danish Meteorological Institute charts for the period 1901 1956 indicated the presence of heavy ice conditions (i.e., positive ice anomalies) in the Greenland Sea during 1902 1920 and in the late 1940s, and generally negative ice anomalies during the 1920s and 1930s. Only limited evidence of the propagation of Greenland Sea ice anomalies into the Labrador Sea was observed, however, probably because the data were from the ice-melt seasons. On the other hand, several large ice anomalies in the Greenland Sea occurred 2 3 years after large runoffs (in the early 1930s and the late 1940s) from northern Canada into the western Arctic Ocean. Similarly, a large runoff into the Arctic during 1964 1966 preceded the large Greenland Sea ice anomaly of the 1960s. These facts, together with recent evidence of ‘climatic jumps’ in the Northern Hemisphere tropospheric circulation, suggest the existence of an interdecadal self-sustained climate cycle in the Arctic. In the Greenland Sea, this cycle is

  16. The Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  17. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-04-01

    The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.

  18. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    NASA Technical Reports Server (NTRS)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  19. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  20. Gypsum crystals observed in experimental and natural sea ice

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.

    2013-12-01

    gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.

  1. Dynamics of landfast sea ice near Jangbogo Antarctic Research Station observed by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Han, H.

    2015-12-01

    Landfast sea ice is a type of sea ice adjacent to the coast and immobile for a certain period of time. It is important to analyze the temporal and spatial variation of landfast ice because it has significant influences on marine ecosystem and the safe operation of icebreaker vessels. However, it has been a difficult task for both remote sensing and in situ observation to discriminate landfast ice from other types of sea ice, such as pack ice, and also to understand the dynamics and internal strss-strain of fast ice. In this study, we identify landfast ice and its annual variation in Terra Nova Bay (74° 37' 4"S, 164° 13' 7"E), East Antarctica, where Jangbogo Antarctic Research Station has recently been constructed in 2014, by using Interferometric Synthetic Aperture Radar (InSAR) technology. We generated 38 interferograms having temporal baselines of 1-9 days out of 62 COSMO-SkyMed SAR images over Terra Nova Bay obtained from December 2010 to January 2012. Landfast ice began to melt in November 2011 when air temperature raised above freezing point but lasted more than two month to the end of the study period in January 2012. No meaningful relationship was found between sea ice extent and wind and current. Glacial strain (~67cm/day) is similar to tidal strain (~40 cm) so that they appear similar in one-day InSAR. As glacial stress is cumulative while tidal stress is oscillatory, InSAR images with weekly temporal baseline (7~9 days) revealed that a consistent motion of Campbell Glacier Tongue (CGT) is pushing the sea ice continuously to make interferometric fringes parallel to the glacier-sea ice contacts. Glacial interferometric fringe is parallel to the glacier-sea ice contact lines while tidal strain should be parallel to the coastlines defined by sea shore and glacier tongue. DDInSAR operation removed the consistent glacial strain leaving tidal strain alone so that the response of fast ice to tide can be used to deduce physical properties of sea ice in various

  2. Observing Arctic Sea Ice from Bow to Screen: Introducing Ice Watch, the Data Network of Near Real-Time and Historic Observations from the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)

    NASA Astrophysics Data System (ADS)

    Orlich, A.; Hutchings, J. K.; Green, T. M.

    2013-12-01

    The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with

  3. A 100-year Reconstruction of Regional Sea Ice Extent in the Ross and Amundsen-Bellingshausen Seas as Derived from the RICE Ice Core, Coastal West Antarctica

    NASA Astrophysics Data System (ADS)

    Emanuelsson, D. B.; Bertler, N. A. N.; Baisden, W. T.; Keller, E. D.

    2014-12-01

    Antarctic sea ice increased over the past decades. This increase is the result of an increase in the Ross Sea (RS) and along the coast of East Antarctica, whereas the Amundsen-Bellingshausen Seas (ABS) and the Antarctic Peninsula has seen a general decline. Several mechanisms have been suggested as drivers for the regional, complex sea ice pattern, which include changes in ocean currents, wind pattern, as well as ocean and atmospheric temperature. As part of the Roosevelt Island Climate Evolution (RICE) project, a 763 m deep ice core was retrieved from Roosevelt Island (RI; W161° 21', S79°41', 560 m a.s.l.), West Antarctica. The new record provides a unique opportunity to investigate mechanism driving sea ice variability in the RS and ABS sectors. Here we present the water stable isotope record (δD) from the upper part of the RICE core 0-40 m, spanning the time period from 1894 to 2011 (Fig. 1a). Annual δD are correlated with Sea Ice Concentration (SIC). A significant negative (r= -0.45, p≤ 0.05) correlation was found between annual δD and SIC in the eastern RS sector (boxed region in Fig. 1b) for the following months NDJFMA (austral summer and fall). During NDJFMA, RI receives local moisture input from the RS, while during the rest of the year a large extent of this local moisture source area will be covered with sea ice with the exception of the RS Polynya. Concurrently, we observe positive δD and SIC correlations in the ABS, showing a dipole pattern with the eastern RS. For this reason, we suggest that the RICE δD might be used as a proxy for past SIC for the RS and ABS region. There is no overall trend in δD over 100 years (r= -0.08 ‰ dec-1, p= 0.81, 1894-2011). However, we observe a strong increase from 2000-2011 of 17.7 ‰ dec-1(p≤ 0.1), yet the recent δD values and trend of the last decade are not unprecedented (Fig. 1a). We investigate changes in sea surface temperature, atmospheric temperature, inferred surface ocean currents and

  4. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    NASA Technical Reports Server (NTRS)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  5. Collaborative, International Efforts at Estimating Arctic Sea Ice Processes During IPY (Invited)

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Eicken, H.; Wiggins, H. V.

    2009-12-01

    Planning for the fourth IPY was conducted during a time of moderate decadal change in the Arctic. However, after this initial planning was completed, further rapid changes were seen, including a 39 % reduction in summer sea ice extent in 2007 and 2008 relative to the 1980s-1990s, loss of multi-year sea ice, and increased sea ice mobility. The SEARCH and DAMOCLES Programs endeavored to increase communication within the research community to promote observations and understanding of rapidly changing Arctic sea ice conditions during IPY. In May 2008 a web-based Sea Ice Outlook was initiated, an international collaborative effort that synthesizes, on a monthly basis throughout the summer, the community’s projections for September arctic sea ice extent. Each month, participating investigators provided a projection for the mean September sea ice extent based on spring and early summer data, along with a rationale for their estimates. The Outlook continued in summer of 2009. The Outlook is a method of rapidly synthesizing a broad range of remote sensing and field observations collected at the peak of the IPY, with analysis methods ranging from heuristic to statistical to ice-ocean model ensemble runs. The 2008 Outlook was a success with 20 groups participating and providing a median sea ice extent projection from June 2008 data of 4.4 million square kilometers (MSQK)—near the observed extent in September 2008 of 4.7 MSQK, and well below the 1979-2007 climatological extent of 6.7 MSQK. More importantly, the contrast of sea ice conditions and atmospheric forcing in 2008 compared to 2007 provided clues to the future fate of arctic sea ice. The question was whether the previous loss of multi-year ice and delay in autumn freeze-up in 2007 would allow sufficient winter thickening of sea ice to last through the summer 2008, promoting recovery from the 2007 minimum, or whether most first-year sea ice would melt out as in 2005 and 2007, resulting in a new record minimum extent

  6. Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Sullivan, C. W.

    1986-01-01

    The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.

  7. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  8. 30-Year Satellite Record Reveals Contrasting Arctic and Antarctic Decadal Sea Ice Variability

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    A 30-year satellite record of sea ice extents derived mostly from satellite microwave radiometer observations reveals that the Arctic sea ice extent decreased by 0.30+0.03 x 10(exp 6) square kilometers per 10 yr from 1972 through 2002, but by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per 10yr from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased. Over the full 30-year period, the Antarctic ice extent decreased by 0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10 yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent in the early 1970's, an anomaly that apparently began in the late 1960's, as observed in early visible and infrared satellite images.

  9. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  10. Observations of sea ice and icebergs from satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Rapley, C. G.

    1984-01-01

    Satellite radar altimeters can make useful contributions to the study of sea ice both by enhancing observations from other instruments and by providing a unique probe of ocean-ice interaction in the Marginal Ice Zone (MIZ). The problems, results and future potential of such observations are discussed.

  11. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  12. Will Arctic sea ice thickness initialization improve seasonal forecast skill?

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Hawkins, E.; Tietsche, S.

    2014-11-01

    Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

  13. Observational Simulation of Icing in Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel

    2017-04-01

    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft

  14. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications

    NASA Astrophysics Data System (ADS)

    DeWeaver, Eric T.; Bitz, Cecilia M.; Tremblay, L.-Bruno

    This volume addresses the rapid decline of Arctic sea ice, placing recent sea ice decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of sea ice. Highlights of the work presented here include • An appraisal of the role played by wind forcing in driving the decline; • A reconstruction of Arctic sea ice conditions prior to human observations, based on proxy data from sediments; • A modeling approach for assessing the impact of sea ice decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; • Contrasting studies on the existence of a "tipping point," beyond which Arctic sea ice decline will become (or has already become) irreversible, including an examination of the role of the small ice cap instability in global warming simulations; • A significant summertime atmospheric response to sea ice reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic sea ice, model projections of future sea ice loss, and the consequences of sea ice loss for the natural and human systems of the Arctic.

  15. Multi-resolution Changes in the Spatial Extent of Perennial Arctic Alpine Snow and Ice Fields with Potential Archaeological Significance in the Central Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.

    2015-12-01

    Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage

  16. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  17. Thin Sea Ice, Thick Snow, and Widespread Negative Freeboard Observed During N-ICE2015 North of Svalbard

    NASA Astrophysics Data System (ADS)

    Rösel, Anja; Itkin, Polona; King, Jennifer; Divine, Dmitry; Wang, Caixin; Granskog, Mats A.; Krumpen, Thomas; Gerland, Sebastian

    2018-02-01

    In recent years, sea-ice conditions in the Arctic Ocean changed substantially toward a younger and thinner sea-ice cover. To capture the scope of these changes and identify the differences between individual regions, in situ observations from expeditions are a valuable data source. We present a continuous time series of in situ measurements from the N-ICE2015 expedition from January to June 2015 in the Arctic Basin north of Svalbard, comprising snow buoy and ice mass balance buoy data and local and regional data gained from electromagnetic induction (EM) surveys and snow probe measurements from four distinct drifts. The observed mean snow depth of 0.53 m for April to early June is 73% above the average value of 0.30 m from historical and recent observations in this region, covering the years 1955-2017. The modal total ice and snow thicknesses, of 1.6 and 1.7 m measured with ground-based EM and airborne EM measurements in April, May, and June 2015, respectively, lie below the values ranging from 1.8 to 2.7 m, reported in historical observations from the same region and time of year. The thick snow cover slows thermodynamic growth of the underlying sea ice. In combination with a thin sea-ice cover this leads to an imbalance between snow and ice thickness, which causes widespread negative freeboard with subsequent flooding and a potential for snow-ice formation. With certainty, 29% of randomly located drill holes on level ice had negative freeboard.

  18. ASPECTS OF ARCTIC SEA ICE OBSERVABLE BY SEQUENTIAL PASSIVE MICROWAVE OBSERVATIONS FROM THE NIMBUS-5 SATELLITE.

    USGS Publications Warehouse

    Campbell, William J.; Gloersen, Per; Zwally, H. Jay; ,

    1984-01-01

    Observations made from 1972 to 1976 with the Electrically Scanning Microwave Radiometer on board the Nimbus-5 satellite provide sequential synoptic information of the Arctic sea ice cover. This four-year data set was used to construct a fairly continuous series of three-day average 19-GHz passive microwave images which has become a valuable source of polar information, yielding many anticipated and unanticipated discoveries of the sea ice canopy observed in its entirety through the clouds and during the polar night. Short-term, seasonal, and annual variations of key sea ice parameters, such as ice edge position, ice types, mixtures of ice types, ice concentrations, and snow melt on the ice, are presented for various parts of the Arctic.

  19. Developing A Model for Lake Ice Phenology Using Satellite Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Skoglund, S. K.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Ewing, H. A.

    2017-12-01

    Many northern temperate freshwater lakes are freezing over later and thawing earlier. This shift in timing, and the resulting shorter duration of seasonal ice cover, is expected to impact ecological processes, negatively affecting aquatic species and the quality of water we drink. Long-term, direct observations have been used to analyze changes in ice phenology, but those data are sparse relative to the number of lakes affected. Here we develop a model to utilize remote sensing data in approximating the dates of ice-on and ice-off for many years over a variety of lakes. Day and night surface temperatures from MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra (MYD11A1 and MOD11A1 data products) for 2002-2017 were utilized in combination with observed ice-on and ice-off dates of Lake Auburn, Maine, to determine the ability of MODIS data to match ground-based observations. A moving average served to interpolate MODIS temperature data to fill data gaps from cloudy days. The nighttime data were used for ice-off, and the daytime measurements were used for ice-on predictions to avoid fluctuations between day and night ice/water status. The 0˚C intercepts of those data were used to mark approximate days of ice-on or ice-off. This revealed that approximations for ice-off dates were satisfactory (average ±8.2 days) for Lake Auburn as well as for Lake Sunapee, New Hampshire (average ±8.1 days), while approximations for Lake Auburn ice-on were less accurate and showed consistently earlier-than-observed ice-on dates (average -33.8 days). The comparison of observed and remotely sensed Lake Auburn ice cover duration showed relative agreement with a correlation coefficient of 0.46. Other remote sensing observations, such as the new GOES-R satellite, and further exploration of the ice formation process can improve ice-on approximation methods. The model shows promise for estimating ice-on, ice-off, and ice cover duration for northern temperate lakes.

  20. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent

  1. Satellite Observations of Antarctic Sea Ice Thickness and Volume

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan; Markus, Thorsten

    2012-01-01

    We utilize satellite laser altimetry data from ICESat combined with passive microwave measurements to analyze basin-wide changes in Antarctic sea ice thickness and volume over a 5 year period from 2003-2008. Sea ice thickness exhibits a small negative trend while area increases in the summer and fall balanced losses in thickness leading to small overall volume changes. Using a five year time-series, we show that only small ice thickness changes of less than -0.03 m/yr and volume changes of -266 cu km/yr and 160 cu km/yr occurred for the spring and summer periods, respectively. The calculated thickness and volume trends are small compared to the observational time period and interannual variability which masks the determination of long-term trend or cyclical variability in the sea ice cover. These results are in stark contrast to the much greater observed losses in Arctic sea ice volume and illustrate the different hemispheric changes of the polar sea ice covers in recent years.

  2. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  3. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.

  4. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  5. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  6. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  7. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  8. The Effect of Recent Decreases in Sea Ice Extent and Increases in SST on the Seasonal Availability of Arctic Cod (Boreogadus saida) to Seabirds in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Divoky, G.; Druckenmiller, M. L.

    2016-02-01

    With major decreases in pan-Arctic summer sea ice extent steadily underway, the Beaufort Sea has been nearly ice-free in five of the last eight summers. This loss of a critical arctic marine habitat and the concurrent warming of the recently ice-free waters could potentially cause major changes in the biological oceanography of the Beaufort Sea and alter the distribution, abundance and condition of the region's upper trophic level predators that formerly relied on prey associated with sea ice or cold (<2°C) surface waters. Arctic cod (Boreogadus saida), the primary forage fish for seabirds in the Beaufort Sea, is part of the cryopelagic fauna associated with sea ice and is also found in adjacent ice-free waters. In the extreme western Beaufort Sea near Cooper Island, Arctic cod availability to breeding Black Guillemots (Cepphus grylle), a diving seabird, has declined since 2002. Guillemots are a good indicator of Arctic cod availability in surface waters and the upper water column as they feed at depths of 1-20m. Currently, when sea ice is absent from the nearshore and SST exceeds 4°C, guillemots are observed to seasonally shift from Arctic cod to nearshore demersal prey, with a resulting decrease in nestling survival and quality. Arctic cod is the primary prey for many of the seabirds utilizing the Beaufort Sea as a post-breeding staging area and migratory corridor in late summer and early fall. The loss of approximately 200-300 thousand sq km of summer sea ice habitat in recent years could be expected to affect the distribution, abundance, and movements of these species as there are few alternative fish resources in the region. We examine temporal and spatial variation in August sea ice extent and SST in the Beaufort Sea to determine the regions, periods and bird species that are potentially most affected as the Beaufort Sea transitions to becoming regularly ice-free in late summer.

  9. Understanding the Sea Ice Zone: Scientists and Communities Partnering to Archive, Analyze and Disseminate Local Ice Observations

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; Oldenburg, J.; Liu, M.; Pulsifer, P. L.; Kaufman, M.; Eicken, H.; Parsons, M. A.

    2012-12-01

    Knowledge of sea ice is critical to the hunting, whaling, and cultural activities of many Indigenous communities in Northern and Western Alaska. Experienced hunters have monitored seasonal changes of the sea ice over many years, giving them a unique expertise in assessing the current state of the sea ice as well as any anomalies in seasonal sea ice conditions. The Seasonal Ice Zone Observing Network (SIZONet), in collaboration with the Exchange for Local Observations and Knowledge of the Arctic (ELOKA), has developed an online application for collecting, storing, and analyzing sea ice observations contributed by local experts from coastal Alaskan communities. Here we present the current iteration of the application, outline future plans and discuss how the development process and resulting system have improved our collective understanding of sea ice processes and changes. The SIZONet application design is based on the needs of the research scientists responsible for entering observation data into the database, the needs of local sea ice experts contributing their observations and knowledge, and the information needs of Alaska coastal communities. Entry forms provide a variety of input methods, including menus, check boxes, and free text input. Input options strive to balance flexibility in capturing concepts and details with the need for analytical consistency. Currently, research staff at the University of Alaska Fairbanks use the application to enter observations received via written or electronic communications from local sea ice experts. Observation data include current weather conditions, snow and ice quantity and quality, and wildlife sighted or taken. Future plans call for direct use of the SIZONet interface by local sea ice experts as well as students, both as contributors to the data collection and as users seeking meaning in the data. This functionality is currently available to a limited number of community members as we extend the application to support

  10. The influence of sea ice on Antarctic ice core sulfur chemistry and on the future evolution of Arctic snow depth: Investigations using global models

    NASA Astrophysics Data System (ADS)

    Hezel, Paul J.

    Observational studies have examined the relationship between methanesulfonic acid (MSA) measured in Antarctic ice cores and sea ice extent measured by satellites with the aim of producing a proxy for past sea ice extent. MSA is an oxidation product of dimethylsulfide (DMS) and is potentially linked to sea ice based on observations of very high surface seawater DMS in the sea ice zone. Using a global chemical transport model, we present the first modeling study that specifically examines this relationship on interannual and on glacial-interglacial time scales. On interannual time scales, the model shows no robust relationship between MSA deposited in Antarctica and sea ice extent. We show that lifetimes of MSA and DMS are longer in the high latitudes than in the global mean, interannual variability of sea ice is small (<25%) as a fraction of sea ice area, and sea ice determines only a fraction of the variability (<30%) of DMS emissions from the ocean surface. A potentially larger fraction of the variability in DMS emissions is determined by surface wind speed (up to 46%) via the parameterization for ocean-to-atmosphere gas exchange. Furthermore, we find that a significant fraction (up to 74%) of MSA deposited in Antarctica originates from north of 60°S, north of the seasonal sea ice zone. We then examine the deposition of MSA and non-sea-salt sulfate (nss SO2-4 ) on glacial-interglacial time scales. Ice core observations on the East Antarctic Plateau suggest that MSA increases much more than nss SO2-4 during the last glacial maximum (LGM) compared to the modern period. It has been suggested that high MSA during the LGM is indicative of higher primary productivity and DMS emissions in the LGM compared to the modern day. Studies have also shown that MSA is subject to post-depositional volatilization, especially during the modern period. Using the same chemical transport model driven by meteorology from a global climate model, we examine the sensitivity of MSA and nss

  11. On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Zhang, Rong; Knutson, Thomas R.

    2017-04-01

    This study aims to understand the relative roles of external forcing versus internal climate variability in causing the observed Barents Sea winter sea ice extent (SIE) decline since 1979. We identify major discrepancies in the spatial patterns of winter Northern Hemisphere sea ice concentration trends over the satellite period between observations and CMIP5 multi-model mean externally forced response. The CMIP5 externally forced decline in Barents Sea winter SIE is much weaker than that observed. Across CMIP5 ensemble members, March Barents Sea SIE trends have little correlation with global mean surface air temperature trends, but are strongly anti-correlated with trends in Atlantic heat transport across the Barents Sea Opening (BSO). Further comparison with control simulations from coupled climate models suggests that enhanced Atlantic heat transport across the BSO associated with regional internal variability may have played a leading role in the observed decline in winter Barents Sea SIE since 1979.

  12. Oceans Melting Greenland (OMG): 2017 Observations and the First Look at Yearly Ocean/Ice Changes

    NASA Astrophysics Data System (ADS)

    Willis, J. K.; Rignot, E. J.; Fenty, I. G.; Khazendar, A.; Moller, D.; Tinto, K. J.; Morison, J.; Schodlok, M.; Thompson, A. F.; Fukumori, I.; Holland, D.; Forsberg, R.; Jakobsson, M.; Dinardo, S. J.

    2017-12-01

    Oceans Melting Greenland (OMG) is an airborne NASA Mission to investigate the role of the oceans in ice loss around the margins of the Greenland Ice Sheet. A five-year campaign, OMG will directly measure ocean warming and glacier retreat around all of Greenland. By relating these two, we will explore one of the most pressing open questions about how climate change drives sea level rise: How quickly are the warming oceans melting the Greenland Ice Sheet from the edges? This year, OMG collected its second set of both elevation maps of marine terminating glaciers and ocean temperature and salinity profiles around all of Greenland. This give us our first look at year-to-year changes in both ice volume at the margins, as well as the volume and extent of warm, salty Atlantic water present on the continental shelf. In addition, we will compare recent data in east Greenland waters with historical ocean observations that suggest a long-term warming trend there. Finally, we will briefly review the multi-beam sonar and airborne gravity campaigns—both of which were completed last year—and the dramatic improvement they had on bathymetry maps over the continental shelf around Greenland.

  13. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  14. Sparse ice: Geophysical, biological and Indigenous knowledge perspectives on a habitat for ice-associated fauna

    NASA Astrophysics Data System (ADS)

    Lee, O. A.; Eicken, H.; Weyapuk, W., Jr.; Adams, B.; Mohoney, A. R.

    2015-12-01

    The significance of highly dispersed, remnant Arctic sea ice as a platform for marine mammals and indigenous hunters in spring and summer may have increased disproportionately with changes in the ice cover. As dispersed remnant ice becomes more common in the future it will be increasingly important to understand its ecological role for upper trophic levels such as marine mammals and its role for supporting primary productivity of ice-associated algae. Potential sparse ice habitat at sea ice concentrations below 15% is difficult to detect using remote sensing data alone. A combination of high resolution satellite imagery (including Synthetic Aperture Radar), data from the Barrow sea ice radar, and local observations from indigenous sea ice experts was used to detect sparse sea ice in the Alaska Arctic. Traditional knowledge on sea ice use by marine mammals was used to delimit the scales where sparse ice could still be used as habitat for seals and walrus. Potential sparse ice habitat was quantified with respect to overall spatial extent, size of ice floes, and density of floes. Sparse ice persistence offshore did not prevent the occurrence of large coastal walrus haul outs, but the lack of sparse ice and early sea ice retreat coincided with local observations of ringed seal pup mortality. Observations from indigenous hunters will continue to be an important source of information for validating remote sensing detections of sparse ice, and improving understanding of marine mammal adaptations to sea ice change.

  15. Will sea ice thickness initialisation improve Arctic seasonal-to-interannual forecast skill?

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Hawkins, E.; Tietsche, S.

    2014-12-01

    A number of recent studies have suggested that Arctic sea ice thickness is an important predictor of Arctic sea ice extent. However, coupled forecast systems do not currently use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. A set of ensemble potential predictability experiments, with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run to investigate this. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to eight months ahead. Perturbing sea ice thickness also has a significant impact on the forecast error in the 2m temperature and surface pressure fields a few months ahead. These results show that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

  16. Observationally constrained projections of Antarctic ice sheet instability

    NASA Astrophysics Data System (ADS)

    Edwards, Tamsin; Ritz, Catherine; Durand, Gael; Payne, Anthony; Peyaud, Vincent; Hindmarsh, Richard

    2015-04-01

    Large parts of the Antarctic ice sheet lie on bedrock below sea level and may be vulnerable to a positive feedback known as Marine Ice Sheet Instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence MISI may be underway throughout the Amundsen Sea Embayment (ASE) of West Antarctica, induced by circulation of warm Circumpolar Deep Water. If this retreat is sustained the region could contribute up to 1-2 m to global mean sea level, and if triggered in other areas the potential contribution to sea level on centennial to millennial timescales could be two to three times greater. However, physically plausible projections of Antarctic MISI are challenging: numerical ice sheet models are too low in spatial resolution to resolve grounding line processes or else too computationally expensive to assess modelling uncertainties, and no dynamical models exist of the ocean-atmosphere-ice sheet system. Furthermore, previous numerical ice sheet model projections for Antarctica have not been calibrated with observations, which can reduce uncertainties. Here we estimate the probability of dynamic mass loss in the event of MISI under a medium climate scenario, assessing 16 modelling uncertainties and calibrating the projections with observed mass losses in the ASE from 1992-2011. We project losses of up to 30 cm sea level equivalent (SLE) by 2100 and 72 cm SLE by 2200 (95% credibility interval: CI). Our results are substantially lower than previous estimates. The ASE sustains substantial losses, 83% of the continental total by 2100 and 67% by 2200 (95% CI), but in other regions losses are limited by ice dynamical theory, observations, or a lack of projected triggers.

  17. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  18. Arctic Sea ice thickness loss determined using subsurface, aircraft, and satellite observations

    NASA Astrophysics Data System (ADS)

    Lindsay, R. W.; Schweiger, A. J. B.

    2014-12-01

    Sea ice thickness is a fundamental climate state variable. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Are these data sources now adequate so that we can construct time series of the mean sea ice thickness with meaningful information about thickness changes? How do the different measurement systems compare in the mean? Are there systematic differences? Very few of the observations provide overlapping measurements of ice of a variety of thickness classes or types for direct comparisons. Error characteristics may vary considerably depending on the presence or thickness of the ridged ice. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin, including ICESat and IceBridge measurements. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000-2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compare to the five. The annual mean ice thickness for the central Arctic Basin based on observations only has decreased from 3.45 m in 1975 to 1.11 m in 2013, a

  19. Observing Radiative Properties of a Thinner, Seasonal Arctic Ice Pack

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.; Nicolaus, M.; Granskog, M.; Gerland, S.; Wang, C.

    2011-12-01

    The Arctic is coming to be dominated by young ice, much of it seasonal. Many of our observations of the radiative properties of sea ice come from drifting stations on thick, multi-year ice. To better understand the Arctic climate system in a warmer world, we need more data about the radiative properties and their seasonal and spatial variability on thinner, younger ice. Since this younger ice is not always thick enough to support lengthy drifting stations, there is a need for new technologies to help us get optical measurements on seasonal ice. One challenge is obtaining seasonal data on ice that is too weak to support even a ship-based camp, and especially to have these observations extend well into the melt season. For these situations, we have developed a spectral radiation monitoring buoy that can be deployed during a one-day ice station, and that can then autonomously observe the spectral albedo and transmittance of the sea ice, transmitting all data in near real time by satellite, until the buoy melts out. Similar installations at manned or regularly visited sites have provided good data, with surprisingly few data-quality problems due to frost, precipitation, or tilting. The buoys consist of 3 spectral radiometers, covering wavelengths 350 to 800 nm, and a datalogger with an Irridium modem. The datalogger and necessary batteries are inside a sealed housing which is frozen into a hole drilled in the ice. Arms extend from both the top and bottom of the housing, holding sensors that measure incident, reflected, and transmitted spectra. The under-ice radiometer is equipped with a bioshutter to avoid algal growth on the sensor. They will be deployed alongside ice mass balance buoys, providing data about the physical development of the ice and snow, as well as position. While the buoys provide an excellent record of diurnal, synoptic, and seasonal variability, they are fixed to one location in the ice, so other methods are still needed for measuring the spatial

  20. Progress on wave-ice interactions: satellite observations and model parameterizations

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Boutin, Guillaume; Dumont, Dany; Stopa, Justin; Girard-Ardhuin, Fanny; Accensi, Mickael

    2017-04-01

    In the open ocean, numerical wave models have their largest errors near sea ice, and, until recently, virtually no wave data was available in the sea ice to. Further, wave-ice interaction processes may play an important role in the Earth system. In particular, waves may break up an ice layer into floes, with significant impact on air-sea fluxes. With thinner Arctic ice, this process may contribut to the growing similarity between Arctic and Antarctic sea ice. In return, the ice has a strong damping impact on the waves that is highly variable and not understood. Here we report progress on parameterizations of waves interacting with a single ice layer, as implemented in the WAVEWATCH III model (WW3 Development Group, 2016), and based on few in situ observations, but extensive data derived from Synthetic Aperture Radars (SARs). Our parameterizations combine three processes. First a parameterization for the energy-conserving scattering of waves by ice floes (assuming isotropic back-scatter), which has very little effect on dominant waves of periods larger than 7 s, consistent with the observed narrow directional spectra and short travel times. Second, we implemented a basal friction below the ice layer (Stopa et al. The Cryosphere, 2016). Third, we use a secondary creep associated with ice flexure (Cole et al. 1998) adapted to random waves. These three processes (scattering, friction and creep) are strongly dependent on the maximum floe size. We have thus included an estimation of the potential floe size based on an ice flexure failure estimation adapted from Williams et al. (2013). This combination of dissipation and scattering is tested against measured patterns of wave height and directional spreading, and evidence of ice break-up, all obtained from SAR imagery (Ardhuin et al. 2017), and some in situ data (Collins et al. 2015). The combination of creep and friction is required to reproduce a strong reduction in wave attenuation in broken ice as observed by Collins

  1. Precipitation Impacts of a Shrinking Arctic Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.; Frei, A.; Gong, G.; Ghatak, D.; Robinson, D. A.; Kindig, D.

    2009-12-01

    Since the beginning of the modern satellite record in October 1978, the extent of Arctic sea ice has declined in all months, with the strongest downward trend at the end of the melt season in September. Recently the September trends have accelerated. Through 2001, the extent of September sea ice was decreasing at a rate of -7 per cent per decade. By 2006, the rate of decrease had risen to -8.9 per cent per decade. In September 2007, Arctic sea ice extent fell to its lowest level recorded, 23 per cent below the previous record set in 2005, boosting the downward trend to -10.7 per cent per decade. Ice extent in September 2008 was the second lowest in the satellite record. Including 2008, the trend in September sea ice extent stands at -11.8 percent per decade. Compared to the 1970s, September ice extent has retreated by 40 per cent. Summer 2009 looks to repeat the anomalously low ice conditions that characterized the last couple of years. Scientists have long expected that a shrinking Arctic sea ice cover will lead to strong warming of the overlying atmosphere, and as a result, affect atmospheric circulation and precipitation patterns. Recent results show clear evidence of Arctic warming linked to declining ice extent, yet observational evidence for responses of atmospheric circulation and precipitation patterns is just beginning to emerge. Rising air temperatures should lead to an increase in the moisture holding capacity of the atmosphere, with the potential to impact autumn precipitation. Although climate models predict a hemispheric wide decrease in snow cover as atmospheric concentrations of GHGs increase, increased precipitation, particular in autumn and winter may result as the Arctic transitions towards a seasonally ice free state. In this study we use atmospheric reanalysis data and a cyclone tracking algorithm to investigate the influence of recent extreme ice loss years on precipitation patterns in the Arctic and the Northern Hemisphere. Results show

  2. Arctic Sea Ice in Transformation: A Review of Recent Observed Changes and Impacts on Biology and Human Activity

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Hovelsrud, Greta K.; van Oort, Bob E. H.; Key, Jeffrey R.; Kovacs, Kit M.; Michel, Christine; Haas, Christian; Granskog, Mats A.; Gerland, Sebastian; Perovich, Donald K.; hide

    2014-01-01

    Sea ice in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal extent has declined over 30, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea ice thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40 decline in thickness, due in large part to the loss of thicker, older ice cover. The changes in sea ice are happening faster than models have projected. With continued increasing temperatures, summer ice-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea ice decreases. The changes in Arctic sea ice are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting peoples living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction.

  3. Deglaciation-induced uplift of the Petermann glacier ice margin observed with InSAR

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Amelung, F.; Wdowinski, S.

    2016-12-01

    The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Ice mass loss during the summer months is associated with uplift, whereas ice mass increase during the winter months is associated with subsidence.The German TerraSAR-X and TanDEM-X satellites have systematically observed selected sites along the Greenland Petermann ice sheet margin since summer 2012. Here we present ground deformation observations obtained using an InSAR time-series approach based on small baseline interferograms. We observed rapid deglaciation-induced uplift on naked bedrock near the Petermann glacier ice margin Deformation observed by InSAR is consistent with GPS vertical observations. The time series displacement data reveal not only net uplift but also the seasonal variations. There is no strong relative between displacement changes and SMB ice mass change. The seasonal variations in local area may caused by both nearby SMB changes and ice dynamic changes.

  4. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    NASA Technical Reports Server (NTRS)

    Dean, Kenneson G.; Stringer, William J.; Searcy, Craig

    1993-01-01

    Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea ice melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of ice melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal areas with minimal river discharge. The analysis also revealed that the removal of sea ice involves the following: over-ice-flooding along the coast offshore from river delta channels; under-ice flow of 'warm' river water; melting and calving of the fast ice; and, the formation of a bight in the pack ice edge. Two stages in the melting of sea ice were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast ice zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the ice cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore ice are presented.

  5. Assessment of Arctic and Antarctic Sea Ice Predictability in CMIP5 Decadal Hindcasts

    NASA Technical Reports Server (NTRS)

    Yang, Chao-Yuan; Liu, Jiping (Inventor); Hu, Yongyun; Horton, Radley M.; Chen, Liqi; Cheng, Xiao

    2016-01-01

    This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Decadal hindcasts exhibit a large multimodel spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3-7 years), but there is a reemerging predictive skill in the North Atlantic at a lead time of 6-8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.

  6. Arctic Ice-Ocean Coupling and Gyre Equilibration Observed With Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dewey, Sarah; Morison, James; Kwok, Ronald; Dickinson, Suzanne; Morison, David; Andersen, Roger

    2018-02-01

    Model and observational evidence has shown that ocean current speeds in the Beaufort Gyre have increased and recently stabilized. Because these currents rival ice drift speeds, we examine the potential for the Beaufort Gyre's shift from a system in which the wind drives the ice and the ice drives a passive ocean to one in which the ocean often, in the absence of high winds, drives the ice. The resultant stress exerted on the ocean by the ice and the resultant Ekman pumping are reversed, without any change in average wind stress curl. Through these curl reversals, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization. This manuscript constitutes one of the first observational studies of ice-ocean stress inclusive of geostrophic ocean currents, by making use of recently available remote sensing data.

  7. Characterization of Arctic ice cloud properties observed during ISDAC

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Girard, Eric; Pelon, Jacques; Gultepe, Ismail; Delanoë, Julien; Blanchet, Jean-Pierre

    2012-12-01

    Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-2A), being topped by a cover of nonprecipitating very small (radar unseen) ice crystals (TIC-1), is found more frequently in pristine environment, whereas the second type (TIC-2B), detected by both sensors, is associated preferentially with a high concentration of aerosols. To further investigate the microphysical properties of TIC-1/2A and TIC-2B, airborne in situ and satellite measurements of specific cases observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC) have been analyzed. For the first time, Arctic TIC-1/2A and TIC-2B microstructures are compared using in situ cloud observations. Results show that the differences between them are confined in the upper part of the clouds where ice nucleation occurs. TIC-2B clouds are characterized by fewer (by more than 1 order of magnitude) and larger (by a factor of 2 to 3) ice crystals and a larger ice supersaturation (of 15-20%) compared to TIC-1/2A. Ice crystal growth in TIC-2B clouds seems explosive, whereas it seems more gradual in TIC-1/2A. It is hypothesized that these differences are linked to the number concentration and the chemical composition of aerosols. The ice crystal growth rate in very cold conditions impinges on the precipitation efficiency, dehydration and radiation balance. These results represent an essential and important first step to relate previous modeling, remote sensing and laboratory studies with TICs cloud in situ observations.

  8. Ice shelf basal melt rates around Antarctica from simulations and observations

    NASA Astrophysics Data System (ADS)

    Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.

    2016-02-01

    We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.

  9. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations.

    PubMed

    Ritz, Catherine; Edwards, Tamsin L; Durand, Gaël; Payne, Antony J; Peyaud, Vincent; Hindmarsh, Richard C A

    2015-12-03

    Large parts of the Antarctic ice sheet lying on bedrock below sea level may be vulnerable to marine-ice-sheet instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence that MISI may be underway throughout the Amundsen Sea embayment (ASE), which contains ice equivalent to more than a metre of global sea-level rise. If triggered in other regions, the centennial to millennial contribution could be several metres. Physically plausible projections are challenging: numerical models with sufficient spatial resolution to simulate grounding-line processes have been too computationally expensive to generate large ensembles for uncertainty assessment, and lower-resolution model projections rely on parameterizations that are only loosely constrained by present day changes. Here we project that the Antarctic ice sheet will contribute up to 30 cm sea-level equivalent by 2100 and 72 cm by 2200 (95% quantiles) where the ASE dominates. Our process-based, statistical approach gives skewed and complex probability distributions (single mode, 10 cm, at 2100; two modes, 49 cm and 6 cm, at 2200). The dependence of sliding on basal friction is a key unknown: nonlinear relationships favour higher contributions. Results are conditional on assessments of MISI risk on the basis of projected triggers under the climate scenario A1B (ref. 9), although sensitivity to these is limited by theoretical and topographical constraints on the rate and extent of ice loss. We find that contributions are restricted by a combination of these constraints, calibration with success in simulating observed ASE losses, and low assessed risk in some basins. Our assessment suggests that upper-bound estimates from low-resolution models and physical arguments (up to a metre by 2100 and around one and a half by 2200) are implausible under current understanding of physical mechanisms and potential triggers.

  10. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations

    NASA Astrophysics Data System (ADS)

    Ritz, Catherine; Edwards, Tamsin L.; Durand, Gaël; Payne, Antony J.; Peyaud, Vincent; Hindmarsh, Richard C. A.

    2015-12-01

    Large parts of the Antarctic ice sheet lying on bedrock below sea level may be vulnerable to marine-ice-sheet instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence that MISI may be underway throughout the Amundsen Sea embayment (ASE), which contains ice equivalent to more than a metre of global sea-level rise. If triggered in other regions, the centennial to millennial contribution could be several metres. Physically plausible projections are challenging: numerical models with sufficient spatial resolution to simulate grounding-line processes have been too computationally expensive to generate large ensembles for uncertainty assessment, and lower-resolution model projections rely on parameterizations that are only loosely constrained by present day changes. Here we project that the Antarctic ice sheet will contribute up to 30 cm sea-level equivalent by 2100 and 72 cm by 2200 (95% quantiles) where the ASE dominates. Our process-based, statistical approach gives skewed and complex probability distributions (single mode, 10 cm, at 2100; two modes, 49 cm and 6 cm, at 2200). The dependence of sliding on basal friction is a key unknown: nonlinear relationships favour higher contributions. Results are conditional on assessments of MISI risk on the basis of projected triggers under the climate scenario A1B (ref. 9), although sensitivity to these is limited by theoretical and topographical constraints on the rate and extent of ice loss. We find that contributions are restricted by a combination of these constraints, calibration with success in simulating observed ASE losses, and low assessed risk in some basins. Our assessment suggests that upper-bound estimates from low-resolution models and physical arguments (up to a metre by 2100 and around one and a half by 2200) are implausible under current understanding of physical mechanisms and potential triggers.

  11. HiRISE observations of new impact craters exposing Martian ground ice

    USGS Publications Warehouse

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.; Mellon, Michael T.; Kennedy, Megan R.; Daubar, Ingrid J.; Saper, Lee

    2014-01-01

    Twenty small new impact craters or clusters have been observed to excavate bright material inferred to be ice at mid and high latitudes on Mars. In the northern hemisphere, the craters are widely distributed geographically and occur at latitudes as low as 39°N. Stability modeling suggests that this ice distribution requires a long-term average atmospheric water vapor content around 25 precipitable microns, more than double the present value, which is consistent with the expected effect of recent orbital variations. Alternatively, near-surface humidity could be higher than expected for current column abundances if water vapor is not well-mixed with atmospheric CO2, or the vapor pressure at the ice table could be lower due to salts. Ice in and around the craters remains visibly bright for months to years, indicating that it is clean ice rather than ice-cemented regolith. Although some clean ice may be produced by the impact process, it is likely that the original ground ice was excess ice (exceeding dry soil pore space) in many cases. Observations of the craters suggest small-scale heterogeneities in this excess ice. The origin of such ice is uncertain. Ice lens formation by migration of thin films of liquid is most consistent with local heterogeneity in ice content and common surface boulders, but in some cases nearby thermokarst landforms suggest large amounts of excess ice that may be best explained by a degraded ice sheet.

  12. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission.

    PubMed

    Notz, Dirk; Stroeve, Julienne

    2016-11-11

    Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Because climate-model simulations of the sea-ice loss differ substantially, we used a robust linear relationship between monthly-mean September sea-ice area and cumulative carbon dioxide (CO 2 ) emissions to infer the future evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a sustained loss of 3 ± 0.3 square meters of September sea-ice area per metric ton of CO 2 emission. On the basis of this sensitivity, Arctic sea ice will be lost throughout September for an additional 1000 gigatons of CO 2 emissions. Most models show a lower sensitivity, which is possibly linked to an underestimation of the modeled increase in incoming longwave radiation and of the modeled transient climate response. Copyright © 2016, American Association for the Advancement of Science.

  13. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is

  14. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  15. A Mission to Observe Ice in Clouds from Space

    NASA Technical Reports Server (NTRS)

    Ackerman, S.; O'CStarr, D.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Racette, P.; Norris, P.; daSilva, A.; Soden, B.

    2006-01-01

    To date there have been multiple satellite missions to observe and retrieve cloud top properties and the liquid in, and precipitation from, clouds. There are currently a few missions that attempt to measure cloud ice properties as a byproduct of other observations. However, we do not yet quantitatively understand the processes that control the water budget of the upper troposphere where ice is the predominant phase, and how these processes are linked to precipitation processes and the radiative energy budget. The ice in clouds either melts into rain or is detrained, and persists, as cirrus clouds affecting the hydrological and energy cycle, respectively. Fully modeling the Earth's climate and improving weather and climate forecasts requires accurate satellite measurements of various cloud properties at the temporal and spatial scales of cloud processes. The uncertainty in knowledge of these ice characteristics is reflected in the large discrepancies in model simulations of the upper tropospheric water budget. Model simulations are sensitive to the partition of ice between precipitation and outflow processes, i.e., to the parameterization of ice clouds and ice processes. This presentation will describe the Submillimeter-wave InfraRed Ice Cloud Experiment (SIRICE) concept, a satellite mission designed to acquire global Earth radiance measurements in the infrared and submillimeter-wave region (183-874 GHz). If successful, this mission will bridge the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. The brightness temperatures at submillimeter-wave frequencies are especially sensitive to cirrus ice particle sizes (because they are comparable to the wavelength). This allows for more accurate ice water path estimates when multiple channels are used to probe into the cloud layers. Further, submillimeter wavelengths offer simplicity in the retrieval algorithms because they do not probe into the liquid and near surface portions

  16. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and

  17. NASA's Observes Effects of Summer Melt on Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Sea Ice and Ice Temperature Variability as Observed by Microwave and Infrared Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Recent reports of a retreating and thinning sea ice cover in the Arctic have pointed to a strong suggestion of significant warming in the polar regions. It is especially important to understand what these reports mean in light of the observed global warning and because the polar regions are expected to be most sensitive to changes in climate. To gain insight into this phenomenon, co-registered ice concentrations and surface temperatures derived from two decades of satellite microwave and infrared data have been processed and analyzed. While observations from meteorological stations indicate consistent surface warming in both regions during the last fifty years, the last 20 years of the same data set show warming in the Arctic but a slight cooling in the Antarctic. These results are consistent with the retreat in the Arctic ice cover and the advance in the Antarctic ice cover as revealed by historical satellite passive microwave data. Surface temperatures derived from satellite infrared data are shown to be consistent within 3 K with surface temperature data from the limited number of stations. While not as accurate, the former provides spatially detailed changes over the twenty year period. In the Arctic, for example, much of the warming occurred in the Beaufort Sea and the North American region in 1998 while slight cooling actually happened in parts of the Laptev Sea and Northern Siberia during the same time period. Big warming anomalies are also observed during the last five years but a periodic cycle of about ten years is apparent suggesting a possible influence of the North Atlantic Oscillation. In the Antarctic, large interannual and seasonal changes are also observed in the circumpolar ice cover with regional changes showing good coherence with surface temperature anomalies. However, a mode 3 is observed to be more dominant than the mode 2 wave reported in the literature. Some of these spatial and temporal changes appear to be influenced by the Antarctic

  19. CIRS-Observed Titan’s Stratospheric Ice Clouds Studied in the Laboratory

    NASA Astrophysics Data System (ADS)

    Nna-Mvondo, Delphine; Anderson, Carrie; Samuelson, Robert E.

    2018-06-01

    Stratospheric ice clouds have been repeatedly observed in Titan’s atmosphere by the Cassini Composite InfraRed Spectrometer (CIRS) since the Cassini spacecraft entered into orbit around Saturn in 2004. Most of these stratospheric ice clouds form as a result of vapor condensation, composed of a combination of pure and mixed nitriles and hydrocarbons. So far, the crystalline cyanoacetylene (HC3N) ν6 band at 506 cm‑1 and a co-condensed nitrile ice feature at 160 cm‑1, dominated by a mixture of HCN and HC3N ices, have been identified in the CIRS limb spectra. However, the presence of other observed stratospheric ice emission features, such as the ν8 band of dicyanoacetylene (C4N2) at 478 cm‑1 and the Haystack emission feature at 220 cm‑1, are puzzling since they have no associated observed vapor emission features. As well, recently, a massive stratospheric ice cloud system, the High-Altitude South Polar (HASP) cloud, was discovered in Titan’s early southern winter stratosphere with an emission feature near 210 cm‑1. We are investigating in laboratory these perplexing stratospheric ices to better understand their formation mechanisms, identify their chemical compositions, and determine their optical properties. We perform transmission spectroscopy of thin films of pure and mixed nitrile ices, as well as ices combined with hydrocarbons, from 50 cm‑1 to 11700 cm‑1, at deposition temperature 30 K - 150 K, using the SPECTRAL high-vacuum chamber at NASA GSFC. The spectral evolution with time and temperature is studied, the ice phase formation identified, and optical constants computed. The first surprising yet significant result reveals that the libration mode of HCN is drastically altered by the surrounding molecules when mixing occurs in a co-condensed phase. For propionitrile ice, we observe peculiar temperature and time-driven ice phase transitions, revealed by significant spectral changes until a stable crystalline phase is achieved. Comparing our

  20. Arctic ice cover, ice thickness and tipping points.

    PubMed

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  1. Observation of wave refraction at an ice edge by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.

    1991-01-01

    In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).

  2. Preliminary Flight Deck Observations During Flight in High Ice Water Content Conditions

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas; Duchanoy, Dominque; Bourdinot, Jean-Francois; Harrah, Steven; Strapp, Walter; Schwarzenboeck, Alfons; Dezitter, Fabien; Grandin, Alice

    2015-01-01

    In 2006, Mason et al. identified common observations that occurred in engine power-loss events attributed to flight in high concentrations of ice crystals. Observations included light to moderate turbulence, precipitation on the windscreen (often reported as rain), aircraft total temperature anomalies, lack of significant airframe icing, and no flight radar echoes at the location and altitude of the engine event. Since 2006, Mason et al. and others have collected information from pilots who experienced engine power-loss events via interviews and questionnaires to substantiate earlier observations and support event analyses. In 2011, Mason and Grzych reported that vertical acceleration data showed increases in turbulence prior to engine events, although the turbulence was usually light to moderate and not unique to high ice water content (HIWC) clouds. Mason concluded that the observation of rain on the windscreen was due to melting of ice high concentrations of ice crystals on the windscreen, coalescing into drops. Mason also reported that these pilot observations of rain on the windscreen were varied. Many pilots indicated no rain was observed, while others observed moderate rain with unique impact sounds. Mason concluded that the variation in the reports may be due to variation in the ice concentration, particle size, and temperature.

  3. Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.

    2015-12-01

    Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be

  4. Landfast ice thickness in the Canadian Arctic Archipelago from observations and models

    NASA Astrophysics Data System (ADS)

    Howell, Stephen E. L.; Laliberté, Frédéric; Kwok, Ron; Derksen, Chris; King, Joshua

    2016-07-01

    Observed and modelled landfast ice thickness variability and trends spanning more than 5 decades within the Canadian Arctic Archipelago (CAA) are summarized. The observed sites (Cambridge Bay, Resolute, Eureka and Alert) represent some of the Arctic's longest records of landfast ice thickness. Observed end-of-winter (maximum) trends of landfast ice thickness (1957-2014) were statistically significant at Cambridge Bay (-4.31 ± 1.4 cm decade-1), Eureka (-4.65 ± 1.7 cm decade-1) and Alert (-4.44 ± 1.6 cm -1) but not at Resolute. Over the 50+-year record, the ice thinned by ˜ 0.24-0.26 m at Cambridge Bay, Eureka and Alert with essentially negligible change at Resolute. Although statistically significant warming in spring and fall was present at all sites, only low correlations between temperature and maximum ice thickness were present; snow depth was found to be more strongly associated with the negative ice thickness trends. Comparison with multi-model simulations from Coupled Model Intercomparison project phase 5 (CMIP5), Ocean Reanalysis Intercomparison (ORA-IP) and Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) show that although a subset of current generation models have a "reasonable" climatological representation of landfast ice thickness and distribution within the CAA, trends are unrealistic and far exceed observations by up to 2 orders of magnitude. ORA-IP models were found to have positive correlations between temperature and ice thickness over the CAA, a feature that is inconsistent with both observations and coupled models from CMIP5.

  5. Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Bergh, Jon; Ólason, Einar

    2016-07-01

    We characterize sea-ice drift by applying a Lagrangian diffusion analysis to buoy trajectories from the International Arctic Buoy Programme (IABP) dataset and from two different models: the standalone Lagrangian sea-ice model neXtSIM and the Eulerian coupled ice-ocean model used for the TOPAZ reanalysis. By applying the diffusion analysis to the IABP buoy trajectories over the period 1979-2011, we confirm that sea-ice diffusion follows two distinct regimes (ballistic and Brownian) and we provide accurate values for the diffusivity and integral timescale that could be used in Eulerian or Lagrangian passive tracers models to simulate the transport and diffusion of particles moving with the ice. We discuss how these values are linked to the evolution of the fluctuating displacements variance and how this information could be used to define the size of the search area around the position predicted by the mean drift. By comparing observed and simulated sea-ice trajectories for three consecutive winter seasons (2007-2011), we show how the characteristics of the simulated motion may differ from or agree well with observations. This comparison illustrates the usefulness of first applying a diffusion analysis to evaluate the output of modeling systems that include a sea-ice model before using these in, e.g., oil spill trajectory models or, more generally, to simulate the transport of passive tracers in sea ice.

  6. Ice Cloud Properties And Their Radiative Effects: Global Observations And Modeling

    NASA Astrophysics Data System (ADS)

    Hong, Yulan

    Ice clouds are crucial to the Earth's radiation balance. They cool the Earth-atmosphere system by reflecting solar radiation back to space and warm it by blocking outgoing thermal radiation. However, there is a lack of an observation-based climatology of ice cloud properties and their radiative effects. Two active sensors, the CloudSat radar and the CALIPSO lidar, for the first time provide vertically resolved ice cloud data on a global scale. Using synergistic signals of these two sensors, it is possible to obtain both optically thin and thick ice clouds as the radar excels in probing thick clouds while the lidar is better to detect the thin ones. First, based on the CloudSat radar and CALIPSO lidar measurements, we have derived a climatology of ice cloud properties. Ice clouds cover around 50% of the Earth surface, and their global-mean optical depth, ice water path, and effective radius are approximately 2 (unitless), 109 g m. {-2} and 48 \\mum, respectively. Ice cloud occurrence frequency not only depends on regions and seasons, but also on the types of ice clouds as defined by optical depth (tau) values. Optically thin ice clouds (tau < 3) are most frequently observed in the tropics around 15 km and in the midlatitudes below 5 km, while the thicker clouds (tau > 3) occur frequently in the tropical convective areas and along the midlatitude storm tracks. Using ice retrievals derived from combined radar-lidar measurements, we conducted radiative transfer modeling to study ice cloud radiative effects. The combined effects of ice clouds warm the earth-atmosphere system by approximately 5 W m-2, contributed by a longwave warming effect of about 21.8 W m-2 and a shortwave cooling effect of approximately -16.7 W m-2. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, and the net warming effect occurs year-round in the tropics (˜ 10 W m-2). Ice cloud

  7. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations

    NASA Astrophysics Data System (ADS)

    Lindsay, R.; Schweiger, A.

    2014-08-01

    Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000-2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is -0.58 ± 0.07 m decade-1 over the period 2000-2013, while the annual mean ice thickness for the central Arctic Basin alone (the SCICEX Box) has decreased from 3.45 m in 1975 to 1.11 m in 2013, a 68% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational confirmation of substantial sea ice losses found in model analyses.

  8. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    PubMed

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  9. Formation of melt channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Melt channels have been observed on ice shelves experiencing strong melting in both Greenland (Petermann Glacier) and Antarctica (Pine Island Glacier). Using a fully-couple ice-shelf/sub-ice-shelf-ocean flow model, it is demonstrated that these channels can form spontaneously in laterally confined ice shelves. These channels have transverse extent of a few kilometers and a vertical relief of about a few hundred meters. Meltrates and sea-water transport in the channels are significantly higher than in between the channels on the smooth flat ice bottom. In circumstances where an ice shelf has no-slip conditions at its lateral boundaries, the ice-shelf/sub-ice-shelf-cavity system exhibits equilibrium periodic states, where the same configurations repetitively appear with a periodicity of about 30-35 years. This peculiar dynamics of the system has strong implications on the interpretation of the remote and in-situ observations and inferences of the system parameters (e.g., melt rates) based on these observations. For instance, the persistent temporal changes in the ice-shelf thickness are caused by internal dynamics of the melt channels, and, in contrast to traditional interpretation, can be independent of the oceanic forcings.

  10. Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the Alps

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian

    2016-04-01

    During the Last Glacial Maximum (LGM) in the European Alps (late Würm) local ice caps and extensive ice fields in the high Alps fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the Alps was underway by about 24 ka. In the high Alps, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central Alps (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high Alps was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the Alps. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.

  11. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  12. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  13. ICESat-2, its retrievals of ice sheet elevation change and sea ice freeboard, and potential synergies with CryoSat-2

    NASA Astrophysics Data System (ADS)

    Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron

    2017-04-01

    Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.

  14. Evaluation of the Simulation of Arctic and Antarctic Sea Ice Coverages by Eleven Major Global Climate Models

    NASA Technical Reports Server (NTRS)

    Parksinson, Claire; Vinnikov, Konstantin Y.; Cavalieri, Donald J.

    2005-01-01

    Comparison of polar sea ice results from 11 major global climate models and satellite-derived observations for 1979-2004 reveals that each of the models is simulating seasonal cycles that are phased at least approximately correctly in both hemispheres. Each is also simulating various key aspects of the observed ice cover distributions, such as winter ice not only throughout the central Arctic basin but also throughout Hudson Bay, despite its relatively low latitudes. However, some of the models simulate too much ice, others too little ice (in some cases varying depending on hemisphere and/or season), and some match the observations better in one season versus another. Several models do noticeably better in the Northern Hemisphere than in the Southern Hemisphere, and one does noticeably better in the Southern Hemisphere. In the Northern Hemisphere all simulate monthly average ice extents to within +/-5.1 x 10(exp 6)sq km of the observed ice extent throughout the year; and in the Southern Hemisphere all except one simulate the monthly averages to within +/-6.3 x 10(exp 6) sq km of the observed values. All the models properly simulate a lack of winter ice to the west of Norway; however, most do not obtain as much absence of ice immediately north of Norway as the observations show, suggesting an under simulation of the North Atlantic Current. The spread in monthly averaged ice extents amongst the 11 model simulations is greater in the Southern Hemisphere than in the Northern Hemisphere and greatest in the Southern Hemisphere winter and spring.

  15. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations

    NASA Astrophysics Data System (ADS)

    Lindsay, R.; Schweiger, A.

    2015-02-01

    Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of mean ice thickness have been sparse in time and space, making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness, and each observational source likely has different and poorly characterized measurement and sampling errors. Observational sources used in this study include upward-looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to determine the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems, using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month, and the primary time period analyzed is 2000-2012 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is -0.58 ± 0.07 m decade-1 over the period 2000-2012. Applying our method to the period 1975-2012 for the central Arctic Basin where we have sufficient data (the SCICEX box), we find that the annual mean ice thickness has decreased from 3.59 m in 1975 to 1.25 m in 2012, a 65% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational evidence of substantial sea ice losses found in model analyses.

  16. Arctic sea ice trends, variability and implications for seasonal ice forecasting

    PubMed Central

    Serreze, Mark C.; Stroeve, Julienne

    2015-01-01

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315

  17. Exploring changes in vertical ice extent along the margin of the East Antarctic Ice Sheet in western Dronning Maud Land - initial results of the MAGIC-DML collaboration

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.

    2017-12-01

    Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.

  18. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

  19. In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone

    NASA Astrophysics Data System (ADS)

    Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.

    2016-12-01

    Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.

  20. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  1. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  2. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed (Technical Monitor); Scambos, Ted

    2004-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approximately 0 deg C and persistent melt ponding is observed, a rapid retreat and disintegration begins. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', B', and Wilkins Ice shelves) in the results of a previous grant under ADRO-1. Modeling of shelf ice flow and the effects of meltwater indicated that melt ponding accelerates shelf breakup by increasing fracturing. The ADRO-2 funding (topic of this report) supported further inquiry into the evolution of ice shelves under warming conditions, and the post-breakup effects on their feeder glaciers. Also, this grant considered fast ice and sea ice characteristics, to the extent that they provide information regarding shelf stability. A major component of this work was in the form of NSIDC image data support and in situ sea ice research on the Aurora Australis 'ARISE' cruise of September 9 2003 through October 28 2003.

  3. In situ observations of a high-pressure phase of H2O ice

    USGS Publications Warehouse

    Chou, I.-Ming; Blank, J.G.; Goncharov, A.F.; Mao, Ho-kwang; Hemley, R.J.

    1998-01-01

    A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10??and 50??C. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.

  4. Evaluating Antarctic sea ice predictability at seasonal to interannual timescales in global climate models

    NASA Astrophysics Data System (ADS)

    Marchi, Sylvain; Fichefet, Thierry; Goosse, Hugues; Zunz, Violette; Tietsche, Steffen; Day, Jonny; Hawkins, Ed

    2016-04-01

    Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice extent over recent decades. Although many processes have already been suggested to explain this positive trend, it remains the subject of current investigations. Understanding the evolution of the Antarctic sea ice turns out to be more complicated than for the Arctic for two reasons: the lack of observations and the well-known biases of climate models in the Southern Ocean. Irrespective of those issues, another one is to determine whether the positive trend in sea ice extent would have been predictable if adequate observations and models were available some decades ago. This study of Antarctic sea ice predictability is carried out using 6 global climate models (HadGEM1.2, MPI-ESM-LR, GFDL CM3, EC-Earth V2, MIROC 5.2 and ECHAM 6-FESOM) which are all part of the APPOSITE project. These models are used to perform hindcast simulations in a perfect model approach. The predictive skill is estimated thanks to the PPP (Potential Prognostic Predictability) and the ACC (Anomaly Correlation Coefficient). The former is a measure of the uncertainty of the ensemble while the latter assesses the accuracy of the prediction. These two indicators are applied to different variables related to sea ice, in particular the total sea ice extent and the ice edge location. This first model intercomparison study about sea ice predictability in the Southern Ocean aims at giving a general overview of Antarctic sea ice predictability in current global climate models.

  5. Optimizing Observations of Sea Ice Thickness and Snow Depth in the Arctic

    DTIC Science & Technology

    2014-09-30

    changes in the thickness of sea ice, glaciers , and ice sheets. These observations are critical for predicting the response of Earth’s polar ice to...Arctic Sea Ice Conditions in Spring 2009 - 2013 Prior to Melt , Geophys. Res. Lett., 40, 5888-5893, doi: 10.1002/2013GL058011. [published, refereed

  6. Arctic Sea ice studies with passive microwave satellite observations

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    The objectives of this research are: (1) to improve sea ice concentration determinations from passive microwave space observations; (2) to study the role of Arctic polynyas in the production of sea ice and the associated salinization of Arctic shelf water; and (3) to study large scale sea ice variability in the polar oceans. The strategy is to analyze existing data sets and data acquired from both the DMSP SSM/I and recently completed aircraft underflights. Special attention will be given the high resolution 85.5 GHz SSM/I channels for application to thin ice algorithms and processes studies. Analysis of aircraft and satellite data sets is expected to provide a basis for determining the potential of the SSM/I high frequency channels for improving sea ice algorithms and for investigating oceanic processes. Improved sea ice algorithms will aid the study of Arctic coastal polynyas which in turn will provide a better understanding of the role of these polynyas in maintaining the Arctic watermass structure. Analysis of satellite and archived meteorological data sets will provide improved estimates of annual, seasonal and shorter-term sea ice variability.

  7. Observations of banding in first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.

    2004-08-01

    Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.

  8. New aerogeophysical data reveal the extent of the Weddell Sea Rift beneath the Institute and Möller ice streams

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Siegert, M. J.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A. M.

    2011-12-01

    Significant continental rifting associated with Gondwana breakup has been widely recognised in the Weddell Sea region. However, plate reconstructions and the extent of this rift system onshore beneath the West Antarctic Ice Sheet (WAIS) are ambiguous, due to the paucity of modern geophysical data across the Institute and Möller ice stream catchments. Understanding this region is key to unravelling Gondwana breakup and the possible kinematic links between the Weddell Sea and the West Antarctic Rift System. The nature of the underlying tectonic structure is also critical, as it provides the template for ice-flow draining ~20% of the West Antarctic Ice Sheet (WAIS). During the 2010/11 Antarctic field season ~25,000 km of new airborne radar, aerogravity and aeromagnetic data were collected to help unveil the crustal structure and geological boundary conditions beneath the Institute and Möller ice streams. Our new potential field maps delineate varied subglacial geology beneath the glacial catchments, including Jurassic intrusive rocks, sedimentary basins, and Precambrian basement rocks of the Ellsworth Mountains. Inversion of airborne gravity data reveal significant crustal thinning directly beneath the faster flowing coastal parts of the Institute and Möller ice streams. We suggest that continental rifting focussed along the Weddell Sea margin of the Ellsworth-Whitmore Mountains block, providing geological controls for the fast flowing ice streams of the Weddell Sea Embayment. Further to the south we suggest that strike-slip motion between the East Antarctica and the Ellsworth-Whitmore Mountains block may provide a kinematic link between Cretaceous-Cenozoic extension in the West Antarctic Rift System and deformation in the Weddell Sea Embayment.

  9. Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland

    PubMed Central

    Larsen, Nicolaj K.; Find, Jesper; Kristensen, Anders; Bjørk, Anders A.; Kjeldsen, Kristian K.; Odgaard, Bent V.; Olsen, Jesper; Kjær, Kurt H.

    2016-01-01

    Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations. PMID:26940998

  10. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.

    2018-01-01

    While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.

  11. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  12. Extent of Low-accumulation 'Wind Glaze' Areas on the East Antarctic Plateau: Implications for Continental Ice Mass Balance

    NASA Technical Reports Server (NTRS)

    Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; hide

    2012-01-01

    Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.

  13. Direct Comparisons of Ice Cloud Microphysical Properties Simulated by the Community Atmosphere Model CAM5 with ARM SPartICus Observations

    NASA Astrophysics Data System (ADS)

    Wu, C.; Liu, X.; Zhang, K.; Diao, M.; Gettelman, A.

    2016-12-01

    Cirrus clouds in the upper troposphere play a key role in the Earth radiation budget, and their radiative forcing depends strongly on number concentration and size distribution of ice particles. In this study we evaluate the cloud microphysical properties simulated by the Community Atmosphere Model version 5.4 (CAM5) against the Small Particles in Cirrus (SPartICus) observations over the ARM South Great Plain (SGP) site between January and June 2010. Model simulation is performed using specific dynamics to preserve prognostic meteorology (U, V, and T) close to GEOS-5 analysis. Model results collocated with SPartICus flight tracks spatially and temporally are directly compared with the observations. We compare CAM5 simulated ice crystal number concentration (Ni), ice particle size distribution, ice water content (IWC), and Ni co-variances with temperature and vertical velocity with the statistics from SPartICus observations. All analyses are restricted to T ≤ -40°C and in a 6°×6° area centered at SGP. Model sensitivity tests are performed with different ice nucleation mechanisms and with the effects of pre-existing ice crystals to reflect the uncertainties in cirrus parameterizations. In addition, different threshold size for autoconversion of cloud ice to snow (Dcs) is also tested. We find that (1) a distinctly high Ni (100-1000 L-1) often occurred in the observations but is significantly underestimated in the model, which may be due to the smaller relative humidity with respect to ice (RHi) in the simulation that could suppress the homogeneous nucleation, (2) a positive correlation exists between Ni and vertical velocity variance (σw) at horizontal scales up to 50 km in the observation, and the model can reproduce this relationship but tends to underestimate Ni when σw is relatively small, (3) simulated Ni differs greatly among the sensitive experiments, and simulated IWC is also sensitive to the cirrus parameterizations but to a lesser extent. Moreover

  14. Abrupt shift in the observed runoff from the southwestern Greenland ice sheet

    PubMed Central

    Ahlstrøm, Andreas P.; Petersen, Dorthe; Langen, Peter L.; Citterio, Michele; Box, Jason E.

    2017-01-01

    The recent decades of accelerating mass loss of the Greenland ice sheet have arisen from an increase in both surface meltwater runoff and ice flow discharge from tidewater glaciers. Despite the role of the Greenland ice sheet as the dominant individual cryospheric contributor to sea level rise in recent decades, no observational record of its mass loss spans the 30-year period needed to assess its climatological state. We present for the first time a 40-year (1975–2014) time series of observed meltwater discharge from a >6500-km2 catchment of the southwestern Greenland ice sheet. We find that an abrupt 80% increase in runoff occurring between the 1976–2002 and 2003–2014 periods is due to a shift in atmospheric circulation, with meridional exchange events occurring more frequently over Greenland, establishing the first observation-based connection between ice sheet runoff and climate change. PMID:29242827

  15. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    PubMed

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  17. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  18. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations.

    PubMed

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  19. ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Robbins, John W.

    2010-01-01

    Sea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October-November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-ice extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.

  20. Loss of sea ice in the Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  1. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.

    PubMed

    Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A

    2014-10-02

    Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.

  2. Comparing elevation and freeboard from IceBridge and four different CryoSat-2 retrackers for coincident sea ice observations

    NASA Astrophysics Data System (ADS)

    Yi, D.; Kurtz, N. T.; Harbeck, J.

    2017-12-01

    The airborne IceBridge and spaceborne Cryosat-2 missions observe polar sea ice at different altitudes with different footprint sizes and often at different time and locations. Many studies use different retrackers to derive Cryosat-2 surface elevation, which we find causes large differences in the elevation and freeboard comparisons of IceBridge and Cryosat-2. In this study, we compare sea ice surface elevation and freeboard using 8 coincident CryoSat-2, ATM, and LVIS observations with IceBridge airplanes under flying the Cryosat-2 ground tracks. We apply identical ellipsoid, geoid model, tide model, and atmospheric correction to CryoSat-2 and IceBridge data to reduce elevation bias due to their differences. IceBridge's ATM and LVIS elevation and freeboard and Snow Radar snow depth are averaged at each CryoSat-2 footprint for comparison. The four different Cryosat-2 retrackers (ESA, GSFC, AWI, and JPL) show distinct differences in mean elevation up to 0.35 meters over leads and over floes, which suggests that systematic elevation bias exists between the retrackers. The mean IceBridge elevation over leads is within the mean elevation distribution of the four Cryosat-2 retrackers. The mean IceBridge elevation over floes is above the mean elevation distribution of the four Cryosat-2 retrackers. After removing the snow depth from IceBridge elevation, over floe, the mean elevation of IceBridge is within the mean elevation distribution of the four Cryosat-2 retrackers. By identifying the strengths and weaknesses of the retrackers, this study provides a mechanism to improve freeboard retrievals from existing methods.

  3. Ice formation and development in aged, wintertime cumulus over the UK : observations and modelling

    NASA Astrophysics Data System (ADS)

    Crawford, I.; Bower, K. N.; Choularton, T. W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P.; Dorsey, J. R.; Gallagher, M. W.; Williams, P.; Trembath, J.; Cui, Z.; Blyth, A.

    2011-11-01

    In-situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of Radar and Lidar as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than ~-8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed near cloud top temperatures (~-7 °C). The role of biological particles, consistent with concentrations observed near the surface, acting as potential efficient high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L-1) could be produced by powerful secondary ice particle production emphasising the importance of understanding primary ice formation in slightly supercooled clouds. Aircraft penetrations at -3.5 °C, showed peak ice crystal concentrations of up to 100 L-1 which together with the characteristic ice crystal habits observed (generally rimed ice particles and columns) suggested secondary ice production had occurred. To investigate whether the Hallett-Mossop (HM) secondary ice production process could account for these observations, ice splinter production rates were calculated. These calculated rates and observations could only be reconciled provided the constraint that only droplets >24 μm in diameter could lead to splinter production, was relaxed slightly by 2 μm. Model simulations of the case study were also performed with the WRF (Weather, Research and Forecasting) model and ACPIM (Aerosol Cloud and

  4. Chacterization of Teleseismic Earthquakes Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2016-12-01

    Broadband seismographs deployed atop large tabular icebergs and ice shelves record a rich superposition of atmospheric, oceanic, and solid earth signals. We characterize these signals, including body and surface wave arrivals from approximately 200 global earthquakes, using a 34-station broadband array spanning the Ross Ice Shelf, Antarctica. Teleseismic earthquake arrivals are essential for constructing models of crustal and upper mantle structure, and observations on the ice shelf are key to resolving the structure of the underlying West Antarctic Rift System. To test the plausibility of passive imaging in this unique environment, we examine seasonal and spatial dependence of signal-to-noise ratios of body wave arrivals and the impact of ice shelf dynamics on surface wave dispersion. We also note unusual phase mechanics arising from the floating platform geometry.

  5. Degree of Ice Particle Surface Roughness Inferred from Polarimetric Observations

    NASA Technical Reports Server (NTRS)

    Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome

    2016-01-01

    The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multidirectional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1- month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extra-tropics, the roughness parameter is inferred but 74% of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.

  6. Iceberg severity off eastern North America: Its relationship to sea ice variability and climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marko, J.R.; Fissel, D.B.; Wadhams, P.

    1994-09-01

    Iceberg trajectory, deterioration (mass loss), and sea ice data are reviewed to identify the sources of observed interannual and seasonal variations in the numbers of icebergs passing south of 48[degrees]N off eastern North America. The results show the dominant role of sea ice in the observed variations. Important mechanisms involved include both seasonal modulation of the southerly iceberg flow by ice cover control of probabilities for entrapment and decay in shallow water, and the suppression of iceberg melt/deterioration rates by high concentrations of sea ice. The Labrador spring ice extent, shown to be the critical parameter in interannual iceberg numbermore » variability, was found to be either determined by or closely correlated with midwinter Davis Strait ice extents. Agreement obtained between observed year-to-year and seasonal number variations with computations based upon a simple iceberg dissipation model suggests that downstream iceberg numbers are relatively insensitive to iceberg production rates and to fluctuations in southerly iceberg fluxes in areas north of Baffin Island. Past variations in the Davis Strait ice index and annual ice extents are studied to identify trends and relationships between regional and larger-scale global climate parameters. It was found that, on decadal timescales in the post-1960 period of reasonable data quality, regional climate parameters have varied, roughly, out of phase with corresponding global and hemispheric changes. These observations are compared with expectations in terms of model results to evaluate current GCM-based capabilities for simulating recent regional behavior. 64 refs., 11 figs., 3 tabs.« less

  7. Mars Global Surveyor TES Results: Observations of Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Pearl, John C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.

    1999-01-01

    On July 31, 1999, Mars Global Surveyor completed its first martian year in orbit. During this time, the Thermal Emission Spectrometer (TES) experiment gathered extensive data on water ice clouds. We report here on three types of martian clouds. 1) Martian southern summer has long been characterized as the season when the most severe dust storms occur. It is now apparent that northern spring/summer is characterized as a time of substantial low latitude ice clouds [1]. TES observations beginning in the northern summer (Lsubs=107) show a well developed cloud belt between 10S and 30N latitude; 12 micron opacities were typically 0.15. This system decreased dramatically after Lsubs= 130. Thereafter, remnants were most persistent over the Tharsis ridge. 2) Clouds associated with major orographic features follow a different pattern [2]. Clouds of this type were present prior to the regional Noachis dust storm of 1997. They disappeared with the onset of the storm, but reappeared rather quickly following its decay. Typical infrared opacities were near 0.5. 3) Extensive, very thin clouds are also widespread [3]. Found at high altitudes (above 35 km), their opacities are typically a few hundredths. At times, such as in northern spring, these clouds are limited in their northern extent only by the southern edge of the polar vortex. We describe the distribution, infrared optical properties, and seasonal trends of these systems during the first martian year of TES operations.

  8. Arctic Sea Ice Parameters from AMSR-E Data using Two Techniques, and Comparisons with Sea Ice from SSM

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2007-01-01

    We use two algorithms to process AMSR-E data in order to determine algorithm dependence, if any, on the estimates of sea ice concentration, ice extent and area, and trends and to evaluate how AMSR-E data compare with historical SSM/I data. The monthly ice concentrations derived from the two algorithms from AMSR-E data (the AMSR-E Bootstrap Algorithm, or ABA, and the enhanced NASA Team algorithm, or NT2) differ on average by about 1 to 3%, with data from the consolidated ice region being generally comparable for ABA and NT2 retrievals while data in the marginal ice zones and thin ice regions show higher values when the NT2 algorithm is used. The ice extents and areas derived separately from AMSR-E using these two algorithms are, however, in good agreement, with the differences (ABA-NT2) being about 6.6 x 10(exp 4) square kilometers on average for ice extents and -6.6 x 10(exp 4) square kilometers for ice area which are small compared to mean seasonal values of 10.5 x 10(exp 6) and 9.8 x 10(exp 6) for ice extent and area: respectively. Likewise, extents and areas derived from the same algorithm but from AMSR-E and SSM/I data are consistent but differ by about -24.4 x 10(exp 4) square kilometers and -13.9 x 10(exp 4) square kilometers, respectively. The discrepancies are larger with the estimates of extents than area mainly because of differences in channel selection and sensor resolutions. Trends in extent during the AMSR-E era were also estimated and results from all three data sets are shown to be in good agreement (within errors).

  9. Interactions Between Ice Thickness, Bottom Ice Algae, and Transmitted Spectral Irradiance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    The amount of light that penetrates the Arctic sea ice cover impacts sea-ice mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea ice in varying time and space may impact new trends in Arctic sea ice extent and the progression of melt.

  10. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows

    NASA Astrophysics Data System (ADS)

    Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.

    2018-02-01

    The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable

  11. NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2015-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.

  12. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  13. The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.

    PubMed

    Serreze, Mark C; Meier, Walter N

    2018-05-28

    As assessed over the period of satellite observations, October 1978 to present, there are downward linear trends in Arctic sea ice extent for all months, largest at the end of the melt season in September. The ice cover is also thinning. Downward trends in extent and thickness have been accompanied by pronounced interannual and multiyear variability, forced by both the atmosphere and ocean. As the ice thins, its response to atmospheric and oceanic forcing may be changing. In support of a busier Arctic, there is a growing need to predict ice conditions on a variety of time and space scales. A major challenge to providing seasonal scale predictions is the 7-10 days limit of numerical weather prediction. While a seasonally ice-free Arctic Ocean is likely well within this century, there is much uncertainty in the timing. This reflects differences in climate model structure, the unknown evolution of anthropogenic forcing, and natural climate variability. In sharp contrast to the Arctic, Antarctic sea ice extent, while highly variable, has increased slightly over the period of satellite observations. The reasons for this different behavior remain to be resolved, but responses to changing atmospheric circulation patterns appear to play a strong role. © 2018 New York Academy of Sciences.

  14. Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis

    NASA Technical Reports Server (NTRS)

    Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.

    1988-01-01

    The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.

  15. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    NASA Technical Reports Server (NTRS)

    Dean, Ken; Gosink, Joan

    1991-01-01

    The role was analyzed of the hydrologic cycle on the distribution of sea ice, and its influence on forcings and fluxes between the marine environment and the atmosphere. River discharge plays a significant role in degrading the sea ice before any melting occurs elsewhere along the coast. The influence is considered of river discharge on the albedo, thermal balance, and distribution of sea ice. Quantitative atmospheric-hydrologic models are being developed to describe these processes in the coastal zone. Input for the models will come from satellite images, hydrologic data, and field observations. The resulting analysis provides a basis for the study of the significance of the hydrologic cycle throughout the Arctic Basin and its influence on the regional climate as a result of possible climatic scenarios. The area offshore from the Mackenzie River delta was selected as the study area.

  16. Predictability of the Arctic sea ice edge

    NASA Astrophysics Data System (ADS)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  17. Variability and Anomalous Trends in the Global Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of

  18. Sea Ice Sensitivities in the 0.72 deg and 0.08 deg Arctic Cap Coupled HYCOM/CICE Models

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sea Ice Sensitivities in the 0.72°and 0.08° Arctic Cap...Arctic ice extent, which corresponds to the sea ice that remains during the summer minimum, has decreased over the years 1979–2007 by more than 10% per...Goosse et al. 2009) with the lowest observed sea ice extent in the satellite record (1979-present) occurring in September 2012 (Perovich et al. 2012

  19. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations

  20. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.

  1. Summer 2007 and 2008 Arctic Sea Ice Loss in Context: OUTLOOK 2008

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Eicken, H.; Wiggins, H. V.

    2008-12-01

    The Arctic is changing faster than the publication cycle for new information. In response, the SEARCH and DAMOCLES Programs initiated an OUTLOOK 2008 to provide broad-based communication and assessment within the arctic science community on the causes of rapid summer sea ice loss, synthesizing information from Arctic observing networks and model simulations. The question for summer 2008 was whether the previous loss of multi-year sea ice and delay in sea ice formation in autumn 2007 would still allow sufficient winter growth of sea ice thickness to last through the summer 2008, potentially allowing for recovery from the 2007 minimum. The answer is no; summer 2008 was a second sequential year of extremely low minimum sea ice extent. To organize OUTLOOK 2008, respondents were asked in May, June and July to provide a rationale and semi-quantitative assessment of arctic sea ice extent anticipated for September 2008. OUTLOOK 2008 supplemented information maintained by ice centers, universities and other data providers. Using a range of methods, all of the approximately 20 groups responded that summer sea ice would not return to climatological mean conditions, with a median response near the 2007 extent. The range of responses depended on the relative weight given to "initial conditions," e.g., age and thickness of sea ice at the end of spring, versus whether summer winds in 2008 would be as supportive for ice loss as in 2007. Initial conditions turned out to be a primary factor for summer 2008, with implications for continued sea ice loss in future years. OUTLOOK 2008 highlighted aspects of the observation and modeling efforts that require further attention such as interpretation of summer microwave signatures, in situ buoy measurements, and data assimilation in models. We appreciate the contributions from respondents and reviewers who made OUTLOOK 2008 a success.

  2. Development of global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE PAGES

    Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; ...

    2015-03-05

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is requiredmore » to rectify this in future configurations.« less

  3. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  4. Surface Exposure Dating of the Huancané III Moraines in Peru: A Record of Quelccaya Ice Cap's Maximum Extent during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Baranes, H. E.; Kelly, M. A.; Stroup, J. S.; Howley, J. A.; Lowell, T. V.

    2012-12-01

    The climatic conditions that influenced the tropics during the height of the last glacial period are not well defined and controversial. There are disparities in estimates of temperature anomalies (e.g., MARGO, 2009; Rind and Peteet, 1985; CLIMAP, 1976), and critical terrestrial paleotemperature proxy records in tropical regions are poorly dated (e.g., Porter, 2001). Defining these conditions is important for understanding the mechanisms that cause major shifts in climate, as the tropics are a primary driver of atmospheric and oceanic circulation. This study aims to constrain the timing of maximum glacier extents in the Cordillera Oriental in southern Peru during the last glacial period by applying surface exposure (beryllium-10) dating to the Huancané III (Hu-III) moraines. The Hu-III moraines mark the maximum extent of Quelccaya Ice Cap (QIC) (13.93°S, 70.83°W), the largest tropical ice cap, during the last ice age. The eight beryllium-10 ages presented here yield 17,056 ± 520 yrs ago as a minimum age for the onset of recession from the ice cap advance marked by the Hu-III moraines. Comparing this age to other paleoclimate records indicates that the ice cap advance marked by the Hu-III moraines is more likely associated with a North Atlantic climate event known as Heinrich I (H1; 16,800 yrs ago, Bond et al., 1992, 1993) than with global cooling at the Last Glacial Maximum (LGM; ~21,000 yrs ago, Denton and Hughes, 1981). This result suggests that climate processes in the North Atlantic region are linked to climatic conditions in the tropical Andes. A mesoscale climate model and an ice-flow model are currently being developed for QIC. The moraine data presented in this study will be used with these two models to test response of QIC to North Atlantic and global climate events.

  5. What Governs Ice-Sticking in Planetary Science Experiments?

    NASA Astrophysics Data System (ADS)

    Gaertner, Sabrina; Gundlach, B.; Blum, J.; Fraser, H. J.

    2018-06-01

    Water ice plays an important role, alongside dust, in current theories of planet formation. Decades of laboratory experiments have proven that water ice is far stickier in particle collisions than dust. However, water ice is known to be a metastable material. Its physical properties strongly depend on its environmental parameters, the foremost being temperature and pressure. As a result, the properties of ice change not only with the environment it is observed in, but also with its thermal history.The abundance of ice structures that can be created by different environments likely explains the discrepancies observed across the multitude of collisional laboratory studies in the past [1-16]; unless the ices for such experiments have been prepared in the same way and are collided under the same environmental conditions, these experiments simply do not collide the same ices.This raises several questions:1. Which conditions and ice properties are most favourable for ice sticking?2. Which conditions and ice properties are closest to the ones observed in protoplanetary disks?3. To what extent do these two regimes overlap?4. Consequently, which collisional studies are most relevant to planetary science and therefore best suited to inform models of planet formation?In this presentation, I will give a non-exhaustive overview of what we already know about the properties of ice particles, covering those used in planetary science experiments and those observed in planet forming regions. I will discuss to what extent we can already answer questions 1-3, and what information we still need to obtain from observations, laboratory experiments, and modelling to be able to answer question 4.References:1. Bridges et al. 1984 Natur 309.2. Bridges et al. 1996 Icar 123.3. Deckers & Teiser 2016 MNRAS 456.4. Dilley & Crawford 1996 JGRE 101.5. Gundlach & Blum 2015 ApJ 798.6. Hatzes et al. 1991 Icar 89.7. Hatzes et al. 1988 MNRAS 231.8. Heißelmann et al. 2010 Icar 206.9. Higa et al. 1996 P

  6. Numerical model of ice melange expansion during abrupt ice-shelf collapse

    NASA Astrophysics Data System (ADS)

    Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.

    2010-12-01

    Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system

  7. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  8. Observation of the cosmic-ray shadow of the Moon with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Wasserman, R.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration

    2014-05-01

    We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (>6σ) in both detector configurations. The observed location of the shadow center is within 0.2° of its expected position when geomagnetic deflection effects are taken into account. This measurement validates the directional reconstruction capabilities of IceCube.

  9. Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The first Martian year

    NASA Astrophysics Data System (ADS)

    Pearl, John C.; Smith, Michael D.; Conrath, Barney J.; Bandfield, Joshua L.; Christensen, Philip R.

    2001-06-01

    Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997 (Ls=184°), has permitted extensive observations over more than a Martian year. Initially, thin (normal optical depth <0.06 at 825 cm-1) ice clouds and hazes were widespread, showing a distinct latitudinal gradient. With the onset of a regional dust storm at Ls=224°, ice clouds vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The zonally averaged cloud opacities show little difference between the beginning and end of the first Martian year. A broad low-latitude cloud belt with considerable longitudinal structure was present in early northern summer. Apparently characteristic of the northern summer season, it vanished between Ls=140° and 150°. The latitudinal extent of this feature is apparently controlled by the ascending branch of the Hadley circulation. The most opaque clouds (optical depth ~0.6) were found above the summits of major volcanic features; these showed spatial structure possibly associated with wave activity. Variety among low-lying late morning clouds suggests localized differences in circulation and microclimates. Limb observations showed extensive optically thin (optical depth <0.04) stratiform clouds at altitudes up to 55 km. Considerable latitude and altitude variations were evident in ice clouds in early northern spring (Ls=25°) near 30 km, thin clouds extended from just north of the equator to ~45°N, nearly to the north polar vortex. A water ice haze was present in the north polar night (Ls=30°) at altitudes up to 40 km. Because little dust was present this probably provided heterogeneous nucleation sites for the formation of CO2 clouds and snowfall at altitudes below ~20 km, where atmospheric temperatures dropped to the CO2 condensation point. The relatively invariant spectral shape of the water ice cloud feature over space and time indicates that ice particle radii are generally between 1 and 4 μm.

  10. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  11. Weddell-Scotia sea marginal ice zone observations from space, October 1984

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.

    1986-01-01

    Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea ice margin of the Weddell-Scotia Seas region. At the ice edge, the ice forms into bandlike aggregates of small ice floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the pack, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.

  12. CLaMS-Ice: Large-scale cirrus cloud simulations in comparison with observations

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Afchine, Armin; Spelten, Nicole; Dreiling, Volker; Zöger, Martin; Krämer, Martina

    2016-04-01

    Cirrus clouds are an element of uncertainty in the climate system and have received increasing attention since the last IPCC reports. The interactions of different freezing mechanisms, sedimentation rates, updraft velocity fluctuations and other factors that determine the formation and evolution of those clouds is still not fully understood. Thus, a reliable representation of cirrus clouds in models representing real atmospheric conditions is still a challenging task. At last year's EGU, Rolf et al. (2015) introduced the new large-scale microphysical cirrus cloud model CLaMS-Ice: based on trajectories calculated with CLaMS (McKenna et al., 2002 and Konopka et al. 2007), it simulates the development of cirrus clouds relying on the cirrus bulk model by Spichtinger and Gierens (2009). The qualitative agreement between CLaMS-Ice simulations and observations could be demonstrated at that time. Now we present a detailed quantitative comparison between standard ECMWF products, CLaMS-Ice simulations, and in-situ measurements obtained during the ML-Cirrus campaign 2014. We discuss the agreement of the parameters temperature (observational data: BAHAMAS), relative humidity (SHARC), cloud occurrence, cloud particle concentration, ice water content and cloud particle radii (all NIXE-CAPS). Due to the precise trajectories based on ECMWF wind and temperature fields, CLaMS-Ice represents the cirrus cloud vertical and horizontal coverage more accurately than the ECMWF ice water content (IWC) fields. We demonstrate how CLaMS-Ice can be used to evaluate different input settings (e.g. amount of ice nuclei, freezing thresholds, sedimentation settings) that lead to cirrus clouds with the microphysical properties observed during ML-Cirrus (2014).

  13. Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations

    PubMed Central

    Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Abstract Sea ice models with the traditional viscous‐plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan‐Arctic sea ice‐ocean simulation, the small‐scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data. PMID:29576996

  14. The Leipzig Ice Nucleation chamber Comparison (LINC): An overview of ice nucleation measurements observed with four on-line ice nucleation devices

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.

    2016-04-01

    Mixed-phase clouds (MPCs) are found to be the most relevant cloud type leading to precipitation in mid-latitudes. The formation of ice crystals in MPCs is not completely understood. To estimate the effect of aerosol particles on the radiative properties of clouds and to describe ice nucleation in models, the specific properties of aerosol particles acting as ice nucleating particles (INPs) still need to be identified. A number of devices are able to measure INPs in the lab and in the field. However, methods can be very different and need to be tested under controlled conditions with respect to aerosol generation and properties in order to standardize measurement and data analysis approaches for subsequent ambient measurements. Here, we present an overview of the LINC campaign hosted at TROPOS in September 2015. We compare four ice nucleation devices: PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) and SPIN (SPectrometer for Ice Nuclei) are operated in deposition nucleation and condensation freezing mode. LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011) and PIMCA (Portable Immersion Mode Cooling chamber) measure in the immersion freezing mode. PIMCA is used as a vertical extension to PINC and allows activation and droplet growth prior to exposure to the investigated ice nucleation temperature. Size-resolved measurements of multiple aerosol types were performed including pure mineral dust (K-feldspar, kaolinite) and biological particles (Birch pollen washing waters) as well as some of them after treatment with sulfuric or nitric acid prior to experiments. LACIS and PIMCA-PINC operated in the immersion freezing mode showed very good agreement in the measured frozen fraction (FF). For the comparison between PINC and SPIN, which were scanning relative humidity from below to above water vapor saturation, an agreement was found for the obtained INP concentration. However, some differences were observed, which may result from ice

  15. Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.

    2013-12-01

    In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE

  16. Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Goodman, J. A.; Góra, D.; Grant, D.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zilles, A.; Zoll, M.; IceCube Collaboration

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30° and an amplitude of (- 1.58 ± 0.46stat ± 0.52sys) × 10-3 at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 ± 0.38stat ± 0.96sys) × 10-3.

  17. Reliable radiocarbon evidence for the maximum extent of the West Antarctic Ice Sheet in the easternmost Amundsen Sea Embayment during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hillenbrand, C. D.; Klages, J. P.; Kuhn, G.; Smith, J.; Graham, A. G. C.; Gohl, K.; Wacker, L.

    2016-02-01

    We present the first age control and sedimentological data for the upper part of a stratified seismic unit that is unusually thick ( 6-9 m) for the outer shelf of the ASE and overlies an acoustically transparent unit. The transparent unit probably consists of soft till deposited during the last advance of grounded ice onto the outer shelf. We mapped subtle mega-scale glacial lineations (MSGL) on the seafloor and suggest that these are probably the expressions of bedforms originally moulded into the surface of the underlying till layer. We note that the lineations are less distinct when compared to MSGLs recorded in bathymetric data collected further upstream and suggest that this is because of the blanketing influence of the thick overlying drape. The uppermost part (≤ 3 m) of the stratified drape was sampled by two of our sediment cores and contains sufficient amounts of calcareous foraminifera throughout to establish reliable age models by radiocarbon dating. In combination with facies analysis of the recovered sediments the obtained radiocarbon dates suggest deposition of the draping unit in a sub-ice shelf/sub-sea ice to seasonal-open marine environment that existed on the outer shelf from well before (>45 ka BP) the Last Glacial Maximum until today. This indicates the maximum extent of grounded ice at the LGM must have been situated south of the two core locations, where a well-defined grounding-zone wedge (`GZWa') was deposited. The third sediment core was recovered from the toe of this wedge and retrieved grounding-line proximal glaciogenic debris flow sediments that were deposited by 14 cal. ka BP. Our new data therefore provide direct evidence for 1) the maximum extent of grounded ice in the easternmost ASE at the LGM (=GZWa), 2) the existence of a large shelf area seawards the wedge that was not covered by grounded ice during that time, and 3) landward grounding line retreat from GZWa prior to 14 cal. ka BP. This knowledge will help to improve LGM ice

  18. Ku/Ka band observations over polar ice sheets

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Lasne, Yannick; Guillot, Amandine; Picot, Nicolas; Rémy, Frédérique

    2015-04-01

    For the first time, comparisons between Ku and Ka altimeter measurements are possible thanks to the new AltiKa instrument embarked onboard the Saral mission launched on February 25, 2013. This comparison is of particular interest when dealing with ice sheet observations because both frequencies have different penetration characteristics. We propose in this paper to revisit the estimation of the ice sheet topography (and other related parameters) with altimeter systems and to present illustrations of the differences observed in Ku and Ka bands using AltiKa, Envisat/RA-2 but also Cryosat-2 measurements. Working on AltiKa waveforms in the frame of the PEACHI project has allowed us to better understand the impact of the penetration depth on the echo shape, to improve the estimation algorithm and to compare its output with historical results obtained on Envisat and ERS missions. In particular, analyses at cross-overs of the Cryosat-2 and Saral data will be presented. Sentinel-3 mission should be launch during 2015. Operating in Ku band and in delay/doppler mode, it will be crucial to account for penetration effects in order to accurately derive the ice sheet heights and trends. The results of the work presented here, will benefit to the Sentinel-3 mission.

  19. Observations on the Growth of Roughness Elements Into Icing Feathers

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Tsao, Jen, Ching

    2007-01-01

    This work presents the results of an experiment conducted in the Icing Research Tunnel at NASA Glenn Research Center to understand the process by which icing feathers are formed in the initial stages of ice accretion formation on swept wings. Close-up photographic data were taken on an aluminum NACA 0012 swept wing tip airfoil. Two types of photographic data were obtained: time sequence close-up photographic data during the run and close-up photographic data of the ice accretion at the end of each run. Icing runs were conducted for short ice accretion times from 10 to 180 sec. The time sequence close-up photographic data was used to study the process frame by frame and to create movies of how the process developed. The movies confirmed that at glaze icing conditions in the attachment line area icing feathers develop from roughness elements. The close-up photographic data at the end of each run showed that roughness elements change into a pointed shape with an upstream facet and join on the side with other elements having the same change to form ridges with pointed shape and upstream facet. The ridges develop into feathers when the upstream facet grows away to form the stem of the feather. The ridges and their growth into feathers were observed to form the initial scallop tips present in complete scallops.

  20. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 2. Observed and Modeled Ice Flow

    NASA Technical Reports Server (NTRS)

    Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed

    2012-01-01

    Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.

  1. Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction

    NASA Technical Reports Server (NTRS)

    Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.

    1987-01-01

    Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.

  2. Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modeling

    NASA Astrophysics Data System (ADS)

    Simmel, M.; Bühl, J.; Ansmann, A.; Tegen, I.

    2015-09-01

    The present work combines remote sensing observations and detailed cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather high temperatures of -6 °C. For comparison, a second mixed phase case at about -25 °C is introduced. To further look into the details of cloud microphysical processes, a simple dynamics model of the Asai-Kasahara (AK) type is combined with detailed spectral microphysics (SPECS) forming the model system AK-SPECS. Vertical velocities are prescribed to force the dynamics, as well as main cloud features, to be close to the observations. Subsequently, sensitivity studies with respect to ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity), whereas the ice phase is much more sensitive to the microphysical parameters (ice nucleating particle (INP) number, ice particle shape). The choice of ice particle shape may induce large uncertainties that are on the same order as those for the temperature-dependent INP number distribution.

  3. Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modelling

    NASA Astrophysics Data System (ADS)

    Simmel, M.; Bühl, J.; Ansmann, A.; Tegen, I.

    2015-01-01

    The present work combines remote sensing observations and detailed cloud modeling to investigate two altocumulus cloud cases observed over Leipzig, Germany. A suite of remote sensing instruments was able to detect primary ice at rather warm temperatures of -6 °C. For comparison, a second mixed phase case at about -25 °C is introduced. To further look into the details of cloud microphysical processes a simple dynamics model of the Asai-Kasahara type is combined with detailed spectral microphysics forming the model system AK-SPECS. Vertical velocities are prescribed to force the dynamics as well as main cloud features to be close to the observations. Subsequently, sensitivity studies with respect to ice microphysical parameters are carried out with the aim to quantify the most important sensitivities for the cases investigated. For the cases selected, the liquid phase is mainly determined by the model dynamics (location and strength of vertical velocity) whereas the ice phase is much more sensitive to the microphysical parameters (ice nuclei (IN) number, ice particle shape). The choice of ice particle shape may induce large uncertainties which are in the same order as those for the temperature-dependent IN number distribution.

  4. Antarctic Sea Ice Variability and Trends, 1979-2010

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Cavalieri, D. J.

    2012-01-01

    In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  5. Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures

    NASA Technical Reports Server (NTRS)

    Cole, Benjamin H.; Yang, Ping; Baum, Bryan A.; Riedi, Jerome; Labonnote, Laurent C.; Thieuleux, Francois; Platnick, Steven

    2012-01-01

    Insufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations required in downstream applications involving these clouds. The widely used MODerate Resolution Imaging Spectroradiometer (MODIS) Collection 5 ice microphysical model assumes a mixture of various ice crystal shapes with smooth-facets except aggregates of columns for which a moderately rough condition is assumed. When compared with PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of 9 different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding-doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multi-angular observations. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.

  6. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    NASA Astrophysics Data System (ADS)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  7. How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2?

    NASA Astrophysics Data System (ADS)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun

    2017-09-01

    The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.

  8. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  9. Petermann Glacier, North Greenland: Large Ice-Discharge Episodes from 20 Years of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Babiker, M.; Johannessen, O. M.; Miles, M. W.; Miles, V. V.

    2009-12-01

    The major marine-terminating outlet glaciers of Greenland can undergo large mass losses through calving of icebergs and bottom melting from floating ice tongues. Recent observations of outlet glaiers around Greenland have shown that large and rapid changes in solid-ice fluxes are possible. The Petermann glacier in remote northern Greenland is the region’s largest floating-tongue glacier (~70 km by 10 km). In summer 2008 a large calving event was observed, as well as large cracks upstream of the remaining calving front, portending a more massive near-term loss. These observations may herald extraordinary and unprecedented change. However, the long-term variability of calving events and ice velocities are poorly known. Our research goal here is to identify the temporal variability and possible trends in solid-ice flux indicators - variability of the calving front and ice velocity - for Petermann glacier. The methodological approach is observational, based primarily on analysis of 20 years of repetitive satellite data over a period starting from 1990, together with sporadic earlier observations. The multisensor data range from high-resolution optical images from Landsat, SPOT and Terra ASTER and high-resolution synthetic aperture radar (SAR) images from ERS and ENVISAT. These disparate data have been imported, geo-registered and analysed within a Geographic Information System. The following measurements are made: (1) delineating changes in the calving front, (2) estimating the area of glacial ice loss during calving events, and (3) estimating the ice-surface velocity using sequential satellite images. We find evidence of a number of previous calving episodes of similar magnitude to the summer 2008. The ice-velocity estimates compare well with other estimates for particular years, and moreover are relatively consistent during the 20-year period. These findings suggest business-as-usual for Petermann glacier; however, a near-term calving event exceeding those observed

  10. Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer

    2015-08-01

    It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical

  11. Abrupt Shift in the Observed Runoff from the Southwest Greenland Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Ahlstrom, A.; Petersen, D.; Box, J.; Langen, P. P.; Citterio, M.

    2016-12-01

    Mass loss of the Greenland ice sheet has contributed significantly to sea level rise in recent years and is considered a crucial parameter when estimating the impact of future climate change. Few observational records of sufficient length exist to validate surface mass balance models, especially the estimated runoff. Here we present an observation time series from 1975-2014 of discharge from a large proglacial lake, Tasersiaq, in West Greenland (66.3°N, 50.4°W) with a mainly ice-covered catchment. We argue that the discharge time series is representative measure of ice sheet runoff, making it the only observational record of runoff to exceed the 30-year period needed to assess the climatological state of the ice sheet. We proceed to isolate the runoff part of the signal from precipitation and identified glacial lake outburst floods from a small sub-catchment. Similarly, the impact from major volcanic eruptions is clearly identified. We examine the trend and annual variability in the annual discharge, relating it to likely atmospheric forcing mechanisms and compare the observational time series with modelled runoff from the regional climate model HIRHAM.

  12. Recent Increases in Snow Accumulation and Decreases in Sea-Ice Concentration Recorded in a Coastal NW Greenland Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.

    2013-12-01

    A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-ice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive

  13. New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis

    NASA Astrophysics Data System (ADS)

    Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.

    2017-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.

  14. Low-frequency passive-microwave observations of sea ice in the Weddell Sea

    NASA Technical Reports Server (NTRS)

    Menashi, James D.; St. Germain, Karen M.; Swift, Calvin T.; Comiso, Josefino C.; Lohanick, Alan W.

    1993-01-01

    The microwave emission properties of first-year sea ice were investigated from the R/V Polarstern during the Antarctic Winter Weddell Gyre Project in 1989. Radiometer measurements were made at 611 MHz and 10 GHz and were accompanied by video and visual observations. Using the theory of radiometric emission from a layered medium, a method for deriving sea ice thickness from radiometer data is developed and tested. The model is based on an incoherent reflection process and predicts that the emissivity of saline ice increases monotonically with increasing ice thickness until saturation occurs.

  15. A New Normal for the Sea Ice Index

    NASA Technical Reports Server (NTRS)

    Fetterer, Florence; Windnagel, Ann; Meier, Walter N.

    2014-01-01

    The NSIDC Sea Ice Index is a popular data product that shows users how ice extent and concentration have changed since the beginning of the passive microwave satellite record in 1978. It shows time series of monthly ice extent anomalies rather than actual extent values, in order to emphasize the information the data are carrying. Along with the time series, an image of average extent for the previous month is shown as a white field, with a pink line showing the median extent for that month. These are updated monthly; corresponding daily products are updated daily.

  16. New details about the LGM extent and subsequent retreat of the West Antarctic Ice Sheet from the easternmost Amundsen Sea Embayment shelf

    NASA Astrophysics Data System (ADS)

    Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.

    2017-12-01

    In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.

  17. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  18. United States Naval Academy Polar Science Program's Visual Arctic Observing Platforms; IceGoat and IceKids

    NASA Astrophysics Data System (ADS)

    Woods, J. E.; Rigor, I. G.; Valentic, T. A.

    2013-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Observing Platforms. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Engineering Departments, and in close collaboration with SRI International, developed the USNA Visual Arctic Observing Platforms. The experience gained through Polar field studies and data derived from these platforms will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 (IG1) off the USCGC HEALY in September, 2012. IG1 suffered a malfunction to its solar powered webcam system upon deployment, but is still reporting via ARGOS SATCOM systems basic weather parameters of air temperature, pressure, and position. USNA PSP attempted to build a less robust, but more economical system integrating similar low power observing platforms housed in heavy duty coolers. This allowed for a streamlined process to get a complete system completed in one academic year. IceKids (IK) are similar observing platforms, just not designed to float once the sea ice melts. IK1 was deployed to Antarctica from October 2012 through January 2013 and captured over 11,000 web cam images in near real time of two remote environmental monitoring stations. IK2A and IK3T were built to be deployed at the Naval Academy Ice Experiment in Barrow, AK in March 2013. IK2A was unique in trying to collect and transmit underwater acoustic signals in near real time. The system integrated a passive hydrophone into the already developed low power data transport system

  19. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Cruikshank, Owen; He, Weilue

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Some progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does notmore » freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ~1010 increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.« less

  20. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops

    DOE PAGES

    Yang, Fan; Cruikshank, Owen; He, Weilue; ...

    2018-02-06

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Some progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does notmore » freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ~1010 increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.« less

  1. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A.

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ˜1010 increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  2. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.

    PubMed

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  3. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys Ocean Profiles

    DTIC Science & Technology

    2017-01-01

    repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain...contributing to the rapid decline in summer ice extent that has occurred in recent years. The SIZ is the region between maximum winter sea ice extent and...minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water

  4. Modeling of cryoseismicity observed at the Fimbulisen Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Pirli, M.; Dahm, T.; Schweitzer, J.; Köhler, A.

    2017-12-01

    A source region of repetitive cryoseismic activity has been identified at the Fimbulisen ice shelf, in Dronning Maud Land, East Antarctica. The specific area is located at the outlet of the Jutulstraumen glacier, near the Kupol Moskovskij ice rise. A unique event catalog extending over 13 years, from 2003 to 2016 has been built based on waveform cross-correlation detectors and Hidden Markov Model classifiers. Phases of low seismicity rates are alternating with intense activity intervals that exhibit a strong tidal modulation. We performed a detailed analysis and modeling of the more than 2000 events recorded between July and October 2013. The observations are characterized by a number of very clear signals: (i) the event rate follows both the neap-spring and the semi-diurnal ocean-tide cycle; (ii) recurrences have a characteristic time of approximately 8 minutes; (iii) magnitudes vary systematically both on short and long time scales; and (iv) the events migrate within short-time clusters. We use these observations to constrain the dynamic processes at work at this particular region of the Fimbulisen ice shelf. Our model assumes a local grounding of the ice shelf, where stick-slip motion occurs. We show that the observations can be reproduced considering the modulation of the Coulomb-Failure stress by ocean tides.

  5. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  6. Observed Differences between North American Snow Extent and Snow Depth Variability

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Gong, G.

    2006-12-01

    Snow extent and snow depth are two related characteristics of a snowpack, but they need not be mutually consistent. Differences between these two variables at local scales are readily apparent. However at larger scales which interact with atmospheric circulation and climate, snow extent is typically the variable used, while snow depth is often assumed to be minor and/or mutually consistent compared to snow extent, though this is rarely verified. In this study, a new regional/continental-scale gridded dataset derived from field observations is utilized to quantitatively evaluate the relationship between snow extent and snow depth over North America. Various statistical methods are applied to assess the mutual consistency of monthly snow depth vs. snow extent, including correlations, composites and principal components. Results indicate that snow depth variations are significant in their own rights, and that depth and extent anomalies are largely unrelated, especially over broad high latitude regions north of the snowline. In the vicinity of the snowline, where precipitation and ablation can affect both snow extent and snow depth, the two variables vary concurrently, especially in autumn and spring. It is also found that deeper winter snow translates into larger snow-covered area in the subsequent spring/summer season, which suggests a possible influence of winter snow depth on summer climate. The observed lack of mutual consistency at continental/regional scales suggests that snowpack depth variations may be of sufficiently large magnitude, spatial scope and temporal duration to influence regional-hemispheric climate, in a manner unrelated to the more extensively studied snow extent variations.

  7. Air-Sea Interactions in the Marginal Ice Zone

    DTIC Science & Technology

    2016-03-31

    Arctic Ocean has increased with the significant retreat of the seasonal sea-ice extent. Here, we use wind, wave, turbulence, and ice measurements to...which has experienced a significant retreat of the seasonal ice extent (Comiso and Nishio, 2008; Comiso et al., 2008). Thomson and Rogers (2014) showed

  8. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  9. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  10. Tropical pacing of Antarctic sea ice increase

    NASA Astrophysics Data System (ADS)

    Schneider, D. P.

    2015-12-01

    One reason why coupled climate model simulations generally do not reproduce the observed increase in Antarctic sea ice extent may be that their internally generated climate variability does not sync with the observed phases of phenomena like the Pacific Decadal Oscillation (PDO) and ENSO. For example, it is unlikely for a free-running coupled model simulation to capture the shift of the PDO from its positive to negative phase during 1998, and the subsequent ~15 year duration of the negative PDO phase. In previously presented work based on atmospheric models forced by observed tropical SSTs and stratospheric ozone, we demonstrated that tropical variability is key to explaining the wind trends over the Southern Ocean during the past ~35 years, particularly in the Ross, Amundsen and Bellingshausen Seas, the regions of the largest trends in sea ice extent and ice season duration. Here, we extend this idea to coupled model simulations with the Community Earth System Model (CESM) in which the evolution of SST anomalies in the central and eastern tropical Pacific is constrained to match the observations. This ensemble of 10 "tropical pacemaker" simulations shows a more realistic evolution of Antarctic sea ice anomalies than does its unconstrained counterpart, the CESM Large Ensemble (both sets of runs include stratospheric ozone depletion and other time-dependent radiative forcings). In particular, the pacemaker runs show that increased sea ice in the eastern Ross Sea is associated with a deeper Amundsen Sea Low (ASL) and stronger westerlies over the south Pacific. These circulation patterns in turn are linked with the negative phase of the PDO, characterized by negative SST anomalies in the central and eastern Pacific. The timing of tropical decadal variability with respect to ozone depletion further suggests a strong role for tropical variability in the recent acceleration of the Antarctic sea ice trend, as ozone depletion stabilized by late 1990s, prior to the most

  11. The Role of Laboratory-Based Studies of the Physical and Biological Properties of Sea Ice in Supporting the Observation and Modeling of Ice Covered Seas

    NASA Astrophysics Data System (ADS)

    Light, B.; Krembs, C.

    2003-12-01

    Laboratory-based studies of the physical and biological properties of sea ice are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on sea ice and the structure of ice-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between sea ice and the atmosphere and sea ice and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of sea ice under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural sea ice core samples and laboratory-grown ice. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of sea ice microstructure to changes in temperature, assessment of the relationships between ice structure and the partitioning of solar radiation by first-year sea ice covers, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of sea ice.

  12. Modeling of Antarctic Sea Ice in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Wu, Xingren; Simmonds, Ian; Budd, W. F.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution.

  13. Modeling of Antarctic sea ice in a general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xingren; Budd, W.F.; Simmonds, I.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. Amore » lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution. 64 refs., 15 figs., 2 tabs.« less

  14. Specific findings on ice crystal microphysical properties from in-situ observation

    NASA Astrophysics Data System (ADS)

    Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2017-04-01

    This study focuses on microphysical properties of ice particles populating high ice water content areas in Mesoscale Convective Systems (MCS). These clouds have been extensively sampled during the High Altitude Ice Crystal - High Ice Water Content international projects (HAIC-HIWC, Dezitter et al. 2013, Strapp et al. 2015) with the objective of characterizing ice particle properties such as size distribution, radar reflectivity and ice water content. The in-situ data collected during these campaigns at different temperature levels and in different type of MCS (oceanic, continental) make the HAIC-HIWC data set a unique opportunity to study ice particle microphysical properties. Recently, a new approach to retrieve ice particle mass from in-situ measurements has been developed: a forward model that relates ice particles' mass to Particle Size Distribution (PSD) and Ice Water Content (IWC) is formulated as a linear system of equations and the retrieval process consists in solving the inverse problem with numerical optimization tools (Coutris et al. 2016). In this study, this new method is applied to HAIC-HIWC data set and main outcomes are discussed. First, the method is compared to a classical power-law based method using data from one single flight performed in Darwin area on February, 7th 2014. The observed differences in retrieved quantities such as ice particle mass, ice water content or median mass diameter, highlight the potential benefit of abandoning the power law simplistic assumption. The method is then applied to data measured at different cloud temperatures ranging from -40°C to -10°C during several flights of both Darwin 2014 and Cayenne 2015 campaigns. Specific findings about ice microphysical properties such as variations of effective density with particle size and the influence of cloud temperature on particle effective density are presented.

  15. Assessing deformation and morphology of Arctic landfast sea ice using InSAR to support use and management of coastal ice

    NASA Astrophysics Data System (ADS)

    Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.

    2016-12-01

    Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high

  16. Long-term observing system for the oceanic regime of Filchner-Ronne Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Østerhus, Svein; Schröder, Michael; Hellmer, Hartmunt; Darelius, Elin; Nicholls, Keith; Makinson, Keith

    2014-05-01

    Long term observations of the flow of dense waters from their area of formation to the abyss of the World Ocean, and the return flow of warm waters, are central to climate research. For the Weddell Sea an important component of such a system entails monitoring the formation of High Salinity Shelf Water (HSSW) on the continental shelf north of Ronne Ice Front, the transformation to Ice Shelf Water (ISW) beneath the floating Filchner-Ronne ice shelf, and the flux of ISW overflowing the shelf break to the deep Weddell Sea. Equally important is the return flow of warm water toward the Filchner-Ronne Ice Shelf system. AWI, BAS and UNI/UIB operate a number of monitoring stations in the southern Weddell Sea. The systems build upon techniques and methods developed over several decades and have a proven record of high data return. Here we present plans for extending, integrating and operating the existing long term observatories to increase our knowledge of the natural variability of the ocean-ice shelf system, and to allow early identification of possible changes of regional or global importance. The S2 observatory at the Filchner sill was established in 1977 and continues to deliver the longest existing marine time series from Antarctica. As a key site for monitoring the ISW overflow S2 is a part of the global net of monitoring sites under CLIVAR Southern Ocean Observing System (SOOS) and OceanSITES. The existing S2 observatory consists of a sub-surface mooring carrying sensors for current velocity, temperature, salinity and dissolved oxygen measurements. Observations at the Filchner sill also show a seasonal inflow of relatively warm water that is able to reach Filchner Ice Front. New model results indicate that this flow of water might increase in the future and we have deployed a number of instrumented moorings in the Filchner Depression to estimate the heat flux towards the ice shelf. In 1999 we established Site 5 on Ronne Ice Shelf using a hot-water drill to access

  17. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  18. Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring

    NASA Astrophysics Data System (ADS)

    Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo

    2011-12-01

    We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.

  19. Isopycnal deepening of an under-ice river plume in coastal waters: Field observations and modeling

    NASA Astrophysics Data System (ADS)

    Li, S. Samuel; Ingram, R. Grant

    2007-07-01

    The Great Whale River, located on the southeast coast of Hudson Bay in Canada, forms a large river plume under complete landfast ice during early spring. Short-term fluctuations of plume depth have motivated the present numerical study of an under-ice river plume subject to tidal motion and friction. We introduce a simple two-layer model for predicting the vertical penetration of the under-ice river plume as it propagates over a deepening topography. The topography is idealized but representative. Friction on the bottom surface of the ice cover, on the seabed, and at the plume interface is parameterized using the quadratic friction law. The extent of the vertical penetration is controlled by dimensionless parameters related to tidal motion and river outflow. Model predictions are shown to compare favorably with under-ice plume measurements from the river mouth. This study illustrates that isopycnal deepening occurs when the ice-cover vertical motion creates a reduced flow cross-section during the ebbing tide. This results in supercritical flow and triggers the downward plume penetration in the offshore. For a given river discharge, the freshwater source over a tidal cycle is unsteady in terms of discharge velocity because of the variation in the effective cross-sectional area at the river mouth, through which freshwater flows.

  20. Observing rotation and deformation of sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Samadani, R.; Daida, J. M.; Smith, M. P.; Bracewell, R. N.

    1987-01-01

    The ESA's ERS-1 satellite will carry SARs over the polar regions; an important component in the use of these data is an automated scheme for the extraction of sea ice velocity fields from a sequence of SAR images of the same geographical region. The image pyramid area-correlation hierarchical method is noted to be vulnerable to uncertainties for sea ice rotations greater than 10-15 deg between SAR observations. Rotation-invariant methods can successfully track isolated floes in the marginal ice zone. Hu's (1962) invariant moments are also worth considering as a possible basis for rotation-invariant tracking methods. Feature tracking is inherently robust for tracking rotating sea ice, but is limited when features are floe-lead boundaries. A variety of techniques appears neccessary.

  1. Microwave Observations of Snow-Covered Freshwater Lake Ice obtained during the Great Lakes Winter EXperiment (GLAWEX), 2017

    NASA Astrophysics Data System (ADS)

    Gunn, G. E.; Hall, D. K.; Nghiem, S. V.

    2017-12-01

    Studies observing lake ice using active microwave acquisitions suggest that the dominant scattering mechanism in ice is caused by double-bounce of the signal off vertical tubular bubble inclusions. Recent polarimetric SAR observations and target decomposition algorithms indicate single-bounce interactions may be the dominant source of returns, and in the absence of field observations, has been hypothesized to be the result of roughness at the ice-water interface on the order of incident wavelengths. This study presents in-situ physical observations of snow-covered lake ice in western Michigan and Wisconsin acquired during the Great Lakes Winter EXperiment in 2017 (GLAWEX'17). In conjunction with NASA's SnowEx airborne snow campaign in Colorado (http://snow.nasa.gov), C- (Sentinel-1, RADARSAT-2) and X-band (TerraSAR-X) synthetic aperture radar (SAR) observations were acquired coincidently to surface physical snow and ice observations. Small/large scale roughness features at the ice-water interface are quantified through auger transects and used as an input variable in lake ice backscatter models to assess the relative contributions from different scattering mechanisms.

  2. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  3. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.

    2015-12-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.

  4. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) Observations

    PubMed Central

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2018-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nm. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (~300 μm) among the three, West Antarctica is the second (~220 μm) and East Antarctica is the smallest (~190 μm). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations. PMID:29636591

  5. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud and Land Elevation Satellite (ICESat) Observations

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2016-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nanometers. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (approximately 300 microns) among the three, West Antarctica is the second (220 microns) and East Antarctica is the smallest (190 microns). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations.

  6. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.

    2015-10-01

    The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

  7. Sub-daily sea ice motion and deformation from RADARSAT observations

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Cunningham, G. F.

    2003-01-01

    We find a persistent level of oscillatory sea ice motion and deformation, superimposed on the large-scale wind-driven field, in May 2002 (spring) and February 2003 (mid-winter), in the high Arctic over a region centered at approx.(85degreeN, 135degreeW). At this latitude, the RADARSAT wide-swath SAR coverage provides 4??equential observations every day, for ice motion retrieval, with a sampling interval at the orbital period of approx. 101 minutes.

  8. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  9. Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.

    2017-10-01

    The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.

  10. Current Status and Future Plan of Arctic Sea Ice monitoring in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Park, J.

    2016-12-01

    Arctic sea ice is one of the most important parameters in climate. For monitoring of sea ice changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic sea ice monitoring system" to retrieve the sea ice extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic sea ice extent. This system has been implemented to the web site for real-time public service. The sea ice information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The sea ice information like sea ice extent, sea ice surface roughness, and predictive sea ice extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic sea ice" twice a year. We are trying to add more sea ice information into this system. Details of current status and future plan of Arctic sea ice monitoring and the methodology of the sea ice information retrievals will be presented in the meeting.

  11. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  12. Deciphering the evolution of the last Eurasian ice sheets

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2016-04-01

    Glacial geologists need ice sheet-scale chronological reconstructions of former ice extent to set individual records in a wider context and compare interpretations of ice sheet response to records of past environmental changes. Ice sheet modellers require empirical reconstructions on size and volume of past ice sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian ice sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published ice-sheet margin positions to reconstruct time-slice maps of the ice sheets' extent, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum extent, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial margin of the SIS reached its maximum extent up to 7000 years later than the westernmost marine margin; iii) the combined maximum ice volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the

  13. Arctic Sea Ice Simulation in the PlioMIP Ensemble

    NASA Technical Reports Server (NTRS)

    Howell, Fergus W.; Haywood, Alan M.; Otto-Bliesner, Bette L.; Bragg, Fran; Chan, Wing-Le; Chandler, Mark A.; Contoux, Camille; Kamae, Youichi; Abe-Ouchi, Ayako; Rosenbloom, Nan A.; hide

    2016-01-01

    Eight general circulation models have simulated the mid-Pliocene warm period (mid-Pliocene, 3.264 to 3.025 Ma) as part of the Pliocene Modelling Intercomparison Project (PlioMIP). Here, we analyse and compare their simulation of Arctic sea ice for both the pre-industrial period and the mid-Pliocene. Mid-Pliocene sea ice thickness and extent is reduced, and the model spread of extent is more than twice the pre-industrial spread in some summer months. Half of the PlioMIP models simulate ice-free conditions in the mid-Pliocene. This spread amongst the ensemble is in line with the uncertainties amongst proxy reconstructions for mid-Pliocene sea ice extent. Correlations between mid-Pliocene Arctic temperatures and sea ice extents are almost twice as strong as the equivalent correlations for the pre-industrial simulations. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.

  14. Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica, and implications for ice density

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.

    2013-11-01

    We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.

  15. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2016-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  16. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  17. Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Sato, Y.; Giuranna, M.; Wolkenberg, P.; Sato, T. M.; Nakagawa, H.; Kasaba, Y.

    2018-03-01

    We have investigated mesospheric CO2 ice clouds on Mars through analysis of near-infrared spectra acquired by Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEx) from MY 27 to MY 32. With the highest spectral resolution achieved thus far in the relevant spectral range among remote-sensing experiments orbiting Mars, PFS enables precise identification of the scattering peak of CO2 ice at the bottom of the 4.3 μm CO2 band. A total of 111 occurrences of CO2 ice cloud features have been detected over the period investigated. Data from the OMEGA imaging spectrometer onboard MEx confirm all of PFS detections from times when OMEGA operated simultaneously with PFS. The spatial and seasonal distributions of the CO2 ice clouds detected by PFS are consistent with previous observations by other instruments. We find CO2 ice clouds between Ls = 0° and 140° in distinct longitudinal corridors around the equatorial region (± 20°N). Moreover, CO2 ice clouds were preferentially detected at the observational LT range between 15-16 h in MY 29. However, observational biases prevent from distinguishing local time dependency from inter-annual variation. PFS also enables us to investigate the shape of mesospheric CO2 ice cloud spectral features in detail. In all cases, peaks were found between 4.240 and 4.265 μm. Relatively small secondary peaks were occasionally observed around 4.28 μm (8 occurrences). These spectral features cannot be reproduced using our radiative transfer model, which may be because the available CO2 ice refractive indices are inappropriate for the mesospheric temperatures of Mars, or because of the assumption in our model that the CO2 ice crystals are spherical and composed by pure CO2 ice.

  18. Field observations of slush ice generated during freeze-up in arctic coastal waters

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.

    1987-01-01

    In some years, large volumes of slush ice charged with sediment are generated from frazil crystals in the shallow Beaufort Sea during strong storms at the time of freeze-up. Such events terminate the navigation season, and because of accompanying hostile conditions, little is known about the processes acting. The water-saturated slush ice, which may reach a thickness of 4 m, exists for only a few days before freezing from the surface downward arrests further wave motion or pancake ice forms. Movements of small vessels and divers in the slush ice occurs only in phase with passing waves, producing compression and rarefaction, and internal pressure pulses. Where in contact with the seafloor, the agitated slush ice moves cobble-size material, generates large sediment ripples, and may possibly produce a flat rampart observed on the arctic shoreface in some years. Processes charging the slush ice with as much as 1000 m3 km-2 of sediment remain uncertain, but our field observations rule out previously proposed filtration from turbid waters as a likely mechanism. Sedimentary particles apparently are only trapped in the interstices of the slush ice rather than being held by adhesion, since wave-related internal pressure oscillations result in downward particle movement and cleansing of the slush ice. This loss of sediment explains the typical downward increase in sediment concentration in that part of the fast-ice canopy composed largely of frazil ice. The congealing slush ice in coastal water does not become fast ice until grounded ridges are formed in the stamukhi zone, one to two months after freeze-up begins. During this period of new-ice mobility, long-range sediment transport occurs. The sediment load held by the fast-ice canopy in the area between the Colville and Sagavanirktok River deltas in the winter of 1978-1979 was 16 times larger than the yearly river input to the same area. This sediment most likely was rafted from Canada, more than 400 km to the east, during

  19. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Scambos, Ted

    2002-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins Ice shelves) by the results of a previous grant under ADRO-1. Modeling of ice flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other ice shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast ice. The study now considers just a few shelf and fast ice areas for study, and is funded for two years. The study regions are the northeastern Ross Ice Shelf, the Larsen 'B' and 'C' shelves, fast ice and floating shelf ice in the Pine Island Glacier area, and fast ice along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast ice processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast ice areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast ice may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.

  20. Simulating hydrodynamics and ice cover in Lake Erie using an unstructured grid model

    NASA Astrophysics Data System (ADS)

    Fujisaki-Manome, A.; Wang, J.

    2016-02-01

    An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal ice cover. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea Ice Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the ice model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed ice extent, water surface temperature, ice thickness, currents, and water temperature profiles. Seasonal and interannual variation of ice extent and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled ice thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.

  1. Satellite observation of lake ice as a climate indicator - Initial results from statewide monitoring in Wisconsin

    NASA Technical Reports Server (NTRS)

    Wynne, Randolph H.; Lillesand, Thomas M.

    1993-01-01

    The research reported herein focused on the general hypothesis that satellite remote sensing of large-area, long-term trends in lake ice phenology (formation and breakup) is a robust, integrated measure of regional and global climate change. To validate this hypothesis, we explored the use of data from the Advanced Very High Resolution Radiometer (AVHRR) to discriminate the presence and extent of lake ice during the winter of 1990-1991 on the 45 lakes and reservoirs in Wisconsin with a surface area greater than 1,000 hectares. Our results suggest both the feasibility of using the AVHRR to determine the date of lake ice breakup as well as the strong correlation (R= -0.87) of the date so derived with local surface-based temperature measurements. These results suggest the potential of using current and archival satellite data to monitor changes in the date of lake ice breakup as a means of detecting regional 'signals' of greenhouse warming.

  2. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  3. Some Results on Sea Ice Rheology for the Seasonal Ice Zone, Obtained from the Deformation Field of Sea Ice Drift Pattern

    NASA Astrophysics Data System (ADS)

    Toyota, T.; Kimura, N.

    2017-12-01

    Sea ice rheology which relates sea ice stress to the large-scale deformation of the ice cover has been a big issue to numerical sea ice modelling. At present the treatment of internal stress within sea ice area is based mostly on the rheology formulated by Hibler (1979), where the whole sea ice area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea ice area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial ice in the Arctic Ocean. As for its applicability to the seasonal ice zones (SIZ), where various types of sea ice are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk ice, typical of the SIZ, based on the AMSR-derived ice drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. Ice drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the ice areas. Since this result corresponds with the yield criterion by Tresca and

  4. Abrupt Decline in the Arctic Winter Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2007-01-01

    Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.

  5. Microphysical and macrophysical characteristics of ice and mixed-phase clouds compared between in-situ observations from the NSF ORCAS campaign and the NCAR Community Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.

    2016-12-01

    Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of

  6. Use of Unmanned Aircraft Systems in Observations of Glaciers, Ice Sheets, Sea Ice and Snow Fields

    NASA Astrophysics Data System (ADS)

    Herzfeld Mayer, M. U.

    2015-12-01

    Unmanned Aircraft Systems (UAS) are being used increasingly in observations of the Earth, especially as such UAS become smaller, lighter and hence less expensive. In this paper, we present examples of observations of snow fields, glaciers and ice sheets and of sea ice in the Arctic that have been collected from UAS. We further examine possibilities for instrument miniaturization, using smaller UAS and smaller sensors for collecting data. The quality and type of data is compared to that of satellite observations, observations from manned aircraft and to measurements made during field experiments on the ground. For example, a small UAS can be sent out to observe a sudden event, such as a natural catastrophe, and provide high-resolution imagery, but a satellite has the advantage of providing the same type of data over much of the Earth's surface and for several years, but the data is generally of lower resolution. Data collected on the ground typically have the best control and quality, but the survey area is usually small. Here we compare micro-topographic measurements made on snow fields the Colorado Rocky Mountains with airborne and satellite data.

  7. Ice loading model for Glacial Isostatic Adjustment in the Barents Sea constrained by GRACE gravity observations

    NASA Astrophysics Data System (ADS)

    Root, Bart; Tarasov, Lev; van der Wal, Wouter

    2014-05-01

    The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.

  8. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka - Reconstructions from biomarker records

    NASA Astrophysics Data System (ADS)

    Kremer, A.; Stein, R.; Fahl, K.; Ji, Z.; Yang, Z.; Wiers, S.; Matthiessen, J.; Forwick, M.; Löwemark, L.; O'Regan, M.; Chen, J.; Snowball, I.

    2018-02-01

    The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP25 and the related phytoplankton - sea ice index PIP25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT) - based sea surface temperatures below 2.5 °C.

  9. The Formation each Winter of the Circumpolar Wave in the Sea Ice around Antarctica

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; White, Warren B.

    1999-01-01

    Seeking to improve upon the visualization of the Antarctic Circumpolar Wave (ACW) , we compare a 16-year sequence of 6-month winter averages of Antarctic sea ice extents and concentrations with those of adjacent sea surface temperatures (SSTs). Here we follow SSTs around the globe along the maximum sea ice edge rather than in a zonal band equatorward of it. The results are similar to the earlier ones, but the ACWs do not propagate with equal amplitude or speed. Additionally in a sequence of 4 polar stereographic plots of these SSTs and sea ice concentrations, we find a remarkable correlation between SST minima and sea ice concentration maxima, even to the extent of matching contours across the ice-sea boundary, in the sector between 900E and the Palmer Peninsula. Based on these observations, we suggest that the memory of the ACW in the sea ice is carried from one Austral winter to the next by the neighboring SSTS, since the sea ice is nearly absent in the Austral summer.

  10. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  11. A model of the Greenland ice sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Lecavalier, Benoit

    The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.

  12. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  13. Reducing Spread in Climate Model Projections of a September Ice-Free Arctic

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2013-01-01

    This paper addresses the specter of a September ice-free Arctic in the 21st century using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that large spread in the projected timing of the September ice-free Arctic in 30 CMIP5 models is associated at least as much with different atmospheric model components as with initial conditions. Here we reduce the spread in the timing of an ice-free state using two different approaches for the 30 CMIP5 models: (i) model selection based on the ability to reproduce the observed sea ice climatology and variability since 1979 and (ii) constrained estimation based on the strong and persistent relationship between present and future sea ice conditions. Results from the two approaches show good agreement. Under a high-emission scenario both approaches project that September ice extent will drop to approx. 1.7 million sq km in the mid 2040s and reach the ice-free state (defined as 1 million sq km) in 2054-2058. Under a medium-mitigation scenario, both approaches project a decrease to approx.1.7 million sq km in the early 2060s, followed by a leveling off in the ice extent.

  14. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water.

    PubMed

    Darelius, E; Fer, I; Nicholls, K W

    2016-08-02

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing.

  15. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    PubMed Central

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  16. Observations of Fabric Development in Polycrystalline Ice at Basal Pressures: Methods and Initial Results

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Baker, I.; Cole, D. M.

    2012-12-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.

  17. Greenland Sea Odden sea ice feature: Intra-annual and interannual variability

    USGS Publications Warehouse

    Shuchman, R.A.; Josberger, E.G.; Russel, C.A.; Fischer, K.W.; Johannessen, O.M.; Johannessen, J.; Gloersen, P.

    1998-01-01

    The "Odden" is a large sea ice feature that forms in the east Greenland Sea that may protrude eastward to 5??E from the main sea ice pack (at about 8??W) between 73?? and 77??N. It generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter the outer edge of the Odden may advance and retreat by several hundred kilometers on timescales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. Aircraft synthetic aperture radar, satellite passive microwave, and ship observations in the Odden show that the Odden consists of new ice types, rather than older ice types advected eastward from the main pack. The 17-year record shows both strong interannual and intra-annual variations in Odden extent and temporal behavior. For example, in 1983 the Odden was weak, in 1984 the Odden did not occur, and in 1985 the Odden returned late in the season. An analysis of the ice area and extent time series derived from the satellite passive microwave observations along with meteorological data from the International Arctic Buoy Program (IABP) determined the meteorological forcing associated with Odden growth, maintenance, and decay. The key meteorological parameters that are related to the rapid ice formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Oceanographic parameters must play an important role in controlling Odden formation, but it is not yet possible to quantify this role because of a lack of long-term oceanographic observations. Copyright 1998 by the American Geophysical Union.

  18. Sea-ice induced growth decline in Arctic shrubs.

    PubMed

    Forchhammer, Mads

    2017-08-01

    Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-ice. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-ice and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica , S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-ice extent was found on the annual growth. The negative effect of the retreating June sea-ice was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth. © 2017 The Author(s).

  19. Consistent biases in Antarctic sea ice concentration simulated by climate models

    NASA Astrophysics Data System (ADS)

    Roach, Lettie A.; Dean, Samuel M.; Renwick, James A.

    2018-01-01

    The simulation of Antarctic sea ice in global climate models often does not agree with observations. In this study, we examine the compactness of sea ice, as well as the regional distribution of sea ice concentration, in climate models from the latest Coupled Model Intercomparison Project (CMIP5) and in satellite observations. We find substantial differences in concentration values between different sets of satellite observations, particularly at high concentrations, requiring careful treatment when comparing to models. As a fraction of total sea ice extent, models simulate too much loose, low-concentration sea ice cover throughout the year, and too little compact, high-concentration cover in the summer. In spite of the differences in physics between models, these tendencies are broadly consistent across the population of 40 CMIP5 simulations, a result not previously highlighted. Separating models with and without an explicit lateral melt term, we find that inclusion of lateral melt may account for overestimation of low-concentration cover. Targeted model experiments with a coupled ocean-sea ice model show that choice of constant floe diameter in the lateral melt scheme can also impact representation of loose ice. This suggests that current sea ice thermodynamics contribute to the inadequate simulation of the low-concentration regime in many models.

  20. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  1. Direct Comparisons of Ice Cloud Macro- and Microphysical Properties Simulated by the Community Atmosphere Model CAM5 with HIPPO Aircraft Observations

    NASA Astrophysics Data System (ADS)

    Wu, C.; Liu, X.; Diao, M.; Zhang, K.; Gettelman, A.

    2015-12-01

    A dominant source of uncertainty within climate system modeling lies in the representation of cloud processes. This is not only because of the great complexity in cloud microphysics, but also because of the large variations of cloud amount and macroscopic properties in time and space. In this study, the cloud properties simulated by the Community Atmosphere Model version 5.4 (CAM5.4) are evaluated using the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011). CAM5.4 is driven by the meteorology (U, V, and T) from GEOS5 analysis, while water vapor, hydrometeors and aerosols are calculated by the model itself. For direct comparison of CAM5.4 and HIPPO observations, model output is collocated with HIPPO flights. Generally, the model has an ability to capture specific cloud systems of meso- to large-scales. In total, the model can reproduce 80% of observed cloud occurrences inside model grid boxes, and even higher (93%) for ice clouds (T≤-40°C). However, the model produces plenty of clouds that are not presented in the observation. The model also simulates significantly larger cloud fraction including for ice clouds compared to the observation. Further analysis shows that the overestimation is a result of bias in relative humidity (RH) in the model. The bias of RH can be mostly attributed to the discrepancies of water vapor, and to a lesser extent to those of temperature. Down to the micro-scale level of ice clouds, the model can simulate reasonably well the magnitude of ice and snow number concentration (Ni, with diameter larger than 75 μm). However, the model simulates fewer occurrences of Ni>50 L-1. This can be partially ascribed to the low bias of aerosol number concentration (Naer, with diameter between 0.1-1 μm) simulated by the model. Moreover, the model significantly underestimates both the number mean diameter (Di,n) and the volume mean diameter (Di,v) of ice/snow. The result shows that the underestimation may be related to a weaker positive relationship

  2. Investigating the Effects of Environmental Solutes on the Reaction Environment in Ice and at Ice Surfaces

    NASA Astrophysics Data System (ADS)

    Malley, Philip Patrick Anthony

    The reaction environments present in water, ice, and at ice surfaces are physically distinct from one another and studies have shown that photolytic reactions can take place at different rates in the different media. Kinetics of reactions in frozen media are measured in snow and ice prepared from deionized water. This reduces experimental artifacts, but is not relevant to snow in the environment, which contains solutes. We have monitored the effect of nonchromophoric (will not absorb sunlight) organic matter on the photolytic fate of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene, pyrene, and anthracene in ice and at ice surfaces. Nonchromophoric organic matter reduced photolysis rates to below our detection limit in bulk ice, and reduced rates at ice surfaces to a lesser extent due to the PAHs partially partitioning to the organics present. In addition, we have monitored the effect of chromophoric (will absorb sunlight) dissolved organic matter (cDOM) on the fate of anthracene in water, ice, and ice surfaces. cDOM reduced rates in all three media. Suppression in liquid water was due to physical interactions between anthracene and the cDOM, rather than to competitive photon absorbance. More suppression was observed in ice cubes and ice granules than in liquid water due to a freeze concentrating effect. Sodium Chloride (NaCl) is another ubiquitous environmental solute that can influence reaction kinetics in water, ice, and at ice surfaces. Using Raman microscopy, we have mapped the surface of ice of frozen NaCl solutions at 0.02M and 0.6M, as well as the surface of frozen samples of Sargasso Sea Water. At temperatures above and below the eutectic temperature (-21.1°C). Above the eutectic, regions of ice and liquid water were observed in all samples. Liquid regions generally took the form of channels. Channel widths and fractional liquid surface coverage increased with NaCl concentration and temperature. Volume maps of the three samples at temperatures

  3. Small-scale disturbances in the stratigraphy of the NEEM ice core: observations and numerical model simulations

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Llorens, M.-G.; Westhoff, J.; Steinbach, F.; Kipfstuhl, S.; Bons, P. D.; Griera, A.; Weikusat, I.

    2016-02-01

    Disturbances on the centimetre scale in the stratigraphy of the North Greenland Eemian Ice Drilling (NEEM) ice core (North Greenland) can be mapped by an optical line scanner as long as the ice has visual layering, such as, for example, cloudy bands. Different focal depths allow, to a certain extent, a three-dimensional view of the structures. In this study we present a detailed analysis of the visible folds, discuss their characteristics and frequency, and present examples of typical fold structures. We also analyse the structures with regard to the deformation boundary conditions under which they formed. The structures evolve from gentle waves at about 1500 m to overturned z folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their similar fold shape indicates that they are passive features and are probably not initiated by rheology differences between alternating layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. C axes orientation distributions for the corresponding core sections were analysed, where available, in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c axis orientations that deviate from that of the matrix, which shows a single maximum fabric at the depth where the folding occurs. Numerical modelling of crystal viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures during deformation. The modelling reproduces the development of bands of grains with a tilted-lattice orientation relative to the single maximum fabric of the matrix, and also the associated local deformation. We conclude from these results that the observed folding can be explained by formation of these tilted-lattice bands.

  4. A New Discrete Element Sea-Ice Model for Earth System Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Adrian Keith

    Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooledmore » water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).« less

  5. Diminishing sea ice in the western Arctic Ocean

    USGS Publications Warehouse

    Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.

    2004-01-01

    Since the advent of satellite passive microwave radiometry (1978), variations in sea ice extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea ice extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea ice melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea ice (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea ice and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic ice motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear ice into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the ice pack and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and ice in the western Arctic Ocean.

  6. Operation IceBridge Turns Five

    NASA Image and Video Library

    2017-12-08

    In May 2014, two new studies concluded that a section of the land-based West Antarctic ice sheet had reached a point of inevitable collapse. Meanwhile, fresh observations from September 2014 showed sea ice around Antarctica had reached its greatest extent since the late 1970s. To better understand such dynamic and dramatic differences in the region's land and sea ice, researchers are travelling south to Antarctica this month for the sixth campaign of NASA’s Operation IceBridge. The airborne campaign, which also flies each year over Greenland, makes annual surveys of the ice with instrumented research aircraft. Instruments range from lasers that map the elevation of the ice surface, radars that "see" below it, and downward looking cameras to provide a natural-color perspective. The Digital Mapping System (DMS) camera acquired the above photo during the mission’s first science flight on October 16, 2009. At the time of the image, the DC-8 aircraft was flying at an altitude of 515 meters (1,700 feet) over heavily compacted first-year sea ice along the edge of the Amundsen Sea. Since that first flight, much has been gleaned from IceBridge data. For example, images from an IceBridge flight in October 2011 revealed a massive crack running about 29 kilometers (18 miles) across the floating tongue of Antarctica's Pine Island Glacier. The crack ultimately led to a 725-square-kilometer (280-square-mile) iceberg. In 2012, IceBridge data was a key part of a new map of Antarctica called Bedmap2. By combining surface elevation, ice thickness, and bedrock topography, Bedmap2 gives a clearer picture of Antarctica from the ice surface down to the land surface. Discoveries have been made in Greenland, too, including the identification of a 740-kilometer-long (460-mile-long) mega canyon below the ice sheet. Repeated measurements of land and sea ice from aircraft extend the record of observations once made by NASA’s Ice, Cloud, and Land Elevation Satellite, or ICESat, which

  7. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    NASA Astrophysics Data System (ADS)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  8. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    NASA Technical Reports Server (NTRS)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  9. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  10. ICE-COLA: fast simulations for weak lensing observables

    NASA Astrophysics Data System (ADS)

    Izard, Albert; Fosalba, Pablo; Crocce, Martin

    2018-01-01

    Approximate methods to full N-body simulations provide a fast and accurate solution to the development of mock catalogues for the modelling of galaxy clustering observables. In this paper we extend ICE-COLA, based on an optimized implementation of the approximate COLA method, to produce weak lensing maps and halo catalogues in the light-cone using an integrated and self-consistent approach. We show that despite the approximate dynamics, the catalogues thus produced enable an accurate modelling of weak lensing observables one decade beyond the characteristic scale where the growth becomes non-linear. In particular, we compare ICE-COLA to the MICE Grand Challenge N-body simulation for some fiducial cases representative of upcoming surveys and find that, for sources at redshift z = 1, their convergence power spectra agree to within 1 per cent up to high multipoles (i.e. of order 1000). The corresponding shear two point functions, ξ+ and ξ-, yield similar accuracy down to 2 and 20 arcmin respectively, while tangential shear around a z = 0.5 lens sample is accurate down to 4 arcmin. We show that such accuracy is stable against an increased angular resolution of the weak lensing maps. Hence, this opens the possibility of using approximate methods for the joint modelling of galaxy clustering and weak lensing observables and their covariance in ongoing and future galaxy surveys.

  11. Arctic sea ice loss and recent extreme cold winter in Eurasia

    NASA Astrophysics Data System (ADS)

    Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide

    2014-05-01

    Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.

  12. Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE PAGES

    Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; ...

    2015-07-24

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less

  13. Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less

  14. Observational determination of albedo decrease caused by vanishing Arctic sea ice

    PubMed Central

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V.

    2014-01-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m2 of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  15. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-04

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  16. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seongsuk; Yi, Yu

    2016-12-01

    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  17. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  18. Titan’s High Altitude South Polar (HASP) Stratospheric Ice Cloud as observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Nna-Mvondo, Delphine; Samuelson, Robert E.; Achterberg, Richard K.; Flasar, F. Michael; Jennings, Donald E.; Raulin, Francois

    2017-10-01

    During Cassini’s T112 flyby of Titan in the late southern fall season (July 2015), the Composite InfraRed Spectrometer (CIRS) made a startling discovery - a massive cloud system had developed throughout Titan’s mid stratosphere (~200 km) at high southern latitudes. The vertical distributions of intensity of this High-Altitude South Polar (HASP) stratospheric ice cloud system are at least an order of magnitude stronger than the CIRS-observed northern winter polar stratospheric cloud system [1]. The chemical composition of the HASP cloud is not identical to its northern winter counterpart, in that it exhibits different spectral characteristics. The HASP cloud is just one illustrative example demonstrating the rapidly changing conditions occurring in Titan’s south polar stratospheric region as Titan began its journey into southern winter. Such observed changes are contrary to the observed configuration as Titan’s northern polar stratosphere transitioned out of northern winter, which revealed a relatively slow decay of: 1) the cold polar stratospheric temperatures, 2) the strength of the polar vortex, and 3) the abundances in stratospheric organic gases and ices. We will discuss the physical and chemical characteristics of the CIRS-observed HASP mid stratospheric ice cloud system. Potential ice analog candidates obtained from thin film transmission spectra of co-condensed nitrile/hydrocarbon ice mixtures obtained with our SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) chamber are used to support these analyses. [1] Anderson C. M. and Samuelson R. E. (2011) Icarus, 212, 762-778.

  19. Satellite and aircraft passive microwave observations during the Marginal Ice Zone Experiment in 1984

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.

    1988-01-01

    This paper compares satellite data on the marginal ice zone obtained during the Marginal Ice Zone Experiment in 1984 by Nimbus 7 with simultaneous mesoscale aircraft (in particular, the NASA CV-990 airborne laboratory) and surface observations. Total and multiyear sea ice concentrations calculated from the airborne multichannel microwave radiometer were found to agree well with similar calculations using the Nimbus SMMR data. The temperature dependence of the determination of multiyear sea-ice concentration near the melting point was found to be the same for both airborne and satellite data. It was found that low total ice concentrations and open-water storm effects near the ice edge could be reliably distinguished by means of spectral gradient ratio, using data from the 0.33-cm and the 1.55-cm radiometers.

  20. High-contrast observations of (136108) Haumea. A crystalline water-ice multiple system

    NASA Astrophysics Data System (ADS)

    Dumas, C.; Carry, B.; Hestroffer, D.; Merlin, F.

    2011-04-01

    Context. The trans-Neptunian region of the Solar System is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. One can also see there are dynamical families and binary systems. One surprising feature detected in the spectra of some of the largest trans-Neptunians is the presence of crystalline water-ice. This is the case for the large TNO (136 108) Haumea (2003 EL61). Aims: We seek to constrain the state of the water ice of Haumea and its satellites and to investigate possible energy sources that maintain the water ice in its crystalline form. Methods: Spectro-imaging observations in the near infrared were performed with the integral field spectrograph SINFONI mounted on UT4 at the ESO Very Large Telescope. The spectra of both Haumea and its larger satellite Hi'iaka were analyzed. Relative astrometry of the components was also measured, providing a check of the orbital solutions and equinox seasons. Results: We describe the physical characteristics of the crystalline water-ice present on the surface of Haumea and its largest satellite Hi'iaka and analyze possible sources of heating to maintain water in a crystalline state: tidal dissipation in the system components vs. radiogenic source. The surface of Hi'iaka appears to be covered by large grains of water ice, almost entirely in its crystalline form. Under some restricted conditions, both radiogenic heating and tidal forces between Haumea and Hi'iaka could provide the energy needed to maintain the ice in its crystalline state. Based on observations collected at the European Southern Observatory, Paranal, Chile - 60.A-9235.

  1. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    NASA Astrophysics Data System (ADS)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  2. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    NASA Astrophysics Data System (ADS)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  3. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    NASA Technical Reports Server (NTRS)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  4. Probabilistic flood extent estimates from social media flood observations

    NASA Astrophysics Data System (ADS)

    Brouwer, Tom; Eilander, Dirk; van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-05-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from Twitter messages that mention locations of flooding. A deterministic flood map created for the December 2015 flood in the city of York (UK) showed good performance (F(2) = 0.69; a statistic ranging from 0 to 1, with 1 expressing a perfect fit with validation data). The probabilistic flood maps we created showed that, in the York case study, the uncertainty in flood extent was mainly induced by errors in the precise locations of flood observations as derived from Twitter data. Errors in the terrain elevation data or in the parameters of the applied algorithm contributed less to flood extent uncertainty. Although these maps tended to overestimate the actual probability of flooding, they gave a reasonable representation of flood extent uncertainty in the area. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.

  5. Multisensor Analysis of Ice Crystals Backscatter Peak From 5 Years of Collocated POLDER, MODIS and CALIOP Observations.

    NASA Astrophysics Data System (ADS)

    Riedi, J.; Labonnote, L. C.; Contaut, F.; Platnick, S. E.; Yang, P.

    2016-12-01

    Realistic assumptions for representation of ice crystal optical properties are key in deriving meaningful information on ice clouds from spaceborne observations. With the increasing number of multi-sensor analysis it is also of paramount importance that ice crystal models be consistents for the interpretation of both passive and active observations in the solar and thermal infrared spectral domains. There has been significant evidences in the past few years that roughened particles might represent an overall good proxy for ice crystal models being able to simultaneously explain visible and infrared observations obtained from either active or passive sensors (Holz et al, 2016). Nevertheless, details of the exact phase function remain very informative fingerprints of ice crystal shapes and can also be critical parameters for retrievals performed under specific viewing geometries. Analysis of lidar observation for instance remains very sensitive to details of phase function in and around the backscatter direction. The relative magnitude and width of the backscatter peak intensity that appears in phase functions of ice crystal has been shown to carry useful information for characterization of ice crystal habits (Zhou & Yang, 2015). Based on these theoretical results we are revisiting here our previous analysis of coincident POLDER, MODIS and CALIOP observations whereby we were able to study the angular variability of ice clouds reflectance in and around the exact backscatter direction. Statistics from 5 years of observations of peak intensities derived from POLDER have been established in relation to coincident MODIS cloud optical thickness and effective radius retrievals as well as CALIOP layer integrated depolarization ratio and attenuated backscatter. Those are analyzed in view of the theoretical results from Zhou & Yang (2015). In particular, correlation of peak intensity and width with particle size retrieved from MODIS will be presented and implications for ice

  6. Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-08-01

    Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  7. Multiscale Observation System for Sea Ice Drift and Deformation

    NASA Astrophysics Data System (ADS)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.

    2011-12-01

    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when

  8. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    DTIC Science & Technology

    2015-11-30

    information from the PIOMAS model [J. Zhang], melt pond coverage from MODIS [Rösel et al., 2012], and ice-age estimates [Maslanik et al., 2011] to...determined from MODIS satellite data using an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc- 6-431-2012. PUBLICATIONS Carmack...from MODIS , and ice-age estimates to this dataset. We have used this extented dataset to build a climatology of the partitioning of solar heat between

  9. Towards a Universal Calving Law: Modeling Ice Shelves Using Damage Mechanics

    NASA Astrophysics Data System (ADS)

    Whitcomb, M.; Bassis, J. N.; Price, S. F.; Lipscomb, W. H.

    2017-12-01

    Modeling iceberg calving from ice shelves and ice tongues is a particularly difficult problem in glaciology because of the wide range of observed calving rates. Ice shelves naturally calve large tabular icebergs at infrequent intervals, but may instead calve smaller bergs regularly or disintegrate due to hydrofracturing in warmer conditions. Any complete theory of iceberg calving in ice shelves must be able to generate realistic calving rate values depending on the magnitudes of the external forcings. Here we show that a simple damage evolution law, which represents crevasse distributions as a continuum field, produces reasonable estimates of ice shelf calving rates when added to the Community Ice Sheet Model (CISM). Our damage formulation is based on a linear stability analysis and depends upon the bulk stress and strain rate in the ice shelf, as well as the surface and basal melt rates. The basal melt parameter in our model enhances crevasse growth near the ice shelf terminus, leading to an increased iceberg production rate. This implies that increasing ocean temperatures underneath ice shelves will drive ice shelf retreat, as has been observed in the Amundsen and Bellingshausen Seas. We show that our model predicts broadly correct calving rates for ice tongues ranging in length from 10 km (Erebus) to over 100 km (Drygalski), by matching the computed steady state lengths to observations. In addition, we apply the model to idealized Antarctic ice shelves and show that we can also predict realistic ice shelf extents. Our damage mechanics model provides a promising, computationally efficient way to compute calving fluxes and links ice shelf stability to climate forcing.

  10. A New Attempt of 2-D Numerical Ice Flow Model to Reconstruct Paleoclimate from Mountain Glaciers

    NASA Astrophysics Data System (ADS)

    Candaş, Adem; Akif Sarıkaya, Mehmet

    2017-04-01

    A new two dimensional (2D) numerical ice flow model is generated to simulate the steady-state glacier extent for a wide range of climate conditions. The simulation includes the flow of ice enforced by the annual mass balance gradient of a valley glacier. The annual mass balance is calculated by the difference of the net accumulation and ablation of snow and (or) ice. The generated model lets users to compare the simulated and field observed ice extent of paleoglaciers. As a result, model results provide the conditions about the past climates since simulated ice extent is a function of predefined climatic conditions. To predict the glacier shape and distribution in two dimension, time dependent partial differential equation (PDE) is solved. Thus, a 2D glacier flow model code is constructed in MATLAB and a finite difference method is used to solve this equation. On the other hand, Parallel Ice Sheet Model (PISM) is used to regenerate paleoglaciers in the same area where the MATLAB code is applied. We chose the Mount Dedegöl, an extensively glaciated mountain in SW Turkey, to apply both models. Model results will be presented and discussed in this presentation. This study was supported by TÜBİTAK 114Y548 project.

  11. A marine biogenic source of atmospheric ice-nucleating particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also showmore » that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.« less

  12. Perennial water ice identified in the south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.

    2004-04-01

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  13. Automated parameter tuning applied to sea ice in a global climate model

    NASA Astrophysics Data System (ADS)

    Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.

    2018-01-01

    This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.

  14. Snowmelt on the Greenland Ice Sheet as Derived From Passive Microwave Satellite Data

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed; Steffen, Konrad

    1997-01-01

    The melt extent of the snow on the Greenland ice sheet is of considerable importance to the ice sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt extent have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt extent of the ice sheet are studied. The melt is found to be most extensive on the western side of the ice sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.

  15. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    DOE PAGES

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; ...

    2016-04-15

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  16. Observing the formation of ice and organic crystals in active sites

    PubMed Central

    Campbell, James M.; Meldrum, Fiona C.; Christenson, Hugo K.

    2017-01-01

    Heterogeneous nucleation is vital to a wide range of areas as diverse as ice nucleation on atmospheric aerosols and the fabrication of high-performance thin films. There is excellent evidence that surface topography is a key factor in directing crystallization in real systems; however, the mechanisms by which nanoscale pits and pores promote nucleation remain unclear. Here, we use natural cleavage defects on Muscovite mica to investigate the activity of topographical features in the nucleation from vapor of ice and various organic crystals. Direct observation of crystallization within surface pockets using optical microscopy and also interferometry demonstrates that these sharply acute features provide extremely effective nucleation sites and allows us to determine the mechanism by which this occurs. A confined phase is first seen to form along the apex of the wedge and then grows out of the pocket opening to generate a bulk crystal after a threshold saturation has been achieved. Ice nucleation proceeds in a comparable manner, although our resolution is insufficient to directly observe a condensate before the growth of a bulk crystal. These results provide insight into the mechanism of crystal deposition from vapor on real surfaces, where this will ultimately enable us to use topography to control crystal deposition on surfaces. They are also particularly relevant to our understanding of processes such as cirrus cloud formation, where such topographical features are likely candidates for the “active sites” that make clay particles effective nucleants for ice in the atmosphere. PMID:27994140

  17. Water quality observations of ice-covered, stagnant, eutrophic water bodies and analysis of influence of ice-covered period on water quality

    NASA Astrophysics Data System (ADS)

    sugihara, K.; Nakatsugawa, M.

    2013-12-01

    The water quality characteristics of ice-covered, stagnant, eutrophic water bodies have not been clarified because of insufficient observations. It has been pointed out that climate change has been shortening the duration of ice-cover; however, the influence of climate change on water quality has not been clarified. This study clarifies the water quality characteristics of stagnant, eutrophic water bodies that freeze in winter, based on our surveys and simulations, and examines how climate change may influence those characteristics. We made fixed-point observation using self-registering equipment and vertical water sampling. Self-registering equipment measured water temperature and dissolved oxygen(DO).vertical water sampling analyzed biological oxygen demand(BOD), total nitrogen(T-N), nitrate nitrogen(NO3-N), nitrite nitrogen(NO2-N), ammonium nitrogen(NH4-N), total phosphorus(TP), orthophosphoric phosphorus(PO4-P) and chlorophyll-a(Chl-a). The survey found that climate-change-related increases in water temperature were suppressed by ice covering the water area, which also blocked oxygen supply. It was also clarified that the bottom sediment consumed oxygen and turned the water layers anaerobic beginning from the bottom layer, and that nutrient salts eluted from the bottom sediment. The eluted nutrient salts were stored in the water body until the ice melted. The ice-covered period of water bodies has been shortening, a finding based on the analysis of weather and water quality data from 1998 to 2008. Climate change was surveyed as having caused decreases in nutrient salts concentration because of the shortened ice-covered period. However, BOD in spring showed a tendency to increase because of the proliferation of phytoplankton that was promoted by the climate-change-related increase in water temperature. To forecast the water quality by using these findings, particularly the influence of climate change, we constructed a water quality simulation model that

  18. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  19. Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., jr.; Goodman, S. J.

    2008-01-01

    Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.

  20. Variability of Arctic Sea Ice as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1998-01-01

    Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to

  1. The Role of Snow and Ice in the Climate System

    ScienceCinema

    Barry, Roger G.

    2017-12-09

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  2. Endmembers of Ice Shelf Melt

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  3. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  4. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  5. Validation of sea ice models using an uncertainty-based distance metric for multiple model variables: NEW METRIC FOR SEA ICE MODEL VALIDATION

    DOE PAGES

    Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...

    2017-04-01

    Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less

  6. Observed and simulated changes in Antarctic sea ice and sea level pressure: anthropogenic or natural variability? (Invited)

    NASA Astrophysics Data System (ADS)

    Hobbs, W. R.

    2013-12-01

    Statistically-significant changes in Antarctic sea ice cover and the overlying atmosphere have been observed over the last 30 years, but there is an open question of whether these changes are due to multi-decadal natural variability or an anthropogenically-forced response. A number of recent papers have shown that the slight increase in total sea ice cover is within the bounds of internal variability exhibited by coupled climate models in the CMIP5 suite. Modelled changes for the same time period generally show a decrease, but again with a magnitude that is within internal variability. However, in contrast to the Arctic, sea ice tends in the Antarctic are spatially highly heterogeneous, and consideration of the total ice cover may mask important regional signals. In this work, a robust ';fingerprinting' approach is used to show that the observed spatial pattern of sea ice trends is in fact outside simulated natural variability in west Antarctic, and furthermore that the CMIP5 models consistently show decreased ice cover in the Ross and Weddell Seas, sectors which in fact have an observed increase in cover. As a first step towards understanding the disagreement between models and observations, modelled sea level pressure trends are analysed using and optimal fingerprinting approach, to identify whether atmospheric deficiencies in the models can explain the model-observation discrepancy.

  7. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont

    2012-01-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice particles in the presence of supercooled water. As a result, prior radar-based studies have demonstrated that lightning flash rate is well correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume, graupel mass, or ice mass flux. There is also some evidence that lightning type is associated with the convective state. Intracloud (IC) lightning tends to dominate during the updraft accumulation of precipitation ice mass while cloud-to-ground (CG) lightning is more numerous during the downdraft-driven descent of radar echo associated with graupel and hail. More study is required to generalize these relationships, especially regarding lightning type, in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm kinematics, microphysics, morphology and three-dimensional flash extent, despite its importance for lightning NOx production. To address this conceptual gap, the NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection NetworkTM (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to well isolated convective cells on 3 April 2007 (single cell and multi-cell hailstorm, non-severe multicell) and 6 July 2007

  8. Collaborations for Arctic Sea Ice Information and Tools

    NASA Astrophysics Data System (ADS)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.

    2017-12-01

    The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support

  9. Modelling sea ice formation in the Terra Nova Bay polynya

    NASA Astrophysics Data System (ADS)

    Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.

    2017-02-01

    Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to

  10. Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea

    NASA Astrophysics Data System (ADS)

    Melnikov, I. A.

    2002-12-01

    The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.

  11. Shuttle Imaging Radar B (SIR-B) Weddell Sea ice observations - A comparison of SIR-B and scanning multichannel microwave radiometer ice concentrations

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Holt, Benjamin; Cavalieri, Donald J.; Squire, Vernon

    1987-01-01

    Ice concentrations over the Weddell Sea were studied using SIR-B data obtained during the October 1984 mission, with special attention given to the effect of ocean waves on the radar return at the ice edge. Sea ice concentrations were derived from the SIR-B data using two image processing methods: the classification scheme at JPL and the manual classification method at Scott Polar Research Institute (SPRI), England. The SIR ice concentrations were compared with coincident concentrations from the Nimbus-7 SMMR. For concentrations greater than 40 percent, which was the smallest concentration observed jointly by SIR-B and the SMMR, the mean difference between the two data sets for 12 points was 2 percent. A comparison between the JPL and the SPRI SIR-B algorithms showed that the algorithms agree to within 1 percent in the interior ice pack, but the JPL algorithm gives slightly greater concentrations at the ice edge (due to the fact that the algorithm is affected by the wind waves in these areas).

  12. Spatial and Temporal Variability of Surface Energy Fluxes During Autumn Ice Advance: Observations and Model Validation

    NASA Astrophysics Data System (ADS)

    Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.

    2016-12-01

    From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.

  13. Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The “Marginal Ice Zone Observations and Processes Experiment” (MIZOPEX) Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, P. J.; Hill, T. C.J.

    Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.« less

  14. Modeling and Observational Study of the Global Atmospheric Impacts of Antarctic Sea Ice Anomalies

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Hines, Keith M.

    2004-01-01

    A combined observational and modeling study considers the linkage between Antarctic sea ice and the climate of non-local latitudes. The observational component is based upon analyses of monthly station observations and the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis (NNR). The modeling component consists of simulations of the NCAR Community Climate Model versions 2 (CCM2) and 3 (CCM3) and the recent Community Atmosphere Model (CAM2). A convenient mechanism for communication between the Antarctic region (particularly the Ross Sea area) and the tropics and Northern Hemisphere is examined. The first evidence of this teleconnection came from CCM2 simulations performed during an earlier NASA supported project. Annual-cycle simulations with and without Antarctic sea ice show statistically- significant responses in monsoon precipitation over central and northern China during the month of September. The changes in monsoon precipitation are physically consistent with an intensified southwest Pacific (Northern Hemisphere) subtropical high in response to all Antarctic sea ice being removed and replaced with open water at -1.9"C. The intensified high is the northernmost component of three primary anomalies. The southernmost anomaly includes the Ross Sea area, where sea ice has been removed. An earlier study by Peng and Domros had also found a link between Antarctic sea ice and the East Asian monsoon circulation. The current project has helped to understand the teleconnection.

  15. Pluto: Distribution of ices and coloring agents from New Horizons LEISA observations

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Grundy, William M.; Stern, S. Alan; Olkin, Catherine B.; Cook, Jason C.; Dalle Ore, Cristina M.; Binzel, Richard P.; Earle, Alissa M.; Ennico, Kimberly; Jennings, Donald E.; Howett, Carly J. A.; Linscott, Ivan R.; Lunsford, Allen W.; Parker, Alex H.; Parker, Joel W.; Protopapa, Silvia; Reuter, Dennis C.; Singer, Kelsi N.; Spencer, John R.; Tsang, Constantine C. C.; Verbiscer, Anne J.; Weaver, Harold A.; Young, Leslie A.

    2015-11-01

    Pluto was observed at high spatial resolution (maximum ~3 km/px) by the New Horizons LEISA imaging spectrometer. LEISA is a component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) and affords a spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm. Spatially resolved spectra with LEISA are used to map the distributions of the known ices on Pluto (N2, CH4, CO) and to search for other surface components. The spatial distribution of volatile ices is compared with the distribution of the coloring agent(s) on Pluto's surface. The correlation of ice abundance and the degree of color (ranging from yellow to orange to dark red) is consistent with the presence of tholins, which are refractory organic solids of complex structure and high molecular weight, with colors consistent with those observed on Pluto. Tholins are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface. We present results returned from the spacecraft to date obtained from the analysis of the high spatial resolution dataset obtained near the time of closest approach to the planet. Supported by NASA’s New Horizons project.

  16. Constraining the parameters of the EAP sea ice rheology from satellite observations and discrete element model

    NASA Astrophysics Data System (ADS)

    Tsamados, Michel; Heorton, Harry; Feltham, Daniel; Muir, Alan; Baker, Steven

    2016-04-01

    The new elastic-plastic anisotropic (EAP) rheology that explicitly accounts for the sub-continuum anisotropy of the sea ice cover has been implemented into the latest version of the Los Alamos sea ice model CICE. The EAP rheology is widely used in the climate modeling scientific community (i.e. CPOM stand alone, RASM high resolution regional ice-ocean model, MetOffice fully coupled model). Early results from sensitivity studies (Tsamados et al, 2013) have shown the potential for an improved representation of the observed main sea ice characteristics with a substantial change of the spatial distribution of ice thickness and ice drift relative to model runs with the reference visco-plastic (VP) rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. Observations from high resolution satellite SAR imagery as well as numerical simulation results from a discrete element model (DEM, see Wilchinsky, 2010) have shown that these individual floes can organize under external wind and thermal forcing to form an emergent isotropic sea ice state (via thermodynamic healing, thermal cracking) or an anisotropic sea ice state (via Coulombic failure lines due to shear rupture). In this work we use for the first time in the context of sea ice research a mathematical metric, the Tensorial Minkowski functionals (Schroeder-Turk, 2010), to measure quantitatively the degree of anisotropy and alignment of the sea ice at different scales. We apply the methodology on the GlobICE Envisat satellite deformation product (www.globice.info), on a prototype modified version of GlobICE applied on Sentinel-1 Synthetic Aperture Radar (SAR) imagery and on the DEM ice floe aggregates. By comparing these independent measurements of the sea ice anisotropy as well as its temporal evolution against the EAP model we are able to constrain the

  17. Simultaneous teleseismic and geodetic observations of the stick-slip motion of an Antarctic ice stream.

    PubMed

    Wiens, Douglas A; Anandakrishnan, Sridhar; Winberry, J Paul; King, Matt A

    2008-06-05

    Long-period seismic sources associated with glacier motion have been recently discovered, and an increase in ice flow over the past decade has been suggested on the basis of secular changes in such measurements. Their significance, however, remains uncertain, as a relationship to ice flow has not been confirmed by direct observation. Here we combine long-period surface-wave observations with simultaneous Global Positioning System measurements of ice displacement to study the tidally modulated stick-slip motion of the Whillans Ice Stream in West Antarctica. The seismic origin time corresponds to slip nucleation at a region of the bed of the Whillans Ice Stream that is likely stronger than in surrounding regions and, thus, acts like an 'asperity' in traditional fault models. In addition to the initial pulse, two seismic arrivals occurring 10-23 minutes later represent stopping phases as the slip terminates at the ice stream edge and the grounding line. Seismic amplitude and average rupture velocity are correlated with tidal amplitude for the different slip events during the spring-to-neap tidal cycle. Although the total seismic moment calculated from ice rigidity, slip displacement, and rupture area is equivalent to an earthquake of moment magnitude seven (M(w) 7), seismic amplitudes are modest (M(s) 3.6-4.2), owing to the source duration of 20-30 minutes. Seismic radiation from ice movement is proportional to the derivative of the moment rate function at periods of 25-100 seconds and very long-period radiation is not detected, owing to the source geometry. Long-period seismic waves are thus useful for detecting and studying sudden ice movements but are insensitive to the total amount of slip.

  18. Global warming releases microplastic legacy frozen in Arctic Sea ice

    NASA Astrophysics Data System (ADS)

    Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.

    2014-06-01

    When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.

  19. A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Geland, S.; Perovich, D. K.

    2017-12-01

    The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.

  20. Monitoring ice thickness and elastic properties from the measurement of leaky guided waves: A laboratory experiment.

    PubMed

    Moreau, Ludovic; Lachaud, Cédric; Théry, Romain; Predoi, Mihai V; Marsan, David; Larose, Eric; Weiss, Jérôme; Montagnat, Maurine

    2017-11-01

    The decline of Arctic sea ice extent is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that is not reproduced by climate models. To improve these models, relying on comprehensive and accurate field data is essential. While sea ice extent and concentration are accurately monitored from microwave imagery, an accurate measure of its thickness is still lacking. Moreover, measuring observables related to the mechanical behavior of the ice (such as Young's modulus, Poisson's ratio, etc.) could provide better insights in the understanding of sea ice decline, by completing current knowledge so far acquired mostly from radar and sonar data. This paper aims at demonstrating on the laboratory scale that these can all be estimated simultaneously by measuring seismic waves guided in the ice layer. The experiment consisted of leaving a water tank in a cold room in order to grow an ice layer at its surface. While its thickness was increasing, ultrasonic guided waves were generated with a piezoelectric source, and measurements were subsequently inverted to infer the thickness and mechanical properties of the ice with very good accuracy.

  1. ICESat Observations of Arctic Sea Ice: A First Look

    NASA Technical Reports Server (NTRS)

    Kwok, Ron; Zwally, H. Jay; Yi, Dong-Hui

    2004-01-01

    Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.

  2. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  3. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.

    PubMed

    Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard

    2011-12-02

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  4. Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube.

    PubMed

    Murase, Kohta; Laha, Ranjan; Ando, Shin'ichiro; Ahlers, Markus

    2015-08-14

    Late time decay of very heavy dark matter is considered as one of the possible explanations for diffuse PeV neutrinos observed in IceCube. We consider implications of multimessenger constraints, and show that proposed models are marginally consistent with the diffuse γ-ray background data. Critical tests are possible by a detailed analysis and identification of the sub-TeV isotropic diffuse γ-ray data observed by Fermi and future observations of sub-PeV γ rays by observatories like HAWC or Tibet AS+MD. In addition, with several-year observations by next-generation telescopes such as IceCube-Gen2, muon neutrino searches for nearby dark matter halos such as the Virgo cluster should allow us to rule out or support the dark matter models, independently of γ-ray and anisotropy tests.

  5. Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.

    2009-12-01

    The Austfonna ice cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine ice dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the ice cap. We employ the thermodynamic, large-scale ice sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-ice approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing ice thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar ice cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick ice column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the ice cap and the

  6. Pancake Ice Thickness Mapping in the Beaufort Sea From Wave Dispersion Observed in SAR Imagery

    NASA Astrophysics Data System (ADS)

    Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P. O. G.; Holt, B.

    2018-03-01

    The early autumn voyage of RV Sikuliaq to the southern Beaufort Sea in 2015 offered very favorable opportunities for observing the properties and thicknesses of frazil-pancake ice types. The operational region was overlaid by a dense network of retrieved satellite imagery, including synthetic aperture radar (SAR) imagery from Sentinel-1 and COSMO-SkyMed (CSK). This enabled us to fully test and apply the SAR-waves technique, first developed by Wadhams and Holt (1991), for deriving the thickness of frazil-pancake icefields from changed wave dispersion. A line of subimages from a main SAR image (usually CSK) is analyzed running into the ice along the main wave direction. Each subimage is spectrally analyzed to yield a wave number spectrum, and the change in the shape of the spectrum between open water and ice, or between two thicknesses of ice, is interpreted in terms of the viscous equations governing wave propagation in frazil-pancake ice. For each of the case studies considered here, there was good or acceptable agreement on thickness between the extensive in situ observations and the SAR-wave calculation. In addition, the SAR-wave analysis gave, parametrically, effective viscosities for the ice covering a consistent and narrow range of 0.03-0.05 m2 s-1.

  7. Arctic Sea ice, 1973-1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.; Zwally, H. Jay; Cavalieri, Donald J.; Gloersen, Per; Campbell, William J.

    1987-01-01

    The Arctic region plays a key role in the climate of the earth. The sea ice cover affects the radiative balance of the earth and radically changes the fluxes of heat between the atmosphere and the ocean. The observations of the Arctic made by the Electrically Scanning Microwave Radiometer (ESMR) on board the Nimbus 5 research satellite are summarized for the period 1973 through 1976.

  8. Visualizing Glaciers and Sea Ice via Google Earth

    NASA Astrophysics Data System (ADS)

    Ballagh, L. M.; Fetterer, F.; Haran, T. M.; Pharris, K.

    2006-12-01

    The NOAA team at NSIDC manages over 60 distinct cryospheric and related data products. With an emphasis on data rescue and in situ data, these products hold value for both the scientific and non-scientific user communities. The overarching goal of this presentation is to promote products from two components of the cryosphere (glaciers and sea ice). Our Online Glacier Photograph Database contains approximately 3,000 photographs taken over many decades, exemplifying change in the glacier terminus over time. The sea ice product shows sea ice extent and concentration along with anomalies and trends. This Sea Ice Index product, which starts in 1979 and is updated monthly, provides visuals of the current state of sea ice in both hemispheres with trends and anomalies. The long time period covered by the data set means that many of the trends in ice extent and concentration shown in this product are statistically significant despite the large natural variability in sea ice. The minimum arctic sea ice extent has been a record low in September 2002 and 2005, contributing to an accelerated trend in sea ice reduction. With increasing world-wide interest in indicators of global climate change, and the upcoming International Polar Year, these data products are of interest to a broad audience. To further extend the impact of these data, we have made them viewable through Google Earth via the Keyhole Markup Language (KML). This presents an opportunity to branch out to a more diverse audience by using a new and innovative tool that allows spatial representation of data of significant scientific and educational interest.

  9. Towards an Ice-Free Arctic Ocean in Summertime

    NASA Astrophysics Data System (ADS)

    Gascard, Jean Claude

    2014-05-01

    Dividing the Arctic Ocean in two parts, the so-called Atlantic versus the Pacific sector, two distinct modes of variability appear for characterizing the Arctic sea-ice extent from 70°N up to 80°N in both sectors. The Atlantic sector seasonal sea-ice extent is characterized by a longer time scale than the Pacific sector with a break up melting season starting in May and reaching a peak in June-July, one month earlier than the Pacific sector of the Arctic Ocean revealing a faster time evolution and a larger spatial amplitude than the Atlantic sector. During recent years like 2007, sea-ice extent with sea-ice concentration above 15% retreated from 4 millions km2 to about 1 million km2 in the Arctic Pacific sector between 70° and 80°N except for 2012 when most of sea-ice melted away in this region. That explained most of the differences between the two extreme years 2007 and 2012. In the Atlantic sector, Arctic sea-ice retreated from 2 millions km2 to nearly 0 during recent years including 2007 and 2012. The Atlantic inflow North of Svalbard and Franz Josef Land is more likely responsible for a northward retreat of the ice edge in that region. The important factor is not only that the Arctic summer sea-ice minimum extent decreased by 3 or 4 millions km2 over the past 10 years but also that the melting period was steadily increasing by one to two days every year during that period. An important factor concerns the strength of the freezing that can be quantified in terms of Freezing Degree Days FDD accumulated during the winter-spring season and the strength of the melting (MDD) that can be accumulated during the summer season. FDD and MDD have been calculated for the past 30 years all over the Arctic Ocean using ERA Interim Reanalysis surface temperature at 2m height in the atmosphere. It is clear that FDD decreased significantly by more than 2000 FDD between 1980 and 2012 which is equivalent to the sensible heat flux corresponding to more than a meter of sea-ice

  10. Simulation of flow and habitat conditions under ice, Cache la Poudre River - January 2006

    USGS Publications Warehouse

    Waddle, Terry

    2007-01-01

    The objectives of this study are (1) to describe the extent and thickness of ice cover, (2) simulate depth and velocity under ice at the study site for observed and reduced flows, and (3) to quantify fish habitat in this portion of the mainstem Cache la Poudre River for the current winter release schedule as well as for similar conditions without the 0.283 m3/s winter release.

  11. Damage Mechanics in the Community Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Whitcomb, R.; Cathles, L. M. M., IV; Bassis, J. N.; Lipscomb, W. H.; Price, S. F.

    2016-12-01

    Half of the mass that floating ice shelves lose to the ocean comes from iceberg calving, which is a difficult process to simulate accurately. This is especially true in the large-scale ice dynamics models that couple changes in the cryosphere to climate projections. Damage mechanics provide a powerful technique with the potential to overcome this obstacle by describing how fractures in ice evolve over time. Here, we demonstrate the application of a damage model to ice shelves that predicts realistic geometries. We incorporated this solver into the Community Ice Sheet Model, a three dimensional ice sheet model developed at Los Alamos National Laboratory. The damage mechanics formulation that we use comes from a first principles-based evolution law for the depth of basal and surface crevasses and depends on the large scale strain rate, stress state, and basal melt. We show that under idealized conditions it produces ice tongue lengths that match well with observations for a selection of natural ice tongues, including Erebus, Drygalski, and Pine Island in Antarctica, as well as Petermann in Greenland. We also apply the model to more generalized ideal ice shelf geometries and show that it produces realistic calving front positions. Although our results are preliminary, the damage mechanics model that we developed provides a promising first principles method for predicting ice shelf extent and how the calving margins of ice shelves respond to climate change.

  12. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  13. High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake

    NASA Astrophysics Data System (ADS)

    Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew

    2017-12-01

    Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.

  14. Dynamical conditions of ice supersaturation and ice nucleation in convective systems: A comparative analysis between in situ aircraft observations and WRF simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; DiGangi, Josh P.

    2017-03-01

    Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) > 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures ≤ -40°C. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by 3-4 orders of magnitude at higher updraft speeds (>1 m s-1) than those at the lower updraft speeds when ice water content (IWC) > 0.01 g m-3, while observations show smaller differences up to 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (≤0.01 g m-3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS >20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g., ≥25%).

  15. Sea Ice Prediction Has Easy and Difficult Years

    NASA Technical Reports Server (NTRS)

    Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward; Cutler, Matthew; Kay, Jennifer; Meier, Walter N.; Stroeve, Julienne; Wiggins, Helen

    2014-01-01

    Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013).

  16. Direct comparisons of ice cloud macro- and microphysical properties simulated by the Community Atmosphere Model version 5 with HIPPO aircraft observations

    NASA Astrophysics Data System (ADS)

    Wu, Chenglai; Liu, Xiaohong; Diao, Minghui; Zhang, Kai; Gettelman, Andrew; Lu, Zheng; Penner, Joyce E.; Lin, Zhaohui

    2017-04-01

    In this study we evaluate cloud properties simulated by the Community Atmosphere Model version 5 (CAM5) using in situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) campaign for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes and even higher (94.3 %) for ice clouds (T ≤ -40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 µm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.

  17. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.

  18. Diagnosing sea ice from the north american multi model ensemble and implications on mid-latitude winter climate

    NASA Astrophysics Data System (ADS)

    Elders, Akiko; Pegion, Kathy

    2017-12-01

    Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.

  19. Comparing springtime ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea.

    PubMed

    Lange, Benjamin A; Michel, Christine; Beckers, Justin F; Casey, J Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian

    2015-01-01

    With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.

  20. An Assessment of the Radiative Effects of Ice Supersaturation Based on in Situ Observations

    NASA Technical Reports Server (NTRS)

    Tan, Xiaoxiao; Huang, i; Diao, Minghui; Bansemer, Aaron; Zondlo, Mark A.; DiGangi, Joshua P.; Volkamer, Rainer; Hu, Yongyun

    2016-01-01

    We use aircraft observations combined with the reanalysis data to investigate the radiative effects of ice supersaturation (ISS). Our results show that although the excess water vapor over ice saturation itself has relatively small radiative effects, mistaking it as ice crystals in climate models would lead to considerable impacts: on average, +2.49 W/m(exp 2) change in the top of the atmosphere (TOA) radiation, -2.7 W/m(exp 2) change in surface radiation, and 1.47 K/d change in heating rates. The radiative effects of ISS generally increase with the magnitudes of supersaturation. However, there is a strong dependence on the preexisting ice water path, which can even change the sign of the TOA radiative effect. It is therefore important to consider coexistence between ISS and ice clouds and to validate their relationship in the parameterizations of ISS in climate models.

  1. The extent and timing of the last British-Irish Ice Sheet offshore of west Ireland-preliminary findings

    NASA Astrophysics Data System (ADS)

    Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.

    2014-05-01

    Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.

  2. Comparing a thermo-mechanical Weichselian Ice Sheet reconstruction to reconstructions based on the sea level equation: aspects of ice configurations and glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.; Fastook, J.

    2014-05-01

    In this study we compare a recent reconstruction of the Weichselian Ice Sheet as simulated by the University of Maine ice sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modelling: ICE-5G and ANU (Australian National University, also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling, whereas ANU and ICE-5G are global models based on the sea level equation. The three models of the Weichselian Ice Sheet are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. Whereas UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), the thickness and areal extent of the ICE-5G ice sheet is more or less constant up until the LGM. During the post-LGM deglaciation phase ANU and ICE-5G melt relatively uniformly over the entire ice sheet in contrast to UMISM, which melts preferentially from the edges, thus reflecting the fundamental difference in the reconstruction scheme. We find that all three reconstructions fit the present-day uplift rates over Fennoscandia equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present-day uplift rates, and ANU the slowest. Moreover, only for ANU can a unique best-fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present-day uplift rates equally well. This is understood from the higher present-day uplift rates predicted by ICE-5G and UMISM, which result in bifurcations in the best-fit upper- and lower-mantle viscosities. We study the areal distributions of present-day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that

  3. Fragmentation and melting of the seasonal sea ice cover

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Bateson, A.; Schroeder, D.; Ridley, J. K.; Aksenov, Y.

    2017-12-01

    Recent years have seen a rapid reduction in the summer extent of Arctic sea ice. This trend has implications for navigation, oil exploration, wildlife, and local communities. Furthermore the Arctic sea ice cover impacts the exchange of heat and momentum between the ocean and atmosphere with significant teleconnections across the climate system, particularly mid to low latitudes in the Northern Hemisphere. The treatment of melting and break-up processes of the seasonal sea ice cover within climate models is currently limited. In particular floes are assumed to have a uniform size which does not evolve with time. Observations suggest however that floe sizes can be modelled as truncated power law distributions, with different exponents for smaller and larger floes. This study aims to examine factors controlling the floe size distribution in the seasonal and marginal ice zone. This includes lateral melting, wave induced break-up of floes, and the feedback between floe size and the mixed ocean layer. These results are then used to quantify the proximate mechanisms of seasonal sea ice reduction in a sea ice—ocean mixed layer model. Observations are used to assess and calibrate the model. The impacts of introducing these processes to the model will be discussed and the preliminary results of sensitivity and feedback studies will also be presented.

  4. Sea Ice in McClure Strait

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 17, 2010 In mid-August 2010, the Northwest Passage was almost—but not quite—free of ice. The ice content in the northern route through the passage (through the Western Parry Channel) was very light, but ice remained in McClure (or M’Clure) Strait. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 17, 2010. Although most of McClure Strait looks perfectly ice-free, immediately west of Prince Patrick Island, a band of sea ice stretches southward across the strait (left edge of the image). The National Snow and Ice Data Center Sea Ice News and Analysis blog reported that even more ice remained in the southern route (through Amundsen’s Passage) of the Northwest Passage in mid-August 2010. Nevertheless, the ice content in the northern route was not only well below the 1968–2000 average, but also nearly a month ahead of the clearing observed in 2007, when Arctic sea ice set a record low. As of mid-August 2010, however, overall sea ice extent was higher than it had been at the same time of year in 2007. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Caption by Michon Scott. To learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=45333 Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Click here to see more images from NASA Goddard’s Earth Observatory

  5. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    NASA Astrophysics Data System (ADS)

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of

  6. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  7. High resolution water stable isotope profiles of abrupt climate transitions in Greenland ice with new observations from NEEM

    NASA Astrophysics Data System (ADS)

    Popp, T. J.; White, J. W. C.; Gkinis, V.; Vinther, B. M.; Johnsen, S. J.

    2012-04-01

    In 1989 Willi Dansgaard and others, using the DYE3 ice core, showed that the abrupt termination of the Younger Dryas expressed in water stable isotope ratios and deuterium excess was completed in less than 50 years. A few years later, using the GISP2 ice core, Richard Alley and others proposed that snow accumulation at the site doubled in as little as 1-3 years across the same climate transition at the end of the Younger Dryas. Over the next two decades, in large part due to such observations from Greenland ice cores, a paradigm of linked, abrupt changes in the North Atlantic region has been developed around North Atlantic deep water formation, North Atlantic sea ice extent, and widespread atmospheric circulation changes occurring repeatedly during the last glacial period in response to changing freshwater fluxes to the region, or perhaps other causes. More recently, with the NGRIP ice core, using a suite of high resolution proxy data, and in particular deuterium excess, it was observed again that certain features in the climate system can switch modes from one year to the next, while other proxies can take from decades to centuries to completely switch modes. Thus, an event seen in the proxy records such as the abrupt end of the Younger Dryas (or other interstadial events) may comprise multiple climatic or oceanic responses with different relative timing and duration which potentially follow a predictable sequence of events, in some cases separated by only a few years. Today, the search continues for these emerging patterns through isotopic and other highly resolvable proxy data series from ice cores. With the recent completion of the drilling at NEEM, many abrupt transitions have now been measured in detail over a geographic transect with drilling sites spanning from DYE3 in Southern Greenland, GISP2 in the central summit region, and up to NGRIP and NEEM in the far north. The anatomy of abrupt climate transitions can therefore be examined both spatially and

  8. Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice.

    PubMed

    Torstensson, Anders; Dinasquet, Julie; Chierici, Melissa; Fransson, Agneta; Riemann, Lasse; Wulff, Angela

    2015-10-01

    Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Meteorological Analysis of Icing Conditions Encountered in Low-Altitude Stratiform Clouds

    NASA Technical Reports Server (NTRS)

    Kline, D. B.; Walker, J. A.

    1951-01-01

    Liquid-water content, droplet size, and temperature data measured during 22 flights in predominatly stratiform clouds through the 1948-49 and the 1949-50 winters are presented. Several icing encounters were of greater severity than those previously measured over the same geographical area, but were within the limits of similar measurements obtained over different terrain within the United States. An analysis of meteorological conditions existing during the 74 flights conducted for four winters indicated an inverse relation of liquid-water concentration to maximum horizontal extent of icing clouds. Data on the vertical extent of supercooled clouds are also presented. Icing conditions were most likely to occur in the southwest and northwest quadrants of a cyclone area, and least likely to occur in the southeast and northeast quadrants where convergent air flow and lifting over the associated warm frontal surface usually cause precipitation. Additional data indicated that, icing conditions were usually encountered in nonprecipitating clouds existing at subfreezing temperatures and were unlikely over areas where most weather observing stations reported the existence of precipitation. Measurements of liquid-water content obtained during 12 flights near the time and location of radiosonde observations were compared with theoretical values. The average liquid-water content of a cloud layer, as measured by the multicylinder technique, seldom exceeded two-thirds of that which could be released by adiabatic lifting. Local areas near the cloud tops equaled or occasionally exceeded the calculated maximum quantity of liquid water.

  10. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    USGS Publications Warehouse

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  11. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    PubMed Central

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke A.; Korhonen, Johanna; Aono, Yasuyuki

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality. PMID:27113125

  12. Kinetics of hydrogen/deuterium exchanges in cometary ices

    NASA Astrophysics Data System (ADS)

    Faure, Mathilde; Quirico, Eric; Faure, Alexandre; Schmitt, Bernard; Theulé, Patrice; Marboeuf, Ulysse

    2015-11-01

    The D/H composition of volatile molecules composing cometary ices brings key constraints on the origin of comets, on the extent of their presolar heritage, as well as on the origin of atmospheres and hydrospheres of terrestrial planets. Nevertheless, the D/H composition may have been modified to various extents in the nucleus when a comet approaches the Sun and experiences deep physical and chemical modifications in its subsurface. We question here the evolution of the D/H ratio of organic species by proton exchanges with water ice. We experimentally studied the kinetics of D/H exchanges on the ice mixtures H2O:CD3OD, H2O:CD3ND2 and D2O:HCN. Our results show that fast exchanges occur on the -OH and -NH2 chemical groups, which are processed through hydrogen bonds exchanges with water and by the molecular mobility triggered by structural changes, such as glass transition or crystallization. D/H exchanges kinetic is best described by a second-order kinetic law with activation energies of 4300 ± 900 K and 3300 ± 100 K for H2O:CD3OD and H2O:CD3ND2 ice mixtures, respectively. The corresponding pre-exponential factors ln(A(s-1)) are 25 ± 7 and 20 ± 1, respectively. No exchange was observed in the case of HCN trapped in D2O ice. These results strongly suggest that upon thermal heating (1) -OH and -NH2 chemical groups of any organic molecules loose their primordial D/H composition and equilibrate with water ice, (2) HCN does not experience proton transfer and keeps a primordial D/H composition and (3) C-H chemical groups are not isotopically modified.

  13. Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data

    NASA Astrophysics Data System (ADS)

    Pfitzenmaier, Lukas; Unal, Christine M. H.; Dufournet, Yann; Russchenberg, Herman W. J.

    2018-06-01

    The growth of ice crystals in presence of supercooled liquid droplets represents the most important process for precipitation formation in the mid-latitudes. However, such mixed-phase interaction processes remain relatively unknown, as capturing the complexity in cloud dynamics and microphysical variabilities turns to be a real observational challenge. Ground-based radar systems equipped with fully polarimetric and Doppler capabilities in high temporal and spatial resolutions such as the S-band transportable atmospheric radar (TARA) are best suited to observe mixed-phase growth processes. In this paper, measurements are taken with the TARA radar during the ACCEPT campaign (analysis of the composition of clouds with extended polarization techniques). Besides the common radar observables, the 3-D wind field is also retrieved due to TARA unique three beam configuration. The novelty of this paper is to combine all these observations with a particle evolution detection algorithm based on a new fall streak retrieval technique in order to study ice particle growth within complex precipitating mixed-phased cloud systems. In the presented cases, three different growth processes of ice crystals, plate-like crystals, and needles are detected and related to the presence of supercooled liquid water. Moreover, TARA observed signatures are assessed with co-located measurements obtained from a cloud radar and radiosondes. This paper shows that it is possible to observe ice particle growth processes within complex systems taking advantage of adequate technology and state of the art retrieval algorithms. A significant improvement is made towards a conclusive interpretation of ice particle growth processes and their contribution to rain production using fall streak rearranged radar data.

  14. Aquarius Radiometer and Scatterometer Weekly Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the Aquarius/SAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freeze/thaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  15. Aquarius Radiometer and Scatterometer Weekly-Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the AquariusSAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freezethaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  16. Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling

    NASA Astrophysics Data System (ADS)

    Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang

    2018-04-01

    Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (< 1.5 cm) a viscoelastic model matches better, while an elastic model is more robust overall. Within landward embayments, where lateral stresses from surrounding protrusions damp the flexural response, a 2-D model captures behaviour that is missed in simple 1-D models. We conclude that improvements in current tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.

  17. Would limiting global warming to 1.5 or 2°C prevent an ice-free Arctic?

    NASA Astrophysics Data System (ADS)

    Screen, James; Williamson, Daniel

    2017-04-01

    The Paris Agreement to combat climate change includes an aspirational goal to limit global warming to 1.5°C above pre-industrial levels, substantially more ambitious than the previous target of 2°C. One of the most visible and iconic aspects of recent climate change is the dramatic loss of Arctic sea-ice, which is having profound implications on the environment, ecosystems and human inhabitants of this region and beyond. The concept of an 'ice-free Arctic' has captured scientific attention and public imagination. Scientists commonly define this as when the Arctic first becomes ice-free at the end of summer. Without efforts to slow manmade global warming, an ice-free Arctic would likely occur in summer by the middle of this century. But would limiting warming to 1.5°C, or even 2°C, prevent the Arctic ever going ice-free? Different climate models give vastly different projections of the lowest sea-ice extent given global warming of up to 1.5°C or up to 2°C. Models that over-estimate (or under-estimate) sea-ice extent in the last ten years are also those that project more ice (or less ice) remaining into the future. Here we use this relationship to observationally constrain climate model projections of future Arctic sea-ice cover. We obtain an observationally-constrained central prediction of 2.9 million square kilometres for the minimum sea-ice extent if global warming is limited to 1.5°C, or 1.2 million square kilometres if global warming remains below 2°C. Using Bayesian statistics allows us to compare estimates of the probability of an ice-free Arctic for the 1.5°C or 2°C target. We estimate there is less than a 1-in-100000 (exceptionally unlikely in IPCC parlance) chance of an ice-free Arctic if global warming is stays below 1.5°C, and around a 1-in-3 chance (39%; about as likely as not) if global warming is limited to 2.0°C. We suppose then that a summer ice-free Arctic is virtually certain to be avoided if the 1.5°C target of the Paris Agreement is

  18. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-07-01

    Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0-200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500-1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500-1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated

  19. Physical processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.

    2016-01-01

    During the record September 2012 sea ice minimum, the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  20. Physical Processes contributing to an ice free Beaufort Sea during September 2012

    NASA Astrophysics Data System (ADS)

    Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.

    2016-12-01

    During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years.

  1. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  2. Navy Sea Ice Prediction Systems

    DTIC Science & Technology

    2002-01-01

    for the IABP drifting buoys (red), the model (green), and the model with assimilation (black). 55 Oceanography • Vol. 15 • No. 1/2002 trate the need...SPECIAL ISSUE – NAVY OPERATIONAL MODELS : TEN YEARS LATER Oceanography • Vol. 15 • No. 1/2002 44 ice extent and/or ice thickness. A general trend...most often based on a combination of models and data. Modeling sea ice can be a difficult problem, as it exists in many different forms (Figure 1). It

  3. Comparing Springtime Ice-Algal Chlorophyll a and Physical Properties of Multi-Year and First-Year Sea Ice from the Lincoln Sea

    PubMed Central

    Lange, Benjamin A.; Michel, Christine; Beckers, Justin F.; Casey, J. Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian

    2015-01-01

    With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice–associated production than generally assumed. PMID:25901605

  4. A review of the physics of ice surface friction and the development of ice skating.

    PubMed

    Formenti, Federico

    2014-01-01

    Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.

  5. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-01-01

    The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.

  6. Annual accumulation over the Greenland ice sheet interpolated from historical and newly compiled observation data

    USGS Publications Warehouse

    Shen, Dayong; Liu, Yuling; Huang, Shengli

    2012-01-01

    The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm−2 yr−1, with a standard error of 0.9 g cm−2 yr−1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.

  7. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    DTIC Science & Technology

    2014-09-30

    At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH

  8. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  9. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Rainville, Luc; Perry, Mary Jane

    2016-04-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  10. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Perry, M. J.

    2016-02-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  11. Towards development of an operational snow on sea ice product

    NASA Astrophysics Data System (ADS)

    Stroeve, J.; Liston, G. E.; Barrett, A. P.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Sea ice has been visibly changing over the past couple of decades; most notably the annual minimum extent which has shown a distinct downward, and recently accelerating, trend. September mean sea ice extent was over 7×106 km2 in the 1980's, but has averaged less than 5×106 km2 in the last decade. Should this loss continue, there will be wide-ranging impacts on marine ecosystems, coastal communities, prospects for resource extraction and marine activity, and weather conditions in the Arctic and beyond. While changes in the spatial extent of sea ice have been routinely monitored since the 1970s, less is known about how the thickness of the ice cover has changed. While estimates of ice thickness across the Arctic Ocean have become available over the past 20 years based on data from ERS-1/2, Envisat, ICESat, CryoSat-2 satellites and Operation IceBridge aircraft campaigns, the variety of these different measurement approaches, sensor technologies and spatial coverage present formidable challenges. Key among these is that measurement techniques do not measure ice thickness directly - retrievals also require snow depth and density. Towards that end, a sophisticated snow accumulation model is tested in a Lagrangian framework to map daily snow depths across the Arctic sea ice cover using atmospheric reanalysis data as input. Accuracy of the snow accumulation is assessed through comparison with Operation IceBridge data and ice mass balance buoys (IMBs). Impacts on ice thickness retrievals are further discussed.

  12. 10Be in ice at high resolution: Solar activity and climate signals observed and GCM-modeled in Law Dome ice cores

    NASA Astrophysics Data System (ADS)

    Pedro, Joel; Heikkilä, Ulla; van Ommen, T. D.; Smith, A. M.

    2010-05-01

    Changes in solar activity modulate the galactic cosmic ray flux, and in turn, the production rate of 10Be in the earth's atmosphere. The best archives of past changes in 10Be production rate are the polar ice cores. Key challenges in interpreting these archives as proxies for past solar activity lie in separating the useful solar activity (or production) signal from the interfering meteorological (or climate) signal, and furthermore, in determining the atmospheric source regions of 10Be deposited to the ice core site. In this study we use a new monthly resolution composite 10Be record, which spans the past decade, and a general circulation model (ECHAM5-HAM), to constrain both the production and climate signals in 10Be concentrations at the Law Dome ice core site, East Antarctica. This study differs from most previous work on 10Be in Antarctica due to the very high sample resolution achieved. This high resolution, through a time period where accurate instrumental measurements of solar activity and climate are available, allows us to examine the response of 10Be concentrations in ice to short-term (monthly to annual) variations in solar activity, and to short-term variations in climate, including seasonality. We find a significant correlation (r2 = 0.56, P < 0.005, n = 92) between observed 10Be concentrations and solar activity (represented by the neutron counting rate). The most pervasive climate influence is a seasonal cycle, which shows maximum concentrations in mid-to-late-summer and minimum concentrations in winter. Model results show reasonable agreement with observations; both a solar activity signal and seasonal cycle in 10Be are captured. However, the modeled snow accumulation rate is too high by approximately 60%. According to the model, the main atmospheric source region of 10Be deposited to Law Dome is the 30-90°S stratosphere (~50%), followed by the 30-90°S troposphere (~30%). An enhancement in the fraction of 10Be arriving to Law Dome from the

  13. Applying Agile Methods to the Development of a Community-Based Sea Ice Observations Database

    NASA Astrophysics Data System (ADS)

    Pulsifer, P. L.; Collins, J. A.; Kaufman, M.; Eicken, H.; Parsons, M. A.; Gearheard, S.

    2011-12-01

    Local and traditional knowledge and community-based monitoring programs are increasingly being recognized as an important part of establishing an Arctic observing network, and understanding Arctic environmental change. The Seasonal Ice Zone Observing Network (SIZONet, http://www.sizonet.org) project has implemented an integrated program for observing seasonal ice in Alaska. Observation and analysis by local sea ice experts helps track seasonal and inter-annual variability of the ice cover and its use by coastal communities. The ELOKA project (http://eloka-arctic.org) is collaborating with SIZONet on the development of a community accessible, Web-based application for collecting and distributing local observations. The SIZONet project is dealing with complicated qualitative and quantitative data collected from a growing number of observers in different communities while concurrently working to design a system that will serve a wide range of different end users including Arctic residents, scientists, educators, and other stakeholders with a need for sea ice information. The benefits of linking and integrating knowledge from communities and university-based researchers are clear, however, development of an information system in this multidisciplinary, multi-participant context is challenging. Participants are geographically distributed, have different levels of technical expertise, and have varying goals for how the system will be used. As previously reported (Pulsifer et al. 2010), new technologies have been used to deal with some of the challenges presented in this complex development context. In this paper, we report on the challenges and innovations related to working as a multi-disciplinary software development team. Specifically, we discuss how Agile software development methods have been used in defining and refining user needs, developing prototypes, and releasing a production level application. We provide an overview of the production application that

  14. Sea ice in the Greenland Sea

    NASA Image and Video Library

    2017-12-08

    As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Greenland on July 16, 2015. Large chunks of melting sea ice can be seen in the sea ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland Sea. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the sea, as do newly calved icebergs. Frigid air from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and air allows some sea ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer sea ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic sea ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Arctic Sea Ice: Trends, Stability and Variability

    NASA Astrophysics Data System (ADS)

    Moon, Woosok

    A stochastic Arctic sea-ice model is derived and analyzed in detail to interpret the recent decay and associated variability of Arctic sea-ice under changes in greenhouse gas forcing widely referred to as global warming. The approach begins from a deterministic model of the heat flux balance through the air/sea/ice system, which uses observed monthly-averaged heat fluxes to drive a time evolution of sea-ice thickness. This model reproduces the observed seasonal cycle of the ice cover and it is to this that stochastic noise---representing high frequency variability---is introduced. The model takes the form of a single periodic non-autonomous stochastic ordinary differential equation. Following an introductory chapter, the two that follow focus principally on the properties of the deterministic model in order to identify the main properties governing the stability of the ice cover. In chapter 2 the underlying time-dependent solutions to the deterministic model are analyzed for their stability. It is found that the response time-scale of the system to perturbations is dominated by the destabilizing sea-ice albedo feedback, which is operative in the summer, and the stabilizing long wave radiative cooling of the ice surface, which is operative in the winter. This basic competition is found throughout the thesis to define the governing dynamics of the system. In particular, as greenhouse gas forcing increases, the sea-ice albedo feedback becomes more effective at destabilizing the system. Thus, any projections of the future state of Arctic sea-ice will depend sensitively on the treatment of the ice-albedo feedback. This in turn implies that the treatment a fractional ice cover as the ice areal extent changes rapidly, must be handled with the utmost care. In chapter 3, the idea of a two-season model, with just winter and summer, is revisited. By breaking the seasonal cycle up in this manner one can simplify the interpretation of the basic dynamics. Whereas in the fully

  16. Observations of upper ocean stability and heat fluxes in the Antarctic from under-ice Argo float profile data.

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Riser, S.

    2016-12-01

    Sea ice growth around Antarctica is intimately linked to the stability and thermohaline structure of the underlying ocean. As sea ice grows, the resulting brine triggers convective instabilities that deepen the mixed layer and entrain warm water from the weakly stratified pycnocline. The heat released from this process acts as a strong negative feedback to ice growth which, under the right scenarios, can exceed the initial atmospheric heat loss. Much of our current understanding of this ice-ocean interaction comes from a handful of relatively short field campaigns in the Weddell Sea. Here, we supplement those observations with an analysis of over 9000 under-ice Argo float profiles, collected between 2006-2015. These profiles provide an unprecedented view of the temporal and spatial variability of the upper ocean structure throughout the Antarctic region. With these observations and a theoretical understanding of the coupled ice-ocean system, we assess the ocean's potential to limit thermodynamic ice growth as well as its susceptibility to deep convection in different regions. Using these results, we infer how recent climatic changes may influence Antarctic sea ice growth and deep ocean ventilation in the near future.

  17. Variations in the Sea Ice Edge and the Marginal Ice Zone on Different Spatial Scales as Observed from Different Satellite Sensor

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Henrichs, John

    2006-01-01

    The Marginal sea Ice Zone (MIZ) and the sea ice edge are the most dynamic areas of the sea ice cover. Knowledge of the sea ice edge location is vital for routing shipping in the polar regions. The ice edge is the location of recurrent plankton blooms, and is the habitat for a number of animals, including several which are under severe ecological threat. Polar lows are known to preferentially form along the sea ice edge because of induced atmospheric baroclinicity, and the ice edge is also the location of both vertical and horizontal ocean currents driven by thermal and salinity gradients. Finally, sea ice is both a driver and indicator of climate change and monitoring the position of the ice edge accurately over long time periods enables assessment of the impact of global and regional warming near the poles. Several sensors are currently in orbit that can monitor the sea ice edge. These sensors, though, have different spatial resolutions, different limitations, and different repeat frequencies. Satellite passive microwave sensors can monitor the ice edge on a daily or even twice-daily basis, albeit with low spatial resolution - 25 km for the Special Sensor Microwave Imager (SSM/I) or 12.5 km for the Advanced Microwave Scanning Radiometer (AMSR-E). Although special methods exist that allow the detection of the sea ice edge at a quarter of that nominal resolution (PSSM). Visible and infrared data from the Advanced Very High Resolution Radiometer (AVHRR) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) provide daily coverage at 1 km and 250 m, respectively, but the surface observations me limited to cloud-free periods. The Landsat 7 Enhanced Thematic Mapper (ETM+) has a resolution of 15 to 30 m but is limited to cloud-free periods as well, and does not provide daily coverage. Imagery from Synthetic Aperture Radar (SAR) instruments has resolutions of tens of meters to 100 m, and can be used to distinguish open water and sea ice on the basis of surface

  18. Observations of grain boundary structures and inclusions in the NEEM ice core by combination of light and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Shigeyama, Wataru; Nagatsuka, Naoko; Homma, Tomoyuki; Takata, Morimasa; Goto-Azuma, Kumiko; Weikusat, Ilka; Drury, Martyn R.; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Mateiu, Ramona V.; Azuma, Nobuhiko; Dahl-Jensen, Dorthe

    2017-04-01

    Dynamics of ice sheets is governed by the flow of the ice and this flow results from the internal deformation of the ice aggregate. The deformation properties of the ice are known to be dependent on several factors, such as microstructure (e.g. crystal grain size and orientation) and impurities. It is well known that ice from glacial periods in ice sheets has a high impurity concentration, and the deformation is reported to be faster than that of non-glacial ice (Faria et al., 2014). However, the mechanisms of the deformation are still not well understood. For a better understanding of ice sheet dynamics, it is a prerequisite to elucidate deformation mechanisms of such impurity-rich ice. The microstructure of a material is a factor that influences mechanical properties and is also an indicator of the dominant deformation mechanisms. The effects of impurities on the deformation and the microstructure depend on chemical compositions, states (viz. insoluble inclusions or soluble ions) and locations of the impurities in the crystal lattice. Therefore, in order to better understand the deformation mechanisms in ice, investigation of relationship between the microstructure and characteristics of the impurities is important. We examined the relationship between grain boundaries and inclusions. Light microscopy (LM) is commonly used to map grain boundary structures on a large area of the ice samples (up to 10 × 10 cm); however, observation of small inclusions < 1 µm is limited due to the spatial resolution of LM. For observations of small impurities in ice cores, scanning electron microscopy (SEM) is useful although limited area (1 × 1 cm) can be examined, and sublimation/surface diffusion on ice in the SEM could move the impurities from their original locations. In order to examine the relationship between the grain boundary and the inclusions, we have combined LM and SEM. We first mapped large areas of the ice samples with LM, and then chose several smaller areas

  19. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    NASA Astrophysics Data System (ADS)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  20. Validation of Modelled Ice Dynamics of the Greenland Ice Sheet using Historical Forcing

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; Price, S. F.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Tezaur, I.; Kennedy, J. H.; Lenaerts, J.; Lipscomb, W. H.; Neumann, T.; Nowicki, S.; Perego, M.; Saba, J. L.; Salinger, A.; Guerber, J. R.

    2015-12-01

    Although ice sheet models are used for sea level rise projections, the degree to which these models have been validated by observations is fairly limited, due in part to the limited duration of the satellite observation era and the long adjustment time scales of ice sheets. Here we describe a validation framework for the Greenland Ice Sheet applied to the Community Ice Sheet Model by forcing the model annually with flux anomalies at the major outlet glaciers (Enderlin et al., 2014, observed from Landsat/ASTER/Operation IceBridge) and surface mass balance (van Angelen et al., 2013, calculated from RACMO2) for the period 1991-2012. The ice sheet model output is compared to ice surface elevation observations from ICESat and ice sheet mass change observations from GRACE. Early results show promise for assessing the performance of different model configurations. Additionally, we explore the effect of ice sheet model resolution on validation skill.

  1. The statistical properties of sea ice velocity fields

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2016-12-01

    Thorndike and Colony (1982) showed that more than 70% of the variance of the ice motion can be explained by the geostrophic winds. This conclusion was reached by analyzing only 2 years of data. Due to the importance of ice motion in Arctic climate we ask how persistent is such a prediction. In so doing, we study and develop a stochastic model for the Arctic sea ice velocity fields based on the observed sea ice velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic Sea Equivalent Ice Extent (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et. al. 2012), we assess the connection to ice motion. We divide the Arctic into dynamic and thermodynamic components, with focus on the dynamic part i.e. the velocity fields of sea ice driven by the geostrophic winds over the Arctic. We show (1) the stationarity of the spatial correlation structure of the velocity fields, and (2) the robustness of white noise structure present in the velocity fields on annual to bi-annual time scales, which combine to explain the white noise characteristics of the EIE on these time scales. S. Agarwal, W. Moon and J.S. Wettlaufer, Trends, noise and reentrant long-term persistence in Arctic sea ice, Proc. R. Soc. A, 468, 2416 (2012). A.S. Thorndike and R. Colony, Sea ice motion in response to geostrophic winds, J. Geophys. Res. 87, 5845 (1982).

  2. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  3. Do detailed simulations with size-resolved microphysics reproduce basic features of observed cirrus ice size distributions?

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.

    2017-12-01

    It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the

  4. Experimental study of the formation processes, optical properties, and chemistry of Titan's stratospheric ice clouds as observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Nna-Mvondo, D.; Anderson, C. M.; Samuelson, R. E.

    2017-12-01

    Two types of cloud systems have been repeatedly observed in Titan's atmosphere since the Cassini spacecraft entered into orbit around Saturn in 2004: (1) tropospheric convective methane clouds and (2) stratospheric ice clouds. Most of the stratospheric ice clouds observed by Cassini's Composite InfraRed Spectrometer (CIRS) form as a result of vapor condensation processes from a combination of pure and mixed nitriles and hydrocarbons. Examples include the n6 band of crystalline cyanoacetylene (HC3N) at 506 cm-1 (Anderson et al., 2010 and references therein) and the CIRS-discovered co-condensed nitrile ice feature at 160 cm-1 (Anderson and Samuelson, 2011). Other CIRS-observed stratospheric ice emission features, such as the n8 band of dicyanoacetylene (C4N2) at 478 cm-1 and the Haystack emission feature at 220 cm-1, have no associated observed vapor emission features, and could therefore form through more complex chemical processes such as solid-state photochemistry as suggested by Anderson et al. (2016). In the Spectroscopy for Planetary Ices Environments (SPICE) laboratory at NASA GSFC, we are undergoing investigations of Titan's observed stratospheric ices to better understand their chemical compositions, formation mechanisms, and optical properties. We accomplish this using the SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) high-vacuum chamber, in which we perform transmission spectroscopy of thin films of pure and mixed ices, from the near- to far-infrared (50 cm-1 to 11700 cm-1), and dose at low temperatures (30 K to 150 K), to study their spectral evolution and optical properties. Here we discuss our laboratory results obtained for various experiments containing pure and mixed nitrile ices (and some combined with benzene). The first significant result reveals that the libration mode of HCN (166 - 169 cm-1) is drastically altered by the surrounding molecules when mixing occurs in a co-condensed phase. For propionitrile ice, we observe peculiar

  5. Observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-01-01

    Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an

  6. Assessing, understanding, and conveying the state of the Arctic sea ice cover

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Richter-Menge, J. A.; Rigor, I.; Parkinson, C. L.; Weatherly, J. W.; Nghiem, S. V.; Proshutinsky, A.; Overland, J. E.

    2003-12-01

    Recent studies indicate that the Arctic sea ice cover is undergoing significant climate-induced changes, affecting both its extent and thickness. Satellite-derived estimates of Arctic sea ice extent suggest a reduction of about 3% per decade since 1978. Ice thickness data from submarines suggest a net thinning of the sea ice cover since 1958. Changes (including oscillatory changes) in atmospheric circulation and the thermohaline properties of the upper ocean have also been observed. These changes impact not only the Arctic, but the global climate system and are likely accelerated by such processes as the ice-albedo feedback. It is important to continue and expand long-term observations of these changes to (a) improve the fundamental understanding of the role of the sea ice cover in the global climate system and (b) use the changes in the sea ice cover as an early indicator of climate change. This is a formidable task that spans a range of temporal and spatial scales. Fortunately, there are numerous tools that can be brought to bear on this task, including satellite remote sensing, autonomous buoys, ocean moorings, field campaigns and numerical models. We suggest the integrated and coordinated use of these tools during the International Polar Year to monitor the state of the Arctic sea ice cover and investigate its governing processes. For example, satellite remote sensing provides the large-scale snapshots of such basic parameters as ice distribution, melt zone, and cloud fraction at intervals of half a day to a week. Buoys and moorings can contribute high temporal resolution and can measure parameters currently unavailable from space including ice thickness, internal ice temperature, and ocean temperature and salinity. Field campaigns can be used to explore, in detail, the processes that govern the ice cover. Numerical models can be used to assess the character of the changes in the ice cover and predict their impacts on the rest of the climate system. This work

  7. Retardation of ice crystallization by short peptides

    NASA Astrophysics Data System (ADS)

    Kim, Jun Soo; Yethiraj, Arun

    2009-03-01

    The effect of short peptides on the growth of ice crystals is studied using molecular dynamics simulations. The simulations focus on two sequences (Gly-Pro-Ala-Gly and Gly-Gly-Ala-Gly) that are found in collagen hydrolysate, a substance that is known to retard crystal growth. In the absence of peptides, the growth of ice crystal in the solution with the ice/water interface is observed in at a rate comparable to the experimental data. When peptides are present in the liquid phase, the crystal growth is retarded to a significant extent compared to the pure water. It is found that Gly-Pro-Ala-Gly is more effective (crystallization is up to 5 times slower than in its absence) than Gly-Gly-Ala-Gly (up to 3 times slower) implying that the role of the proline residue is important. The mechanism can be understood in the nature of binding of the peptides to the growing crystal.

  8. Arctic and Antarctic Sea Ice, 1978-1987: Satellite Passive-Microwave Observations and Analysis

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.; Cavalieri, Donald J.; Comiso, Josefino C.; Parkinson, Claire L.; Zwally, H. Jay

    1992-01-01

    This book contains a description and analysis of the spatial and temporal variations in the Arctic and Antarctic sea ice covers from October 26, 1978 through August 20, 1987. It is based on data collected by the Scanning Multichannel Microwave Radiometer (SMMR) onboard the NASA Nimbus 7 satellite. The 8.8-year period, together with the 4 years of the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) observations presented in two earlier volumes, comprises a sea ice record spanning almost 15 years.

  9. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  10. Sea Ice Kinematics and Thickness from RGPS: Observations and Theory

    NASA Technical Reports Server (NTRS)

    Stern, Harry; Lindsay, Ron; Yu, Yan-Ling; Moritz, Richard; Rothrock, Drew

    2005-01-01

    The RADARSAT Geophysical Processor System (RGPS) has produced a wealth of data on Arctic sea ice motion, deformation, and thickness with broad geographical coverage and good temporal resolution. These data provide unprecedented spatial detail of the structure and evolution of the sea ice cover. The broad purpose of this study was to take advantage of the strengths of the RGPS data set to investigate sea ice kinematics and thickness, which affect the climate through their influence on ice production, ridging, and transport (i.e. mass balance); heat flux to the atmosphere; and structure of the upper ocean mixed layer. The objectives of this study were to: (1) Explain the relationship between the discontinuous motion of the ice cover and the large-scale, smooth wind field that drives the ice; (2) Characterize the sea ice deformation in the Arctic at different temporal and spatial scales, and compare it with deformation predicted by a state-of-theart ice/ocean model; and (3) Compare RGPS-derived sea ice thickness with other data, and investigate the thinning of the Arctic sea ice cover as seen in ULS data obtained by U.S. Navy submarines. We briefly review the results of our work below, separated into the topics of sea ice deformation and sea ice thickness. This is followed by a list of publications, meetings and presentations, and other activities supported under this grant. We are attaching to this report copies of all the listed publications. Finally, we would like to point out our community service to NASA through our involvement with the ASF User Working Group and the RGPS Science Working Group, as evidenced in the list of meetings and presentations below.

  11. Ice Accretion Formations on a NACA 0012 Swept Wing Tip in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Giriunas, Julius A.; Ratvasky, Thomas P.

    2002-01-01

    An experiment was conducted in the DeHavilland DHC-6 Twin Otter Icing Research Aircraft at NASA Glenn Research Center to study the formation of ice accretions on swept wings in natural icing conditions. The experiment was designed to obtain ice accretion data to help determine if the mechanisms of ice accretion formation observed in the Icing Research Tunnel are present in natural icing conditions. The experiment in the Twin Otter was conducted using a NACA 0012 swept wing tip. The model enabled data acquisition at 0 deg, 15 deg, 25 deg, 30 deg, and 45 deg sweep angles. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that the mechanisms of ice accretion formation observed in-flight agree well with the ones observed in the Icing Research Tunnel. Observations on the end cap of the airfoil showed the same strong effect of the local sweep angle on the formation of scallops as observed in the tunnel.

  12. Observations and analyses of an intense waves-in-ice event in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Marko, John R.

    2003-09-01

    Ice draft, ice velocity, ice concentration, and current profile data gathered at an array of eight continental shelf monitoring sites east of Sakhalin Island were analyzed in conjunction with regional meteorological data to document and explain intense wave occurrences several hundred kilometers inside the Sea of Okhotsk ice pack. The studied event was associated with the 19-21 March 1998 passage of an intense cyclone, which produced waves with amplitudes in excess of 1 m at the most offshore monitoring location. The relatively monochromatic character of the waves allowed extraction of wave intensity time series from ice draft time series data. Spatial and temporal variations in these data were used to establish directions and speeds of wave energy propagation for comparisons with an earlier interpretation [, 1988] of an Antarctic intense waves-in-ice event. It was concluded that although both events are compatible with a two-stage process in which initially slowly advancing wave activity increases subsequent ice cover wave transmissivity, the first stage of the Sea of Okhotsk event was not explicable in terms of the static stress-induced changes in the waves-in-ice dispersion relationship proposed by Liu and Mollo-Christensen. An alternative explanation is offered that eschews the linkage between wave group velocities and the observed slow rates of wave energy propagation and attributes the subsequent transition to more normal wave propagation behavior to ice pack divergence.

  13. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    PubMed

    Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S

    2018-03-05

    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.

  14. Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.

    2003-11-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.

  15. Influence of sea ice on Arctic precipitation

    PubMed Central

    Kopec, Ben G.; Feng, Xiahong; Michel, Fred A.; Posmentier, Eric S.

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km2 sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  16. Dynamical Conditions of Ice Supersaturation and Ice Nucleation in Convective Systems: A Comparative Analysis Between in Situ Aircraft Observations and WRF Simulations

    NASA Technical Reports Server (NTRS)

    D’Alessandro, John J.; Diao, Minghui; Wu, Chenglai; Liu, Xiaohong; Chen, Ming; Morrison, Hugh; Eidhammer, Trude; Jensen, Jorgen B.; Bansemer, Aaron; Zondlo, Mark A.; hide

    2017-01-01

    Occurrence frequency and dynamical conditions of ice supersaturation (ISS, where relative humidity with respect to ice (RHi) greater than 100%) are examined in the upper troposphere around convective activity. Comparisons are conducted between in situ airborne observations and the Weather Research and Forecasting model simulations using four double-moment microphysical schemes at temperatures less than or or equal to -40degdegC. All four schemes capture both clear-sky and in-cloud ISS conditions. However, the clear-sky (in-cloud) ISS conditions are completely (significantly) limited to the RHi thresholds of the Cooper parameterization. In all of the simulations, ISS occurrence frequencies are higher by approximately 3-4 orders of magnitude at higher updraft speeds (greater than 1 m s(exp -1) than those at the lower updraft speeds when ice water content (IWC) greater than 0.01 gm(exp -3), while observations show smaller differences up to approximately 1-2 orders of magnitude. The simulated ISS also occurs less frequently at weaker updrafts and downdrafts than observed. These results indicate that the simulations have a greater dependence on stronger updrafts to maintain/generate ISS at higher IWC. At lower IWC (less than or equal or 0.01 gm(exp -3), simulations unexpectedly show lower ISS frequencies at stronger updrafts. Overall, the Thompson aerosol-aware scheme has the closest magnitudes and frequencies of ISS greater than 20% to the observations, and the modified Morrison has the closest correlations between ISS frequencies and vertical velocity at higher IWC and number density. The Cooper parameterization often generates excessive ice crystals and therefore suppresses the frequency and magnitude of ISS, indicating that it should be initiated at higher ISS (e.g.,lees than or equal to 25%).

  17. A Parameter Tuning Scheme of Sea-ice Model Based on Automatic Differentiation Technique

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Hovland, P. D.

    2001-05-01

    Automatic diferentiation (AD) technique was used to illustrate a new approach for parameter tuning scheme of an uncoupled sea-ice model. Atmospheric forcing field of 1992 obtained from NCEP data was used as enforcing variables in the study. The simulation results were compared with the observed ice movement provided by the International Arctic Buoy Programme (IABP). All of the numerical experiments were based on a widely used dynamic and thermodynamic model for simulating the seasonal sea-ice chnage of the main Arctic ocean. We selected five dynamic and thermodynamic parameters for the tuning process in which the cost function defined by the norm of the difference between observed and simulated ice drift locations was minimized. The selected parameters are the air and ocean drag coefficients, the ice strength constant, the turning angle at ice-air/ocean interface, and the bulk sensible heat transfer coefficient. The drag coefficients were the major parameters to control sea-ice movement and extent. The result of the study shows that more realistic simulations of ice thickness distribution was produced by tuning the simulated ice drift trajectories. In the tuning process, the L-BFCGS-B minimization algorithm of a quasi-Newton method was used. The derivative information required in the minimization iterations was provided by the AD processed Fortran code. Compared with a conventional approach, AD generated derivative code provided fast and robust computations of derivative information.

  18. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  19. Observations of sea ice ridging in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Granberg, Hardy B.; Leppaäranta, Matti

    1999-11-01

    Sea ice surface topography data were obtained by helicopter-borne laser profiling during the First Finnish Antarctic Expedition (FINNARP-89). The measurements were made near the ice margin at about 73°S, 27°W in the eastern Weddell Sea on December 31, 1989, and January 1, 1990. Five transects, ranging in length from 127 to 163 km and covering a total length of 724 km, are analyzed. With a lower cutoff of 0.91 m the overall ridge frequency was 8.4 ridges/km and the average ridge height was 1.32 m. The spatial variations in ridging were large; for 36 individual 20-km segments the frequencies were 2-16 ridges/km and the mean heights were 1.16-1.56 m. The frequencies and mean heights were weakly correlated. The distributions of the ridge heights followed the exponential distribution; the spacings did not pass tests for either the exponential or the lognormal distribution, but the latter was much closer. In the 20-km segments the areally averaged thickness of ridged ice was 0.51±0.28 m, ranging from 0.10 to 1.15 m. The observed ridge size and frequency are greater than those known for the Ross Sea. Compared with the central Arctic, the Weddell Sea ridging frequencies are similar but the ridge heights are smaller, possibly as a result of differences in snow accumulation.

  20. Breakup of the Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and Ice Data Center revealed that the northern section of the Larsen B ice shelf, a large floating ice mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered ice formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf area disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable extent. Ice shelves are thick plates of ice, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of ice flow and sediment thickness beneath the ice shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the area lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of ice released in this short time is 720 billion tons--enough ice for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by ice shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the extent of seven ice shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes areas that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and Ice Data Center (NSIDC) at

  1. Meteorological conditions influencing the formation of level ice within the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Mazur, A. K.; Krezel, A.

    2012-12-01

    The Baltic Sea is covered by ice every winter and on average, the ice-covered area is 45% of the total area of the Baltic Sea. The beginning of ice season usually starts in the end of November, ice extent is the largest between mid-February and mid-March and sea ice disappears completely in May. The ice covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea ice in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea ice can be formed. From the point of winter shipping it is important to locate level and deformed ice areas (rafted ice, ridged ice, and hummocked ice). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea ice observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea ice classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea ice studies but they seem to accurately separate level ice within the ice pack. The data were segmented and classified using eCognition Developer software. Level ice were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea ice conditions have been already studied. They include date of freezing, date of break-up, sea ice extent and some of work also ice thickness. There is a little knowledge about the relationship of

  2. Variational Ridging in Sea Ice Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  3. Application of data assimilation methods for analysis and integration of observed and modeled Arctic Sea ice motions

    NASA Astrophysics Data System (ADS)

    Meier, Walter Neil

    This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an

  4. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  5. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  6. Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2017-11-01

    We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  7. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  8. Seasonal Ice Zone Reconnaissance Surveys Coordination

    DTIC Science & Technology

    2013-09-30

    of SIZRS are covered in separate reports. Our long-term goal is to track and understand the interplay among the ice, atmosphere, and ocean...OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Seasonal Ice Zone...sensing resources include MODIS visible and IR imagery, NSIDC ice extent charts based on a composite of passive microwave products (http://nsidc.org

  9. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum

    PubMed Central

    Fraser, Ceridwen I.; Nikula, Raisa; Spencer, Hamish G.; Waters, Jonathan M.

    2009-01-01

    The end of the Last Glacial Maximum (LGM) dramatically reshaped temperate ecosystems, with many species moving poleward as temperatures rose and ice receded. Whereas reinvading terrestrial taxa tracked melting glaciers, marine biota recolonized ocean habitats freed by retreating sea ice. The extent of sea ice in the Southern Hemisphere during the LGM has, however, yet to be fully resolved, with most palaeogeographic studies suggesting only minimal or patchy ice cover in subantarctic waters. Here, through population genetic analyses of the widespread Southern Bull Kelp (Durvillaea antarctica), we present evidence for persistent ice scour affecting subantarctic islands during the LGM. Using mitochondrial and chloroplast genetic markers (COI; rbcL) to genetically characterize some 300 kelp samples from 45 Southern Ocean localities, we reveal a remarkable pattern of recent recolonization in the subantarctic. Specifically, in contrast to the marked phylogeographic structure observed across coastal New Zealand and Chile (10- to 100-km scales), subantarctic samples show striking genetic homogeneity over vast distances (10,000-km scales), with a single widespread haplotype observed for each marker. From these results, we suggest that sea ice expanded further and ice scour during the LGM impacted shallow-water subantarctic marine ecosystems more extensively than previously suggested. PMID:19204277

  10. Response of Debris-Covered and Clean-Ice Glaciers to Climate Change from Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Roe, G.; Huybers, K. M.

    2017-12-01

    Debris-covered glaciers form a significant percentage of the glacier area and volume in many mountainous regions of the world, and respond differently to climatic forcings as compared to clean-ice glaciers. In particular, debris-covered glaciers tend to downwaste with very little retreat, while clean-ice glaciers simultaneously thin and retreat. This difference has posed a significant challenge to quantifying glacier sensitivity to climate change, modeling glacier response to future climate change, and assessing the impacts of recent and future glacier changes on mountain environments and downstream populations. In this study, we evaluate observations of the geodetic mass balance and thinning profiles of 1000 glaciers across the Himalayas from 1975 to 2016. We use this large sampling of glacier changes over multiple decades to provide a robust statistical comparison of mass loss for clean-ice versus debris-covered glaciers over a period relevant to glacier dynamics. In addition, we force a glacier model with a series of climate change scenarios, and compare the modeled results to the observations. We essentially ask the question, "Are our theoretical expectations consistent with the observations?" Our observations show both clean-ice and debris-covered glaciers, regionally averaged, thinned in a similar pattern for the first 25-year observation period. For the more recent 15-year period, clean ice glaciers show significantly steepened thinning gradients across the surface, while debris-covered glaciers have continued to thin more uniformaly across the surface. Our preliminary model results generally agree with these observations, and suggest that both glacier types are expected to have a thinning phase followed by a retreat phase, but that the timing of the retreat phase is much later for debris-covered glaciers. Thus, these early results suggest these two glacier types are dynamically very similar, but are currently in different phases of response to recent

  11. The observation of underwater frazil ice formation and upward sediment transport in an Arctic polynya in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Ito, M.; Ohshima, K. I.; Fukamachi, Y.; Simizu, D.; Mahoney, A. R.; Eicken, H.

    2016-12-01

    Sea ice is a great contributor to energy- and salt-budget, dense water formation and bio-related material cycle in the polar ocean. In coastal polynya, the ice production becomes maximum when open water is maintained owing to underwater frazil ice formation associated with supercooling. In addition, an interaction between frazil ice and re-suspended sediment can be a major process of sediment incorporation into sea ice. Although these process have been reported from laboratory experiments and numerical simulations, in-situ observations have been limited because the under-ice observation is logistically challenging and detection methods of frazil ice and sedimentary particles have not been well established. Since 2009, mooring observations with ADCPs, Ice-Profiling Sonars and C-T recorders have been continuously carried out off Barrow in the Chukchi Sea, through a collaboration between Hokkaido University and University of Alaska Fairbanks. Recently, some in-situ measurements reported the possibility that an ADCP can detect frazil ice and re-suspended sediment using acoustic backscatter strength data. Thus, we analyzed the ADCP data in the Chukchi Sea, focusing on underwater frazil ice formation and upward sediment transport. In winter, polynyas were formed episodically around the observational sites several times by offshore-ward strong winds of > 10 m/s. During these polynya events, surface-intensified signals were detected throughout the water column at two sites with water depths of 40 - 50 m simultaneously. In these cases, potential supercooling occurred and signals were particularly enhanced at timings of in-situ supercooling. Thus, we interpreted these signals as those of frazil ice. On the other hand, bottom-intensified signals originating from re-suspended sediment were detected throughout the water column just after frazil ice was detected. These signals were associated with strong ocean currents of 1 m/s. Thus, sedimentary particles are likely dispersed

  12. Nimbus Satellite Data Rescue Project for Sea Ice Extent: Data Processing

    NASA Astrophysics Data System (ADS)

    Campbell, G. G.; Sandler, M.; Moses, J. F.; Gallaher, D. W.

    2011-12-01

    scanning and simple quality control of more than 200,000 pictures. Preliminary results from September 1964, 1966 and 1969 data analysis will be discussed in this presentation. Our scientific use of the data will focus on recovering the sea ice extent around the poles. We especially welcome new users interested in the meteorology from 50N to 50S in the 1960's. Lessons and examples of the scanning and quality control procedures will be highlighted in the presentation. Illustrations will include mapped and reformatted data. When the project is finished a public archive from September 1964, April to November 1966 and May to December 1969 will be available for general use.

  13. Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.

    PubMed

    Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad

    2017-12-01

    The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.

  14. Tomographic Observation and Bedmapping of Glaciers in Western Greenland with IceBridge Sounding Radar

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Paden, John; Jezek, Ken; Rignot, Eric; Gim, Young

    2013-01-01

    We produced the high resolution bedmaps of several glaciers in western Greenland from IceBridge Mission sounding radar data using tomographic sounding technique. The bedmaps cover 3 regions: Russell glaciers, Umanaq glaciers and Jakobshavn glaciers of western Greenland. The covered areas is about 20x40 km(sup 2) for Russell glaciers and 300x100 sq km, and 100x80 sq km for Jakobshavn glaciers. The ground resolution is 50 meters and the average ice thickness accuracy is 10 to 20 meters. There are some void areas within the swath of the tracks in the bedmaps where the ice thickness is not known. Tomographic observations of these void areas indicate that the surface and shallow sub-surface pockets, likely filled with water, are highly reflective and greatly weaken the radar signal and reduce the energy reaching and reflected from the ice sheet bottom.

  15. In search of laterally heterogeneous viscosity models of Glacial Isostatic Adjustment with the ICE-6G_C global ice history model

    NASA Astrophysics Data System (ADS)

    Li, Tanghua; Wu, Patrick; Steffen, Holger; Wang, Hansheng

    2018-05-01

    Most models of Glacial Isostatic Adjustment (GIA) assume that the Earth is laterally homogeneous. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Previous studies of GIA with lateral heterogeneity mostly focused on its effect or sensitivity on GIA predictions, and it is not clear to what extent can lateral heterogeneity solve the misfits between GIA predictions and observations. Our aim is to search for the best 3D viscosity models that can simultaneously fit the global relative sea-level (RSL) data, the peak uplift rates (u-dot from GNSS) and peak gravity-rate-of-change (g-dot from the GRACE satellite mission) in Laurentia and Fennoscandia. However, the search is dependent on the ice and viscosity model inputs - the latter depends on the background viscosity and the seismic tomography models used. In this paper, the ICE-6G_C ice model, with Bunge & Grand's seismic tomography model and background viscosity models close to VM5 will be assumed. A Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea level change with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. Several laterally heterogeneous models are found to fit the global sea level data better than laterally homogeneous models. Two of these laterally heterogeneous models also fit the ICE-6G_C peak g-dot and u-dot rates observed in Laurentia simultaneously. However, even with the introduction of lateral heterogeneity, no model that is able to fit the present-day g-dot and uplift rate data in Fennoscandia has been found. Therefore, either the ice history of ICE-6G_C in Fennoscandia and Barent Sea needs some modifications, or the sub-lithospheric property/non-thermal effect underneath northern Europe must be different from that underneath Laurentia.

  16. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  17. Variability and trends in the Arctic Sea ice cover: Results from different techniques

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-08-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic sea <span class="hlt">ice</span> cover, especially in the summer, has been the center of attention in recent years. Reports on the sea <span class="hlt">ice</span> cover have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930082126','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930082126"><span>The Calculation of the Heat Required for Wing Thermal <span class="hlt">Ice</span> Prevention in Specified <span class="hlt">Icing</span> Conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.</p> <p>1947-01-01</p> <p>Flight tests were made in natural <span class="hlt">icing</span> conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to <span class="hlt">ice</span> formation were made simultaneously with the procurement of airfoil thermal data. The <span class="hlt">extent</span> of knowledge on the meteorology of <span class="hlt">icing</span>, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51E2110S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51E2110S"><span>Relating Radiative Fluxes on Arctic Sea <span class="hlt">Ice</span> Area Using Arctic <span class="hlt">Observation</span> and Reanalysis Integrated System (ArORIS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sledd, A.; L'Ecuyer, T. S.</p> <p>2017-12-01</p> <p>With Arctic sea <span class="hlt">ice</span> declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and <span class="hlt">ice</span> cover-radiation feedbacks in particular, is needed. Here we present the Arctic <span class="hlt">Observation</span> and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use <span class="hlt">observations</span> from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea <span class="hlt">ice</span> fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea <span class="hlt">ice</span> areas. Surface fluxes are especially responsive to the September sea <span class="hlt">ice</span> minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea <span class="hlt">ice</span> area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea <span class="hlt">ice</span> area than the surface contribution. Further comparisons between <span class="hlt">observations</span> and reanalyses can be made using the available datasets in ArORIS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23552947','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23552947"><span>July 2012 Greenland melt <span class="hlt">extent</span> enhanced by low-level liquid clouds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bennartz, R; Shupe, M D; Turner, D D; Walden, V P; Steffen, K; Cox, C J; Kulie, M S; Miller, N B; Pettersen, C</p> <p>2013-04-04</p> <p>Melting of the world's major <span class="hlt">ice</span> sheets can affect human and environmental conditions by contributing to sea-level rise. In July 2012, an historically rare period of extended surface melting was <span class="hlt">observed</span> across almost the entire Greenland <span class="hlt">ice</span> sheet, raising questions about the frequency and spatial <span class="hlt">extent</span> of such events. Here we show that low-level clouds consisting of liquid water droplets ('liquid clouds'), via their radiative effects, played a key part in this melt event by increasing near-surface temperatures. We used a suite of surface-based <span class="hlt">observations</span>, remote sensing data, and a surface energy-balance model. At the critical surface melt time, the clouds were optically thick enough and low enough to enhance the downwelling infrared flux at the surface. At the same time they were optically thin enough to allow sufficient solar radiation to penetrate through them and raise surface temperatures above the melting point. Outside this narrow range in cloud optical thickness, the radiative contribution to the surface energy budget would have been diminished, and the spatial <span class="hlt">extent</span> of this melting event would have been smaller. We further show that these thin, low-level liquid clouds occur frequently, both over Greenland and across the Arctic, being present around 30-50 per cent of the time. Our results may help to explain the difficulties that global climate models have in simulating the Arctic surface energy budget, particularly as models tend to under-predict the formation of optically thin liquid clouds at supercooled temperatures--a process potentially necessary to account fully for temperature feedbacks in a warming Arctic climate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>