Sample records for ice flow acceleration

  1. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet

  2. Ice-sheet modelling accelerated by graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  3. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

    PubMed Central

    Kulessa, Bernd; Hubbard, Alun L.; Booth, Adam D.; Bougamont, Marion; Dow, Christine F.; Doyle, Samuel H.; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A. W.; Jones, Glenn A.

    2017-01-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. PMID:28835915

  4. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.

    PubMed

    Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A

    2017-08-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.

  5. The dynamics of climate-induced deglacial ice stream acceleration

    NASA Astrophysics Data System (ADS)

    Robel, A.; Tziperman, E.

    2015-12-01

    Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.

  6. Ice-sheet thinning and acceleration at Camp Century, Greenlan

    NASA Astrophysics Data System (ADS)

    Colgan, W. T.

    2017-12-01

    Camp Century, Greenland (77.18 °N, 61.12 °W, 1900 m), is located approximately 150 km inland from the ice-sheet margin in Northwest Greenland. In-situ and remotely-sensed measurements of ice-sheet elevation at Camp Century exhibit a thinning trend between 1964 and the present. A comparison of 1966 and 2017 firn density profiles indicates that a portion of this ice-sheet thinning is attributable to increased firn compaction rate. In-situ measurements of increasing ice surface velocity over the 1977-2017 period indicate that enhanced horizontal divergence of ice flux is also contributing to ice dynamic thinning at Camp Century. This apparent ice dynamic thinning could potentially result from a migrating local flow divide or decreasing effective ice viscosity. In a shorter-term context, observations of decadal-scale ice-sheet thinning and acceleration at Camp Century highlights underappreciated transience in inland ice form and flow during the satellite era. In a longer-term context, these multi-decadal observations contrast with inferences of millennial-scale ice-sheet thickening and deceleration at Camp Century.

  7. Evolution of Pine Island Glacier subglacial conditions in response to 18 years of ice flow acceleration

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Bougamont, M. H.; Christoffersen, P.; Cornford, S. L.; Nias, I.; Vaughan, D.; Smith, A.

    2017-12-01

    Antarctica's main contribution to sea-level rise originates from the Amundsen Coast, when warm ocean water intrudes onto the continental shelf. As a result, strong melting beneath the ice shelves induces thinning near the grounding line of glaciers, which is ensued by large ice flow speed up diffusing rapidly inland. In particular, ice loss from Pine Island Glacier (PIG) accounts for 20% of the total ice loss in West Antarctica, amounting to 0.12 mm yr-1 of global sea-level rise. Forecasting the future flow of Amundsen Coast glaciers is however hindered by large uncertainties regarding how the thinning initiated at the grounding line is transmitted upstream, and how the grounded flow will ultimately respond. This work aims at elucidating the role of subglacial processes beneath PIG tributaries in modulating the ice flow response to frontal perturbations. We used the Community Ice Sheet Model (CISM 2.0) to perform numerical inversions of PIG surface velocity as observed in 1996 and 2014. Over that time period, ice flow acceleration has been widespread over PIG's basin, and the inversions provide insights into the related evolution of the basal thermal and stress conditions. We assume the latter to be directly related to changes in the properties of a soft sediment (till) layer known to exist beneath PIG. We find that the overall bed strength has weakened by 18% in the region of enhanced flow, and that the annual melt production for PIG catchment increased by 25% between 1996 and 2014. Specifically, regions of high melt production are located in the southern tributaries, where the overall stronger bed allows for more frictional melting. However, we find no significant and widespread change in the basal strength of that region, and we infer that the water produced is transported away in a concentrated hydrological system, without much interaction with the till layer. In contrast, we find that relatively less basal melting occurs elsewhere in the catchment, where the

  8. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  9. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  10. Climate Variability, Melt-Flow Acceleration, and Ice Quakes at the Western Slope of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Steffen, K.; Zwally, J. H.; Rial, J. A.; Behar, A.; Huff, R.

    2006-12-01

    The Greenland ice sheet experienced surface melt increase over the past 15 years with record melt years in 1987, 1991, 1998, 2002 and 2005. For the western part of the ice sheet the melt area increased by 30 percent (1979-2005). Monthly mean air temperatures increased in spring and fall by 0.23 deg. C per year since 1990, extending the length of melt and total ablation. Winter air temperatures increased by as much as 0.5 deg. C per year during the past 15 years. The equilibrium line altitude ranged between 400 and 1530 m above sea level at 70 deg. north along the western slope of the ice sheet for the past 15 years, equaling a horizontal distance of 100 km. The ELA has been below the Swiss Camp (1100 m elevation) in the nineties, and since 1997 moved above the Swiss Camp height. An increase in ELA leads to an increase in melt water run-off which has been verified by regional model studies (high-resolution re-analysis). Interannual variability of snow accumulation varies from 0.3 to 2.0 m, whereas snow and ice ablation ranges from 0 to 1.5 m water equivalent at Swiss Camp during 1990-2005. A GPS network (10 stations) monitors ice velocity, acceleration, and surface height change at high temporal resolution throughout the year. The network covers a range of 500 and 1500 m above sea level, close to the Ilulissat Icefjord World Heritage region. The ice sheet continued to accelerate during the height of the melt season with short-term velocity increases up to 100 percent, and vertical uplift rates of 0.5 m. There seems to be a good correlation between the change in ice velocity and total surface melt, suggesting that melt water penetrates to great depth through moulins and cracks, lubricating the bottom of the ice sheet. A new bore-hole video movie will be shown from a 110 m deep moulin close to Swiss Camp. A PASSCAL array of 10 portable, 3-component seismic stations deployed around Swiss Camp from May to August 2006 detected numerous microearthquakes within the ice

  11. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  12. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what

  13. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  14. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  15. Antarctic ice sheet mass loss estimates using Modified Antarctic Mapping Mission surface flow observations

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Leslie, Lance M.; Lynch, Mervyn J.

    2013-03-01

    The long residence time of ice and the relatively gentle slopes of the Antarctica Ice Sheet make basal sliding a unique positive feedback mechanism in enhancing ice discharge along preferred routes. The highly organized ice stream channels extending to the interior from the lower reach of the outlets are a manifestation of the role of basal granular material in enhancing the ice flow. In this study, constraining the model-simulated year 2000 ice flow fields with surface velocities obtained from InSAR measurements permits retrieval of the basal sliding parameters. Forward integrations of the ice model driven by atmospheric and oceanic parameters from coupled general circulation models under different emission scenarios provide a range of estimates of total ice mass loss during the 21st century. The total mass loss rate has a small intermodel and interscenario spread, rising from approximately -160 km3/yr at present to approximately -220 km3/yr by 2100. The accelerated mass loss rate of the Antarctica Ice Sheet in a warming climate is due primarily to a dynamic response in the form of an increase in ice flow speed. Ice shelves contribute to this feedback through a reduced buttressing effect due to more frequent systematic, tabular calving events. For example, by 2100 the Ross Ice Shelf is projected to shed 40 km3 during each systematic tabular calving. After the frontal section's attrition, the remaining shelf will rebound. Consequently, the submerged cross-sectional area will reduce, as will the buttressing stress. Longitudinal differential warming of ocean temperature contributes to tabular calving. Because of the prevalence of fringe ice shelves, oceanic effects likely will play a very important role in the future mass balance of the Antarctica Ice Sheet, under a possible future warming climate.

  16. Flow structure at an ice-covered river confluence

    NASA Astrophysics Data System (ADS)

    Martel, Nancy; Biron, Pascale; Buffin-Bélanger, Thomas

    2017-04-01

    River confluences are known to exhibit complex relationships between flow structure, sediment transport and bed-form development. Flow structure at these sites is influenced by the junction angle, the momentum flux ratio (Mr) and bed morphology. In cold regions where an ice cover is present for most of the winter period, the flow structure is also likely affected by the roughness effect of the ice. However, very few studies have examined the impact of an ice cover on the flow structure at a confluence. The aims of this study are (1) to describe the evolution of an ice cover at a river confluence and (2) to characterize and compare the flow structure at a river confluence with and without an ice cover. The field site is a medium-sized confluence (around 40 m wide) between the Mit is and Neigette Rivers in the Bas-Saint-Laurent region, Quebec (Canada). The confluence was selected because a thick ice cover is present for most of the winter allowing for safe field work. Two winter field campaigns were conducted in 2015 and 2016 to obtain ice cover measurements in addition to hydraulic and morphological measurements. Daily monitoring of the evolution of the ice cover was made with a Reconyx camera. Velocity profiles were collected with an acoustic Doppler current profiler (ADCP) to reconstruct the three-dimensional flow structure. Time series of photographs allow the evolution of the ice cover to be mapped, linking the processes leading to the formation of the primary ice cover for each year. The time series suggests that these processes are closely related with both confluence flow zones and hydro-climatic conditions. Results on the thickness of the ice cover from in situ measurements reveal that the ice thickness tends to be thinner at the center of the confluence where high turbulent exchanges take place. Velocity measurements reveal that the ice cover affects velocity profiles by moving the highest velocities towards the center of the profiles. A spatio

  17. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 2. Observed and Modeled Ice Flow

    NASA Technical Reports Server (NTRS)

    Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed

    2012-01-01

    Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.

  18. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  19. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ

    NASA Astrophysics Data System (ADS)

    Cavanagh, J. P.; Lampkin, D. J.; Moon, T.

    2017-12-01

    The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.

  20. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  1. Diverse landscapes beneath Pine Island Glacier influence ice flow.

    PubMed

    Bingham, Robert G; Vaughan, David G; King, Edward C; Davies, Damon; Cornford, Stephen L; Smith, Andrew M; Arthern, Robert J; Brisbourne, Alex M; De Rydt, Jan; Graham, Alastair G C; Spagnolo, Matteo; Marsh, Oliver J; Shean, David E

    2017-11-20

    The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.

  2. Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam

    2018-03-01

    The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.

  3. Topical Menthol, Ice, Peripheral Blood Flow, and Perceived Discomfort

    PubMed Central

    Topp, Robert; Ledford, Elizabeth R.; Jacks, Dean E.

    2013-01-01

    Context: Injury management commonly includes decreasing arterial blood flow to the affected site in an attempt to reduce microvascular blood flow and edema and limit the induction of inflammation. Applied separately, ice and menthol gel decrease arterial blood flow, but the combined effects of ice and menthol gel on arterial blood flow are unknown. Objectives: To compare radial artery blood flow, arterial diameter, and perceived discomfort before and after the application of 1 of 4 treatment conditions. Design: Experimental crossover design. Setting: Clinical laboratory. Participants or Other Participants: Ten healthy men, 9 healthy women (mean age = 25.68 years, mean height = 1.73 m, mean weight = 76.73 kg). Intervention(s): Four treatment conditions were randomly applied for 20 minutes to the right forearm of participants on 4 different days separated by at least 24 hours: (1) 3.5 mL menthol gel, (2) 0.5 kg of crushed ice, (3) 3.5 mL of menthol gel and 0.5 kg of crushed ice, or (4) no treatment (control). Main Outcome Measure(s): Using high-resolution ultrasound, we measured right radial artery diameter (cm) and blood flow (mL/min) every 5 minutes for 20 minutes after the treatment was applied. Discomfort with the treatment was documented using a 1-to-10 intensity scale. Results: Radial artery blood flow decreased (P < .05) from baseline in the ice (−20% to −24%), menthol (−17% to −24%), and ice and menthol (−36% to −39%) treatments but not in the control (3% to 9%) at 5, 10, and 15 minutes. At 20 minutes after baseline, only the ice (−27%) and combined ice and menthol (−38%) treatments exhibited reductions in blood flow (P < .05). Discomfort was less with menthol than with the ice treatment at 5, 10, and 20 minutes after application (P < .05). Arterial diameter and heart rate did not change. Conclusions: The application of 3.5 mL of menthol was similar to the application of 0.5 kg of crushed ice in reducing peripheral blood flood. Combining

  4. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities

    NASA Astrophysics Data System (ADS)

    Kingslake, Jonathan; Martín, Carlos; Arthern, Robert J.; Corr, Hugh F. J.; King, Edward C.

    2016-09-01

    We date a recent ice-flow reorganization of an ice divide in the Weddell Sea Sector, West Antarctica, using a novel combination of inverse methods and ice-penetrating radars. We invert for two-dimensional ice flow within an ice divide from data collected with a phase-sensitive ice-penetrating radar while accounting for the effect of firn on radar propagation and ice flow. By comparing isochronal layers simulated using radar-derived flow velocities with internal layers observed with an impulse radar, we show that the divide's internal structure is not in a steady state but underwent a disturbance, potentially implying a regional ice-flow reorganization, 2.5 (1.8-2.9) kyr B.P. Our data are consistent with slow ice flow in this location before the reorganization and the ice divide subsequently remaining stationary. These findings increase our knowledge of the glacial history of a region that lacks dated constraints on late-Holocene ice-sheet retreat and provides a key target for models that reconstruct and predict ice-sheet behavior.

  5. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013

    NASA Astrophysics Data System (ADS)

    Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr2. Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr2. Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr2.

  6. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    NASA Astrophysics Data System (ADS)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  7. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  8. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  9. Dynamics of the global meridional ice flow of Europa's icy shell

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli

    2018-01-01

    Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.

  10. Dynamic behaviour of ice streams: the North East Greenland Ice Stream

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka

    2017-04-01

    The flow of ice towards the margins of ice sheets is far from homogeneous. Ice streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland Ice Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an ice stream causes marginal shearing and convergent flow, which in turn leads to folding of ice layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland Ice Sheet with no direct connection to the present-day surface velocity field, indicates that ice flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that ice streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the ice. The dynamic nature of ice streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that ice streams can also result from strain localisation induced inside the ice sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications 7

  11. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr 2 . Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr 2 . However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr 2 . Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr 2 .

  12. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa

  13. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains

    NASA Astrophysics Data System (ADS)

    Harig, Christopher; Simons, Frederik J.

    2015-04-01

    While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.

  14. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    DOE PAGES

    Bougamont, M.; Christoffersen, P.; Price, S. F.; ...

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  15. Web life: Ice Flows

    NASA Astrophysics Data System (ADS)

    2016-11-01

    Computer and video gamers of a certain vintage will have fond memories of Lemmings, a game in which players must shepherd pixelated, suicidal rodents around a series of obstacles to reach safety. At first glance, Ice Flows is strikingly similar.

  16. Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland

    NASA Technical Reports Server (NTRS)

    Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.

  17. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element

  18. Modelling water flow under glaciers and ice sheets.

    PubMed

    Flowers, Gwenn E

    2015-04-08

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.

  19. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  20. Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.

    2009-12-01

    The Austfonna ice cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine ice dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the ice cap. We employ the thermodynamic, large-scale ice sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-ice approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing ice thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar ice cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick ice column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the ice cap and the

  1. Instability of water-ice interface under turbulent flow

    NASA Astrophysics Data System (ADS)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  2. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  3. Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2017-11-01

    We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  4. Complex Greenland outlet glacier flow captured

    PubMed Central

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  5. 30-Year Satellite Record Reveals Accelerated Arctic Sea Ice Loss, Antarctic Sea Ice Trend Reversal

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    Arctic sea ice extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent observed in the early 1970's.

  6. Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface

    NASA Astrophysics Data System (ADS)

    Cutler, B. B.; Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.

  7. In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice area

    NASA Astrophysics Data System (ADS)

    Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.

    2012-06-01

    Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in ice, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.

  8. SHEAR ACCELERATION IN EXPANDING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less

  9. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  10. Turbulent heat exchange between water and ice at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin Henry; Olson, Peter; Gnanadesikan, Anand

    2016-07-01

    We conduct laboratory experiments on the time evolution of an ice layer cooled from below and subjected to a turbulent shear flow of warm water from above. Our study is motivated by observations of warm water intrusion into the ocean cavity under Antarctic ice shelves, accelerating the melting of their basal surfaces. The strength of the applied turbulent shear flow in our experiments is represented in terms of its Reynolds number $\\textit{Re}$, which is varied over the range $2.0\\times10^3 \\le \\textit{Re} \\le 1.0\\times10^4$. Depending on the water temperature, partial transient melting of the ice occurs at the lower end of this range of $\\textit{Re}$ and complete transient melting of the ice occurs at the higher end. Following these episodes of transient melting, the ice reforms at a rate that is independent of $\\textit{Re}$. We fit our experimental measurements of ice thickness and temperature to a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. The melting mechanism we investigate in our experiments can easily account for the basal melting rate of Pine Island Glacier ice shelf inferred from observations.

  11. Greenland ice sheet motion insensitive to exceptional meltwater forcing.

    PubMed

    Tedstone, Andrew J; Nienow, Peter W; Sole, Andrew J; Mair, Douglas W F; Cowton, Thomas R; Bartholomew, Ian D; King, Matt A

    2013-12-03

    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ~3.9 σ above the 1958-2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios.

  12. Accuracy improvement of the ice flow rate measurements on Antarctic ice sheet by DInSAR method

    NASA Astrophysics Data System (ADS)

    Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi

    2015-04-01

    DInSAR (Differential Interferometric Synthetic Aperture Radar) is an effective tool to measure the flow rate of slow flowing ice streams on Antarctic ice sheet with high resolution. In the flow rate measurement by DInSAR method, we use Digital Elevation Model (DEM) at two times in the estimating process. At first, we use it to remove topographic fringes from InSAR images. And then, it is used to project obtained displacements along Line-Of-Sight (LOS) direction to the actual flow direction. ASTER-GDEM widely-used for InSAR prosessing of the data of polar region has a lot of errors especially in the inland ice sheet area. Thus the errors yield irregular flow rates and directions. Therefore, quality of DEM has a substantial influence on the ice flow rate measurement. In this study, we created a new DEM (resolution 10m; hereinafter referred to as PRISM-DEM) based on ALOS/PRISM images, and compared PRISM-DEM and ASTER-GDEM. The study area is around Skallen, 90km south from Syowa Station, in the southern part of Sôya Coast, East Antarctica. For making DInSAR images, we used ALOS/PALSAR data of 13 pairs (Path633, Row 571-572), observed during the period from November 23, 2007 through January 16, 2011. PRISM-DEM covering the PALSAR scene was created from nadir and backward view images of ALOS/PRISM (Observation date: 2009/1/18) by applying stereo processing with a digital mapping equipment, and then the automatically created a primary DEM was corrected manually to make a final DEM. The number of irregular values of actual ice flow rate was reduced by applying PRISM-DEM compared with that by applying ASTER-GDEM. Additionally, an averaged displacement of approximately 0.5cm was obtained by applying PRISM-DEM over outcrop area, where no crustal displacement considered to occur during the recurrence period of ALOS/PALSAR (46days), while an averaged displacement of approximately 1.65 cm was observed by applying ASTER-GDEM. Since displacements over outcrop area are considered

  13. Comparison of Ice-shelf Creep Flow Simulations with Ice-front Motion of Filchner-Ronne Ice Shelf, Antarctica, Detected by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).

  14. Degradation of ground ice in a changing climate: the potential impact of groundwater flow

    NASA Astrophysics Data System (ADS)

    de Grandpré, I.; Fortier, D.; Stephani, E.

    2011-12-01

    Climate changes affecting the North West portion of Canada alter the thermal state of the permafrost and promote ground ice degradation. Melting of ground ice leads to greater water flow into the ground and to significant hydraulic changes (i.e. drainage of peatland and lakes, triggering of thermokarst and new groundwater flow patterns). Road infrastructures built on permafrost are particularly sensitive to permafrost degradation. Road construction and maintenance induce heat flux into the ground by the increase of solar radiation absorption (comparing to natural ground), the increase of snow cover on side slopes, the infiltration of water in embankment material and the migration of surface water in the active layer. The permafrost under the roads is therefore submitted to a warmer environment than in natural ground and his behavior reflects how the permafrost will act in the future with the global warming trend. The permafrost degradation dynamic under a road was studied at the Beaver Creek (Yukon) experimental site located on the Alaska Highway. Permafrost was characterized as near-zero Celcius and highly susceptible to differential thaw-settlement due to the ground ice spatial distribution. Ice-rich cryostructures typical of syngenetic permafrost (e.g. microlenticular) were abundant in the upper and lower cryostratigraphic units of fine-grained soils (Units 1, 2A, and 2C). The middle ice-poor silt layer (Unit 2B) characterized by porous cryostructure comprised the top of a buried ice-wedge network extending several meters in the underlying layers and susceptible to degradation by thermo-erosion. These particular features of the permafrost at the study site facilitated the formation of taliks (unfrozen zones) under the road which leaded to a greater water flow. We believe that water flow is promoting an acceleration of permafrost degradation by advective heat transfer. This process remains poorly studied and quantified in permafrost environment. Field data on

  15. A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Albright, A. E.

    1983-01-01

    An analytical method was developed for predicting minimum flow rates required to provide anti-ice protection with a porous leading edge fluid ice protection system. The predicted flow rates compare with an average error of less than 10 percent to six experimentally determined flow rates from tests in the NASA Icing Research Tunnel on a general aviation wing section.

  16. The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers

    NASA Astrophysics Data System (ADS)

    Khazendar, Ala; Borstad, Christopher P.; Scheuchl, Bernd; Rignot, Eric; Seroussi, Helene

    2015-06-01

    Following the 2002 disintegration of the northern and central parts of the Larsen B Ice Shelf, the tributary glaciers of the southern surviving part initially appeared relatively unchanged and hence assumed to be buttressed sufficiently by the remnant ice shelf. Here, we modify this perception with observations from IceBridge altimetry and InSAR-inferred ice flow speeds. Our analyses show that the surfaces of Leppard and Flask glaciers directly upstream from their grounding lines lowered by 15 to 20 m in the period 2002-2011. The thinning appears to be dynamic as the flow of both glaciers and the remnant ice shelf accelerated in the same period. Flask Glacier started accelerating even before the 2002 disintegration, increasing its flow speed by ∼55% between 1997 and 2012. Starbuck Glacier meanwhile did not change much. We hypothesize that the different evolutions of the three glaciers are related to their dissimilar bed topographies and degrees of grounding. We apply numerical modeling and data assimilation that show these changes to be accompanied by a reduction in the buttressing afforded by the remnant ice shelf, a weakening of the shear zones between its flow units and an increase in its fracture. The fast flowing northwestern part of the remnant ice shelf exhibits increasing fragmentation, while the stagnant southeastern part seems to be prone to the formation of large rifts, some of which we show have delimited successive calving events. A large rift only 12 km downstream from the grounding line is currently traversing the stagnant part of the ice shelf, defining the likely front of the next large calving event. We propose that the flow acceleration, ice front retreat and enhanced fracture of the remnant Larsen B Ice Shelf presage its approaching demise.

  17. Micromechanics of ice friction

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.

    2015-12-01

    Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.

  18. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage.

    PubMed

    Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter; Hanna, Edward; Palmer, Steven; Huybrechts, Philippe

    2011-01-27

    Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4 centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.

  19. The far reach of ice-shelf thinning in Antarctica

    NASA Astrophysics Data System (ADS)

    Reese, R.; Gudmundsson, G. H.; Levermann, A.; Winkelmann, R.

    2018-01-01

    Floating ice shelves, which fringe most of Antarctica's coastline, regulate ice flow into the Southern Ocean1-3. Their thinning4-7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this `tele-buttressing' enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner-Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10-12, stressing Antarctica's vulnerability to changes in its surrounding ocean.

  20. Bending the law: tidal bending and its effects on ice viscosity and flow

    NASA Astrophysics Data System (ADS)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  1. 77 FR 27529 - Self-Regulatory Organizations; ICE Clear Credit LLC; Order Granting Accelerated Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... Organizations; ICE Clear Credit LLC; Order Granting Accelerated Approval of Proposed Rule Change to Membership Qualifications May 4, 2012. I. Introduction On April 3, 2012, ICE Clear Credit LLC (``ICC'') filed with the... limitations provided for in ICC Rule 203(b)) require such Clearing Participant to prepay and maintain with ICE...

  2. Cross Flow Effects on Glaze Ice Roughness Formation

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2004-01-01

    The present study examines the impact of large-scale cross flow on the creation of ice roughness elements on the leading edge of a swept wing under glaze icing conditions. A three-dimensional triple-deck structure is developed to describe the local interaction of a 3 D air boundary layer with ice sheets and liquid films. A linear stability analysis is presented here. It is found that, as the sweep angle increases, the local icing instabilities enhance and the most linearly unstable modes are strictly three dimensional.

  3. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal

  4. Greenland Ice Sheet flow response to runoff variability

    NASA Astrophysics Data System (ADS)

    Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas

    2016-11-01

    We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.

  5. Airborne geophysical investigations of basal conditions at flow transitions of outlet glaciers on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Palmer, S. J.; Dowdeswell, J. A.; Christoffersen, P.; Siegert, M. J.; Blankenship, D. D.; Young, D. A.; Greenbaum, J.

    2011-12-01

    Recent observations have shown that the fast flowing marine-terminating outlet glaciers which drain the Greenland Ice Sheet (GrIS) have thinned in places at rates in excess of 10 m yr-1. The 21 largest outlet glaciers in Greenland accelerated by 57 % between 1996 and 2005, leading to a 100 Gt yr-1 increase in mass loss due to ice discharge over the same period and a 150 % increase of the GrIS's contribution to sea level. Observations that thinning rates are greater than those expected from changes in surface mass balance alone suggest thinning of some GrIS marine-terminating outlet glaciers can be attributed to changes in ice dynamics. An important question for both scientists and policy makers is how the GrIS will react to projected temperature increases, particularly in the context that the Arctic is likely to warm at a greater rate than the global average due to the ice-albedo feedback. As the combined width of all major marine-terminating glaciers draining the GrIS (as measured at the narrowest point in each case) is less 200 km, an understanding of their dynamics is crucial in predicting the effect of future warming on the ice sheet as a whole. During April 2011, we used a Basler BT-67 aircraft equipped with a suite of geophysical instruments to investigate three major glacier systems in Greenland. Data were acquired at the Sermeq Kujatdl and Rink Glacier systems in West Greenland; and Daugaard Jensen Glacier in East Greenland. The study areas were selected because they are major drainage basins (c. 103-105 km2) which provide a high ice flux to the sea (c. 10-20 km3 yr-1); and are located in different regions of the GrIS with correspondingly different atmospheric and oceanic settings. Here we present results from the High Capability Radar Sounder instrument, a phase coherent VHF ice-penetrating radar which operates in frequency-chirped mode from 52.5 to 67.5 MHz. We use these data to determine ice thickness along flightlines both parallel and perpendicular to

  6. Antarctic subglacial groundwater: measurement concept and potential influence on ice flow

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Siegert, Martin; Bougamont, Marion; Christoffersen, Poul; Key, Kerry; Andersen, Kristoffer; Booth, Adam; Smith, Andrew

    2017-04-01

    Is groundwater abundant in Antarctica and does it modulate ice flow? Answering this question matters because ice streams flow by gliding over a wet substrate of till. Water fed to ice-stream beds thus influences ice-sheet dynamics and, potentially, sea-level rise. It is recognised that both till and the sedimentary basins from which it originates are porous and could host a reservoir of mobile groundwater that interacts with the subglacial interfacial system. According to recent numerical modelling up to half of all water available for basal lubrication, and time lags between hydrological forcing and ice-sheet response as long as millennia, may have been overlooked in models of ice flow. Here, we review evidence in support of Antarctic groundwater and propose how it can be measured to ascertain the extent to which it modulates ice flow. We present new seismoelectric soundings of subglacial till, and new magnetotelluric and transient electromagnetic forward models of subglacial groundwater reservoirs. We demonstrate that multi-facetted and integrated geophysical datasets can detect, delineate and quantify the groundwater contents of subglacial sedimentary basins and, potentially, monitor groundwater exchange rates between subglacial till layers. We thus describe a new area of glaciological investigation and how it should progress in future.

  7. Geological control of flow in the Institute and Möller Ice Streams, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A.; Siegert, M. J.

    2012-12-01

    The conditions at the base of an ice sheet influence its flow, and reflect the ongoing interaction between moving ice and the underlying geology. Critical influences on ice flow include subglacial topography, bed lithology, and geothermal heat flux. These factors are influenced either directly by local geology, or by the regional tectonic setting. Geophysical methods have been used in many parts of Antarctica, such as the Siple Coast, to reveal the role subglacial geology plays in influencing ice flow. Until recently, however, the Institute and Möller Ice Streams, which drain ~20% of the West Antarctic Ice Sheet into the Weddell Sea, were only covered by sparse airborne radar (~50 km line spacing), and reconnaissance aeromagnetic data, limiting our understanding of the geological template for this sector of the West Antarctic Ice Sheet. Here we present our geological interpretation of the first integrated aerogeophysical survey over the catchments of the Institute and Möller Ice Streams, which collected ~25,000 km of new aerogeophysical data during the 2010/11 field season. These new airborne radar, magnetic and gravity data reveals both the subglacial topography, and the subglacial geology. Our maps show the fastest flowing coastal part of the Institute Ice Stream crosses a sedimentary basin underlain by thinned continental crust. Further inland two distinct ice flow provinces are recognised: the Pagano Ice Flow Province, which follows the newly identified, ~75 km wide, sinistral strike-slip Pagano Fault Zone at the boundary between East and West Antarctica; and the Ellsworth Ice Flow Province, which is controlled by the Permo-Triassic structural grain of folded Middle Cambrian-Permian meta-sediments, and Jurassic granitic rocks which form significant subglacial highlands. Our new data highlight the importance of understanding subglacial geology when explaining the complex pattern of ice flow observed in the ice sheet interior.

  8. Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows

    NASA Technical Reports Server (NTRS)

    Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy

    2015-01-01

    To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.

  9. Breaking Ice: Fracture Processes in Floating Ice on Earth and Elsewhere

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.

    2016-12-01

    Rapid, intense fracturing events in the ice shelves of the Antarctic Peninsula reveal a set of processes that were not fully appreciated prior to the series of ice shelf break-ups observed in the late 1990s and early 2000s. A series of studies have uncovered a fascinating array of relationships between climate, ocean, and ice: intense widespread hydrofracture; repetitive hydrofracture induced by ice plate bending; the ability for sub-surface flooded firn to support hydrofracture; potential triggering by long-period wave action; accelerated fracturing by trapped tsunamic waves; iceberg disintegration, and a remarkable ice rebound process from lake drainage that resembles runaway nuclear fission. The events and subsequent studies have shown that rapid regional warming in ice shelf areas leads to catastrophic changes in a previously stable ice mass. More typical fracturing of thick ice plates is a natural consequence of ice flow in a complex geographic setting, i.e., it is induced by shear and divergence of spreading plate flow around obstacles. While these are not a result of climate or ocean change, weather and ocean processes may impact the exact timing of final separation of an iceberg from a shelf. Taking these terrestrial perspectives to other ice-covered ocean worlds, cautiously, provides an observational framework for interpreting features on Europa and Enceladus.

  10. The role of ice dynamics in shaping vegetation in flowing waters.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  11. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  12. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  13. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  14. Turbulent heat exchange between water and ice at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, E.; Hirsh, B.; Olson, P.; Gnanadesikan, A.

    2016-02-01

    Experimental results are presented on the time evolution of ice subject to a turbulent shear flow in a layer of water of uniform depth. Our study is motivated by observations in the ocean cavity beneath Antarctic ice shelves, where shoaling of Circumpolar Deep Water into the cavity has been implicated in the accelerated melting of the ice shelf base. Measurements of inflow and outflow at the ice shelf front have shown that not all of the heat entering the cavity is delivered to the ice shelf, suggesting that turbulent transfer to the ice represents an important bottleneck. Given that a range of turbulent transfer coefficients has been used in models it is important to better constrain this parameter. We measure as a function of time in our experiments the thickness of the ice, temperatures in the ice and water, and fluid velocity in the shear flow, starting from an initial condition in which the water is at rest and the ice has grown by conduction above a cold plate. The strength of the applied turbulent shear flow is represented in terms of a Reynolds number Re, which is varied over the range 3.5 × 103 ≤ Re ≤ 1.9 × 104. Transient partial melting of the ice occurs at the lower end of this range of Re and complete transient melting of the ice occurs at the higher end of the range. Following these melting transients, the ice reforms at a rate that is independent of Re. We fit to our experimental measurements of ice thickness and temperature a one-dimensional model for the evolution of the ice thickness in which the turbulent heat transfer is parameterized in terms of the friction velocity of the shear flow. Comparison with the Pine Island Glacier Ice Shelf yields qualitative agreement between the transient ice melting rates predicted by our model and the shelf melting rate inferred from the field observations.

  15. Increased Water Storage at Ice-stream Onsets: A Critical Mechanism?

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; Choi, Hyeungu

    2007-01-01

    The interdependence of rapid ice flow, surface topography and the spatial distribution of subglacial water are examined by linking existing theories. The motivation is to investigate whether the acceleration of an ice-stream tributary contains a positive feedback that encourages the retention of subglacial water that leads to faster flow. Periodically varying surface and bed topographies are related through a linear ice-flow perturbation theory for various values of mean surface slope, perturbation amplitude and basal sliding speeds. The topographic variations lead to a periodic variation in hydraulic potential that is used to infer the tendency for subglacial water to be retained in local hydraulic potential minima. If water retention leads to enhanced basal sliding, a positive feedback loop is closed that could explain the transition from slower tributary flow to faster-streaming flow and the sustained downstream acceleration along the tributary-ice-stream system. A sensitivity study illustrates that the same range of topographic wavelengths most effectively transmitted from the bed to the surface also strongly influences the behavior of subglacial water. A lubrication index is defined to qualitatively measure the heterogeneity of the subglacial hydrologic system. Application of this index to field data shows that the transition from tributary to ice stream closely agrees with the location where subglacial water may be first stored.

  16. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  17. The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Poinar, Kristin

    As the climate has warmed over the past decades, the amount of melt on the Greenland Ice Sheet has increased, and areas higher on the ice sheet have begun to melt regularly. This increase in melt has been hypothesized to enhance ice flow in myriad ways, including through basal lubrication and englacial refreezing. By developing and interpreting thermal ice-sheet models and analyzing remote sensing data, I evaluate the effect of these processes on ice flow and sea-level rise from the Greenland Ice Sheet. I first develop a thermal ice sheet model that is applicable to western Greenland. Key components of this model are its treatment of multiple phases (solid ice and liquid water) and its viscosity-dependent velocity field. I apply the model to Jakobshavn Isbrae, a fast-flowing outlet glacier. This is an important benchmark for my model, which I next apply to the topics outlined above. I use the thermal model to calculate the effect of englacial latent-heat transfer (meltwater refreezing within englacial features such as firn and crevasses) on ice dynamics in western Greenland. I find that in slow-moving areas, this can significantly warm the ice, but that englacial latent heat transfer has only a minimal effect on ice motion (60%) of the ice flux into the ocean, evidence of deep englacial warming is virtually absent. Thus, the effects of englacial latent heat transfer on ice motion are likely limited to slow-moving regions, which limits its importance to ice-sheet mass balance. Next, I couple a model for ice fracture to a modified version of my thermal model to calculate the depth and shape evolution of water-filled crevasses that form in crevasse fields. At most elevations and for typical water input volumes, crevasses penetrate to the top ~200--300 meters depth, warm the ice there by ~10°C, and may persist englacially, in a liquid state, for multiple decades. The surface hydrological network limits the amount of water that can reach most crevasses. We find that

  18. Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a Downstream Cascade to the Ocean

    NASA Astrophysics Data System (ADS)

    Rudy, A. C. A.; Lamoureux, S. F.; Kokelj, S. V.; Smith, I. R.; England, J. H.

    2017-11-01

    Recent climate warming has activated the melt-out of relict massive ice in permafrost-preserved moraines throughout the western Canadian Arctic. This ice that has persisted since the last glaciation, buried beneath as little as 1 m of overburden, is now undergoing accelerated permafrost degradation and thermokarst. Here we document recent and intensifying thermokarst activity on eastern Banks Island that has increased the fluvial transport of sediments and solutes to the ocean. Isotopic evidence demonstrates that a major contribution to discharge is melt of relict ground ice, resulting in a significant hydrological input from thermokarst augmenting summer runoff. Accelerated thermokarst is transforming the landscape and the summer hydrological regime and altering the timing of terrestrial to marine and lacustrine transfers over significant areas of the western Canadian Arctic. The intensity of the landscape changes demonstrates that regions of cold, continuous permafrost are undergoing irreversible alteration, unprecedented since deglaciation ( 13 cal kyr B.P.).

  19. Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II

    USGS Publications Warehouse

    Bennett, K.; Wenk, H.-R.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1997-01-01

    The preferred crystallographic orientation developed during the ice I ← II transformation and during the plastic flow of ice II was measured in polycrystalline deuterium oxide (D2O) specimens using low-temperature neutron diffraction. Samples partially transformed from ice I to II under a non-hydrostatic stress developed a preferred crystallographic orientation in the ice II. Samples of pure ice II transformed from ice I under a hydrostatic stress and then when compressed axially, developed a strong preferred orientation of compression axes parallel to (1010). A match to the observed preferred orientation using the viscoplastic self-consistent theory was obtained only when (1010) [0001] was taken as the predominant slip system in ice II.

  20. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.

    PubMed

    Pritchard, Hamish D; Arthern, Robert J; Vaughan, David G; Edwards, Laura A

    2009-10-15

    Many glaciers along the margins of the Greenland and Antarctic ice sheets are accelerating and, for this reason, contribute increasingly to global sea-level rise. Globally, ice losses contribute approximately 1.8 mm yr(-1) (ref. 8), but this could increase if the retreat of ice shelves and tidewater glaciers further enhances the loss of grounded ice or initiates the large-scale collapse of vulnerable parts of the ice sheets. Ice loss as a result of accelerated flow, known as dynamic thinning, is so poorly understood that its potential contribution to sea level over the twenty-first century remains unpredictable. Thinning on the ice-sheet scale has been monitored by using repeat satellite altimetry observations to track small changes in surface elevation, but previous sensors could not resolve most fast-flowing coastal glaciers. Here we report the use of high-resolution ICESat (Ice, Cloud and land Elevation Satellite) laser altimetry to map change along the entire grounded margins of the Greenland and Antarctic ice sheets. To isolate the dynamic signal, we compare rates of elevation change from both fast-flowing and slow-flowing ice with those expected from surface mass-balance fluctuations. We find that dynamic thinning of glaciers now reaches all latitudes in Greenland, has intensified on key Antarctic grounding lines, has endured for decades after ice-shelf collapse, penetrates far into the interior of each ice sheet and is spreading as ice shelves thin by ocean-driven melt. In Greenland, glaciers flowing faster than 100 m yr(-1) thinned at an average rate of 0.84 m yr(-1), and in the Amundsen Sea embayment of Antarctica, thinning exceeded 9.0 m yr(-1) for some glaciers. Our results show that the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.

  1. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    PubMed Central

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-01-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274

  2. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet.

    PubMed

    Bons, Paul D; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C; Binder, Tobias; Eisen, Olaf; Jessell, Mark W; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-29

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  3. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  4. Non-basal dislocations should be accounted for in simulating ice mass flow

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  5. Ice Flows: A Game-based Learning approach to Science Communication

    NASA Astrophysics Data System (ADS)

    Le Brocq, Anne

    2017-04-01

    Game-based learning allows people to become immersed in an environment, and learn how the system functions and responds to change through playing a game. Science and gaming share a similar characteristic: they both involve learning and understanding the rules of the environment you are in, in order to achieve your objective. I will share experiences of developing and using the educational game "Ice Flows" for science communication. The game tasks the player with getting a penguin to its destination, through controlling the size of the ice sheet via ocean temperature and snowfall. Therefore, the game aims to educate the user about the environmental controls on the behaviour of the ice sheet, whilst they are enjoying playing a game with penguins. The game was funded by a NERC Large Grant entitled "Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica", so uses data from the Weddell Sea sector of the West Antarctic Ice Sheet to generate unique levels. The game will be easily expandable to other regions of Antarctica and beyond, with the ultimate aim of giving a full understanding to the user of different ice flow regimes across the planet.

  6. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto; Jordan, Tom A.; Corr, Hugh F. J.; Forsberg, René; Matsuoka, Kenichi; Olesen, Arne V.; Casal, Tania G.

    2018-05-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the "bottleneck" zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could however drive ice divide migration and increase mass discharge from interior West Antarctica to the Southern Ocean.

  7. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of

  8. Ice Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Clouds scoot across the Martian sky in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    This clip accelerates the motion. The camera took these 10 frames over a 10-minute period from 2:52 p.m. to 3:02 p.m. local solar time at the Phoenix site during Sol 94 (Aug. 29), the 94th Martian day since landing.

    Particles of water-ice make up these clouds, like ice-crystal cirrus clouds on Earth. Ice hazes have been common at the Phoenix site in recent days.

    The camera took these images as part of a campaign by the Phoenix team to see clouds and track winds. The view is toward slightly west of due south, so the clouds are moving westward or west-northwestward.

    The clouds are a dramatic visualization of the Martian water cycle. The water vapor comes off the north pole during the peak of summer. The northern-Mars summer has just passed its peak water-vapor abundance at the Phoenix site. The atmospheric water is available to form into clouds, fog and frost, such as the lander has been observing recently.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Ice-Cliff Failure via Retrogressive Slumping

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Christianson, K.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Holland, D.

    2016-12-01

    The magnitude and rate of future sea-level rise from warming-induced ice-sheet shrinkage remain notably uncertain. Removal of most of an ice sheet by surface melting alone requires centuries to millennia. Oceanic warming may accelerate loss by removing buttressing ice shelves and thereby speeding flow of non-floating ice into the ocean, but, until recently, modeled timescales for major dynamic ice-sheet shrinkage were centuries or longer. Beyond certain thresholds, however, observations show that warming removes floating ice shelves, leaving grounded ice cliffs from which icebergs break off directly. Cliffs higher than some limit experience rapid structural failure. Recent parameterization of this process in a comprehensive ice-flow model produced much faster sea-level rise from future rapid warming than in previous modeling studies, through formation and retreat of tall ice cliffs. Fully physical representations of this process are not yet available, however. Here, we use modeling guided by terrestrial radar data from Helheim Glacier, Greenland to show that cliffs will fail by slumping and trigger rapid retreat at a threshold height that, in crevassed ice with surface melting, may be only slightly above the 100-m maximum observed today, but may be roughly twice that (180-275 m) in mechanically-competent ice under well-drained or low-melt conditions.

  10. The Role of Basal Channels in Ice Shelf Calving.

    NASA Astrophysics Data System (ADS)

    Dow, C. F.; Lee, W. S.; Greenbaum, J. S.; Greene, C. A.; Blankenship, D. D.; Poinar, K.; Forrest, A.; Young, D. A.; Zappa, C. J.

    2017-12-01

    Increased rates of ice shelf break-up drives acceleration of grounded glacial ice into the ocean, resulting in sea-level rise. Ice shelves are vulnerable to thinning, which make them more susceptible to calving. Here, we examine basal channels under three ice shelves that locally thin the ice and drive formation of transverse ice shelf fractures. The basal channels also cause surface depressions due to hydrostatic buoyancy effects and can draw in surface water to form rivers. These rivers exacerbate thinning by surface melting and hydraulic loading, and can accelerate rifting when they flow into the transverse fractures. Our investigation focuses on Nansen Ice Shelf in the Ross Sea Embayment, East Antarctica. We use ice-sounding radar and single-beam laser altimeter data from two aerogeophysical campaigns conducted in 2011 and 2014, ice surface DEM reconstruction, and satellite imagery analysis, to examine the role of a substantial basal channel in the stability of this ice shelf. Nansen Ice Shelf calved two large icebergs totaling 214 km2 in area in April 2016. The transverse fracture that eventually rifted to form these icebergs initiated directly over the basal channel in 1987. In years when surface water formed on Nansen Ice Shelf, a river flowed into the transverse fracture. In November 2016, we identified a new fracture over the basal channel during in-situ data collection. We compare the Nansen Ice Shelf fractures with those at other vulnerable ice-shelf systems, including Petermann Glacier in Greenland and Totten Glacier in East Antarctica, to evaluate the role that basal channels may play in simultaneous basal and surface weakening and their consequent effect on ice-shelf rifting and stability.

  11. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  12. Cavitation erosion in blocked flow with a ducted ice-class propeller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, J.M.; Bose, N.; Walker, D.

    1996-12-31

    Ships that operate in ice often encounter momentary increased propeller cavitation because ice pieces block the flow into the propeller. For ducted propellers, this additional cavitation is more significant than it is for open propellers; ice pieces may become lodged against and within the duct and subject the propeller to longer periods of increased cavitation due to the blocked flow. Associated with this blocked flow is the possibility of cavitation erosion on the propeller. An erosion study, using paint films, was conducted in a cavitation tunnel with a model propeller of the type fitted to the Canadian Marine Drilling Ltd.more » vessel MV Robert LeMeur. A simulated ice blockage was installed ahead of the propeller model and within the duct. Tests were carried out over a range of advance coefficients for various test conditions. The resulting types of cavitation were documented, the erosion patterns were photographed and comparisons between each test were made.« less

  13. A model for spiral flows in basal ice and the formation of subglacial flutes based on a Reiner-Rivlin rheology for glacial ice

    NASA Astrophysics Data System (ADS)

    Schoof, Christian G.; Clarke, Garry K. C.

    2008-05-01

    Flutes are elongated sediment ridges formed at the base of glaciers and ice sheets. In this paper, we show that flutes can be the product of a corkscrew-like spiral flow in basal ice that removes sediment from troughs between flutes and deposits it at their crests, as first suggested by Shaw and Freschauf. In order to generate the type of basal ice flow required for this mechanism, the viscous rheology of ice must allow for the generation of deviatoric normal stresses transverse to the main flow direction. This type of behavior, which is commonly observed in real nonlinearly viscous and viscoelastic fluids, can be described by a Reiner-Rivlin rheology. Here, we develop a mathematical model that describes the role of these transverse stresses in generating spiral flows in basal ice and investigate how these flows lead to the amplification of initially small basal topography and the eventual formation of assemblies of evenly spaced subglacial flutes.

  14. Accelerating ice loss from the fastest Greenland and Antarctic glaciers

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.

    2011-05-01

    Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets - Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG)- continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km a-1 by 2015, with velocities on PIG increasing to >10 km a-1 after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea-level rise would average about 1.5 mm a-1.

  15. Accelerating Ice Loss from the Fastest Greenland and Antarctic Glaciers

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.

    2011-01-01

    Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets . Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG). continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km/a by 2015, with velocities on PIG increasing to >10 km/a after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea ]level rise would average about 1.5 mm/a.

  16. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.

  17. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed (Technical Monitor); Scambos, Ted

    2004-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approximately 0 deg C and persistent melt ponding is observed, a rapid retreat and disintegration begins. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', B', and Wilkins Ice shelves) in the results of a previous grant under ADRO-1. Modeling of shelf ice flow and the effects of meltwater indicated that melt ponding accelerates shelf breakup by increasing fracturing. The ADRO-2 funding (topic of this report) supported further inquiry into the evolution of ice shelves under warming conditions, and the post-breakup effects on their feeder glaciers. Also, this grant considered fast ice and sea ice characteristics, to the extent that they provide information regarding shelf stability. A major component of this work was in the form of NSIDC image data support and in situ sea ice research on the Aurora Australis 'ARISE' cruise of September 9 2003 through October 28 2003.

  18. Volcano–ice interactions precursory to the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Bleick, Heather A.; Coombs, Michelle L.; Cervelli, Peter F.; Bull, Katharine F.; Wessels, Rick

    2013-01-01

    In late summer of 2008, after nearly 20 years of quiescence, Redoubt Volcano began to show signs of abnormal heat flow in its summit crater. In the months that followed, the excess heat triggered melting and ablation of Redoubt's glaciers, beginning at the summit and propagating to lower elevations as the unrest accelerated. A variety of morphological changes were observed, including the creation of ice cauldrons, areas of wide-spread subsidence, punctures in the ice carved out by steam, and deposition from debris flows. In this paper, we use visual observations, satellite data, and a high resolution digital elevation model of the volcanic edifice to calculate ice loss at Redoubt as a function of time. Our aim is to establish from this time series a proxy for heat flow that can be compared to other data sets collected along the same time interval. Our study area consists of the Drift glacier, which flows from the summit crater down the volcano's north slope, and makes up about one quarter of Redoubt's total ice volume of ~ 4 km3. The upper part of the Drift glacier covers the area of recent volcanism, making this part of ice mass most susceptible to the effect of volcanic heating. Moreover, melt water and other flows are channeled down the Drift glacier drainage by topography, leaving the remainder of Redoubt's ice mantle relatively unaffected. The rate of ice loss averaged around 0.1 m3/s over the last four months of 2008, accelerated to over twenty times this value by February 2009, and peaked at greater than 22 m3/s, just prior to the first major explosion on March 22, 2009. We estimate a cumulative ice loss over this period of about 35 million cubic meters (M m3).

  19. NASA Research Leads to First Complete Map of Antarctic Ice Flows

    NASA Image and Video Library

    2011-08-18

    This image is the first complete map of the speed and direction of ice flow in Antartica. The thick black lines delineate major ice divides. Subglacial lakes in Antarctica interior are also outlined in black.

  20. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  1. Numerical Simulation of Internal Heat Transfer Phenomena Occurring During De-Icing of Aircraft Components

    NASA Technical Reports Server (NTRS)

    DeWitt, Keneth J.

    1996-01-01

    An experimental study to determine the convective heat transfer coefficient from castings made from ice-roughened plates is reported. A corresponding topic, 'Measurements of the Convective Heat Transfer Coefficient from Ice Roughened Surfaces in Parallel and Accelerated Flows,' is presented.

  2. Application of composite flow laws to grain size distributions derived from polar ice cores

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp

    2014-05-01

    Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a

  3. Fives decades of strong temporal variability in the flow of the Brunt Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Gudmundsson, Hilmar; Nagler, Thomas

    2017-04-01

    The Brunt Ice Shelf, East Antarctica, is a complex conglomerate of meteoric and marine ice, weakly connected to the much larger and faster-flowing Stancomb Wills Glacier Tongue to the east, and pinned down to the seabed in a small area around the McDonalds Ice Rumples in the north. The ice shelf is home to the UK research station Halley, from which changes to the ice shelf have been monitored closely since the 1960s. A unique 50-year record of the flow speed and an intense surveying programme over the past 10 years, have revealed a strong temporal variability in the flow. In particular, the speed of the ice shelf has increased by 10% each year over the past few years. In order to understand these rapid changes, we use a state-of-the-art flow model in combination with a range of satellite, ground-based and airborne radar data, to accurately simulate the historical flow and recent changes. In particular, we model the effects of a recently formed rift that is propagating at a speed of up to 600m/day and threatens to dislodge the ice shelf from its pinning point at the McDonalds Ice Rumples. We also report on the recent reactivation of a large chasm which has prompted the relocation of the station during the 2016/17 austral summer.

  4. Ice flow in the Weddell Sea sector of West Antarctica as elucidated by radar-imaged internal layering

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.

    2012-12-01

    Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial

  5. Numerical simulations of icing in turbomachinery

    NASA Astrophysics Data System (ADS)

    Das, Kaushik

    Safety concerns over aircraft icing and the high experimental cost of testing have spurred global interest in numerical simulations of the ice accretion process. Extensive experimental and computational studies have been carried out to understand the icing on external surfaces. No parallel initiatives were reported for icing on engine components. However, the supercooled water droplets in moist atmosphere that are ingested into the engine can impinge on the component surfaces and freeze to form ice deposits. Ice accretion could block the engine passage causing reduced airflow. It raises safety and performance concerns such as mechanical damage from ice shedding as well as slow acceleration leading to compressor stall. The current research aims at developing a computational methodology for prediction of icing phenomena on turbofan compression system. Numerical simulation of ice accretion in aircraft engines is highly challenging because of the complex 3-D unsteady turbomachinery flow and the effects of rotation on droplet trajectories. The aim of the present research focuses on (i) Developing a computational methodology for ice accretion in rotating turbomachinery components; (ii) Investigate the effect of inter-phase heat exchange; (iii) Characterize droplet impingement pattern and ice accretion at different operating conditions. The simulations of droplet trajectories are based on a Eulerian-Lagrangian approach for the continuous and discrete phases. The governing equations are solved in the rotating blade frame of reference. The flow field is computed by solving the 3-D solution of the compressible Reynolds Averaged Navier Stokes (RANS) equations. One-way interaction models simulate the effects of aerodynamic forces and the energy exchange between the flow and the droplets. The methodology is implemented in the cool, TURBODROP and applied to the flow field and droplet trajectories in NASA Roto-67r and NASA-GE E3 booster rotor. The results highlight the variation

  6. Discharge of New Subglacial Lake on Whillians Ice Stream: Implication for Ice Stream Flow Dynamics.

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.

    2006-12-01

    One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians Ice Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the ice stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major ice stream raises questions about their effects on ice-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the ice stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the ice surface flat, thereby locally decreasing the ice stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and ice stream using a two dimensional, vertically integrated, ice-stream model. The model is forced by the basal friction, ice thickness and surface elevation. The basal friction is obtained by inversion of the ice surface velocity, ice thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the ice stream at the site of the lake. Sensitivity studies of the response of the surrounding ice stream and ice shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for ice streams in general.

  7. Basal Settings Control Fast Ice Flow in the Recovery/Slessor/Bailey Region, East Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, Anja; Matsuoka, Kenichi; Ferraccioli, Fausto; Jordan, Tom A.; Corr, Hugh F.; Kohler, Jack; Olesen, Arne V.; Forsberg, René

    2018-03-01

    The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve knowledge about the bed topography and investigate controls of fast ice flow. Recovery Glacier is underlain by an 800 km long trough. Its fast flow is controlled by subglacial water in its upstream and topography in its downstream region. Fast flow of Slessor Glacier is controlled by the presence of subglacial water on a rough crystalline bed. Past ice flow of adjacent Recovery and Slessor Glaciers was likely connected via the newly discovered Recovery-Slessor Gate. Changes in direction and speed of past fast flow likely occurred for upstream parts of Recovery Glacier and between Slessor Glacier and Bailey Ice Stream. Similar changes could also reoccur here in the future.

  8. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  9. Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula.

    PubMed

    Vieli, Andreas; Payne, Antony J; Du, Zhijun; Shepherd, Andrew

    2006-07-15

    In this study, the flow and rheology of pre-collapse Larsen B ice shelf are investigated by using a combination of flow modelling and data assimilation. Observed shelf velocities from satellite interferometry are used to constrain an ice shelf model by using a data assimilation technique based on the control method. In particular, the ice rheology field and the velocities at the inland shelf boundary are simultaneously optimized to get a modelled flow and stress field that is consistent with the observed flow. The application to the Larsen B ice shelf shows that a strong weakening of the ice in the shear zones, mostly along the margins, is necessary to fit the observed shelf flow. This pattern of bands with weak ice is a very robust feature of the inversion, whereas the ice rheology within the main shelf body is found to be not well constrained. This suggests that these weak zones play a major role in the control of the flow of the Larsen B ice shelf and may be the key to understanding the observed pre-collapse thinning and acceleration of Larsen B. Regarding the sensitivity of the stress field to rheology, the consistency of the model with the observed flow seems crucial for any further analysis such as the application of fracture mechanics or perturbation model experiments.

  10. Onset of turbulence in accelerated high-Reynolds-number flow

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.

    2003-05-01

    A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types

  11. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.

  12. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during

  13. Physical modeling of the influence of bedrock topography and ablation on ice flow and meteorite concentration in Antarctica

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio; Belmaggio, Pietro; Folco, Luigi

    2008-03-01

    Three-dimensional laboratory physical experiments have been used to investigate the influence of bedrock topography and ablation on ice flow. Different models were tested in a Plexiglas box, where a transparent silicone simulating ice in nature was allowed to flow. Experimental results show how the flow field (in terms of both flow lines and velocity) and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles. In particular, the buttressing effect forces the ice to slow down, rise up, and avoid the obstacle; the higher the bedrock barrier, the more pronounced the process. Only limited uplift of internal layers is observed in these experiments. In order to exhume deep material embedded in the ice, ablation (simulated by physically removing portions of silicone from the model surface to maintain a constant topographic depression) must be included in the physical models. In this case, the analogue ice replenishes the area of material removal, thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern. This process is analogous to the ice flow model proposed in the literature for the origin of meteorite concentrations in blue ice areas of the Antarctic plateau.

  14. Why is there evidence for flowing ice at mid-latitudes on Mars but not at the poles?

    NASA Astrophysics Data System (ADS)

    Smith, I. B.

    2017-12-01

    Ice has been detected on Mars in many places, from the polar caps, to mid-latitudes. In many locations there exists evidence for glacial flow. This raises the possibility of flow for the polar layered deposits (PLD). Since the >2000 m thick ice deposits were first observed, speculation about their flow status have persisted. Several stratigraphic predictions regarding flow have been made (Figure 1), but these predictions are not supported with observational data (Smith and Holt 2015) The disagreement between model and observations has led to a general consensus that the polar ice flows more slowly than other processes acting on the PLD, but the reasoning is not understood. Here I posit that the polar layered deposits do not act as a single, generic ice sheet. Instead, they act as a stack of thin ice sheets, where each layer is separated by a boundary of dust, and all layers flow individually. The layers act as barriers to vertical flow, so the viscosity of the cold ice can only be expressed through lateral expansion. I plan to present a simple experiment demonstrating the multi-layer, stacked flow hypothesis. I will demonstrate that the layers themselves flow but do not deform the entire ice sheet, as previously predicted. This allows for the PLD to retain their steep slopes and prevents many of the predicted flow features to form. The major component of this hypothesis is that the dust layers hinder flow. Thus, constraining the friction coefficient, viscosity, tensile strength and compressibility of the dust layers becomes an important next step for testing the stacked, multi-layer flow scenario. Acknowledgements: Thanks to Eric Larour and David Goldsby for helpful comments.

  15. Constraints on Lobate Debris Apron Evolution and Rheology from Numerical Modeling of Ice Flow

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Nimmo, F.

    2010-12-01

    Recent radar observations of mid-latitude lobate debris aprons (LDAs) have confirmed the presence of ice within these deposits. Radar observations in Deuteronilus Mensae have constrained the concentration of dust found within the ice deposits to <30% by volume based on the strength of the returned signal. In addition to constraining the dust fraction, these radar observations can measure the ice thickness - providing an opportunity to more accurately estimate the flow behavior of ice responsible for the formation of LDAs. In order to further constrain the age and rheology of LDA ice, we developed a numerical model simulating ice flow under Martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. This finite difference model calculates the LDA profile shape as it flows over time assuming no basal slip. In our model, the ice rheology is determined by the concentration of dust which influences the ice grain size by pinning the ice grain boundaries and halting ice grain growth. By varying the dust fraction (and therefore the ice grain size), the ice temperature, the subsurface slope, and the initial ice volume we are able to determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to crater age dates of LDA surfaces (90 - 300 My, see figure). Based on simulations using different combinations of ice temperature, ice grain size, and basal slope, we find that an ice temperature of 205 K, a dust volume fraction of 0.5% (resulting in an ice grain size of 5 mm), and a flat subsurface slope give reasonable model LDA ages for many LDAs in the northern mid-latitudes of Mars. However, we find that there is no single combination of dust fraction, temperature, and subsurface slope which can give realistic ages for all LDAs suggesting that all or some of these

  16. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  17. The Moulin Explorer: A Novel Instrument to Study Greenland Ice Sheet Melt-Water Flow.

    NASA Astrophysics Data System (ADS)

    Behar, A.; Wang, H.; Elliott, A.; O'Hern, S.; Martin, S.; Lutz, C.; Steffen, K.; McGrath, D.; Phillips, T.

    2008-12-01

    Recent data shows that the Greenland ice sheet has been melting at an accelerated rate over the past decade. This melt water flows from the surface of the glacier to the bedrock below by draining into tubular crevasses known as moulins. Some believe these pathways eventually converge to nearby lakes and possibly the ocean. The Moulin Explorer Probe has been developed to traverse autonomously through these moulins. It uses in-situ pressure, temperature, and three-axis accelerometer sensors to log data. At the end of its journey, the probe will surface and send GPS coordinates using an Iridium satellite tracker so it may be retrieved via helicopter or boat. The information gathered when retrieved can be used to map the pathways and water flow rate through the moulins. This work was performed at the Jet Propulsion Laboratory- California Institute of Technology, under contract to NASA. Support was provided by the NASA Earth Science, Cryosphere program

  18. Irish Ice Sheet dynamics during deglaciation of the central Irish Midlands: Evidence of ice streaming and surging from airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Delaney, Catherine A.; McCarron, Stephen; Davis, Stephen

    2018-04-01

    High resolution digital terrain models (DTMs) generated from airborne LiDAR data and supplemented by field evidence are used to map glacial landform assemblages dating from the last glaciation (Midlandian glaciation; OI stages 2-3) in the central Irish Midlands. The DTMs reveal previously unrecognised low-amplitude landforms, including crevasse-squeeze ridges and mega-scale glacial lineations overprinted by conduit fills leading to ice-marginal subaqueous deposits. We interpret this landform assemblage as evidence for surging behaviour during ice recession. The data indicate that two separate phases of accelerated ice flow were followed by ice sheet stagnation during overall deglaciation. The second surge event was followed by a subglacial outburst flood, forming an intricate esker and crevasse-fill network. The data provide the first clear evidence that ice flow direction was eastward along the eastern watershed of the Shannon River basin, at odds with previous models, and raise the possibility that an ice stream existed in this area. Our work demonstrates the potential for airborne LiDAR surveys to produce detailed paleoglaciological reconstructions and to enhance our understanding of complex palaeo-ice sheet dynamics.

  19. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  20. Breaking Off of Large Ice Masses From Hanging Glaciers

    NASA Astrophysics Data System (ADS)

    Pralong, A.; Funk, M.

    In order to reduce damage to settlements or other installations (roads, railway, etc) and avoid loss of life, a forecast of the final failure time of ice masses is required. At present, the most promising approach for such a prediction is based on the regularity by which certain large ice masses accelerate prior to the instant of collapse. The lim- itation of this forecast lies in short-term irregularities and in the difficulties to obtain sufficiently accurate data. A better physical understanding of the breaking off process is required, in order to improve the forecasting method. Previous analyze has shown that a stepwise crack extension coupling with a viscous flow leads to the observed acceleration function. We propose another approach by considering a local damage evolution law (gener- alized Kachanow's law) coupled with Glen's flow law to simulate the spatial evolu- tion of damage in polycristalline ice, using a finite element computational model. The present study focuses on the transition from a diffuse to a localised damage reparti- tion occurring during the damage evolution. The influence of inhomogeneous initial conditions (inhomogeneity of the mechanical properties of ice, damage inhomogene- ity) and inhomogeneous boundary conditions on the damage repartition are especially investigated.

  1. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    NASA Astrophysics Data System (ADS)

    Tatar, V.; Yildizay, H.; Aras, H.

    2015-05-01

    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  2. Off-Ice Anaerobic Power Does Not Predict On-Ice Repeated Shift Performance in Hockey.

    PubMed

    Peterson, Ben J; Fitzgerald, John S; Dietz, Calvin C; Ziegler, Kevin S; Baker, Sarah E; Snyder, Eric M

    2016-09-01

    Peterson, BJ, Fitzgerald, JS, Dietz, CC, Ziegler, KS, Baker, SE, and Snyder, EM. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J Strength Cond Res 30(9): 2375-2381, 2016-Anaerobic power is a significant predictor of acceleration and top speed in team sport athletes. Historically, these findings have been applied to ice hockey although recent research has brought their validity for this sport into question. As ice hockey emphasizes the ability to repeatedly produce power, single bout anaerobic power tests should be examined to determine their ability to predict on-ice performance. We tested whether conventional off-ice anaerobic power tests could predict on-ice acceleration, top speed, and repeated shift performance. Forty-five hockey players, aged 18-24 years, completed anthropometric, off-ice, and on-ice tests. Anthropometric and off-ice testing included height, weight, body composition, vertical jump, and Wingate tests. On-ice testing consisted of acceleration, top speed, and repeated shift fatigue tests. Vertical jump (VJ) (r = -0.42; r = -0.58), Wingate relative peak power (WRPP) (r = -0.32; r = -0.43), and relative mean power (WRMP) (r = -0.34; r = -0.48) were significantly correlated (p ≤ 0.05) to on-ice acceleration and top speed, respectively. Conversely, none of the off-ice tests correlated with on-ice repeated shift performance, as measured by first gate, second gate, or total course fatigue; VJ (r = 0.06; r = 0.13; r = 0.09), WRPP (r = 0.06; r = 0.14; r = 0.10), or WRMP (r = -0.10; r = -0.01; r = -0.01). Although conventional off-ice anaerobic power tests predict single bout on-ice acceleration and top speed, they neither predict the repeated shift ability of the player, nor are good markers for performance in ice hockey.

  3. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM

    NASA Astrophysics Data System (ADS)

    Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.

    2013-06-01

    The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.

  4. Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model

    NASA Astrophysics Data System (ADS)

    Weitz, N.; Zanetti, M.; Osinski, G. R.; Fastook, J. L.

    2018-07-01

    Impact craters in the mid-latitudes of Mars are commonly filled to variable degrees with some combination of ice, dust, and rocky debris. Concentric surface features visible in these craters have been linked to debris transportation and glacial and periglacial processes. Concentric crater fill (CCF) observed today are interpreted to be the remains of repeated periods of accumulation and sublimation during the last tens to hundreds of million years. Previous work suggests that during phases of high obliquity, ice accumulates in crater interiors and begins to flow down steep crater slopes, slowly filling the crater. During times of low obliquity ice is protected from sublimation through a surface debris layer consisting of dust and rocky material. Here, we use an ice flow line model to understand the development of concentric crater fill. In a regional study of Utopia Planitia craters, we address questions about the influence of crater size on the CCF formation process, the time scales needed to fill an impact crater with ice, and explore commonly described flow features of CCF. We show that observed surface debris deposits as well as asymmetric flow features can be reproduced with the model. Using surface mass balance data from global climate models and a credible obliquity scenario, we find that craters less than 80 km in diameter can be entirely filled in less than 8 My, beginning as recently as 40 Ma ago. Uncertainties in input variables related to ice viscosity do not change the overall behavior of ice flow and the filling process. We model CCF for the Utopia Planitia region and find subtle trends for crater size versus fill level, crater size versus sublimation reduction by the surface debris layer, and crater floor elevation versus fill level.

  5. Flow and fracture of ices, with application to icy satellites (Invited)

    NASA Astrophysics Data System (ADS)

    Durham, W. B.; Stern, L. A.; Pathare, A.; Golding, N.

    2013-12-01

    Exploration of the outer planets and their satellites by spacecraft over the past 4 decades has revealed that the prevailing low temperatures in the outer solar system have not produced "dead" cryoworlds of generic appearance. Rather, there is an extraordinary diversity in average densities, presence/absence and compositions of atmospheres and planetary rings, average albedos and their seasonal changes, near-surface compositions, and surface records of impact cratering and endogenic tectonic and igneous processes. One reason for this diversity is that the icy minerals present in abundance on many of these worlds are now or once were at significant fractions of their melting temperatures. Hence, a host of thermally activated processes related to endogenic activity (such as crystal defect migration, mass diffusion, surface transport, solid-solid changes of state, and partial melting) may occur that can enable inelastic flow on the surfaces and in the interiors of these bodies. Planetary manifestations include viscous crater relaxation in ice-rich terrain, cryovolcanism, the presence of a stable subsurface ocean, and the effects of solid-ice convection in deep interiors. We make the connection between theoretical mechanisms of deformation and planetary geology through laboratory experiment. Specifically, we develop quantitative constitutive flow laws (strain rate vs. stress) that describe the effects of relevant environmental variables (hydrostatic pressure, temperature, phase composition, chemical impurities). Our findings speak to topics including (1) the behavior of an outer ice I layer, its thickness, the depth to which a stagnant lid might extend, and possibility of wholesale overturn; (2) softening effects of dissolved species such as ammonia and perchlorate; (3) hardening effects of enclathration and of rock dust; and (4) effects of grain size on strength and factors affecting grain size. Other applications of lab data include dynamics of the deep interiors of

  6. Patterns of variability in steady- and non steady-state Ross Ice Shelf flow

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Hulbe, C. L.; Scambos, T. A.; Klinger, M. J.; Lee, C. K.

    2016-12-01

    Ice shelves are gateways through which climate change can be transmitted from the ocean or atmosphere to a grounded ice sheet. It is thus important to separate patterns of ice shelf change driven internally (from the ice sheet) and patterns driven externally (by the ocean or atmosphere) so that modern observations can be viewed in an appropriate context. Here, we focus on the Ross Ice Shelf (RIS), a major component of the West Antarctic Ice Sheet system and a feature known to experience variable ice flux from tributary ice streams and glaciers, for example, ice stream stagnation and glacier surges. We perturb a model of the Ross Ice Shelf with periodic influx variations, ice rise and ice plain grounding events, and iceberg calving in order to generate transients in the ice shelf flow and thickness. Characteristic patterns associated with those perturbations are identified using empirical orthogonal functions (EOFs). The leading EOFs reveal shelf-wide pattern of response to local perturbations that can be interpreted in terms of coupled mass and momentum balance. For example, speed changes on Byrd Glacier cause both thinning and thickening in a broad region that extends to Roosevelt Island. We calculate decay times at various locations for various perturbations and find that mutli-decadal to century time scales are typical. Unique identification of responses to particular forcings may thus be difficlult to achieve and flow divergence cannot be assumed to be constant when interpreting observed changes in ice thickness. In reality, perturbations to the ice shelf do not occur individually, rather the ice shelf contains a history of boundary perturbations. To explore the degree individual perturbations are seperable from their ensemble, EOFs from individual events are combined in pairs and compared against experiments with the same periodic perturbations pairs. Residuals between these EOFs reveal the degree interaction between between disctinct perturbations.

  7. K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow.

    PubMed

    Stankovic, Zoran; Fink, Jury; Collins, Jeremy D; Semaan, Edouard; Russe, Maximilian F; Carr, James C; Markl, Michael; Langer, Mathias; Jung, Bernd

    2015-04-01

    We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.

  8. Flow-accelerated corrosion 2016 international conference

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-05-01

    The paper discusses materials and results of the most representative world forum on the problems of flow-accelerated metal corrosion in power engineering—Flow-Accelerated Corrosion (FAC) 2016, the international conference, which was held in Lille (France) from May 23 through May 27, 2016, sponsored by EdF-DTG with the support of the International Atomic Energy Agency (IAEA) and the World Association of Nuclear Operators (WANO). The information on major themes of reports and materials of the exhibition arranged within the framework of the congress is presented. The statistics on operation time and intensity of FAC wall thinning of NPP pipelines and equipment in the world is set out. The paper describes typical examples of flow-accelerated corrosion damage of condensate-feed and wet-steam pipeline components of nuclear and thermal power plants that caused forced shutdowns or accidents. The importance of research projects on the problem of flow-accelerated metal corrosion of nuclear power units coordinated by the IAEA with the participation of leading experts in this field from around the world is considered. The reports presented at the conference considered issues of implementation of an FAC mechanism in single- and two-phase flows, the impact of hydrodynamic and water-chemical factors, the chemical composition of the metal, and other parameters on the intensity and location of FAC wall thinning localized areas in pipeline components and power equipment. Features and patterns of local and general FAC leading to local metal thinning and contamination of the working environment with ferriferous compounds are considered. Main trends of modern practices preventing FAC wear of NPP pipelines and equipment are defined. An increasing role of computer codes for the assessment and prediction of FAC rate, as well as software systems of support of the NPP personnel for the inspection planning and prevention of FAC wall thinning of equipment operating in singleand two

  9. The effect of rock particles and D2O replacement on the flow behaviour of ice.

    PubMed

    Middleton, Ceri A; Grindrod, Peter M; Sammonds, Peter R

    2017-02-13

    Ice-rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice-rock and D 2 O-ice-rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0-50 vol.% and strain-rates of 5 × 10 -7 to 5 × 10 -5  s -1 Both the presence of rock particles and replacement of H 2 O by D 2 O increase bulk strength. Calculated flow law parameters for ice and H 2 O-ice-rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D 2 O samples are 1.8 times stronger than H 2 O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice-rock samples is suggested. These results demonstrate that flow laws can be found to describe ice-rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  10. Did accelerated North American ice sheet melt contribute to the 8.2 ka cooling event ?

    NASA Astrophysics Data System (ADS)

    Matero, Ilkka S. O.; Gregoire, Lauren J.; Ivanović, Ruža F.; Tindall, Julia C.; Haywood, Alan M.

    2016-04-01

    The 8.2 ka event was an abrupt cooling of the Northern Hemisphere 8,200 years ago. It is an almost ideal case study to benchmark the sensitivity of climate models to freshening of the North Atlantic by ice sheet melt (Schmidt and LeGrande, 2005). The event is attributed to the outburst of North American proglacial lakes into the Labrador Sea, causing a slow-down in Atlantic overturning circulation and cooling of 1-2.5 °C around the N. Atlantic (Alley and Ágústsdóttir,2005). Climate models fail to simulate the ~150 year duration of the event when forced with a sudden (0.5 to 5 years) drainage of the lakes (Morrill et al., 2013a). This could be because of missing forcings. For example, the separation of ice sheet domes around the Hudson Bay is thought to have produced a pronounced acceleration in ice sheet melt through a saddle collapse mechanism around the time of the event (Gregoire et al., 2012). Here we investigate whether this century scale acceleration of melt contributed to the observed climatic perturbation, using the coupled Ocean-Atmosphere climate model HadCM3. We designed and ran a set of simulations with temporally variable ice melt scenarios based on a model of the North American ice sheet. The simulated magnitude and duration of the cold period is controlled by the duration and amount of freshwater introduced to the ocean. With a 100-200 year-long acceleration of ice melt up to a maximum of 0.61 Sv, we simulate 1-3 °C cooling in the North Atlantic and ~0.5-1 °C cooling in Continental Europe; which are similar in magnitude to the ~1-2 °C cooling estimated from records for these areas (Morrill et al., 2013b). Some of the observed features are however not reproduced in our experiments, such as the most pronounced cooling of ~6 °C observed in central Greenland (Alley and Ágústsdóttir, 2005). The results suggest that the ~150 year North Atlantic and European cooling could be caused by ~200 years of accelerated North American ice sheet melt. This

  11. Convergence acceleration of viscous flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1982-01-01

    A multiple-grid convergence acceleration technique introduced for application to the solution of the Euler equations by means of Lax-Wendroff algorithms is extended to treat compressible viscous flow. Computational results are presented for the solution of the thin-layer version of the Navier-Stokes equations using the explicit MacCormack algorithm, accelerated by a convective coarse-grid scheme. Extensions and generalizations are mentioned.

  12. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.

    2007-09-01

    While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound

  13. A Numerical Evaluation of Icing Effects on a Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Chung, James J.; Addy, Harold E., Jr.

    2000-01-01

    As a part of CFD code validation efforts within the Icing Branch of NASA Glenn Research Center, computations were performed for natural laminar flow (NLF) airfoil, NLF-0414. with 6 and 22.5 minute ice accretions. Both 3-D ice castings and 2-D machine-generated ice shapes were used in wind tunnel tests to study the effects of natural ice is well as simulated ice. They were mounted in the test section of the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley that the 2-dimensionality of the flow can be maintained. Aerodynamic properties predicted by computations were compared to data obtained through the experiment by the authors at the LTPT. Computations were performed only in 2-D and in the case of 3-D ice, the digitized ice shape obtained at one spanwise location was used. The comparisons were mainly concentrated on the lift characteristics over Reynolds numbers ranging from 3 to 10 million and Mach numbers ranging from 0.12 to 0.29. WIND code computations indicated that the predicted stall angles were in agreement with experiment within one or two degrees. The maximum lift values obtained by computations were in good agreement with those of the experiment for the 6 minute ice shapes and the minute 3-D ice, but were somewhat lower in the case of the 22.5 minute 2-D ice. In general, the Reynolds number variation did not cause much change in the lift values while the variation of Mach number showed more change in the lift. The Spalart-Allmaras (S-A) turbulence model was the best performing model for the airfoil with the 22.5 minute ice and the Shear Stress Turbulence (SST) turbulence model was the best for the airfoil with the 6 minute ice and also for the clean airfoil. The pressure distribution on the surface of the iced airfoil showed good agreement for the 6 minute ice. However, relatively poor agreement of the pressure distribution on the upper surface aft of the leading edge horn for the 22.5 minute ice suggests that improvements are needed in the grid or

  14. Numerical simulation of flow and melting characteristics of seawater-ice crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship

    NASA Astrophysics Data System (ADS)

    Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie

    2018-05-01

    The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.

  15. Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lipshitz, A.; Greber, I.

    1984-01-01

    Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.

  16. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Kenji; Ikoma, Masahiro, E-mail: kurosaki.k@nagoya-u.jp, E-mail: ikoma@eps.s.u-tokyo.ac.jp

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elementsmore » include condensable species such as H{sub 2}O, NH{sub 3}, and CH{sub 4}, which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.« less

  17. Increased ice flow in Western Palmer Land linked to ocean melting

    NASA Astrophysics Data System (ADS)

    Hogg, Anna E.; Shepherd, Andrew; Cornford, Stephen L.; Briggs, Kate H.; Gourmelen, Noel; Graham, Jennifer A.; Joughin, Ian; Mouginot, Jeremie; Nagler, Thomas; Payne, Antony J.; Rignot, Eric; Wuite, Jan

    2017-05-01

    A decrease in the mass and volume of Western Palmer Land has raised the prospect that ice speed has increased in this marine-based sector of Antarctica. To assess this possibility, we measure ice velocity over 25 years using satellite imagery and an optimized modeling approach. More than 30 unnamed outlet glaciers drain the 800 km coastline of Western Palmer Land at speeds ranging from 0.5 to 2.5 m/d, interspersed with near-stagnant ice. Between 1992 and 2015, most of the outlet glaciers sped up by 0.2 to 0.3 m/d, leading to a 13% increase in ice flow and a 15 km3/yr increase in ice discharge across the sector as a whole. Speedup is greatest where glaciers are grounded more than 300 m below sea level, consistent with a loss of buttressing caused by ice shelf thinning in a region of shoaling warm circumpolar water.

  18. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.; Bassford, R. P.; Gorman, M. R.; Williams, M.; Glazovsky, A. F.; Macheret, Y. Y.; Shepherd, A. P.; Vasilenko, Y. V.; Savatyuguin, L. M.; Hubberten, H.-W.; Miller, H.

    2002-04-01

    The 5,575-km2 Academy of Sciences Ice Cap is the largest in the Russian Arctic. A 100-MHz airborne radar, digital Landsat imagery, and satellite synthetic aperture radar (SAR) interferometry are used to investigate its form and flow, including the proportion of mass lost through iceberg calving. The ice cap was covered by a 10-km-spaced grid of radar flight paths, and the central portion was covered by a grid at 5-km intervals: a total of 1,657 km of radar data. Digital elevation models (DEMs) of ice surface elevation, ice thickness, and bed elevation data sets were produced (cell size 500 m). The DEMs were used in the selection of a deep ice core drill site. Total ice cap volume is 2,184 km3 (~5.5 mm sea level equivalent). The ice cap has a single dome reaching 749 m. Maximum ice thickness is 819 m. About 200 km, or 42%, of the ice margin is marine. About 50% of the ice cap bed is below sea level. The central divide of the ice cap and several major drainage basins, in the south and east of the ice cap and of up to 975 km2, are delimited from satellite imagery. There is no evidence of past surge activity on the ice cap. SAR interferometric fringes and phase-unwrapped velocities for the whole ice cap indicate slow flow in the interior and much of the margin, punctuated by four fast flowing features with lateral shear zones and maximum velocity of 140 m yr-1. These ice streams extend back into the slower moving ice to within 5-10 km of the ice cap crest. They have lengths of 17-37 km and widths of 4-8 km. Mass flux from these ice streams is ~0.54 km3 yr-1. Tabular icebergs up to ~1.7 km long are produced. Total iceberg flux from the ice cap is ~0.65 km3 yr-1 and probably represents ~40% of the overall mass loss, with the remainder coming from surface melting. Driving stresses are generally lowest (<40 kPa) close to the ice cap divides and in several of the ice streams. Ice stream motion is likely to include a significant basal component and may involve deformable

  19. Detached-Eddy Simulations of Separated Flow Around Wings With Ice Accretions: Year One Report

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Technical Monitor); Thompson, David; Mogili, Prasad

    2004-01-01

    A computational investigation was performed to assess the effectiveness of Detached-Eddy Simulation (DES) as a tool for predicting icing effects. The AVUS code, a public domain flow solver, was employed to compute solutions for an iced wing configuration using DES and steady Reynolds Averaged Navier-Stokes (RANS) equation methodologies. The configuration was an extruded GLC305/944-ice shape section with a rectangular planform. The model was mounted between two walls so no tip effects were considered. The numerical results were validated by comparison with experimental data for the same configuration. The time-averaged DES computations showed some improvement in lift and drag results near stall when compared to steady RANS results. However, comparisons of the flow field details did not show the level of agreement suggested by the integrated quantities. Based on our results, we believe that DES may prove useful in a limited sense to provide analysis of iced wing configurations when there is significant flow separation, e.g., near stall, where steady RANS computations are demonstrably ineffective. However, more validation is needed to determine what role DES can play as part of an overall icing effects prediction strategy. We conclude the report with an assessment of existing computational tools for application to the iced wing problem and a discussion of issues that merit further study.

  20. Experimental Study on Ice Forming Process of Cryogenic Liquid Releasing underwater

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wu, Wanqing; Zhang, Xingdong; Zhang, Yi; Zhang, Chuanlin; Zhang, Haoran; Wang, Peng

    2017-11-01

    Cryogenic liquid releasing into water would be a process combines hyperactive boiling with ice forming. There are still few researches on the experimental study on the environmental conditions for deciding ice forming speed and liquid surviving state. In this paper, to advance our understanding of ice forming deciding factors in the process of LN2 releasing underwater, a visualization experimental system is built. The results show that the pressure difference significantly influences the ice forming speed and liquid surviving distance, which is observed by the experiment and theoretically analysed by Kelvin-Helmholtz instability. Adding nucleating agent is helpful to provide ice nucleus which can accelerate the ice forming speed. Water flowing has some effect on changing pressure difference, which can affect the ice forming speed and liquid surviving distance.

  1. Flow acceleration structure of Aurelia aurita: implications on propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Piper, Matthew; Chamorro, Leonardo P.

    2017-11-01

    The jetting and paddling mechanisms used by Aurelia aurita jellyfish allows for one of the most efficient propulsion among other metazoans. Characterization of the induced flow acceleration is critical to uncover distinctive patterns. We found four acceleration structures using 3D measurements of body and flow dynamics in Lagrangian frame of reference. Two intense structures occur near the bell margin and are generated by paddling; the other two around the center of the jellyfish and half magnitude are a result of jetting. Their interaction leads to the maximum flow velocity in the middle of the relaxation, where relatively straight flow trajectories occur. The jellyfish achieves an efficient relaxation by generating flow deceleration with minor body deceleration.

  2. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  3. Experimental Technique and Assessment for Measuring the Convective Heat Transfer Coefficient from Natural Ice Accretions

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.

  4. Rapid Collapse of the Vavilov Ice Cap, Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Zheng, W.; Durkin, W. J., IV; Pritchard, M. E.; Ramage, J. M.; Dowdeswell, J. A.; Benham, T. J.; Glazovsky, A.; Macheret, Y.; Porter, C. C.

    2016-12-01

    Cold based ice caps and glaciers are thought to respond slowly to environmental changes. As sea ice cover evolves in the Arctic, a feedback process alters air-temperatures and precipitation patterns across the region. During the last decades of the 20th century the land-terminating western margin of the Vavilov Ice Cap, on October Revolution Island of the Severnaya Zemlya Archipelago, advanced slowly westwards. The advance was driven by precipitation changes that occurred about half a millennia ago. InSAR shows that in 1996 the margin sustained ice speeds of around 20 m/yr. By 2000 the ice front had moved a short distance into the Kara Sea and had transitioned to a marine-terminating front, although an ice apron around the ice margin indicates the ice there was still frozen to the bed and there is no evidence of calving in satellite imagery. In 2013 ice motions near the terminus had accelerated to around 1 m/day. By late 2015 the main trunk of the newly activated outlet glacier attained speeds of 25 m/day and the inland portion of the ice cap thinned at rates of more than 0.3 m/day. The acceleration of the outlet glacier occurred due to its advance over weak, water-saturated marine sediments that provide little resistance to ice flow, and to the removal of lateral resistive stresses as the glacier advanced out into an open embayment. Longitudinal stretching at the front forces an increase in the surface slope upstream. Rapid rates of motion inland generate frictional melt at the bed, possibly aided by cryohydrological warming. Large areas of the interior of the Vavilov ice cap are now below the equilibrium line and the grounded portion of the ice cap is losing mass at a rate of 4.5 km3 w.e./year. The changes at the Vavilov are likely irrecoverable in a warming climate due to a reduction in the accumulation area of the ice cap. Increased precipitation drove the advance, which accelerated due to the presence of soft sediments. The acceleration lowered the elevation

  5. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    DOE PAGES

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; ...

    2017-09-14

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements mademore » with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. Here we find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. Finally, we suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.« less

  6. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    NASA Astrophysics Data System (ADS)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  7. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  8. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery A.

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities hasmore » a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.« less

  9. Reorganization of Ice Sheet Flow Patterns in Arctic Canada Prior to the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Refsnider, K. A.; Miller, G. H.

    2010-12-01

    The Foxe sector of the Laurentide Ice Sheet (LIS) experienced a complex and dynamic interplay between cold-based, non-erosive ice on uplands, fast-moving outlet glaciers that carved deep fiords through the Arctic Cordillera, and even more erosive ice streams that occupied larger straits and sounds, transporting ice from the Foxe Dome to calving margins in Baffin Bay and the Labrador Sea. The high topography of Baffin Island forms a broad barrier to the flow of ice to these calving margins and gradually has been dissected since the onset of Northern Hemisphere glaciation. However, evidence for the evolution of LIS erosion and basal thermal regime patterns during successive glaciations is poorly preserved in the geologic record. We use a new approach utilizing published till geochemistry and cosmogenic radionuclide (CRN) data to constrain the development of the fiorded coastline and the distribution of cold-based ice across central Baffin Island in both spatial and temporal domains over many glacial-interglacial cycles. The combination of till geochemistry data, which is used to characterize till weathering, and modeled CRN burial-exposure histories provides strong evidence for a shift in basal thermal regimes across the interior plateaux of Baffin Island between 1.9 and 1.2 Ma. While it may be coincidence that this time interval abuts the onset of the mid-Pleistocene transition (MPT), it has been hypothesized that changes in subglacial conditions were potentially an important mechanism in altering LIS dynamics across the MPT. Prior to this time, ice was likely wet-based and erosive across the majority of the Baffin Island interior, but by 1.9-1.2 Ma, some parts of the landscape became perpetually covered by cold-based ice during glaciations, a pattern that persisted through the last glacial cycle. The modern fiord system also must have developed by this time, and preferential channeling of ice flow into major fiords may have been sufficient to effectively shut off

  10. DEM simulation of granular flows in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  11. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.

  12. Ice Cores Dating With a New Inverse Method Taking Account of the Flow Modeling Errors

    NASA Astrophysics Data System (ADS)

    Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.

    2007-12-01

    Deep ice cores extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now ice chronologies for deep ice cores estimated with inverse approaches are based on quite simplified ice-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the ice thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common ice chronology for several cores at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three cores simultaneously (the two EPICA cores : DC and DML and the Vostok core) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.

  13. Integrating terrestrial and marine records of the LGM in McMurdo Sound, Antarctica: implications for grounded ice expansion, ice flow, and deglaciation of the Ross Sea Embayment

    NASA Astrophysics Data System (ADS)

    Christ, A. J.; Marchant, D. R.

    2017-12-01

    During the LGM, grounded glacier ice filled the Ross Embayment and deposited glacial drift on volcanic islands and peninsulas in McMurdo Sound, as well as along coastal regions of the Transantarctic Mountains (TAM), including the McMurdo Dry Valleys and Royal Society Range. The flow geometry and retreat history of this ice remains debated, with contrasting views yielding divergent implications for both the fundamental cause of Antarctic ice expansion as well as the interaction and behavior of ice derived from East and West Antarctica during late Quaternary time. We present terrestrial geomorphologic evidence that enables the reconstruction of former ice elevations, ice-flow paths, and ice-marginal environments in McMurdo Sound. Radiocarbon dates of fossil algae interbedded with ice-marginal sediments provide a coherent timeline for local ice retreat. These data are integrated with marine-sediment records and multi-beam data to reconstruct late glacial dynamics of grounded ice in McMurdo Sound and the western Ross Sea. The combined dataset suggest a dominance of ice flow toward the TAM in McMurdo Sound during all phases of glaciation, with thick, grounded ice at or near its maximum extent between 19.6 and 12.3 calibrated thousands of years before present (cal. ka). Our data show no significant advance of locally derived ice from the TAM into McMurdo Sound, consistent with the assertion that Late Pleistocene expansion of grounded ice in McMurdo Sound, and throughout the wider Ross Embayment, occurs in response to lower eustatic sea level and the resulting advance of marine-based outlet glaciers and ice streams (and perhaps also reduced oceanic heat flux), rather than local increases in precipitation and ice accumulation. Finally, when combined with allied data across the wider Ross Embayment, which show that widespread deglaciation outside McMurdo Sound did not commence until 13.1 ka, the implication is that retreat of grounded glacier ice in the Ross Embayment did

  14. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel diffuser

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    The purpose was to document the airflow characteristics in the diffuser of the NASA Lewis Research Center Icing Research Tunnel and to determine the effects of vortex generators on the flow quality in the diffuser. The results were used to determine how to improve the flow in this portion of the tunnel so that it can be more effectively used as an icing test section and such that overall tunnel efficiency can be improved. The demand for tunnel test time and the desire to test models that are too large for the test section were two of the drivers behind this diffuser study. For all vortex generator configurations tested, the flow quality was improved.

  15. Recent Ice Loss from the Fleming and Other Glaciers, Wordie Bay, West Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Casassa, G.; Gogineni, S.; Kanagaratnam, P.; Krabill, W.; Pritchard, H.; Rivera, A.; Thomas, R.; Turner, J.; Vaughan, D.

    2005-01-01

    Satellite radar interferometry data from 1995 to 2004, and airborne ice thickness data from 2002, reveal that the glaciers flowing into former Wordie Ice Shelf, West Antarctic Peninsula, discharge 6.8 +/- 0.3 km(exp 3)/yr of ice, which is 84 +/- 30 percent larger than a snow accumulation of 3.7 +/- 0.8 km(exp 3)/yr over a 6,300 km(exp 2) drainage basin. Airborne and ICESat laser altimetry elevation data reveal glacier thinning at rates up to 2 m/yr. Fifty km from its ice front, Fleming Glacier flows 50 percent faster than it did in 1974 prior to the main collapse of Wordie Ice Shelf. We conclude that the glaciers accelerated following ice shelf removal, and have been thinning and losing mass to the ocean over the last decade. This and other observations suggest that the mass loss from the northern part of the Peninsula is not negligible at present.

  16. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  17. Lagrangian acceleration statistics in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Stelzenmuller, Nickolas; Polanco, Juan Ignacio; Vignal, Laure; Vinkovic, Ivana; Mordant, Nicolas

    2017-05-01

    Lagrangian acceleration statistics in a fully developed turbulent channel flow at Reτ=1440 are investigated, based on tracer particle tracking in experiments and direct numerical simulations. The evolution with wall distance of the Lagrangian velocity and acceleration time scales is analyzed. Dependency between acceleration components in the near-wall region is described using cross-correlations and joint probability density functions. The strong streamwise coherent vortices typical of wall-bounded turbulent flows are shown to have a significant impact on the dynamics. This results in a strong anisotropy at small scales in the near-wall region that remains present in most of the channel. Such statistical properties may be used as constraints in building advanced Lagrangian stochastic models to predict the dispersion and mixing of chemical components for combustion or environmental studies.

  18. First-order particle acceleration in magnetically driven flows

    DOE PAGES

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  19. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  20. Reconstructing the flow pattern evolution in inner region of the Fennoscandian Ice Sheet by glacial landforms from Gausdal Vestfjell area, south-central Norway

    NASA Astrophysics Data System (ADS)

    Putniņš, Artūrs; Henriksen, Mona

    2017-05-01

    More than 17 000 landforms from detailed LiDAR data sets have been mapped in the Gausdal Vestfjell area, south-central Norway. The spatial distribution and relationships between the identified subglacial bedforms, mainly streamlined landforms and ribbed moraine ridges, have provided new insight on the glacial dynamics and the sequence of glacial events during the last glaciation. This established evolution of the Late Weichselian ice flow pattern at this inner region of the Fennoscandian Ice Sheet is stepwise where a topography independent ice flow (Phase I) are followed by a regional (Phase II) before a strongly channelized, topography driven ice flow (Phase III). The latter phase is divided into several substages where the flow sets are becoming increasingly confined into the valleys, likely separated by colder, less active ice before down-melting of ice took place. A migrating ice divide and lowering of the ice surface seems to be the main reasons for these changes in ice flow pattern. Formation of ribbed moraine can occur both when the ice flow slows down and speeds up, forming respectively broad fields and elongated belts of ribbed moraines.

  1. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    NASA Astrophysics Data System (ADS)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  2. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Scambos, Ted

    2002-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins Ice shelves) by the results of a previous grant under ADRO-1. Modeling of ice flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other ice shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast ice. The study now considers just a few shelf and fast ice areas for study, and is funded for two years. The study regions are the northeastern Ross Ice Shelf, the Larsen 'B' and 'C' shelves, fast ice and floating shelf ice in the Pine Island Glacier area, and fast ice along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast ice processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast ice areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast ice may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.

  3. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  4. A New Attempt of 2-D Numerical Ice Flow Model to Reconstruct Paleoclimate from Mountain Glaciers

    NASA Astrophysics Data System (ADS)

    Candaş, Adem; Akif Sarıkaya, Mehmet

    2017-04-01

    A new two dimensional (2D) numerical ice flow model is generated to simulate the steady-state glacier extent for a wide range of climate conditions. The simulation includes the flow of ice enforced by the annual mass balance gradient of a valley glacier. The annual mass balance is calculated by the difference of the net accumulation and ablation of snow and (or) ice. The generated model lets users to compare the simulated and field observed ice extent of paleoglaciers. As a result, model results provide the conditions about the past climates since simulated ice extent is a function of predefined climatic conditions. To predict the glacier shape and distribution in two dimension, time dependent partial differential equation (PDE) is solved. Thus, a 2D glacier flow model code is constructed in MATLAB and a finite difference method is used to solve this equation. On the other hand, Parallel Ice Sheet Model (PISM) is used to regenerate paleoglaciers in the same area where the MATLAB code is applied. We chose the Mount Dedegöl, an extensively glaciated mountain in SW Turkey, to apply both models. Model results will be presented and discussed in this presentation. This study was supported by TÜBİTAK 114Y548 project.

  5. Geomorphological Evidence for Pervasive Ground Ice on Ceres from Dawn Observations of Craters and Flows.

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Chilton, H.; Hughson, K.; Scully, J. E. C.; Russell, C. T.; Sizemore, H. G.; Nathues, A.; Platz, T.; Bland, M. T.; Schenk, P.; Hiesinger, H.; Jaumann, R.; Byrne, S.; Schorghofer, N.; Ammannito, E.; Marchi, S.; O'Brien, D. P.; Sykes, M. V.; Le Corre, L.; Capria, M. T.; Reddy, V.; Raymond, C. A.; Mest, S. C.; Feldman, W. C.

    2015-12-01

    Five decades of observations of Ceres' albedo, surface composition, shape and density suggest that Ceres is comprised of both silicates and tens of percent of ice. Historical suggestions of surficial hydrated silicates and evidence for water emission, coupled with its bulk density of ~2100 kg/m3 and Dawn observations of young craters containing high albedo spots support this conclusion. We report geomorphological evidence from survey data demonstrating that evaporative and fluid-flow processes within silicate-ice mixtures are prevalent on Ceres, and indicate that its surface materials contain significant water ice. Here we highlight three classes of features that possess strong evidence for ground ice. First, ubiquitous scalloped and "breached" craters are characterized by mass wasting and by the recession of crater walls in asymmetric patterns; these appear analogous to scalloped terrain on Mars and protalus lobes formed by mass wasting in terrestrial glaciated regions. The degradation of crater walls appears to be responsible for the nearly complete removal of some craters, particularly at low latitudes. Second, several high latitude, high elevation craters feature lobed flows that emanate from cirque-shaped head walls and bear strikingly similar morphology to terrestrial rock glaciers. These similarities include lobate toes and indications of furrows and ridges consistent with ice-cored or ice-cemented material. Other lobed flows persist at the base of crater walls and mass wasting features. Many flow features evidently terminate at ramparts. Third, there are frequent irregular domes, peaks and mounds within crater floors that depart from traditional crater central peaks or peak complexes. In some cases the irregular domes show evidence for high albedo or activity, and thus given other evidence for ice, these could be due to local melt and extrusion via hydrologic gradients, forming domes similar to pingos. The global distribution of these classes of features

  6. Paleo-Ice flow and overdeepenings in an Alpine setting: Examples from the Tyrolian Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Reitner, J. M.; Gruber, W.

    2009-04-01

    Overdeepened valleys and basins are the most interesting features of former glacial action in Alpine areas. Understanding the formation of such phenomena are not only a scientific task but also an important challenge for a society increasingly exploiting sustainable natural resources even in remote areas. The feasibility of hydrogeological or geothermal projects, for instance, depends on the bedrock depth and the sedimentary infill of such valleys. Generally, overdeepened valleys are formed in areas where the ice discharge was high, such as near the equilibrium line, at valley junctions, or at narrowings of the valley profile. The long known overdeepened tongue basins in the Eastern Alps are regarded as typical examples of the impact of high ice flow velocities combined with increased debris load and running water under hydrostatic pressure around the former (LGM, and older glaciations) equilibrium lines (e.g. van Husen, 2000). However, within a highly dissected mountain topography like that of the Eastern Alps the existence of overdeepened valleys-parts supposedly also reflects changes in ice flow direction and velocity during glacial history within one glacial event (like the LGM) as well as during the Pleistocene. For example, ice flow in the phase of ice build-up at the beginning of major glaciations is controlled by the topography and trend of the valleys whereas during the climax of the big glaciations a mountain ice cap exists with a continuous discharge across water divides. Thus, the onsets of ice transfluences as well as the valley orientation in relation to the changing ice flow direction are regarded as major conditions for overdeepenings in an inneralpine setting. Such a complex and changing pattern of ice flow will be shown by the example of the Inn valley and its tributary valleys in the S and E (valley of the Wildschönauer Ache and of the Brixentaler Ache). Based on extensive geological mapping and lithostratigraphy in combination with geophysical

  7. Transient Conditions at the Ice/bed Interface Under a Palaeo-ice Stream Derived from Numerical Simulation of Groundwater Flow and Sedimentological Observations in a Drumlin Field, NW Poland

    NASA Astrophysics Data System (ADS)

    Hermanowski, P.; Piotrowski, J. A.

    2017-12-01

    Evacuation of glacial meltwater through the substratum is an important agent modulating the ice/bed interface processes. The amount of meltwater production, subglacial water pressure, flow patterns and fluxes all affect the strength of basal coupling and thus impact the ice-sheet dynamics. Despite much research into the subglacial processes of past ice sheets which controlled sediment transport and the formation of specific landforms, our understanding of the ice/bed interface remains fragmentary. In this study we numerically simulated, using finite difference and finite element codes, groundwater flow pattern and fluxes during an ice advance in the Stargard Drumlin Field, NW Poland to examine the potential influence of groundwater drainage on the landforming processes. The results are combined with sedimentological observations of the internal composition of the drumlins to validate the outcome of the numerical model. Our numerical experiments of groundwater flow suggest a highly time-dependent response of the subglacial hydrogeological system to the advancing ice margin. This is manifested as diversified areas of downward- and upward-oriented groundwater flows whereby the drumlin field area experienced primarily groundwater discharge towards the ice sole. The investigated drumlins are composed of (i) mainly massive till with thin stringers of meltwater sand, and (ii) sorted sediments carrying ductile deformations. The model results and sedimentological observations suggest a high subglacial pore-water pressure in the drumlin field area, which contributed to sediment deformation intervening with areas of basal decoupling and enhanced basal sliding.

  8. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years

    NASA Astrophysics Data System (ADS)

    Gardner, Alex S.; Moholdt, Geir; Scambos, Ted; Fahnstock, Mark; Ligtenberg, Stefan; van den Broeke, Michiel; Nilsson, Johan

    2018-02-01

    Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013-2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ˜ 2008. The new mapping provides complete coastal and inland coverage of ice velocity north of 82.4° S with a mean error of < 10 m yr-1, resulting from multiple overlapping image pairs acquired during the daylight period. Using an optimized flux gate, ice discharge from Antarctica is 1929 ± 40 Gigatons per year (Gt yr-1) in 2015, an increase of 36 ± 15 Gt yr-1 from the time of the radar mapping. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula, account for 88 % of this increase. In contrast, glaciers draining the East Antarctic Ice Sheet have been remarkably constant over the period of observation. Including modeled rates of snow accumulation and basal melt, the Antarctic ice sheet lost ice at an average rate of 183 ± 94 Gt yr-1 between 2008 and 2015. The modest increase in ice discharge over the past 7 years is contrasted by high rates of ice sheet mass loss and distinct spatial patters of elevation lowering. The West Antarctic Ice Sheet is experiencing high rates of mass loss and displays distinct patterns of elevation lowering that point to a dynamic imbalance. We find modest increase in ice discharge over the past 7 years, which suggests that the recent pattern of mass loss in Antarctica is part of a longer-term phase of enhanced glacier flow initiated in the decades leading up to the first continent-wide radar mapping of ice flow.

  9. Cosmogenic exposure age constraints on deglaciation and flow behaviour of a marine-based ice stream in western Scotland, 21-16 ka

    NASA Astrophysics Data System (ADS)

    Small, David; Benetti, Sara; Dove, Dayton; Ballantyne, Colin K.; Fabel, Derek; Clark, Chris D.; Gheorghiu, Delia M.; Newall, Jennifer; Xu, Sheng

    2017-07-01

    Understanding how marine-based ice streams operated during episodes of deglaciation requires geochronological data that constrain both timing of deglaciation and changes in their flow behaviour, such as that from unconstrained ice streaming to topographically restricted flow. We present seventeen new 10Be exposure ages from glacial boulders and bedrock at sites in western Scotland within the area drained by the Hebrides Ice Stream, a marine-based ice stream that drained a large proportion of the former British-Irish Ice Sheet. Exposure ages from Tiree constrain deglaciation of a topographic high within the central zone of the ice stream, from which convergent flowsets were produced during ice streaming. These ages thus constrain thinning of the Hebrides Ice Stream, which, on the basis of supporting information, we infer to represent cessation of ice streaming at 20.6 ± 1.2 ka, 3-4 ka earlier than previously inferred. A period of more topographically restricted flow produced flow indicators superimposed on those relating to full ice stream conditions, and exposure ages from up-stream of these constrain deglaciation to 17.5 ± 1.0 ka. Complete deglaciation of the marine sector of the Hebrides Ice Stream occurred by 17-16 ka at which time the ice margin was located near the present coastline. Exposure ages from the southernmost Outer Hebrides (Mingulay and Barra) indicate deglaciation at 18.9 ± 1.0 and 17.1 ± 1.0 ka respectively, demonstrating that an independent ice cap persisted on the southern Outer Hebrides for 3-4 ka after initial ice stream deglaciation. This suggests that deglaciation of the Hebrides Ice Stream was focused along major submarine troughs. Collectively, our data constrain initial deglaciation and changes in flow regime of the Hebrides Ice Stream, final deglaciation of its marine sector, and deglaciation of the southern portion of the independent Outer Hebrides Ice Cap, providing chronological constraints on future numerical reconstructions of

  10. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  11. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  12. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  13. Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2016-04-01

    Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.

  14. A novel method for automated grid generation of ice shapes for local-flow analysis

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  15. Recent Changes in Arctic Glaciers, Ice Caps, and the Greenland Ice Sheet: Cold Facts About Warm Ice

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2005-12-01

    One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and ice caps and the Greenland ice sheet. These ice masses are estimated to contain nearly 3 million cubic kilometers of ice, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these ice masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the ice sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland ice sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and ice caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of ice loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.

  16. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  17. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Geoengineering Marine Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, M.

    2017-12-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to

  19. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne E.

    2013-01-01

    We present a coarse-grid projection (CGP) method for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. The CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. After solving the Poisson equation on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. A particular version of the method is applied here to the vorticity-stream function, primitive variable, and vorticity-velocity formulations of incompressible Navier-Stokes equations. We compute several benchmark flow problems on two-dimensional Cartesian and non-Cartesian grids, as well as a three-dimensional flow problem. The method is found to accelerate these computations while retaining a level of accuracy close to that of the fine resolution field, which is significantly better than the accuracy obtained for a similar computation performed solely using a coarse grid. A linear acceleration rate is obtained for all the cases we consider due to the linear-cost elliptic Poisson solver used, with reduction factors in computational time between 2 and 42. The computational savings are larger when a suboptimal Poisson solver is used. We also find that the computational savings increase with increasing distortion ratio on non-Cartesian grids, making the CGP method a useful tool for accelerating generalized curvilinear incompressible flow solvers.

  20. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp

    2016-06-15

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less

  1. High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.

    PubMed

    Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K

    2018-01-22

    The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.

  2. Water ice is water ice: some applications and limitations of Earth analogues to Mars

    NASA Astrophysics Data System (ADS)

    Koutnik, M.; Pathare, A.; Waddington, E. D.; Winebrenner, D. P.

    2017-12-01

    Quantitative and qualitative analyses of ice on Mars have advanced with the acquisition of abundant topography, imagery, and radar data, which have enabled the planetary-science community to tackle sophisticated questions about the martian cryosphere. Over the past decades, many studies have applied knowledge of terrestrial ice-sheet and glacier flow to improve understanding of ice behavior on Mars. A key question for both planets is how we can robustly interpret past climate from glaciological and glacial geomorphological features. Doing this requires deciphering how the history of accumulation, ablation, dust/debris deposition, and flow led to the shape and internal structure of present-day ice. Terrestrial glaciology and glacial geomorphology provide physical relationships that can be extended across environmental conditions to characterize related processes that may act at different rates or on different timescales. However, there remain fundamental unknowns about martian ice rheology and history that often limit our ability to directly apply understanding of ice dynamics learned from Antarctica, Greenland, terrestrial glaciers, and laboratory ice experiments. But the field is rich with opportunity because the constitutive relationship for water ice depends on quantities that can typically be reasonably estimated; water ice is water ice. We reflect on progress to understand the history of the ice-rich North Polar Layered Deposits (NPLD) and of select mid-latitude Lobate Debris Aprons (LDAs), and the utility of terrestrial ice-sheet and glacier analogues for these problems. Our work on Earth and Mars has focused on constraining surface accumulation/ablation patterns and ice-flow histories from topography and radar observations. We present on the challenge of interpreting internal-layer shapes when both accumulation/ablation and ice-flow histories are unknown, and how this non-uniqueness can be broken only by making assumptions about one or the other. In

  3. The importance of particulate texture to the flow strength of ice + dust

    USGS Publications Warehouse

    W. B. Durham,; N. Golding,; Stern, Laura A.; A. Pathare,; D. L. Goldsby,; D. Prior,

    2015-01-01

    Preliminary experimental surveys of the flow of dilute mixtures of ice plus hard particulates under planetary conditions indicate a strengthening effect with respect to pure ice, but with dependencies on environmental conditions (temperature, stress, grain size) that vary widely from study to study [1-4]. With the expectation that the textural character of the particulate fraction (size, shape, spatial distribution of particulates; relationship of particulates to ice grain boundaries, etc.) also influences rheological behavior, we have begun a more systematic investigation of the effect of particulates on strength. We rely extensively on cryogenic scanning electron microscopy (CSEM) and to maximize planetary relevance we focus on behavior at low stress and small grain size.

  4. Acceleration methods for multi-physics compressible flow

    NASA Astrophysics Data System (ADS)

    Peles, Oren; Turkel, Eli

    2018-04-01

    In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation

  5. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  6. Acceleration and focusing of plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Martin Elias

    The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, producemore » plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel

  7. Ice particle collisions

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    becomes more likely when the particles are new and rough, but also after they have been through many collisions. Experiment 2: To create an even higher collision density and to understand the collective behaviour of these ice particles, a sample of them were placed to cover the tray of an electromagnetic shaker, mounted in an environment controlled chamber at -2°C. Continuous shaking of this system permitted observation of a spontaneous transition from dry granular behaviour to that of wetted granules. Vibrating with a fixed acceleration, image sequences were recorded every 10 min to show that at early stage (<15min) the particles adopted the dry granular flow (particles are free to bounce on the vibrating plate). After circa 40 min 90% particles became spontaneously immobile in an approximately hexagonally packed 2 dimensional sheet.

  8. Skin Temperature Processes in the Presence of Sea Ice

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.

    2013-12-01

    Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence

  9. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Haumann, F. Alexander; Raphael, Marilyn N.

    2018-03-01

    In contrast to the Arctic, where total sea ice extent (SIE) has been decreasing for the last three decades, Antarctic SIE has shown a small, but significant, increase during the same time period. However, in 2016, an unusually early onset of the melt season was observed; the maximum Antarctic SIE was already reached as early as August rather than the end of September, and was followed by a rapid decrease. The decay was particularly strong in November, when Antarctic SIE exhibited a negative anomaly (compared to the 1979-2015 average) of approximately 2 million km2. ECMWF Interim reanalysis data showed that the early onset of the melt and the rapid decrease in sea ice area (SIA) and SIE were associated with atmospheric flow patterns related to a positive zonal wave number three (ZW3) index, i.e., synoptic situations leading to strong meridional flow and anomalously strong southward heat advection in the regions of strongest sea ice decline. A persistently positive ZW3 index from May to August suggests that SIE decrease was preconditioned by SIA decrease. In particular, in the first third of November northerly flow conditions in the Weddell Sea and the Western Pacific triggered accelerated sea ice decay, which was continued in the following weeks due to positive feedback effects, leading to the unusually low November SIE. In 2016, the monthly mean Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. A better spatial and temporal coverage of reliable ice thickness data is needed to assess the change in ice mass rather than ice area.

  10. Antarctic Ice Mass Balance from GRACE

    NASA Astrophysics Data System (ADS)

    Boening, C.; Firing, Y. L.; Wiese, D. N.; Watkins, M. M.; Schlegel, N.; Larour, E. Y.

    2014-12-01

    The Antarctic ice mass balance and rates of change of ice mass over the past decade are analyzed based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, in the form of JPL RL05M mascon solutions. Surface mass balance (SMB) fluxes from ERA-Interim and other atmospheric reanalyses successfully account for the seasonal GRACE-measured mass variability, and explain 70-80% of the continent-wide mass variance at interannual time scales. Trends in the residual (GRACE mass - SMB accumulation) mass time series in different Antarctic drainage basins are consistent with time-mean ice discharge rates based on radar-derived ice velocities and thicknesses. GRACE also resolves accelerations in regional ice mass change rates, including increasing rates of mass gain in East Antarctica and accelerating ice mass loss in West Antarctica. The observed East Antarctic mass gain is only partially explained by anomalously large SMB events in the second half of the record, potentially implying that ice discharge rates are also decreasing in this region. Most of the increasing mass loss rate in West Antarctica, meanwhile, is explained by decreasing SMB (principally precipitation) over this time period, part of the characteristic decadal variability in regional SMB. The residual acceleration of 2+/-1 Gt/yr, which is concentrated in the Amundsen Sea Embayment (ASE) basins, represents the contribution from increasing ice discharge rates. An Ice Sheet System Model (ISSM) run with constant ocean forcing and stationary grounding lines both underpredicts the largest trends in the ASE and produces negligible acceleration or interannual variability in discharge, highlighting the potential importance of ocean forcing for setting ice discharge rates at interannual to decadal time scales.

  11. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  12. Gene flow on ice: the role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus)

    PubMed Central

    Elizabeth Alter, S; Rosenbaum, Howard C; Postma, Lianne D; Whitridge, Peter; Gaines, Cork; Weber, Diana; Egan, Mary G; Lindsay, Melissa; Amato, George; Dueck, Larry; Brownell, Robert L; Heide-Jørgensen, Mads-Peter; Laidre, Kristin L; Caccone, Gisella; Hancock, Brittany L

    2012-01-01

    Sea ice is believed to be a major factor shaping gene flow for polar marine organisms, but it remains unclear to what extent it represents a true barrier to dispersal for arctic cetaceans. Bowhead whales are highly adapted to polar sea ice and were targeted by commercial whalers throughout Arctic and subarctic seas for at least four centuries, resulting in severe reductions in most areas. Both changing ice conditions and reductions due to whaling may have affected geographic distribution and genetic diversity throughout their range, but little is known about range-wide genetic structure or whether it differed in the past. This study represents the first examination of genetic diversity and differentiation across all five putative stocks, including Baffin Bay-Davis Strait, Hudson Bay-Foxe Basin, Bering-Beaufort-Chukchi, Okhotsk, and Spitsbergen. We also utilized ancient specimens from Prince Regent Inlet (PRI) in the Canadian Arctic and compared them with modern stocks. Results from analysis of molecular variance and demographic simulations are consistent with recent and high gene flow between Atlantic and Pacific stocks in the recent past. Significant genetic differences between ancient and modern populations suggest PRI harbored unique maternal lineages in the past that have been recently lost, possibly due to loss of habitat during the Little Ice Age and/or whaling. Unexpectedly, samples from this location show a closer genetic relationship with modern Pacific stocks than Atlantic, supporting high gene flow between the central Canadian Arctic and Beaufort Sea over the past millennium despite extremely heavy ice cover over much of this period. PMID:23170222

  13. Capabilities and performance of Elmer/Ice, a new generation ice-sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-03-01

    The Fourth IPCC Assessment Report concluded that ice-sheet flow models are unable to forecast the current increase of polar ice sheet discharge and the associated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice-flow models, and as a result, a significant number of new ice-sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. Here, we summarise almost 10 yr of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planned for the future.

  14. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing

    PubMed Central

    Golledge, Nicholas R.; Fogwill, Christopher J.; Mackintosh, Andrew N.; Buckley, Kevin M.

    2012-01-01

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments—a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078

  15. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.

    PubMed

    Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M

    2012-10-02

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.

  16. Volcanic flows versus water- and ice-related outburst deposits in eastern Hellas: A comparison

    NASA Astrophysics Data System (ADS)

    Voelker, M.; Hauber, E.; Stephan, K.; Jaumann, R.

    2018-06-01

    Hellas Planitia is one of the major topographic sinks on Mars for the deposition of any kind of sediments. We report on our observations of sheet deposits in the eastern part of the basin that are apparently related to the Dao Vallis outflow channel. The deposits have lobate flow fronts and a thickness of a few decameters. Despite their generally smooth surface, some distinctive textures and patterns can be identified, such as longitudinal lineations, distributive channels, and polygons. We compared these deposits to other sheet deposits on Mars and tested three hypotheses of their origin: volcanic flows as well as water- and ice-related mass wastings. Despite some similarities to volcanic sheet flows on Mars, we found several morphological characteristics that are not known for sheet lava flows; for example conically arranged lineations and channel systems very similar to fluvial incisions. We also reject an ice-related formation similar to terrestrial rock-ice avalanches, as there is no sufficient relief energy to explain their extent and location. A water-related origin appears most consistent with our observations, and we favor an emplacement by fluvially-driven mass wasting processes, e.g., debris flows. Assuming a water-related origin, we calculated the amount of water that would be required to deposit such large sedimentary bodies for different flow types. Our calculations show a large range of possible water volumes, from 64 to 2,042 km³, depending on the specific flow mechanism. The close link to Dao Vallis makes these deposits a unique place to study the deposition of outflow channel sediments, as the deposits of other outflow channels on Mars, such as those around Chryse Planitia, are mostly buried by younger sediments and volcanic flows.

  17. Conditions for a steady ice sheet ice shelf junction

    NASA Astrophysics Data System (ADS)

    Nowicki, S. M. J.; Wingham, D. J.

    2008-01-01

    This paper investigates the conditions under which a marine ice sheet may adopt a steady profile. The ice is treated as a linear viscous fluid caused to flow from a rigid base to and over water, treated as a denser but inviscid fluid. The solutions in the region around the point of flotation, or 'transition' zone, are calculated numerically. In-flow and out-flow conditions appropriate to ice sheet and ice shelf flow are applied at the ends of the transition zone and the rigid base is specified; the flow and steady free surfaces are determined as part of the solutions. The basal stress upstream, and the basal deflection downstream, of the flotation point are examined to determine which of these steady solutions satisfy 'contact' conditions that would prevent (i) the steady downstream basal deflection contacting the downstream base, and (ii) the upstream ice commencing to float in the event it was melted at the base. In the case that the upstream bed is allowed to slide, we find only one mass flux that satisfies the contact conditions. When no sliding is allowed at the bed, however, we find a range of mass fluxes satisfy the contact conditions. The effect of 'backpressure' on the solutions is investigated, and is found to have no affect on the qualitative behaviour of the junctions. To the extent that the numerical, linearly viscous treatment may be applied to the case of ice flowing out over the ocean, we conclude that when sliding is present, Weertman's 'instability' hypothesis holds.

  18. Improved estimate of accelerated Antarctica ice mass loses from GRACE, Altimetry and surface mass balance from regional climate model output

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; A, G.; van den Broeke, M. R.; Ivins, E. R.

    2016-12-01

    We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Antarctica for 2002-2016. We find that the total mass loss is controlled by only a few regions. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 65% and 18%, respectively, of the total loss (186 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (9 ± 1 Gt/yr2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (57 ± 5 Gt/yr). We compare GRACE regional mass balance estimates with independent estimates from ICESat-1 and Operation IceBridge laser altimetry, CryoSat-2 radar altimetry, and surface mass balance outputs from RACMO2.3. In the Amundsen Sea Embayment of West Antarctica, an area experiencing rapid retreat and mass loss to the sea, we find good agreement between GRACE and altimetry estimates. Comparison of GRACE with these independent techniques in East Antarctic shows that GIA estimates from the new regional ice deglaciation models underestimate the GIA correction in the EAIS interior, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr. Sectors where we are observing the largest losses are closest to warm circumpolar water, and with polar constriction of the westerlies enhanced by climate warming, we expect these sectors to contribute more and more to sea level as the ice shelves that protect these glaciers will melt faster in contact with more heat from the surrounding oc

  19. Changes in ice dynamics along the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Seehaus, Thorsten; Marinsek, Sebastian; Cook, Alison; Van Wessem, Jan-Melchior; Braun, Matthias

    2017-04-01

    The climatic conditions along the Antarctic Peninsula have undergone considerable changes during the last 50 years. A period of pronounced air temperature rise, increasing ocean temperatures as well as changes in the precipitation pattern have been reported by various authors. Consequently, the glacial systems showed changes including widespread retreat, surface lowering as well as variations in flow speeds. During the last decades numerous ice shelves along the Antarctic Peninsula retreated, started to break-up or disintegrated completely. The loss of the buttressing effect caused tributary glaciers to accelerate with increasing ice discharge along the Antarctic Peninsula. Quantification of the mass changes is still subject to considerable errors although numbers derived from the different methods are converging. The aim is to study the reaction of glaciers at the northern Antarctic Peninsula to the changing climatic conditions and the readjustments of tributary glaciers to ice shelf disintegration, as well as to better quantify the ice mass loss and its temporal changes. We analysed time series of various satellite sensors (ERS-1/2 SAR, ENVISAT ASAR, RADARSAT-1, ALOS PALSAR, TerraSAR-X/TanDEM-X, ASTER, Landsat) to detect changes in ice dynamics of 74 glacier basins along the northern Antarctic Peninsula (<65°). Intensity feature tracking techniques were applied on data stacks from different SAR satellites over the last 20 years to infer temporal trends in glacier surface velocities. In combination with ice thickness reconstructions and modeled climatic mass balance fields regional imbalances were calculated. Variations in ice front position were mapped based on optical and SAR satellite data sets. Along the west coast of the northern Antarctic Peninsula an increase in flow speeds by 40% between 1992 and 2014 was observed, whereas glaciers on the east side (north of former Prince-Gustav Ice Shelf) showed a strong deceleration. Nearly all former ice shelf

  20. An ice-rich flow origin for the banded terrain in the Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Guallini, L.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Sutton, S.; Grindrod, P. M.

    2015-12-01

    The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (Context Camera and High-Resolution Imaging Science Experiment) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds, and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summertime temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively "temperate" climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

  1. Mass Gains of the Antarctic Ice Sheet Exceed Losses

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui; Brenner, Anita; Bromwich, David

    2012-01-01

    During 2003 to 2008, the mass gain of the Antarctic ice sheet from snow accumulation exceeded the mass loss from ice discharge by 49 Gt/yr (2.5% of input), as derived from ICESat laser measurements of elevation change. The net gain (86 Gt/yr) over the West Antarctic (WA) and East Antarctic ice sheets (WA and EA) is essentially unchanged from revised results for 1992 to 2001 from ERS radar altimetry. Imbalances in individual drainage systems (DS) are large (-68% to +103% of input), as are temporal changes (-39% to +44%). The recent 90 Gt/yr loss from three DS (Pine Island, Thwaites-Smith, and Marie-Bryd Coast) of WA exceeds the earlier 61 Gt/yr loss, consistent with reports of accelerating ice flow and dynamic thinning. Similarly, the recent 24 Gt/yr loss from three DS in the Antarctic Peninsula (AP) is consistent with glacier accelerations following breakup of the Larsen B and other ice shelves. In contrast, net increases in the five other DS of WA and AP and three of the 16 DS in East Antarctica (EA) exceed the increased losses. Alternate interpretations of the mass changes driven by accumulation variations are given using results from atmospheric-model re-analysis and a parameterization based on 5% change in accumulation per degree of observed surface temperature change. A slow increase in snowfall with climate waRMing, consistent with model predictions, may be offsetting increased dynamic losses.

  2. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  3. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.

    2017-12-01

    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  4. SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2005-01-01

    SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.

  5. Basal crevasses and suture zones in the Larsen C Ice Shelf, Antarctica: Implications for ice shelf stability in a warming climate

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel J.

    Understanding ice shelf structure and processes is paramount to future predictions of sea level rise, as nearly 75% of the ice flux from the Antarctic Ice Sheet (AIS) passes through these gates. The breakup of an ice shelf removes the longitudinal back stress acting on the grounded inland ice and leads to flow acceleration, dynamic thinning and frontal retreat, processes that can be sustained for more than a decade. Increased ice discharge to the ocean contributes to global sea level rise. This dissertation investigates basal crevasses and suture zones, two key structural components of ice shelves, in order to understand how the structure of an ice shelf influences its stability in a warming climate. Ground penetrating radar, high-resolution satellite imagery and a variety of modeling approaches are utilized to assess these features on the Larsen C Ice Shelf but in a manner that considers their influence on ice shelf stability around the AIS. Basal crevasses are large-scale (~66% of ice thickness and ten's of kms in length) and abundant features that are significant structural weaknesses. The viscoplastic deformation of the ice shelf in response to the perturbed hydrostatic balance leads to the formation of both surface depressions and crevasses, hence weakening the ice shelf further. Basal crevasses increase the local ice-ocean interface by ~30%, thereby increasing basal roughness and altering ice-ocean interactions. Ice-shelf fractures frequently terminate where they encounter suture zones, regions of material heterogeneity that form at the lateral bounds of meteoric inflows to ice shelves. The termination of a 25 km-long rift in the Churchill Peninsula suture zone is investigated and found to contain ~60 m of accreted marine ice. Steady-state basal melting/freezing rates are determined for the ice shelf and applied to a flowline model to examine the along-flow evolution of ice shelf structure. The thickening surface wedge of locally accumulated meteoric ice

  6. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars.

    PubMed

    Head, J W; Neukum, G; Jaumann, R; Hiesinger, H; Hauber, E; Carr, M; Masson, P; Foing, B; Hoffmann, H; Kreslavsky, M; Werner, S; Milkovich, S; van Gasselt, S

    2005-03-17

    Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.

  7. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars

    USGS Publications Warehouse

    Head, J.W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; Van Gasselt, S.

    2005-01-01

    Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.

  8. Rapid drawdown of Antarctica's Wordie Ice Shelf glaciers in response to ENSO/Southern Annular Mode-driven warming in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Gardner, A. S.

    2017-10-01

    Here we investigate the largest acceleration in ice flow across all of Antarctica between ∼2008 InSAR and 2014 Landsat velocity mappings. This occurred in glaciers that used to feed into the Wordie Ice Shelf on the west Antarctic Peninsula, which rapidly disintegrated in ∼1989. Between 2008 and 2014, these glaciers experienced at least a threefold increase in surface elevation drawdown relative to the 2002-2008 time period. After ∼20 yrs of relative stability, it is unlikely that the ice shelf collapse played a role in the large response. Instead, we find that the rapid acceleration and surface drawdown is linked to enhanced melting at the ice-ocean boundary, attributable to changes in winds driven by global atmospheric circulation patterns, namely the El Niño-Southern Oscillation (ENSO) and Southern Annular Mode (SAM), linking changes in grounded ice to atmospheric-driven ocean warming.

  9. The Devdorak ice-rock avalanche and consequent debris flow from the slope of Mt. Kazbek (Caucasus, Georgia) in 2014

    NASA Astrophysics Data System (ADS)

    Chernomorets, Sergey; Savernyuk, Elena; Petrakov, Dmitry; Dokukin, Mikhail; Gotsiridze, George; Gavardashvili, Givi; Drobyshev, Valery; Tutubalina, Olga; Zaporozhchenko, Eduard; Kamenev, Nikolay; Kamenev, Vladimir; Kääb, Andreas; Kargel, Jeffrey; Huggel, Christian

    2016-04-01

    We have studied catastrophic glacial events of 2014 in the Kazbek-Dzhimaray massif, Caucasus Mts., Georgia. The first event is a so called "Kazbek blockage" of the Georgian Military Road, on 17 May 2014, which formed as a result of an ice-rock avalanche onto the Devdorak Glacier, and is similar to blockages which occurred in the same location in the 18th-19th century. The second event is a consequent debris flow on 20 August 2014. In May, June 2014 and September 2015 we conducted three field investigations of the disaster zone, which includes Devdorak Glacier, Amilishka and Kabakhi river valleys, the Terek River valley near the Kabakhi River mouth, and a temporary lake.We analyzed field research data, interpreted SPOT 6, Landsat-8 OLI, Terra ASTER, and Pleiades satellite imagery, as well as post-disaster helicopter imagery. To assess dynamic features of the ice-rock flow on 17 May 2014, we measured valley crossections with Bushnell laser ranger. In 2015 we have marked a 180-m baseline for ground stereosurvey and made a stereopair of the Devdorak glacier terminus from a distance of 700 m. The 17 May 2014 ice-rock avalanche initiated at 4500 m. a.s.l. It collapsed onto the tongue of the Devdorak Glacier which reaches down to 2300 m a.s.l. Downstream of the tongue, the avalanche transformed into an ice-rock "avalanche flow" which blocked the Terek River valley. The traffic on Military Georgian Road (part of E117 highway) which connects Russia with Georgia was stopped. 7 people were killed in their vehicles. The total length of the ice-rock avalanche and the subsequent flow was over 10 km. A temporary lake formed in the Terek river valley, reaching 300 m in length, and over 10 m in depth. For several hours, the lake was threatening another debris flow downstream the Terek river valley. According to field estimates at the Devdorak glacier tongue and in Amilishka, Kabakhi and Terek river valleys, the volume of the transported ice-rock avalanche mass, which deposited in

  10. Geodetic observations of ice flow velocities over the southern part of subglacial Lake Vostok, Antarctica, and their glaciological implications

    NASA Astrophysics Data System (ADS)

    Wendt, Jens; Dietrich, Reinhard; Fritsche, Mathias; Wendt, Anja; Yuskevich, Alexander; Kokhanov, Andrey; Senatorov, Anton; Lukin, Valery; Shibuya, Kazuo; Doi, Koichiro

    2006-09-01

    In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed. The derived ice flow velocity for Vostok Station is 2.00ma-1 +/- 0.01ma-1. Along the flowline of Vostok Station an extension rate of about 10-5a-1 (equivalent to 1cm km-1 a-1) was determined. This significant velocity gradient results in a new estimate of 28700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4mma-1 along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.

  11. Destabilisation of an Arctic ice cap triggered by a hydro-thermodynamic feedback to summer-melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Kääb, A.; Hagen, J. O.; Schuler, T. V.; Reijmer, C. H.

    2014-05-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the Polar Regions. Here we present continuous GPS measurements and satellite synthetic aperture radar based velocity maps from the Austfonna ice cap, Svalbard, that demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of the ice cap's largest drainage basin, Basin-3. The resulting iceberg discharge of 4.2 ± 1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. After accounting for the terminus advance, the related sea-level rise contribution of 7.2 ± 2.6 Gt a-1 matches the recent annual ice-mass loss from the entire Svalbard archipelago. Our study highlights the importance of dynamic glacier wastage and illuminates mechanisms that may trigger a sustained increase in dynamic glacier wastage or the disintegration of ice-sheets in response to climate warming, which is acknowledged but not quantified in global projections of sea-level rise.

  12. Convection from Hemispherical and Conical Model Ice Roughness Elements in Stagnation Region Flows

    NASA Technical Reports Server (NTRS)

    Hughes, Michael T.; Shannon, Timothy A.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy

    2016-01-01

    To improve ice accretion prediction codes, more data regarding ice roughness and its effects on convective heat transfer are required. The Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research was used to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. In the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with multiple surfaces or sets of roughness panels, each with a different representation of ice roughness. The sets of roughness panels were constructed using two element distribution patterns that were created based on a laser scan of an iced airfoil acquired in the Icing Research Tunnel at NASA Glenn. For both roughness patterns, surfaces were constructed using plastic hemispherical elements, plastic conical elements, and aluminum conical elements. Infrared surface thermometry data from tests run in the VIST were used to calculate area averaged heat transfer coefficient values. The values from the roughness surfaces were compared to the smooth control surface, showing convective enhancement as high as 400% in some cases. The data gathered during this study will ultimately be used to improve the physical modeling in LEWICE or other ice accretion codes and produce predictions of in-flight ice accretion on aircraft surfaces with greater confidence.

  13. Simulation of flow and habitat conditions under ice, Cache la Poudre River - January 2006

    USGS Publications Warehouse

    Waddle, Terry

    2007-01-01

    The objectives of this study are (1) to describe the extent and thickness of ice cover, (2) simulate depth and velocity under ice at the study site for observed and reduced flows, and (3) to quantify fish habitat in this portion of the mainstem Cache la Poudre River for the current winter release schedule as well as for similar conditions without the 0.283 m3/s winter release.

  14. Abrupt shift in the observed runoff from the southwestern Greenland ice sheet

    PubMed Central

    Ahlstrøm, Andreas P.; Petersen, Dorthe; Langen, Peter L.; Citterio, Michele; Box, Jason E.

    2017-01-01

    The recent decades of accelerating mass loss of the Greenland ice sheet have arisen from an increase in both surface meltwater runoff and ice flow discharge from tidewater glaciers. Despite the role of the Greenland ice sheet as the dominant individual cryospheric contributor to sea level rise in recent decades, no observational record of its mass loss spans the 30-year period needed to assess its climatological state. We present for the first time a 40-year (1975–2014) time series of observed meltwater discharge from a >6500-km2 catchment of the southwestern Greenland ice sheet. We find that an abrupt 80% increase in runoff occurring between the 1976–2002 and 2003–2014 periods is due to a shift in atmospheric circulation, with meridional exchange events occurring more frequently over Greenland, establishing the first observation-based connection between ice sheet runoff and climate change. PMID:29242827

  15. Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kubo, T.; Kirby, S.H.

    2005-01-01

    We selected two Europan-ice-shell candidate highly hydrated sulfate salts for a laboratory survey of ductile flow properties: MgSO4 ?? 7H2O (epsomite) and Na2SO4 ?? 10H2O (mirabilite), called MS7 and NS10, respectively. Polycrystalline samples in pure form and in mixtures with water ice I were tested using our cryogenic high-pressure creep apparatus at temperatures 232 ??? T ??? 294 K, confining pressures P = 50 and 100 MPa, and strain rates 4 ?? 10-8 ??? ???dot;e ??? 7 ?? 10-5 s-1. Grain size of NS10 samples was > 100 ??m. The flow strength ?? of pure MS7 was over 100 times that of polycrystalline ice I at comparable conditions; that of pure NS10 over 20 times that of ice. In terms of the creep law ???dot;e = A??n e-Q/RT, where R is the gas constant, we determine parameter values of A = 1012.1 MPa-ns-1, n = 5.4, and Q = 128 kJ/mol for pure NS10. Composites of ice I and NS10 of volume fraction ?? NS10 have flow strength ??c = [??NS10??NS10J + (1 - ?? NS10)??iceIJ]1/J where J ??? -0.5, making the effect on the flow of ice with low volume fractions of NS10 much like that of virtually undeformable hard rock inclusions. Being much stronger and denser than ice, massive sulfate inclusions in the warmer, ductile layer of the Europan ice shell are less likely to be entrained in convective ice flow and more likely to be drawn to the base of the ice shell by gravitational forces and eventually expelled. With only smaller, dispersed sulfate inclusions, at probable sulfate ?? < 0.2, the shell may be treated rheologically as pure, polycrystalline ice, with boundary conditions perhaps influenced by the high density and low thermal conductivity of the hydrated salts. Copyright 2005 by the American Geophysical Union.

  16. Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lenaerts, J. T. M.; Lhermitte, S.; Drews, R.; Ligtenberg, S. R. M.; Berger, S.; Helm, V.; Smeets, C. J. P. P.; Broeke, M. R. Van Den; van de Berg, W. J.; van Meijgaard, E.; Eijkelboom, M.; Eisen, O.; Pattyn, F.

    2017-01-01

    Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves causing grounded glaciers to accelerate and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line, which in the recent past has led to the disintegration of the most northerly ice shelves. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwater-induced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet’s interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing.

  17. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    DTIC Science & Technology

    2014-09-30

    OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer

  18. Acceleration of Humboldt glacier, north Greenland

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Howat, I.; Noh, M. J.; King, M. D.

    2017-12-01

    Here we report on recent abrupt acceleration on the flow speed of Humboldt Glacier (HG) in northern Greenland. The mean annual discharge of this glacier in 2000 was estimated as 8.4Gt/a, placing it among the largest outlet glacier draining the northern coast (Enderlin et al., 2014). Using a combination of remote sensing datasets, we find that following a slight slowing before 2010, HG suddenly sped up by a factor of three between 2012 and 2013, maintaining that increased speed through 2016. Speedup was accompanied by up to 10 m of thinning near the terminus and followed slower, longer-term thinning and retreat. Here we assess possible causes for the speedup, potential for continued acceleration and implication to ice sheet mass balance. ReferenceEnderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. van Angelen, and M. R. van den Broeke (2014), An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866-872, doi:10.1002/2013GL059010.

  19. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  20. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  1. Links Between Acceleration, Melting, and Supraglacial Lake Drainage of the Western Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hoffman, M. J.; Catania, G. A.; Newmann, T. A.; Andrews, L. C.; Rumrill, J. A.

    2012-01-01

    The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6-41% above spring velocity lasting approximately 40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for approximately 1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to 1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and 2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow.

  2. Links Between Acceleration, Melting, and Supraglacial Lake Drainage of the Western Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hoffman, M. J.; Catania, G. A.; Neumann, T. A.; Andrews, L. C.; Rumrill, J. A.

    2011-01-01

    The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6-41% above spring velocity lasting 40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for approx 1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to (1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and (2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow.

  3. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.

    PubMed

    Stanton, T P; Shaw, W J; Truffer, M; Corr, H F J; Peters, L E; Riverman, K L; Bindschadler, R; Holland, D M; Anandakrishnan, S

    2013-09-13

    Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.

  4. Analysis of iced wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.

    1992-01-01

    A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  5. Development of Three-Dimensional Flow Code Package to Predict Performance and Stability of Aircraft with Leading Edge Ice Contamination

    NASA Technical Reports Server (NTRS)

    Strash, D. J.; Summa, J. M.

    1996-01-01

    In the work reported herein, a simplified, uncoupled, zonal procedure is utilized to assess the capability of numerically simulating icing effects on a Boeing 727-200 aircraft. The computational approach combines potential flow plus boundary layer simulations by VSAERO for the un-iced aircraft forces and moments with Navier-Stokes simulations by NPARC for the incremental forces and moments due to iced components. These are compared with wind tunnel force and moment data, supplied by the Boeing Company, examining longitudinal flight characteristics. Grid refinement improved the local flow features over previously reported work with no appreciable difference in the incremental ice effect. The computed lift curve slope with and without empennage ice matches the experimental value to within 1%, and the zero lift angle agrees to within 0.2 of a degree. The computed slope of the un-iced and iced aircraft longitudinal stability curve is within about 2% of the test data. This work demonstrates the feasibility of a zonal method for the icing analysis of complete aircraft or isolated components within the linear angle of attack range. In fact, this zonal technique has allowed for the viscous analysis of a complete aircraft with ice which is currently not otherwise considered tractable.

  6. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  7. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  8. SIMPLE MODEL OF ICE SEGREGATION USING AN ANALYTIC FUNCTION TO MODEL HEAT AND SOIL-WATER FLOW.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1984-01-01

    This paper reports on the development of a simple two-dimensional model of coupled heat and soil-water flow in freezing or thawing soil. The model also estimates ice-segregation (frost-heave) evolution. Ice segregation in soil results from water drawn into a freezing zone by hydraulic gradients created by the freezing of soil-water. Thus, with a favorable balance between the rate of heat extraction and the rate of water transport to a freezing zone, segregated ice lenses may form.

  9. Contribution of the Greenland Ice Sheet to Sea-Level over the Next Millennium

    NASA Astrophysics Data System (ADS)

    Aschwanden, A.; Fahnestock, M. A.; Truffer, M.

    2017-12-01

    The contribution of Greenland's outlet glaciers to sea-level remains a wild card in global sea level predictions but progress in mapping ice thickness combined with high-resolution flow modeling now allow to revisit questions about the long-term stability of the ice sheet. Here we present the first outlet glacier resolving assessment of Greenland's contribution to sea-level over the next millennium. We find that increased ice discharge resulting from acceleration of outlet glaciers due to ice melt at tidewater glacier margins dominates mass loss during the 21st century. However, as the ice sheet surfaces lowers, surface melt increases and over the course of the millennium, the relative contribution of ice discharge to total mass loss decreases. By the end of the 22nd century, most outlet glaciers in the north-west will have retreated out of tide-water, while in south-east enhanced precipitation partially offsets high ice discharge. The outlet glaciers of the central west coast, most notably Jakobshavn Isbrae, play a key role in dynamic mass loss due to their submarine connection to the interior reservoir. We find that coast-ward advection of cold ice from the interior counteracts outlet glacier acceleration by increasing ice viscosity and thereby reducing vertical shearing. Under the RCP 8.5 scenario, the ice margin in north and north-east Greenland retreats far enough to reach the vast interior where the subglacial topography is below sea level. This leads to a dramatic retreat in the second part of the millenium, and Greenland could shrink to 10% of its current volume by the end of the millennium.

  10. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X During the US Coast Guard’s Arctic Domain Awareness Program

    DTIC Science & Technology

    2013-09-30

    What is the volume of sea ice in the Beaufort Sea SIZ and how does this evolve during summer as the ice edge retreats? Recent observations...suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest ice advected into the region does...indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer. During winter, leads and very

  11. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  12. Flow instabilities of Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    Turrin, James Bradley

    Over 300 of the largest glaciers in southern Alaska have been identified as either surge-type or pulse-type, making glaciers with flow instabilities the norm among large glaciers in that region. Consequently, the bulk of mass loss due to climate change will come from these unstable glaciers in the future, yet their response to future climate warming is unknown because their dynamics are still poorly understood. To help broaden our understanding of unstable glacier flow, the decadal-scale ice dynamics of 1 surging and 9 pulsing glaciers are investigated. Bering Glacier had a kinematic wave moving down its ablation zone at 4.4 +/- 2.0 km/yr from 2002 to 2009, which then accelerated to 13.9 +/- 2.0 km/yr as it traversed the piedmont lobe. The wave first appeared in 2001 near the confluence with Bagley Ice Valley and it took 10 years to travel ~64 km. A surge was triggered in 2008 after the wave activated an ice reservoir in the midablation zone, and it climaxed in 2011 while the terminus advanced several km into Vitus Lake. Ruth Glacier pulsed five times between 1973 and 2012, with peak velocities in 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. A typical pulse increased ice velocity 300%, from roughly 40 m/yr to 160 m/yr in the midablation zone, and involved acceleration and deceleration of the ice en masse; no kinematic wave was evident. The pulses are theorized to be due to deformation of a subglacial till causing enhanced basal motion. Eight additional pulsing glaciers are identified based on the spatiotemporal pattern of their velocity fields. These glaciers pulsed where they were either constricted laterally or joined by a tributary, and their surface slopes are 1-2°. These traits are consistent with an overdeepening. This observation leads to a theory of ice motion in overdeepenings that explains the cyclical behavior of pulsing glaciers. It is based on the concept of glaciohydraulic supercooling, and includes sediment transport and erosion

  13. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model ismore » first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.« less

  14. Compression experiments on artificial, alpine and marine ice: implications for ice-shelf/continental interactions

    NASA Astrophysics Data System (ADS)

    Dierckx, Marie; Goossens, Thomas; Samyn, Denis; Tison, Jean-Louis

    2010-05-01

    Antarctic ice shelves are important components of continental ice dynamics, in that they control grounded ice flow towards the ocean. As such, Antarctic ice shelves are a key parameter to the stability of the Antarctic ice sheet in the context of global change. Marine ice, formed by sea water accretion beneath some ice shelves, displays distinct physical (grain textures, bubble content, ...) and chemical (salinity, isotopic composition, ...) characteristics as compared to glacier ice and sea ice. The aim is to refine Glen's flow relation (generally used for ice behaviour in deformation) under various parameters (temperature, salinity, debris, grain size ...) to improve deformation laws used in dynamic ice shelf models, which would then give more accurate and / or realistic predictions on ice shelf stability. To better understand the mechanical properties of natural ice, deformation experiments were performed on ice samples in laboratory, using a pneumatic compression device. To do so, we developed a custom built compression rig operated by pneumatic drives. It has been designed for performing uniaxial compression tests at constant load and under unconfined conditions. The operating pressure ranges from about 0.5 to 10 Bars. This allows modifying the experimental conditions to match the conditions found at the grounding zone (in the 1 Bar range). To maintain the ice at low temperature, the samples are immersed in a Silicone oil bath connected to an external refrigeration system. During the experiments, the vertical displacement of the piston and the applied force is measured by sensors which are connected to a digital acquisition system. We started our experiments with artificial ice and went on with continental ice samples from glaciers in the Alps. The first results allowed us to acquire realistic mechanical data for natural ice. Ice viscosity was calculated for different types of artificial ice, using Glen's flow law, and showed the importance of impurities

  15. Hypersonic rarefied-flow aerodynamics inferred from Shuttle Orbiter acceleration measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.

    1989-01-01

    Data obtained from multiple flights of sensitive accelerometers on the Space Shuttle Orbiter during reentry have been used to develop an improved aerodynamic model for the Orbiter normal- and axial-force coefficients in hypersonic rarefied flow. The lack of simultaneous atmospheric density measurements was overcome in part by using the ratio of normal-to-axial acceleration, in which density cancels, as a constraint. Differences between the preflight model and the flight-acceleration-derived model in the continuum regime are attributed primarily to real gas effects. New insights are gained into the variation of the force coefficients in the transition between the continuum regime and free molecule flow.

  16. Constraints on the formation and properties of a Martian lobate debris apron: Insights from high-resolution topography, SHARAD radar data, and a numerical ice flow model

    NASA Astrophysics Data System (ADS)

    Parsons, Reid; Holt, John

    2016-03-01

    Lobate debris aprons (LDAs) are midlatitude deposits of debris-covered ice formed during one or more periods of glaciation during the Amazonian period. However, little is known about the climate conditions that led to LDA formation. We explore a hypothesis in which a single, extended period of precipitation of ice on the steep slopes of Euripus Mons (45°S, 105°E—east of the Hellas Basin) produced a flowing ice deposit which was protected from subsequent ablation to produce the LDA found at this location. We test this hypothesis with a numerical ice flow model using an ice rheology based on low-temperature ice deformation experiments. The model simulates ice accumulation and flow for the northern and southern lobes of the Euripus Mons LDA using basal topography constrained by data from the Shallow Radar (SHARAD) and a range of ice viscosities (determined by ice temperature and ice grain size). Simulations for the northern lobe of the Euripus LDA produce good fits to the surface topography. Assuming an LDA age of ˜60 Myr and an expected temperature range of 200 to 204 K (for various obliquities) gives an ice grain size of ≈2 mm. Simulations of the southern section produce poor fits to surface topography and result in much faster flow timescales unless multiple ice deposition events or higher ice viscosities are considered.

  17. Investigating ice shelf mass loss processes from continuous satellite altimetry

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2017-12-01

    The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice

  18. Revisit submergence of ice blocks in front of ice cover—an experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wu, Yi-fan; Sui, Jueyi

    2018-04-01

    The present paper studies the stabilities of ice blocks in front of an ice cover based on experiments carried out in laboratory by using four types of ice blocks with different dimensions. The forces acting on the ice blocks in front of the ice cover are analyzed. The critical criteria for the entrainment of ice blocks in front of the ice cover are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an ice block will be entrained under the ice cover is derived. All three dimensions of the ice block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of ice blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.

  19. Evaporation of ice in planetary atmospheres - Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1979-01-01

    The existence of ice covered rivers on Mars is considered. It is noted that the evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. It is determined that even with a mean Martian insolation rate above the ice of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as ice-choked rivers. Finally, the exobiological implications of ice covered channels or lakes on Mars are discussed.

  20. The influence of topographic feedback on a coupled mass balance and ice-flow model for Vestfonna ice-cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schäfer, Martina; Möller, Marco; Zwinger, Thomas; Moore, John

    2016-04-01

    Using a coupled simulation set-up between a by statistical climate data forced and to ice-cap resolution downscaled mass balance model and an ice-dynamic model, we study coupling effects for the Vestfonna ice cap, Nordaustlandet, Svalbard, by analysing the impacts of different imposed coupling intervals on mass-balance and sea-level rise (SLR) projections. Based on a method to estimate errors introduced by different coupling schemes, we find that neglecting the topographic feedback in the coupling leads to underestimations of 10-20% in SLR projections on century time-scales in our model compared to full coupling (i.e., exchange of properties using smallest occurring time-step). Using the same method it also is shown that parametrising mass-balance adjustment for changes in topography using lapse rates is a - in computational terms - cost-effective reasonably accurate alternative applied to an ice-cap like Vestfonna. We test the forcing imposed by different emission pathways (RCP 2.4, 4.5, 6.0 and 8.5). For most of them, over the time-period explored (2000-2100), fast-flowing outlet glaciers decrease in impacting SLR due to their deceleration and reduced mass flux as they thin and retreat from the coast, hence detaching from the ocean and thereby losing their major mass drainage mechanism, i.e., calving.

  1. Modeling the fracture of ice sheets on parallel computers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waisman, Haim; Bell, Robin; Keyes, David

    2010-03-01

    The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves inmore » Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.« less

  2. Inferring unknow boundary conditions of the Greenland Ice Sheet by assimilating ICESat-1 and IceBridge altimetry intothe Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.

    2014-12-01

    Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.

  3. Basal channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2013-09-01

    Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.

  4. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  5. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  6. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  7. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-08-01

    The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  8. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  9. Long-term evolution of a small ice cap in Greenland: a dynamic perspective from numerical flow modelling

    NASA Astrophysics Data System (ADS)

    Vieli, Andreas; Lane, Timothy; Adamson, Kathryn

    2017-04-01

    Small ice caps at the periphery of the Greenland ice sheet are often close to the limit of existence and are therefore expected to respond more sensitively to climate change than the land-margin of the neighboring ice sheet. However, their past evolution and dynamic behavior is poorly understood and their use as climate indicators therefore remains so far limited. We here aim to provide a long-term dynamic reconstruction of Lyngmarksbraeen, a small (32km2) ice cap on Disko Island in West Greenland, with a particular focus on the little ice age (LIA, since 1200AD). We use a 2-dim. time-dependent numerical flow model (SIA) and a PDD-mass balance model in combination with historical observations, geomorphological mapping and exposure dating to simulate its long-term evolution and dynamic behaviour. We specifically focus on retreat since the LIA, which is well constrained by geomorphological evidence and historical maps and length records of several small outlet glaciers and data from local and regional climate stations (Qeqertarssuaq and Ilulisat). We also explore aspects related to flow dynamics and find that the dynamic state of this ice cap is, at any time, far from being balanced and is highly sensitive to the surface elevation mass balance feedback and results in an asynchronous response of the different outlets and hysteresis-type behaviour. The modelling is able to reproduce the observed LIA-extent and the almost continuous retreat over the last hundred years well. It further indicates that the ice cap was already dynamically inert since the 1960s. Today, the ice cap has lost almost its entire accumulation area and even without any further warming in the future, the ice cap is expected to vanish within a couple of decades.

  10. Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.

    2016-06-01

    Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.

  11. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  12. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  13. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  14. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  15. Capabilities and performance of the new generation ice-sheet model Elmer/Ice

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Durand, G.; Favier, L.; de Fleurian, B.; Gillet-chaulet, F.; Seddik, H.; Greve, R.; Mallinen, M.; Martin, C.; Raback, P.; Ruokolainen, J.; Schäfer, M.; Thies, J.

    2012-12-01

    Since the Fourth IPCC Assessment Report, and its conclusion about the inability of ice-sheet flow models to forecast the current increase of polar ice sheet discharge and associated contribution to sea-level rise, a huge development effort has been undertaken by the glaciological community. All around the world, models have been improved and, interestingly, a significant number of new ice-sheet models have emerged. Among them, the parallel finite-element model Elmer/Ice (based on the open-source multi-physics code Elmer) was one of the first full-Stokes models used to make projections of the future of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve dedicated local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. In this presentation, we summarise the almost 10 years of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planed for the future.

  16. Complex flow morphologies in shock-accelerated gaseous flows

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Vorobieff, P.; Orlicz, G.; Palekar, A.; Tomkins, C.; Goodenough, C.; Marr-Lyon, M.; Prestridge, K. P.; Benjamin, R. F.

    2007-11-01

    A Mach 1.2 planar shock wave impulsively and simultaneously accelerates a row of three heavy gas (SF 6) cylinders surrounded by a lighter gas (air), producing pairs of vortex columns. The heavy gas cylinders (nozzle diameter D) are initially equidistant in the spanwise direction (center to center spacing S), with S/D=1.5. The interaction of the vortex columns is investigated with planar laser-induced fluorescence (PLIF) in the plane normal to the axes of the cylinders. Several distinct post-shock morphologies are observed, apparently due to rather small variations of the initial conditions. We report the variation of the streamwise and spanwise growth rates of the integral scales for these flow morphologies.

  17. Development and characterization of an ice-selecting pumped counterflow virtual impactor (IS-PCVI) to study ice crystal residuals

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Schnaiter, Martin; Vogt, Steffen; Vochezer, Paul; Järvinen, Emma; Wagner, Robert; Bell, David M.; Wilson, Jacqueline; Zelenyuk, Alla; Cziczo, Daniel J.

    2016-08-01

    Separation of particles that play a role in cloud activation and ice nucleation from interstitial aerosols has become necessary to further understand aerosol-cloud interactions. The pumped counterflow virtual impactor (PCVI), which uses a vacuum pump to accelerate the particles and increase their momentum, provides an accessible option for dynamic and inertial separation of cloud elements. However, the use of a traditional PCVI to extract large cloud hydrometeors is difficult mainly due to its small cut-size diameters (< 5 µm). Here, for the first time we describe a development of an ice-selecting PCVI (IS-PCVI) to separate ice in controlled mixed-phase cloud system based on the particle inertia with the cut-off diameter ≥ 10 µm. We also present its laboratory application demonstrating the use of the impactor under a wide range of temperature and humidity conditions. The computational fluid dynamics simulations were initially carried out to guide the design of the IS-PCVI. After fabrication, a series of validation laboratory experiments were performed coupled with the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) expansion cloud simulation chamber. In the AIDA chamber, test aerosol particles were exposed to the ice supersaturation conditions (i.e., RHice > 100 %), where a mixture of droplets and ice crystals was formed during the expansion experiment. In parallel, the flow conditions of the IS-PCVI were actively controlled, such that it separated ice crystals from a mixture of ice crystals and cloud droplets, which were of diameter ≥ 10 µm. These large ice crystals were passed through the heated evaporation section to remove the water content. Afterwards, the residuals were characterized with a suite of online and offline instruments downstream of the IS-PCVI. These results were used to assess the optimized operating parameters of the device in terms of (1) the critical cut-size diameter, (2) the transmission efficiency and (3) the counterflow

  18. Changes in ice dynamics along the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Seehaus, T.; Braun, M.; Cook, A.; Marinsek, S.

    2016-12-01

    The climatic conditions along the Antarctic Peninsula have undergone considerable changes during the last 50 years. Numerous ice shelves along the Antarctic Peninsula retreated, started to break-up or disintegrated. The loss of the buttressing effect caused tributary glaciers to accelerate with increasing ice discharge along the Antarctic Peninsula. The aim is to study the reaction of glaciers at the northern Antarctic Peninsula to the changing climatic conditions and the readjustments of tributary glaciers to ice shelf disintegration, as well as to better quantify the ice mass loss and its temporal changes.We analysed time series of various SAR satellite sensors to detect changes in ice flow speed and surface elevation. Intensity feature tracking techniques were applied on data stacks from different SAR satellites over the last 20 years to infer changes in glacier surface velocities. High resolution bi-static TanDEM-X data was used to derive digital elevation models by differential SAR interferometry. In combination with ASTER and SPOT stereo images, changes in surface elevations were determined. Altimeter data from ICESat, CryoSat-2 and NASA operation IceBridge ATM were used for vertical referencing and quality assessment of the digital elevation models. Along the west coast of the northern Antarctic Peninsula an increase in flow speeds by 40% between 1992 and 2014 was observed, whereas glaciers on the east side (north of former Prince-Gustav Ice Shelf) showed a strong deceleration. In total an ice discharge of 17.93±6.22 Gt/a was estimated for 74 glaciers on the Antarctic Peninsula north of 65°S. Most of the former ice shelf tributaries showed similar reactions to ice shelf disintegration. At the Sjögren-Inlet a total ice mass loss of -37.5±8.2 Gt and a contribution to sea level rise of 20.9±5.2 Gt were found in the period 1993-2014. The average surface lowering rate in the period 2012-2014 amounts to -2.2 m/a. At Dinsmoor-Bombardier-Edgeworth glacier

  19. Constraints on martian lobate debris apron evolution and rheology from numerical modeling of ice flow

    NASA Astrophysics Data System (ADS)

    Parsons, Reid A.; Nimmo, Francis; Miyamoto, Hideaki

    2011-07-01

    Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of ice responsible for the formation of lobate debris aprons based on their apparent age of ˜100 Myr. We developed a numerical model simulating ice flow under martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. By varying the ice grain size, the ice temperature, the subsurface slope, and the initial ice volume we determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to the apparent ages of LDA surfaces (90-300 Myr). We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (⩽4 vol%), coarse (⩾1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. Either eventuality can be tested with future observations.

  20. Laurentide glacial landscapes: the role of ice streams

    USGS Publications Warehouse

    Patterson, C.J.

    1998-01-01

    Glacial landforms of the North American prairie can be divided into two suites that result from different styles of ice flow: 1) a lowland suite of level-to-streamlined till consistent with formation beneath ice streams, and 2) an upland and lobe-margin suite of thick, hummocky till and glacial thrust blocks consistent with formation at ice-stream and ice-lobe margins. Southern Laurentide ice lobes hypothetically functioned as outlets of ice streams. Broad branching lowlands bounded by escarpments mark the stable positions of the ice streams that fed the lobes. If the lobes and ice streams were similar to modern ice streams, their fast flow was facilitated by high subglacial water pressure. Favorable geology and topography in the midcontinent encouraged nonuniform ice flow and controlled the location of ice streams and outlet lobes.

  1. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  2. Funnel-shaped surface depressions - Indicator or accelerant of rapid glacier disintegration? A case study in the Tyrolean Alps

    NASA Astrophysics Data System (ADS)

    Stocker-Waldhuber, Martin; Fischer, Andrea; Keller, Lorenz; Morche, David; Kuhn, Michael

    2017-06-01

    Alpine glaciers have been retreating at extreme and historically unprecedented rates. While the general course of regional retreat rates reflects long-term climatic change, individual extreme events are closely related to the geomorphological settings and processes of the specific glacier. Nevertheless, these extreme events also influence the regional means and might be an important feedback mechanism accelerating the response of glaciers to climate change. In 2009, during the recent disintegration of the terminus of Gepatschferner (46°52‧30″N, 10°45‧25″E), a shallow circular depression appeared at the glacier tongue with a decrease of surface ice flow velocity to almost nil. In 2015 the area was ice-free. During a heavy precipitation event in August 2012, a subglacial sediment layer of > 10 m was flushed out, which accelerated the subsidence of the ice surface. The development of this 15 to 30 m deep depression was monitored with a combination of methods in high detail, including direct ablation measurements and a time series of seven high-resolution airborne laser DEMs, plus recordings of ice flow velocity and surface elevation with DGPS. The thickness of ice and sediment layers was measured with vibroseismic soundings in 2012 and 2013. Similar developments were observed at three other glaciers with extreme retreat rates. Our investigation suggests that this mechanism has a major impact on and can be read as an indicator of a nonlinear increased response of glaciers to climate change.

  3. Ice Flow in Debris Aprons and Central Peaks, and the Application of Crater Counts

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.; Quantin, C.; Werner, S. C.; Popova, O.

    2009-03-01

    We apply studies of decameter-scale craters to studies of probable ice-flow-related features on Mars, to interpret both chronometry and geological processes among the features. We find losses of decameter-scale craters relative to nearby plains, probably due to sublimation.

  4. Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air-ice interface at low temperatures.

    PubMed

    Ray, Debajyoti; Malongwe, Joseph K'Ekuboni; Klán, Petr

    2013-07-02

    The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.

  5. Glacier Acceleration and Thinning after Ice Shelf Collapse in the Larsen B Embayment, Antarctica

    NASA Technical Reports Server (NTRS)

    Scambos, T. A.; Bohlander, J. A.; Shuman, C. A.; Skvarca, P.

    2004-01-01

    Ice velocities derived from five Landsat 7 images acquired between January 2000 and February 2003 show a two- to six-fold increase in centerline speed of four glaciers flowing into the now-collapsed section of the Larsen B Ice Shelf. Satellite laser altimetry from ICEsat indicates the surface of Hektoria Glacier lowered by up to 38 +/- 6 m a six-month period beginning one year after the break-up in March 2002. Smaller elevation losses are observed for Crane and Jorum glaciers over a later 5-month period. Two glaciers south of the collapse area, Flask and Leppard, show little change in speed or elevation. Seasonal variations in speed preceding the large post-collapse velocity increases suggest that both summer melt percolation and changes in the stress field due to shelf removal play a major role in glacier dynamics.

  6. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies

    NASA Astrophysics Data System (ADS)

    Rogers, David C.

    A supercooled continuous flow, thermal gradient diffusion chamber has been developed to study the ice nucleating properties of natural or artificial aerosols. The chamber has concentric cylinder geometry with the cylinder axis alignment and airflow vertically downward. Sample airflow is 1 l min -1 and occupies the central 10% of the annular lamina; it is separated from the ice-covered walls by filtered sheath air. The wall temperatures are independently controlled over the range from about -4°C to -25°C, so that the vapor concentration at the location of the sample lamina can be set to a well defined value between ice saturation and a few percent water supersaturation. There is a range of temperature and supersaturation values across the sample region; for lamina center conditions of -15°C and +1% with respect to water, the range is -14.6 to -15.4°C and +0.53 to +1.31%. Errors in temperature control produce variations estimated as ±0.1°C and ±0.23%. Typical sample residence time is about 10 s. Ice crystals which form on active nuclei are detected optically at the outlet end of the chamber. To enhance the size difference between ice crystals and cloud droplets, the downstream 25% of the warm ice wall is covered with a thermally insulating vapor barrier which reduces the vapor concentration to ice saturation at the cold wall temperature, so cloud droplets evaporate. A mathematical model was developed to describe the temperature and vapor fields and to calculate the growth, evaporation, and sedimentation of water and ice particles. At 1% water supersaturation, the model predicts that ice particles will grow to about 5 μm diameter, and cloud droplets will achieve about 1 μm before they reach the evaporation section of the chamber. A different model was developed to describe the steady state airflow profile and location of the sample lamina. Experimental tests of the chamber were performed to characterize the airflow, to assess the ability of the technique to

  7. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  8. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  9. Atmospheric Influences on the Anomalous 2016 Antarctic Sea Ice Decay

    NASA Astrophysics Data System (ADS)

    Raphael, M. N.; Schlosser, E.; Haumann, A.

    2017-12-01

    Over the past three decades, a small but significant increase in sea ice extent (SIE) has been observed in the Antarctic. However, in 2016 there was a surprisingly early onset of the melt season. The maximum Antarctic SIE was reached in August rather than end of September, and was followed by a rapid decrease. The decline of the sea ice area (SIA) started even earlier, in July. The retreat of the ice was particularly large in November where Antarctic SIE exhibited a negative anomaly (compared to the 1981-2010 average) of almost 2 Mio. km2, which, combined with reduced Arctic SIE, led to a distinct minimum in global SIE. And, satellite observations show that from November 2016 to February 2017, the daily Antarctic SIE has been at record low levels. We use sea level pressure and geopotential height data from the ECMWF- Interim reanalysis, in conjunction with sea ice data obtained from the National Snow and Ice Data Centre (NSIDC), to investigate possible atmospheric influences on the observed phenomena. Indications are that both the onset of the melt in July and the rapid decrease in SIA and SIE in November were triggered by atmospheric flow patterns related to a positive Zonal Wave 3 index, i.e. synoptic situations leading to strong meridional flow. Additionally the Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. It is likely that the SIE decrease was preconditioned by SIA decrease. Positive feedback effects led to accelerated melt and consequently to the extraordinary low November SIE.

  10. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  11. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  12. Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica

    USGS Publications Warehouse

    Hodge, S.M.; Doppelhammer, S.K.

    1996-01-01

    Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.

  13. Application of a Third Order Upwind Scheme to Viscous Flow over Clean and Iced Wings

    NASA Technical Reports Server (NTRS)

    Bangalore, A.; Phaengsook, N.; Sankar, L. N.

    1994-01-01

    A 3-D compressible Navier-Stokes solver has been developed and applied to 3-D viscous flow over clean and iced wings. This method uses a third order accurate finite volume scheme with flux difference splitting to model the inviscid fluxes, and second order accurate symmetric differences to model the viscous terms. The effects of turbulence are modeled using a Kappa-epsilon model. In the vicinity of the sold walls the kappa and epsilon values are modeled using Gorski's algebraic model. Sampling results are presented for surface pressure distributions, for untapered swept clean and iced wings made of NACA 0012 airfoil sections. The leading edge of these sections is modified using a simulated ice shape. Comparisons with experimental data are given.

  14. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2012 by forcing prescribed terminus positions in ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.

    2018-04-01

    Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.

  15. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  16. Geomorphological evidence for ground ice on dwarf planet Ceres

    USGS Publications Warehouse

    Schmidt, Britney E.; Hughson, Kynan H.G.; Chilton, Heather T.; Scully, Jennifer E. C.; Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Bland, Michael T.; Byrne, Shane; Marchi, Simone; O'Brien, David; Schorghofer, Norbert; Hiesinger, Harald; Jaumann, Ralf; Hendrick Pasckert, Jan; Lawrence, Justin D.; Buzckowski, Debra; Castillo-Rogez, Julie C.; Sykes, Mark V.; Schenk, Paul M.; DeSanctis, Maria-Cristina; Mitri, Giuseppe; Formisano, Michelangelo; Li, Jian-Yang; Reddy, Vishnu; Le Corre, Lucille; Russell, Christopher T.; Raymond, Carol A.

    2017-01-01

    Five decades of observations of Ceres suggest that the dwarf planet has a composition similar to carbonaceous meteorites and may have an ice-rich outer shell protected by a silicate layer. NASA’s Dawn spacecraft has detected ubiquitous clays, carbonates and other products of aqueous alteration across the surface of Ceres, but surprisingly it has directly observed water ice in only a few areas. Here we use Dawn Framing Camera observations to analyse lobate morphologies on Ceres’ surface and we infer the presence of ice in the upper few kilometres of Ceres. We identify three distinct lobate morphologies that we interpret as surface flows: thick tongue-shaped, furrowed flows on steep slopes; thin, spatulate flows on shallow slopes; and cuspate sheeted flows that appear fluidized. The shapes and aspect ratios of these flows are different from those of dry landslides—including those on ice-poor Vesta—but are morphologically similar to ice-rich flows on other bodies, indicating the involvement of ice. Based on the geomorphology and poleward increase in prevalence of these flows, we suggest that the shallow subsurface of Ceres is comprised of mixtures of silicates and ice, and that ice is most abundant near the poles.

  17. Overview of the Icing and Flow Quality Improvements Program for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Kevdzija, Susan L.; Sheldon, David W.; Spera, David A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper describes the rationale behind this latest program of IRT upgrades and the program's requirements and goals. An overview is given of the scope of work undertaken by the design and construction contractors, the scale-model IRT (SMIRT) design verification program, the comprehensive reactivation test program initiated upon completion of construction, and the overall management approach followed.

  18. Response of Antarctic ice shelf melt to SAM trend and possible feedbacks with the ice-dynamics

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert; Spence, Paul; Cornford, Stephen L.; Le Sommer, Julien; Durand, Gaël

    2017-04-01

    The observed positive trend in the Southern Annular Mode (SAM) may warm the Southern Ocean sub-surface through decreased Ekman downward pumping. Subsequent change in ice-shelves melt has been suggested to trigger glacier acceleration in West Antarctica. Here we use a regional ocean model configuration of the Amundsen Sea that includes interactive ice-shelf cavities. Our results show that the inclusion of ice-shelves changes the ocean response to the projected SAM trend, i.e. it typically inhibits a part of the SAM-induced subsurface warming. Heat budget analysis has been used to propose responsible mechanisms. Regarding Thwaites and Pine Island, sub ice-shelf melt increases above 400m by approximately 40% for Thwaites and 10% for Pine Island and decreases by up to 10% below in response to ocean temperature changes driven by the projected SAM trend. The melt sensitivity to poleward shifting winds is nonetheless small compared to the sensitivity to an ice-sheet instability, i.e. to a projected change in the shape of ice-shelf cavities. For instance, the sub ice-shelf melt are doubled near the grounding line of some glaciers in response to the largest grounding line retreat projected for 2100. Large increase in basal melt close to the grounding line could largely impact instability and glacier acceleration. Our work suggests the need for including ice shelves into ocean models, and to couple ocean models to ice-sheet models in climate projections.

  19. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    NASA Astrophysics Data System (ADS)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS

  20. Validation of the Antarctic Snow Accumulation and Ice Discharge Basal Stress Boundary in the South Eastern Region of the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Nelson, C. B.; King, K.

    2015-12-01

    The largest ice shelf in Antarctic, Ross Ice Shelf, was investigated over the years of (1970-2015). Near the basal stress boundary between the ice shelf and the West Antarctic ice sheet, ice velocity ranges from a few meters per year to several hundred meters per year in ice streams. Most of the drainage from West Antarctica into the Ross Ice Shelf flows down two major ice streams, each of which discharges more than 20 km3 of ice each year. Along with velocity changes, the warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm water into contact with the ice shelf. This process can cause melting over a period of time and eventually cause breakup of ice shelf. With changes occurring over many years a validation is needed for the Antarctic Snow Accumulation and Ice Discharge (ASAID) basal stress boundary created in 2003. After the 2002 Larsen B Ice Shelf disintegration, nearby glaciers in the Antarctic Peninsula accelerated up to eight times their original speed over the next 18 months. Similar losses of ice tongues in Greenland have caused speed-ups of two to three times the flow rates in just one year. Rapid changes occurring in regions surrounding Antarctica are causing concern in the polar science community to research changes occurring in coastal zones over time. During the research, the team completed study on the Ross Ice Shelf located on the south western coast of the Antarctic. The study included a validation of the ABSB vs. the natural basal stress boundary (NBSB) along the Ross Ice Shelf. The ASAID BSB was created in 2003 by a team of researchers headed by National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), with an aim of studying coastal deviations as it pertains to the mass balance of the entire continent. The point data file was aimed at creating a replica of the

  1. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  2. Flow behavior characteristics of ice cream mix made with buffalo milk and various stabilizers.

    PubMed

    Minhas, Kuldip S; Sidhu, Jiwan S; Mudahar, Gurmail S; Singh, A K

    2002-01-01

    Ice cream made with buffalo milk, using optimum levels of various stabilizers of plant origin, was evaluated for its flow behavior characteristics, with the objective of producing an acceptable quality product. The minimum variation in the viscosity of mix was observed at three rates of shear (348.88, 523.33 and 1046.66 S(-1)) for all ice cream mixes. The flow behavior index (n) of all the mixes having optimum levels of various stabilizers was observed to be less than 1; indicating their pseudoplastic nature. Consistency coefficient (m) of sodium alginate was found to be 1.19; highest among all the stabilizers, followed by gelatin (1.17), karaya (1.08), guar gum (0.75), acacia gum (0.70), ghatti gum (0.36), and the control (0.29). The consistency coefficient (m) signifies the apparent viscosity of the pseudoplastic fluid. The viscosity of the mixes having various stabilizers (optimum levels) was found to be in descending order: Sodium alginate, gelatin, karaya, guar gum, acacia, ghatti and control.

  3. Ice Streams as the Critical Link Between the Interior Ice Reservoir of the Antarctic Ice Sheet and the Global Climate System - a WISSARD Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.

    2010-12-01

    Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.

  4. The Coming and Going of Ice

    NASA Image and Video Library

    2015-12-10

    Like Earth's water table, Mars has an ice table. Sometimes, the ice table coincides with the ground's surface as it does here. The knobby, pitted terrain is caused when ice is deposited and then sublimates over and over again. This geologic process is called "accrescence" and "decrescence" and also occurs on Neptune's moon Triton and on Pluto, though in the outer Solar System the ice is not water ice. Other evidence for ice here includes the rope-like, curved flow feature that resembles glacial flow. Solis Planum -- a huge mound south of Valles Marineris -- is the location of this image. http://photojournal.jpl.nasa.gov/catalog/PIA20208

  5. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  6. Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: Implications for flow emplacement and cooling histories

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as

  7. The effect of rock particles and D2O replacement on the flow behaviour of ice

    PubMed Central

    Grindrod, Peter M.

    2017-01-01

    Ice–rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice–rock and D2O-ice–rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0–50 vol.% and strain-rates of 5 × 10−7 to 5 × 10−5 s−1. Both the presence of rock particles and replacement of H2O by D2O increase bulk strength. Calculated flow law parameters for ice and H2O-ice–rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D2O samples are 1.8 times stronger than H2O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice–rock samples is suggested. These results demonstrate that flow laws can be found to describe ice–rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025298

  8. Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Hilmar Gudmundsson, G.; Nagler, Thomas; Wuite, Jan; King, Edward C.

    2018-02-01

    We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day-1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica.

  9. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.

    PubMed

    Cao, Yunfeng; Liang, Shunlin; Chen, Xiaona; He, Tao; Wang, Dongdong; Cheng, Xiao

    2017-08-16

    The speeds of both Arctic surface warming and sea-ice shrinking have accelerated over recent decades. However, the causes of this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  10. Recent Changes in Ices Mass Balance of the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Rignot, E. J.; Mouginot, J.; Flament, T.; van den Broeke, M. R.; van Wessem, M.; Reijmer, C.

    2014-12-01

    The glaciers flowing into the Amundsen Sea Embayment (ASE) sector of West Antarctica were confirmed in the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) to be the dominant contributors to the current Antarctic ice mass loss, and recently recognized to be undergoing marine ice sheet instability. Here, we investigate their regional ice mass balance using a time series of satellite and airborne data combined with model output products from the Regional Atmospheric and Climate Model (RACMO). Our dataset includes laser altimetry from NASA's ICESat-1 satellite mission and from Operation IceBridge (OIB) airborne surveys, satellite radar altimetry data from ESA's Envisat mission, time-variable gravity data from NASA/DLR's GRACE mission, surface mass balance products from RACMO, ice velocity from a combination of international synthetic aperture radar satellites and ice thickness data from OIB. We find a record of ice mass balance for the ASE where all the analyzed techniques agree remarkably in magnitude and temporal variability. The mass loss of the region has been increasing continuously since 1992, with no indication of a slow down. The mass loss during the common period averaged 91 Gt/yr and accelerated 20 Gt/yr2. In 1992-2013, the ASE contributed 4.5 mm global sea level rise. Overall, our results demonstrate the synergy of multiple analysis techniques for examining Antarctic Ice Sheet mass balance at the regional scale. This work was performed at UCI and JPL under a contract with NASA.

  11. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  12. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  13. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central

  14. Fire beneath the ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monastersky, R.

    1993-02-13

    A volcano discovered six years ago by researchers Blankenship and Bell under Antarctica poses questions about a potential climatic catastrophe. The researchers claim that the volcano is still active, erupting occasionally and growing. A circular depression on the surface of the ice sheet has ice flowing into it and is used to provide a portrait of the heat source. The volcano is on a critical transition zone within West Antarctica with fast flowing ice streams directly downhill. Work by Blankenship shows that a soft layer of water-logged sediments called till provide the lubricating layer on the underside of the icemore » streams. Volcanos may provide the source of this till. The ice streams buffer the thick interior ice from the ocean and no one know what will happen if the ice streams continue to shorten. These researchers believe their results indicate that the stability of West Antarctica ultimately depends less on the current climate than on the location of heat and sediments under the ice and the legacy of past climatic changes.« less

  15. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2014-01-01

    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  16. Pathfinder Landing Site: Alternatives to Catastrophic Floods and An Antarctic Ice-Flow Analog for Outflow Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1998-01-01

    The Pathfinder spacecraft landed successfully at the mouth of the outflow channels Ares and Tiu Valles, returning a wealth of information about the surrounding landscape. One goal of the mission was to ascertain that catastrophic floods formed the outflow channels, the prevailing hypothesis for their origin. The follow-up reports on the mission proclaim that observations are "consistent" with an origin by catastrophic flood; no alternative mechanisms for channel origin are considered. Thus, the impression is given that the problem of channel origin has been solved. Yet none of the observations are diagnostic of origin by catastrophic floods. Other origins are possible but have been ignored, for instance origin as liquefaction mudflows, debris flows, mass flows, or ice flows. Here I will examine landing site observations that have been used to infer origin by catastrophic flooding and suggest alternative origins. Finally, I will highlight some new observation from Antarctica that make an ice-flow mechanism plausible for the origin of some of the outflow channels.

  17. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  18. Sediment features at the grounding zone and beneath Ekström Ice Shelf, East Antarctica, imaged using on-ice vibroseis.

    NASA Astrophysics Data System (ADS)

    Smith, Emma C.; Eisen, Olaf; Hofstede, Coen; Lambrecht, Astrid; Mayer, Christoph

    2017-04-01

    The grounding zone, where an ice sheet becomes a floating ice shelf, is known to be a key threshold region for ice flow and stability. A better understanding of ice dynamics and sediment transport across such zones will improve knowledge about contemporary and palaeo ice flow, as well as past ice extent. Here we present a set of seismic reflection profiles crossing the grounding zone and continuing to the shelf edge of Ekström Ice Shelf, East Antarctica. Using an on-ice vibroseis source combined with a snowstreamer we have imaged a range of sub-glacial and sub-shelf sedimentary and geomorphological features; from layered sediment deposits to elongated flow features. The acoustic properties of the features as well as their morphology allow us to draw conclusions as to their material properties and origin. These results will eventually be integrated with numerical models of ice dynamics to quantify past and present interactions between ice and the solid Earth in East Antarctica; leading to a better understanding of future contributions of this region to sea-level rise.

  19. Advancements in the LEWICE Ice Accretion Model

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1993-01-01

    Recent evidence has shown that the NASA/Lewis Ice Accretion Model, LEWICE, does not predict accurate ice shapes for certain glaze ice conditions. This paper will present the methodology used to make a first attempt at improving the ice accretion prediction in these regimes. Importance is given to the correlations for heat transfer coefficient and ice density, as well as runback flow, selection of the transition point, flow field resolution, and droplet trajectory models. Further improvements and refinement of these modules will be performed once tests in NASA's Icing Research Tunnel, scheduled for 1993, are completed.

  20. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  1. Study of ice-related flow features around Tanaica Montes, Mars: Implications for late amazonian debris-covered glaciation

    NASA Astrophysics Data System (ADS)

    Sinha, Rishitosh K.; Vijayan, S.; Bharti, Rajiv R.

    2017-11-01

    Lobate debris aprons (LDA) and lineated valley fill (LVF) have been broadly recognized in the mid-latitudes of Mars and their subsequent analyses using data from the SHAllow RADar (SHARAD) instrument has suggested evidence for contemporary ice preserved beneath these features. In this study, we conduct detailed characterization of newly identified LDA flow units within the Tanaica Montes region (39.55˚ N, 269.17˚ E) of Mars to assess and understand the similarities in their emplacement with respect to LDA flow units mapped in other regions of Mars. We utilize the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images and SHAllow RADar (SHARAD) datasets for geomorphic and subsurface analysis and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) point tracks for topographic analysis. Geomorphic observation of LDA flow units surrounding the montes flanks and massif walls reveal integrated pattern of convergence and divergence and evidence of bending and deflection within the flow lines that resulted in concentric, loop-like flow patterns in the downslope. Brain-terrain texture and craters with varying morphological characteristics (ring-mold type) is suggestive that LDAs may be similar to ice-rich, debris-covered glaciers. MOLA point track based convex-up topographic profiles of LDAs suggest that their thickness vary in the range of ∼100-200 m in both the northwestern and southeastern portions of study region. Further, the slope values of mapped LDA surfaces within the study region are within ∼0.1˚-4˚. The extent of mapped LDAs within the study region is such that some of the low elevation (∼0.8-1.3 km) portions of montes flanks are surrounded by relatively less extent (up to ∼0.5-0.8 km) of LDA flow units. Geomorphic and topographic evidence for flow units that appear to be superposed on the main LDA body collectively suggest the possibility of episodic glacial activity in the region. Furthermore, based on the alignment of subsurface

  2. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  3. Spatially-resolved mean flow and turbulence help explain observed erosion and deposition patterns of snow over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.

    2014-12-01

    Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the

  4. The role of synoptic weather variability in Greenland ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Radic, V.

    2017-12-01

    Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations

  5. Marine ice regulates the future stability of a large Antarctic ice shelf

    PubMed Central

    Kulessa, Bernd; Jansen, Daniela; Luckman, Adrian J.; King, Edward C.; Sammonds, Peter R.

    2014-01-01

    The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B’s stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones. PMID:24751641

  6. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice.

    PubMed

    Liu, Jiping; Curry, Judith A

    2010-08-24

    The observed sea surface temperature in the Southern Ocean shows a substantial warming trend for the second half of the 20th century. Associated with the warming, there has been an enhanced atmospheric hydrological cycle in the Southern Ocean that results in an increase of the Antarctic sea ice for the past three decades through the reduced upward ocean heat transport and increased snowfall. The simulated sea surface temperature variability from two global coupled climate models for the second half of the 20th century is dominated by natural internal variability associated with the Antarctic Oscillation, suggesting that the models' internal variability is too strong, leading to a response to anthropogenic forcing that is too weak. With increased loading of greenhouse gases in the atmosphere through the 21st century, the models show an accelerated warming in the Southern Ocean, and indicate that anthropogenic forcing exceeds natural internal variability. The increased heating from below (ocean) and above (atmosphere) and increased liquid precipitation associated with the enhanced hydrological cycle results in a projected decline of the Antarctic sea ice.

  7. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  8. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  9. Ice under cover: Using bulk spatial and physical properties of probable ground ice driven mass wasting features on Ceres to better understand its surface

    NASA Astrophysics Data System (ADS)

    Hughson, K.; Russell, C.; Schmidt, B. E.; Chilton, H.; Scully, J. E. C.; Castillo, J. C.; Combe, J. P.; Ammannito, E.; Sizemore, H.; Platz, T.; Byrne, S.; Nathues, A.; Raymond, C. A.

    2016-12-01

    NASA's Dawn spacecraft arrived at Ceres on March 6, 2015, and has been studying the dwarf planet through a series of successively lower orbits, obtaining morphological and topographical image, mineralogical, elemental composition, and gravity data (Russell et al., 2016). Images taken by Dawn's Framing Camera show a multitude of flow features that were broadly interpreted as ground ice related structures either similar to ice cored/ice cemented flows (as seen on Earth and Mars), long run-out landslides, or fluidized ejecta (as seen on Mars) by Schmidt et al. (2016a and 2016b) and Buczkowski et al. (2016). The aforementioned ice cored/ice cemented-like flows are present only at high latitudes. Results from Dawn's Gamma Ray and Neutron Detector (GRaND) indicate a shallow ice table on Ceres above 45-50°N/S, which supports the interpretation that these flows are ice-rich (Prettyman et al., 2016). A near coincident spectral detection of H2O ice with one of these ice cored/ice cemented-like flows in Oxo crater by Dawn's Visual and Infrared spectrometer (VIR) further bolsters this claim (Combe et al., 2016). We use aggregate spatial and physical properties of these ice attributed cerean flows, such as flow orientation, inclination, preference for north or south facing slopes, drop height to run-out length ratio, geographical location, and areal number density to better understand the rheology and distribution of ground ice in Ceres' uppermost layer. By combining these data with local spectroscopic, global elemental abundance, experimentally derived physical properties of cerean analogue material, and other morphological information (such as the morphologies of flow hosting craters) we intend to further test the ground ice hypothesis for the formation of these flows and constrain the global distribution of near surface ground ice on Ceres to a higher fidelity than what would be possible using GRaND and VIR observations alone. References: Buczkowski et al., (2016) Science

  10. On the Utilization of Ice Flow Models and Uncertainty Quantification to Interpret the Impact of Surface Radiation Budget Errors on Estimates of Greenland Ice Sheet Surface Mass Balance and Regional Estimates of Mass Balance

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.

    2016-12-01

    How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation

  11. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  12. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2014-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Centers Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  13. IceT users' guide and reference.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.

    2011-01-01

    The Image Composition Engine for Tiles (IceT) is a high-performance sort-last parallel rendering library. In addition to providing accelerated rendering for a standard display, IceT provides the unique ability to generate images for tiled displays. The overall resolution of the display may be several times larger than any viewport that may be rendered by a single machine. This document is an overview of the user interface to IceT.

  14. Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jeong, Seongsu; Howat, Ian M.; Bassis, Jeremy N.

    2016-11-01

    Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear margin propagated across the width of the ice shelf. This type of calving is common on polar ice shelves, with no clear connection to ocean-ice dynamic forcing. In contrast, we report on the recent development of multiple rifts initiating from basal crevasses in the center of the ice shelf, resulted in calving further upglacier than previously observed. Coincident with rift formation was the sudden disintegration of the ice mélange that filled the northern shear margin, resulting in ice sheet detachment from this margin. Examination of ice velocity suggests that this internal rifting resulted from the combination of a change in ice shelf stress regime caused by disintegration of the mélange and intensified melting within basal crevasses, both of which may be linked to ocean forcing.

  15. Greenland ice sheet surface temperature, melt and mass loss: 2000-06

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Luthcke, S.B.; DiGirolamo, N.E.

    2008-01-01

    A daily time series of 'clear-sky' surface temperature has been compiled of the Greenland ice sheet (GIS) using 1 km resolution moderate-resolution imaging spectroradiometer (MODIS) land-surface temperature (LST) maps from 2000 to 2006. We also used mass-concentration data from the Gravity Recovery and Climate Experiment (GRACE) to study mass change in relationship to surface melt from 2003 to 2006. The mean LST of the GIS increased during the study period by ???0.27??Ca-1. The increase was especially notable in the northern half of the ice sheet during the winter months. Melt-season length and timing were also studied in each of the six major drainage basins. Rapid (<15 days) and sustained mass loss below 2000 m elevation was triggered in 2004 and 2005 as recorded by GRACE when surface melt begins. Initiation of large-scale surface melt was followed rapidly by mass loss. This indicates that surface meltwater is flowing rapidly to the base of the ice sheet, causing acceleration of outlet glaciers, thus highlighting the metastability of parts of the GIS and the vulnerability of the ice sheet to air-temperature increases. If air temperatures continue to rise over Greenland, increased surface melt will play a large role in ice-sheet mass loss.

  16. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya

    NASA Astrophysics Data System (ADS)

    Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.

    2015-11-01

    Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.

  17. Bedrock structure and the interpretation of palaeo ice stream footprints: examples from the Pleistocene British Ice Sheet

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.

    2009-04-01

    To model past and future behaviour of ice sheets, a good understanding of both modern and ancient ice streams is required. The study of present-day ice streams provides detailed data of short-term dynamic changes, whilst the study of Pleistocene palaeo-ice streams can provide crucial constraints on the longer-term evolution of ice sheets. To date, palaeo-ice streams, such as the classical Dubawnt Lake palaeo-ice stream of the former Laurentide Ice Sheet, have been recognised largely on the basis of extremely elongate drumlins and megascale glacial lineations; all soft-sediment features. Whilst it appears that topographically unconstrained ice streams (eg. within the West Antarctic Ice Sheet) are generally underlain by deformable till, topographically constrained ice streams such as Jakobshavn Isbrae do not require deformable sediment and may occur on a bedrock-dominated bed. Analysis of DEM data and geomorphology and structural geology fieldwork in Northern Scotland and Northern England has shown the occurrence of highly streamlined bedforms in bedrock of the former base of topographically controlled palaeo-ice streams, which drained parts of the British Ice Sheet. The bedforms are predominantly bedrock megagrooves with asymmetric cross-profiles. In the Ullapool tributary of the Minch palaeo ice stream, bedrock megagrooves form the dominant evidence for ice streaming. The megagrooves are typically 5-15 m deep, 10-30 m wide and 500 - 3000 m long. Spacing of megagrooves is typically 100 - 200 m. In both study areas, the bedrock is strongly anisotropic, either consisting of thin-bedded strata or strongly foliated metasedimentary rocks, with the strata or foliation having a gentle dip. Megagrooves are best developed where the strike of the anisotropy is sub-parallel (within 10 - 20°) with palaeo ice flow. The bedrock in both areas has a well-developed, relatively densely spaced (< 1m), conjugate joint system. We suggest that asymmetric megagrooves are formed by

  18. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016

    NASA Astrophysics Data System (ADS)

    Rott, Helmut; Abdel Jaber, Wael; Wuite, Jan; Scheiblauer, Stefan; Floricioiu, Dana; Melchior van Wessem, Jan; Nagler, Thomas; Miranda, Nuno; van den Broeke, Michiel R.

    2018-04-01

    We analysed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high-resolution topographic data from the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method that applies DEM differencing, we computed the net mass balance of the main outlet glaciers using the mass budget method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO version 2.3p2. To study glacier flow and retrieve ice discharge we generated time series of ice velocity from data from different satellite radar sensors, with radar images of the satellites TerraSAR-X and TanDEM-X as the main source. The study area comprises tributaries to the Larsen A, Larsen Inlet and Prince Gustav Channel embayments (region A), the glaciers calving into the Larsen B embayment (region B) and the glaciers draining into the remnant part of the Larsen B ice shelf in Scar Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for the grounded glacier area of region A are -3.98 ± 0.33 Gt a-1 from 2011 to 2013 and -2.38 ± 0.18 Gt a-1 from 2013 to 2016. The corresponding numbers for region B are -5.75 ± 0.45 and -2.32 ± 0.25 Gt a-1. The mass balance in region C during the two periods was slightly negative, at -0.54 ± 0.38 Gt a-1 and -0.58 ± 0.25 Gt a-1. The main share in the overall mass losses of the region was contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010

  19. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed

    2006-01-01

    ). While the expansion of the warming oceans is estimated to be about a third of recent sea level rise, (Miller and Douglas 2004) the greatest potential for significantly increasing sea level lies in the Greenland and Antarctic ice sheets. For different reasons, each exhibits characteristics that suggest they are potentially unstable. In Antarctica, large portions of the ice cover rest on a soft bed that lies below sea level, making it vulnerable to runaway retreat. The Greenland ice sheet experiences considerable melt, which has the potential to rapidly accelerate the flow of ice toward the sea. While smaller ice masses, such as the Alaskan Glaciers and the Canadian ice caps, do not have anywhere near the same potential to impact sea level as the vast ice sheets do, many are melting rapidly, posing a significant near-term threat.

  20. Investigation into the effect of water chemistry on corrosion product formation in areas of accelerated flow

    NASA Astrophysics Data System (ADS)

    McGrady, John; Scenini, Fabio; Duff, Jonathan; Stevens, Nicholas; Cassineri, Stefano; Curioni, Michele; Banks, Andrew

    2017-09-01

    The deposition of CRUD (Chalk River Unidentified Deposit) in the primary circuit of a Pressurised Water Reactor (PWR) is known to preferentially occur in regions of the circuit where flow acceleration of coolant occurs. A micro-fluidic flow cell was used to recreate accelerated flow under simulated PWR conditions, by flowing water through a disc with a central micro-orifice. CRUD deposition was reproduced on the disc, and CRUD Build-Up Rates (BUR) in various regions of the disc were analysed. The effect of the local environment on BUR was investigated. In particular, the effect of flow velocity, specimen material and Fe concentration were considered. The morphology and composition of the deposits were analysed with respect to experimental conditions. The BUR of CRUD was found to be sensitive to flow velocity and Fe concentration, suggesting that mass transfer is an important factor. The morphology of the deposit was affected by the specimen material indicating a dependence on surface/particle electrostatics meaning surface chemistry plays an important role in deposition. The preferential deposition of CRUD in accelerated flow regions due to electrokinetic effects was observed and it was shown that higher Fe concentrations in solution increased BURs within the orifice whereas increased flow velocity reduced BURs.

  1. Monitoring of multiphase flows for superconducting accelerators and others applications

    NASA Astrophysics Data System (ADS)

    Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.

    2017-07-01

    This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.

  2. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  3. Making Ice Creep in the Classroom

    NASA Astrophysics Data System (ADS)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  4. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?

    NASA Astrophysics Data System (ADS)

    Truffer, M.

    2017-12-01

    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  5. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  6. Calculation of air movement in ice caves by using the CalcFlow method

    NASA Astrophysics Data System (ADS)

    Meyer, Christiane; Pflitsch, Andreas; Maggi, Valter

    2017-04-01

    We present a method to determine the air flow regime within ice caves by temperature loggers. Technical capabilities of conducting airflow measurements are restricted by the availability of energy at the ice cave study sites throughout the year. Though the knowledge of the airflow regime is a prerequisite for the understanding of the cave climate. By cross-correlating different time series of air temperature measurements inside a cave, we define the travel time of the air between the loggers, which corresponds to the time shift of best correlation, and use this result to derive the airflow speed. Then we estimate the temperature biases and scale factors for the temperature variations observed by the different loggers by a least squares adjustment. As quality control for bias and scale we use the formal errors of the estimation process. For the calculated airflow speed quality criteria are developed by use of a simulation study. Furthermore we will apply the method to temperature measurements in the static ice cave Schellenberger Eishöhle (Germany). In the end we show how the method can be used as an advanced filter for the separation of different signal contents of the temperature measurements.

  7. Volcano-ice age link discounted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1996-05-10

    Speculation that huge volcanic eruptions may have caused an immediate `volcanic winter` that devastated early humans and accelerated a slide into the Ice Age. However, further information from the Greenland ice sheet about the Toba errumption on the island of Sumatra 70,000 years ago, seems to indicate that such volcanic actions wasn`t a major climatic catalyst. This article discusses the evidence and further possibilities.

  8. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  9. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  10. Investigation of the aerothermodynamics of hypervelocity reacting flows in the ram accelerator

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Bruckner, A. P.; Mattick, A. T.; Knowlen, C.

    1992-01-01

    New diagnostic techniques for measuring the high pressure flow fields associated with high velocity ram accelerator propulsive modes was experimentally investigated. Individual propulsive modes are distinguished by their operating Mach number range and the manner in which the combustion process is initiated and stabilized. Operation of the thermally choked ram accelerator mode begins by injecting the projectile into the accelerator tube at a prescribed entrance velocity by means of a conventional light gas gun. A specially designed obturator, which is used to seal the bore of the gun, plays a key role in the ignition of the propellant gases in the subsonic combustion mode of the ram accelerator. Once ignited, the combustion process travels with the projectile and releases enough heat to thermally choke the flow within several tube diameters behind it, thereby stabilizing a high pressure zone on the rear of the projectile. When the accelerating projectile approaches the Chapman-Jouguet detonation speed of the propellant mixture, the combustion region is observed to move up onto the afterbody of the projectile as the pressure field evolves to a distinctively different form that implies the presence of supersonic combustion processes. Eventually, a high enough Mach number is reached that the ram effect is sufficient to cause the combustion process to occur entirely on the body. Propulsive cycles utilizing on-body heat release can be established either by continuously accelerating the projectile in a single propellant mixture from low initial in-tube Mach numbers (M less than 4) or by injecting the projectile at a speed above the propellant's Chapman-Jouguet detonation speed. The results of experimental and theoretical explorations of ram accelerator gas dynamic phenomena and the effectiveness of the new diagnostic techniques are presented in this report.

  11. Rewriting Ice Sheet "Glacier-ology"

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2006-12-01

    The revolution in glaciology driven by the suite of increasingly sophisticated satellite instruments has been no more extreme than in the area of ice dynamics. Years ago, glaciologists were (probably unwittingly) selective in what properties of mountain glaciers were also applied to ice sheets. This reinforced the view that they responded slowly to their environment. Notions of rapid response driven by the ideas of John Mercer, Bill Budd and Terry Hughes were politely rejected by the centrists of mainstream glaciological thought. How the tables have turned--and by the ice sheets themselves, captured in the act of rapidly changing by modern remote sensors! The saw-toothed record of sea-level change over past glacial-interglacial cycles required the existence of rapid ice loss processes. Satellite based observations, supported by hard-earned field observations have extended the time scale over which ice sheets can suddenly change to ever shorter intervals: from centuries, to decades, to years to even minutes. As changes continue to be observed, the scientific community is forced to consider new or previously ignored processes to explain these observations. The penultimate goal of ice-sheet dynamics is to credibly predict the future of both the Greenland and Antarctic ice sheets. In this important endeavor, there is no substitute for our ability to observe. Without the extensive data sets provided by remote sensing, numerical models can be neither tested nor improved. The impact of remote sensing on our existing ability to predict the future must be compared to our probable state of knowledge and ability were these data never collected. Among many satellite observed phenomena we would be largely or wholly ignorant of are the recent acceleration of ice throughout much of coastal Greenland; the sudden disintegration of multiple ice shelves along the Antarctic Peninsula; and the dramatic thinning and acceleration of the Amundsen Sea sector of West Antarctica. These

  12. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  13. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    PubMed

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  14. Deformation, warming and softening of Greenland’s ice by refreezing meltwater

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.

    2014-07-01

    Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.

  15. Acceleration of the highest energy cosmic rays through proton-neutron conversions in relativistic bulk flows

    NASA Astrophysics Data System (ADS)

    Derishev, E.; Aharonian, F.

    We show that, in the presence of radiation field, relativistic bulk flows can very quikly accelerate protons and electrons up to the energies limited either by Hillas criterion or by synchrotron losses. Unlike the traditional approach, we take advantage of continuous photon-induced conversion of charged particle species to neutral ones, and vice versa (proton-neutron or electron-photon). Such a conversion, though it leads to considerable energy losses, allows accelerated particles to increase their energies in each scattering by a factor roughly equal to the bulk Lorentz factor, thus avoiding the need in slow and relatively inefficient diffusive acceleration. The optical depth of accelerating region with respect to inelastic photon-induced reactions (pair production for electrons and photomeson reactions for protons) should be a substancial fraction of unity. Remarkably, self-tuning of the optical depth is automatically achieved as long as the photon density depends on the distance along the bulk flow. This mechanism can work in Gamma-Ray Bursts (GRBs), Active Galactic Nuclei (AGNs), microquasars, or any other object with relativistic bulk flows embedded in radiation-reach environment. Both GRBs and AGNs turn out to be capable of producing 1020 eV cosmic rays.

  16. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors

    NASA Astrophysics Data System (ADS)

    Briard, Jennie G.; Fernandez, Michael; de Luna, Phil; Woo, Tom. K.; Ben, Robert N.

    2016-05-01

    Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.

  17. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors

    PubMed Central

    Briard, Jennie G.; Fernandez, Michael; De Luna, Phil; Woo, Tom. K.; Ben, Robert N.

    2016-01-01

    Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds. PMID:27216585

  18. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors.

    PubMed

    Briard, Jennie G; Fernandez, Michael; De Luna, Phil; Woo, Tom K; Ben, Robert N

    2016-05-24

    Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.

  19. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  20. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Van Zante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and ow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  1. Loss of sea ice in the Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  2. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  3. Simulating Ice-Flow and Calving on Store Glacier, West Greenland, with a 3D Full Stokes Model

    NASA Astrophysics Data System (ADS)

    Todd, J.; Christoffersen, P.; Zwinger, T.; Luckman, A. J.; Benn, D.

    2015-12-01

    The mass balance and long-term stability of the ice sheets in Greenland and Antarctica depend heavily on the dynamics of their ice-ocean margins. Iceberg calving accounts for the majority of the net annual loss of ice in Antarctica and around half of that from Greenland. Furthermore, climate driven changes to dynamics at these calving margins can be transmitted far inland. Thus, predicting future sea level contribution from the cryosphere requires an improved understanding of calving, and the processes which link it to climate and ice-sheet flow. We present results from a new 3D calving model coupled to a full-Stokes, time evolving glacier dynamic model, implemented for Store Glacier, a 5-km-wide calving glacier in the Uummannaq region of West Greenland, which flows at a rate of 20 m/day at its terminus. The model is developed using the open source finite element package Elmer/Ice, with the criterion that calving occurs when surface and basal crevasses meet. Crevasses open in response to tensile stresses near the terminus and water pressure at the bed. When the model was applied in 2D for the central flowline of Store Glacier, we found that basal topography exerts overarching control on the long term position of the calving front, while ice mélange buttressing allows the seasonal extension of a floating tongue, which collapses in early summer. New results emerging from implementation of calving in a 3D model indicate significant spatial heterogeneity in calving dynamics because the northern half of the terminus is grounded whereas the southern half is floating. This contrasting setting affects calving dynamics, further underlining the importance of geometry and basal topography, and suggesting that lower dimensional calving models may miss important aspects of calving dynamics. Our results also suggest that implementing grounding line dynamics is important for modelling calving, even for glaciers which are, for the most part, firmly grounded.

  4. Multiple-grid convergence acceleration of viscous and inviscid flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1983-01-01

    A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.

  5. Bayesian inference of ice thickness from remote-sensing data

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; Huss, Matthias

    2017-04-01

    Knowledge about ice thickness and volume is indispensable for studying ice dynamics, future sea-level rise due to glacier melt or their contribution to regional hydrology. Accurate measurements of glacier thickness require on-site work, usually employing radar techniques. However, these field measurements are time consuming, expensive and sometime downright impossible. Conversely, measurements of the ice surface, namely elevation and flow velocity, are becoming available world-wide through remote sensing. The model of Farinotti et al. (2009) calculates ice thicknesses based on a mass conservation approach paired with shallow ice physics using estimates of the surface mass balance. The presented work applies a Bayesian inference approach to estimate the parameters of a modified version of this forward model by fitting it to both measurements of surface flow speed and of ice thickness. The inverse model outputs ice thickness as well the distribution of the error. We fit the model to ten test glaciers and ice caps and quantify the improvements of thickness estimates through the usage of surface ice flow measurements.

  6. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.

    PubMed

    Buckeridge, Erica; LeVangie, Marc C; Stetter, Bernd; Nigg, Sandro R; Nigg, Benno M

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30 m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice.

  7. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  8. Deposits related to supercritical flows in glacifluvial deltas and subaqueous ice-contact fans: Integrating facies analysis and ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Lang, Joerg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta

    2017-04-01

    Bedforms related to supercritical flows have recently received much interest and the understanding of flow morphodynamics and depositional processes has been greatly advanced. However, outcrop studies of these bedforms are commonly hampered by their long wavelengths. Therefore, we combined outcrop-based facies analysis with extensive ground-penetrating radar (GPR) measurements. Different GPR antennas (200, 400 and 1500 MHz) were utilised to measure both long profiles and densely spaced grids in order to map the large-scale facies architecture and image the three-dimensional geometry of the deposits. The studied delta and subaqueous ice-contact fan successions were deposited within ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. These glacilacustrine depositional systems are characterised by high aggradation rates due to the rapid expansion and deceleration of high-energy sediment-laden flows, favouring the preservation of bedforms related to supercritical flows. In flow direction, delta foresets commonly display lenticular scours, which are 2 to 6 m wide and 0.15 to 0.5 m deep. Characteristically, scours are filled by upslope dipping backsets, consisting of pebbly sand. In a few cases, massive and deformed strata were observed, passing upflow into backsets. Across flow, scours are 2 to 3 m wide and typically display a concentric infill. The scour fills are commonly associated with subhorizontally or sinusoidal stratified pebbly sand. These facies types are interpreted as deposits of cyclic steps and antidunes, respectively, representing deposition from supercritical density flows, which formed during high meltwater discharge events or regressive slope failures (Winsemann et al., in review). The GPR-sections show that the scour fills form trains along the delta foresets, which can be traced for up to 15 m. The studied subaqueous ice-contact fan succession relates to the zone of flow

  9. Geomorphology and till architecture of terrestrial palaeo-ice streams of the southwest Laurentide Ice Sheet: A borehole stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Norris, Sophie L.; Evans, David J. A.; Cofaigh, Colm Ó.

    2018-04-01

    A multidimensional study, utilising geomorphological mapping and the analysis of regional borehole stratigraphy, is employed to elucidate the regional till architecture of terrestrial palaeo-ice streams relating to the Late Wisconsinan southwest Laurentide Ice Sheet. Detailed mapping over a 57,400 km2 area of southwestern Saskatchewan confirms previous reconstructions of a former southerly flowing ice stream, demarcated by a 800 km long corridor of megaflutes and mega-scale glacial lineations (Ice Stream 1) and cross cut by three, formerly southeast flowing ice streams (Ice Streams 2A, B and C). Analysis of the lithologic and geophysical characteristics of 197 borehole samples within these corridors reveals 17 stratigraphic units comprising multiple tills and associated stratified sediments overlying preglacial deposits, the till thicknesses varying with both topography and distance down corridor. Reconciling this regional till architecture with the surficial geomorphology reveals that surficial units are spatially consistent with a dynamic switch in flow direction, recorded by the cross cutting corridors of Ice Streams 1, 2A, B and C. The general thickening of tills towards lobate ice stream margins is consistent with subglacial deformation theory and variations in this pattern on a more localised scale are attributed to influences of subglacial topography including thickening at buried valley margins, thinning over uplands and thickening in overridden ice-marginal landforms.

  10. Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity

    NASA Astrophysics Data System (ADS)

    Borstad, Chris; McGrath, Daniel; Pope, Allen

    2017-05-01

    Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.

  11. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  12. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion.

    PubMed

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo; Pott, Frank Christian

    2008-08-01

    In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires several cold immersions. This study examines whether thorough instruction enables non-habituated persons to attenuate the ventilatory component of cold-shock response. There were nine volunteers (four women) who were lowered into a 0 degrees C immersion tank for 60 s. Middle cerebral artery mean velocity (CBFV) was measured together with ventilatory parameters and heart rate before, during, and after immersion. Within seconds after immersion in ice-water, heart rate increased significantly from 95 +/- 8 to 126 +/- 7 bpm (mean +/- SEM). Immersion was associated with an elevation in respiratory rate (from 12 +/- 3 to 21 +/- 5 breaths, min(-1)) and tidal volume (1022 +/- 142 to 1992 +/- 253 ml). Though end-tidal carbon dioxide tension decreased from 4.9 +/- 0.13 to 3.9 +/- 0.21 kPa, CBFV was insignificantly reduced by 7 +/- 4% during immersion with a brief nadir of 21 +/- 4%. Even without prior cold-water experience, subjects were able to suppress reflex hyperventilation following ice-water immersion, maintaining the cerebral blood flow velocity at a level not associated with impaired consciousness. This study implies that those susceptible to accidental cold-water immersion could benefit from education in cold-shock response and the possibility of reducing the ventilatory response voluntarily.

  13. Wind-Driven Formation of Ice Bridges in Straits.

    PubMed

    Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A

    2017-03-24

    Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field. The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.

  14. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE PAGES

    Smith, J. A.; Andersen, T. J.; Shortt, M.; ...

    2016-11-23

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  15. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. A.; Andersen, T. J.; Shortt, M.

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  16. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  17. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    A coupled ice stream-ice shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded ice flow. A response to warming is seen in grounding line retreat and grounded ice loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the ice shelf lateral margin, and to processes that contribute to this thinning. Parameters controlling the flow of grounded ice have a strong influence on the response to sub-ice shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.

  18. Challenges for understanding Antarctic surface hydrology and ice-shelf stability

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Bell, R. E.; Banwell, A. F.; Boghosian, A.; Spergel, J.; Trusel, L. D.

    2017-12-01

    It is widely hypothesized that surface meltwater can contribute to ice mass loss in Antarctica through its impact on ice-shelf stability. Meltwater potentially expedites ice-shelf calving by flowing into and enlarging existing crevasses, and could even trigger ice-shelf disintegration via stresses generated by melt ponds. When ice shelves collapse, the adjacent grounded ice accelerates and thins, which contributes to sea-level rise. How these mechanisms mediate the interactions between the atmosphere, the ocean and the ice sheet is the subject of long-standing research efforts. The drainage of water across the surface of the Antarctic Ice Sheet and its ice shelves is beginning to be recognized as another important aspect of the system. Recent studies have revealed that surface meltwater drainage is more widespread than previously thought and that surface hydrological systems in Antarctica may expand and proliferate this century. Contrasting hypotheses regarding the impact of the proliferation of drainage systems on ice-shelf stability have emerged. Surface drainage could deliver meltwater to vulnerable area or export meltwater from ice shelves entirely. Which behavior dominates may have a large impact on the future response of the Antarctic Ice Sheet to atmospheric warming. We will discuss these recent discoveries and hypotheses, as well as new detailed studies of specific areas where hydrological systems are well developed, such as Amery and Nimrod Ice Shelves. We will highlight analogies that can be drawn with Greenlandic (near-)surface hydrology and, crucially, where hydrological systems on the two ice sheets are very different, leading to potentially important gaps in our understanding. Finally, we will look ahead to the key questions that we argue will need to be if we are to determine the role Antarctic surface hydrology could play in the future of the ice sheet. These include: Where does meltwater pond today and how will this change this century? What

  19. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  20. Numerical simulations of the superdetonative ram accelerator combusting flow field

    NASA Technical Reports Server (NTRS)

    Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.

    1993-01-01

    The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.

  1. Comparative Study of Three Data Assimilation Methods for Ice Sheet Model Initialisation

    NASA Astrophysics Data System (ADS)

    Mosbeux, Cyrille; Gillet-Chaulet, Fabien; Gagliardini, Olivier

    2015-04-01

    The current global warming has direct consequences on ice-sheet mass loss contributing to sea level rise. This loss is generally driven by an acceleration of some coastal outlet glaciers and reproducing these mechanisms is one of the major issues in ice-sheet and ice flow modelling. The construction of an initial state, as close as possible to current observations, is required as a prerequisite before producing any reliable projection of the evolution of ice-sheets. For this step, inverse methods are often used to infer badly known or unknown parameters. For instance, the adjoint inverse method has been implemented and applied with success by different authors in different ice flow models in order to infer the basal drag [ Schafer et al., 2012; Gillet-chauletet al., 2012; Morlighem et al., 2010]. Others data fields, such as ice surface and bedrock topography, are easily measurable with more or less uncertainty but only locally along tracks and interpolated on finer model grid. All these approximations lead to errors on the data elevation model and give rise to an ill-posed problem inducing non-physical anomalies in flux divergence [Seroussi et al, 2011]. A solution to dissipate these divergences of flux is to conduct a surface relaxation step at the expense of the accuracy of the modelled surface [Gillet-Chaulet et al., 2012]. Other solutions, based on the inversion of ice thickness and basal drag were proposed [Perego et al., 2014; Pralong & Gudmundsson, 2011]. In this study, we create a twin experiment to compare three different assimilation algorithms based on inverse methods and nudging to constrain the bedrock friction and the bedrock elevation: (i) cyclic inversion of friction parameter and bedrock topography using adjoint method, (ii) cycles coupling inversion of friction parameter using adjoint method and nudging of bedrock topography, (iii) one step inversion of both parameters with adjoint method. The three methods show a clear improvement in parameters

  2. Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian

    2018-02-01

    The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.

  3. Radiostratigraphy and age structure of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu

    2015-01-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664

  4. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap

    NASA Astrophysics Data System (ADS)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Altena, Bas; Schellenberger, Thomas; Gladstone, Rupert; Moore, John C.

    2018-05-01

    The marine-terminating outlet in Basin 3, Austfonna ice cap, has been accelerating since the mid-1990s. Stepwise multi-annual acceleration associated with seasonal summer speed-up events was observed before the outlet entered the basin-wide surge in autumn 2012. We used multiple numerical models to explore hydrologic activation mechanisms for the surge behaviour. A continuum ice dynamic model was used to invert basal friction coefficient distributions using the control method and observed surface velocity data between April 2012 and July 2014. This has provided input to a discrete element model capable of simulating individual crevasses, with the aim of finding locations where meltwater entered the glacier during the summer and reached the bed. The possible flow paths of surface meltwater reaching the glacier bed as well as those of meltwater produced at the bed were calculated according to the gradient of the hydraulic potential. The inverted friction coefficients show the unplugging of the stagnant ice front and expansion of low-friction regions before the surge reached its peak velocity in January 2013. Crevasse distribution reflects the basal friction pattern to a high degree. The meltwater reaches the bed through the crevasses located above the margins of the subglacial valley and the basal melt that is generated mainly by frictional heating flows either to the fast-flowing units or potentially accumulates in an overdeepened region. Based on these results, the mechanisms facilitated by basal meltwater production, crevasse opening and the routing of meltwater to the bed are discussed for the surge in Basin 3.

  5. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    PubMed

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  6. A comparison of the static and flow methods for the detection of ice nuclei

    NASA Astrophysics Data System (ADS)

    Hussain, K.; Kayani, S. A.

    The use of the membrane-filter processing chamber to study ice nuclei concentrations has become wide-spread since its introduction by Bigg et al. in 1961. The technique is convenient because of the simplicity of its operation and because it could be run remote from the place of field study. It has however been found to suffer from a number of drawbacks, namely, the volume effect, the chamber height effect, the vapour depletion effect, etc. Comparison of the results obtained by running a traditional filter processor and a continuous flow chamber under identical temperature and humidity conditions for polluted Manchester air has shown that the latter technique detects more ice nuclei than the former one by a factor of about 14±4. These results confirm that the filter technique suffers from the vapour depletion effect. The present results are in agreement with Bigg et al., Mossop and Thorndike, and King. In the light of our findings the filter technique does not appear to be a standard method. Therefore the ice nuclei data obtained with the filter method should not be extended to clouds in order to study their microphysical properties.

  7. Reliability of Triaxial Accelerometry for Measuring Load in Men's Collegiate Ice Hockey.

    PubMed

    Van Iterson, Erik H; Fitzgerald, John S; Dietz, Calvin C; Snyder, Eric M; Peterson, Ben J

    2017-05-01

    Van Iterson, EH, Fitzgerald, JS, Dietz, CC, Snyder, EM, and Peterson, BJ. Reliability of triaxial accelerometry for measuring load in men's collegiate ice hockey. J Strength Cond Res 31(5): 1305-1312, 2017-Wearable microsensor technology incorporating triaxial accelerometry is used to quantify an index of mechanical stress associated with sport-specific movements termed PlayerLoad. The test-retest reliability of PlayerLoad in the environmental setting of ice hockey is unknown. The primary aim of this study was to quantify the test-retest reliability of PlayerLoad in ice hockey players during performance of tasks simulating game conditions. Division I collegiate male ice hockey players (N = 8) wore Catapult Optimeye S5 monitors during repeat performance of 9 ice hockey tasks simulating game conditions. Ordered ice hockey tasks during repeated bouts included acceleration (forward or backward), 60% top-speed, top-speed (forward or backward), repeated shift circuit, ice coasting, slap shot, and bench sitting. Coefficient of variation (CV), intraclass correlation coefficient (ICC), and minimum difference (MD) were used to assess PlayerLoad reliability. Test-retest CVs and ICCs of PlayerLoad were as follows: 8.6% and 0.54 for forward acceleration, 13.8% and 0.78 for backward acceleration, 2.2% and 0.96 for 60% top-speed, 7.5% and 0.79 for forward top-speed, 2.8% and 0.96 for backward top-speed, 26.6% and 0.95 for repeated shift test, 3.9% and 0.68 for slap shot, 3.7% and 0.98 for coasting, and 4.1% and 0.98 for bench sitting, respectively. Raw differences between bouts were not significant for ice hockey tasks (p > 0.05). For each task, between-bout raw differences were lower vs. MD: 0.06 vs. 0.35 (forward acceleration), 0.07 vs. 0.36 (backward acceleration), 0.00 vs. 0.06 (60% top-speed), 0.03 vs. 0.20 (forward top-speed), 0.02 vs. 0.09 (backward top-speed), 0.18 vs. 0.64 (repeated shift test), 0.02 vs. 0.10 (slap shot), 0.00 vs. 0.10 (coasting), and 0.01 vs. 0

  8. SPH Modelling of Sea-ice Pack Dynamics

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  9. Head-impact mechanisms in men's and women's collegiate ice hockey.

    PubMed

    Wilcox, Bethany J; Machan, Jason T; Beckwith, Jonathan G; Greenwald, Richard M; Burmeister, Emily; Crisco, Joseph J

    2014-01-01

    Concussion injury rates in men's and women's ice hockey are reported to be among the highest of all collegiate sports. Quantification of the frequency of head impacts and the magnitude of head acceleration as a function of the different impact mechanisms (eg, head contact with the ice) that occur in ice hockey could provide a better understanding of this high injury rate. To quantify and compare the per-game frequency and magnitude of head impacts associated with various impact mechanisms in men's and women's collegiate ice hockey players. Cohort study. Collegiate ice hockey rink. Twenty-three men and 31 women from 2 National Collegiate Athletic Association Division I ice hockey teams. We analyzed magnitude and frequency (per game) of head impacts per player among impact mechanisms and between sexes using generalized mixed linear models and generalized estimating equations to account for repeated measures within players. Participants wore helmets instrumented with accelerometers to allow us to collect biomechanical measures of head impacts sustained during play. Video footage from 53 games was synchronized with the biomechanical data. Head impacts were classified into 8 categories: contact with another player; the ice, boards or glass, stick, puck, or goal; indirect contact; and contact from celebrating. For men and women, contact with another player was the most frequent impact mechanism, and contact with the ice generated the greatest-magnitude head accelerations. The men had higher per-game frequencies of head impacts from contact with another player and contact with the boards than did the women (P < .001), and these impacts were greater in peak rotational acceleration (P = .027). Identifying the impact mechanisms in collegiate ice hockey that result in frequent and high-magnitude head impacts will provide us with data that may improve our understanding of the high rate of concussion in the sport and inform injury-prevention strategies.

  10. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  11. Potential Climatic Effects on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.

    1984-01-01

    The Greenland Ice Sheet covers an area of 1,720,000 sq. km and contains approximately 2,600,000 cu km of ice. Most of the ice sheet receives an excess of snow accumulation over the amount of ice lost to wind, meltwater run-off or other ablative processes. The majority of mass loss occurs at the margin of the ice sheet as either surface melt, which flows into the sea or calving of icebergs from the tongues of outlet glaciers. Many estimates of these processes were published. An average of five published estimates is summarized. If these estimates are correct, then the Greenland Ice Sheet is in approximate equilibrium and contributes 490 cu km/a of fresh water to the North Atlantic and Arctic Oceans. Climate effects, ice sheet flow, and application of remote sensing to tracking of the ice sheet are discussed.

  12. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  13. Multi-processor including data flow accelerator module

    DOEpatents

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  14. Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry

    NASA Astrophysics Data System (ADS)

    Coren, F.; Delisle, G.; Sterzai, P.

    2003-09-01

    The ice flow conditions of a 100 x 100 km area of Victoria Land, Antarctica were analyzed with the synthetic aperture radar (SAR) technique. The area includes a number of meteorite concentration sites, in particular the Allan Hills ice fields. Regional ice flow velocities around the Mid- western and Near-western ice fields and the Allan Hills main ice field are shown to be 2.5 m yr-1. These sites are located on a horseshoe-shaped area that bounds an area characterized by higher ice flow velocities of up to 5 m yr-1. Meteorite find locations on the Elephant Moraine are located in this "high ice flow" area. The SAR derived digital elevation model (DEM) shows atypical low surface slopes for Antarctic conditions, which are the cause for the slow ice movements. Numerous ice rises in the area are interpreted to cap sub-ice obstacles, which were formed by tectonic processes in the past. The ice rises are considered to represent temporary features, which develop only during warm stages when the regional ice stand is lowered. Ice depressions, which develop in warm stages on the lee side of ice rises, may act as the sites of temporary build-up of meteorite concentrations, which turn inoperative during cold stages when the regional ice level rises and the ice rises disappear. Based on a simplified ice flow model, we argue that the regional ice flow in cold stages is reduced by a factor of at least 3.

  15. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; hide

    2011-01-01

    We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

  16. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A.

    1990-01-01

    A complex sequence of pyroclastic flows and surges erupted by Nevado del Ruiz volcano on 13 November 1985 interacted with snow and ice on the summit ice cap to trigger catastrophic lahars (volcanic debris flows), which killed more than 23,000 people living at or beyond the base of the volcano. The rapid transfer of heat from the hot eruptive products to about 10 km2 of the snowpack, combined with seismic shaking, produced large volumes of meltwater that flowed downslope, liquefied some of the new volcanic deposits, and generated avalanches of saturated snow, ice and rock debris within minutes of the 21:08 (local time) eruption. About 2 ?? 107 m3 of water was discharged into the upper reaches of the Molinos, Nereidas, Guali, Azufrado and Lagunillas valleys, where rapid entrainment of valley-fill sediment transformed the dilute flows and avalanches to debris flows. Computed mean velocities of the lahars at peak flow ranged up to 17 m s-1. Flows were rapid in the steep, narrow upper canyons and slowed with distance away from the volcano as flow depth and channel slope diminished. Computed peak discharges ranged up to 48,000 m3 s-1 and were greatest in reaches 10 to 20 km downstream from the summit. A total of about 9 ?? 107 m3 of lahar slurry was transported to depositional areas up to 104 km from the source area. Initial volumes of individual lahars increased up to 4 times with distance away from the summit. The sedimentology and stratigraphy of the lahar deposits provide compelling evidence that: (1) multiple initial meltwater pulses tended to coalesce into single flood waves; (2) lahars remained fully developed debris flows until they reached confluences with major rivers; and (3) debris-flow slurry composition and rheology varied to produce gradationally density-stratified flows. Key lessons and reminders from the 1985 Nevado del Ruiz volcanic eruption are: (1) catastrophic lahars can be generated on ice- and snow-capped volcanoes by relatively small eruptions; (2

  17. Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Arbelaez Moreno, Lina; Sookhan, Shane

    2018-01-01

    The Late Wisconsin Cordilleran Ice Sheet (CIS) of western North America is thought to have reached its maximum extent (∼2.5 × 106 km2) as late at c. 14.5 ka. Most (80%) of the ice sheet's bed consists of high mountains but its 'core zone' sited on plateaux of the Intermontane Belt of British Columbia and coterminous parts of the USA, shows broad swaths of subglacially-streamlined rock and sediment. Broad scale mapping from new digital imagery data identifies three subglacial bed types: 1) 'hard beds' of variably streamlined bedrock; 2) drumlinized 'soft beds' of deformation till reworked from antecedent sediment, and 3) 'mixed beds' of variably-streamlined bedrock protruding through drumlinized sediment. Drumlins on soft beds appear to be erosional features cut into till and antecedent sediments, and identify the catchment areas of paleo ice streams expressed downglacier as flow sets of megascale glacial lineations (MSGLs). 'Grooved' and 'cloned' drumlins appear to record the transition from drumlins to MSGLs. The location of paleo ice streams reflects topographic funneling of ice from plateau surfaces through outlet valleys and a soft bed that sustained fast flow; rock-cut MSGLs are also present locally on the floors of outlet valleys. CIS disintegrated in <1000 years shortly after c. 13.0 ka releasing very large volumes of meltwater and sediment to the Pacific coast. Abrupt deglaciation may reflect unsustainable calving of marine-based ice streams along the glacio-isostatically depressed coast; large deep 'fiord lakes' in the ice sheet's interior may have played an analogous role. Mapping of the broad scale distribution of bed types across the Cordilleran Ice Sheet provides key information for paleoglaciological modelling and also for understanding the beds of modern ice masses such as the Greenland Ice Sheet which is of a comparable topographic setting.

  18. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.

    2016-11-01

    Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.

  19. Accelerated iteration schemes for transonic flow calculations using fast poisson solvers. [aerodynamics

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1975-01-01

    The use of a fast elliptic solver in combination with relaxation is presented as an effective way to accelerate the convergence of transonic flow calculations, particularly when a marching scheme can be used to treat the supersonic zone in the relaxation process.

  20. An On-Ice Measurement Approach to Analyse the Biomechanics of Ice Hockey Skating

    PubMed Central

    Buckeridge, Erica; LeVangie, Marc C.; Stetter, Bernd; Nigg, Sandro R.; Nigg, Benno M.

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice. PMID:25973775

  1. The geomorphic signature of present ice-sheet flow in the radar-sounded subglacial record: Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Davies, D.; King, E. C.; Vaughan, D. G.; Cornford, S. L.; Brisbourne, A.; Smith, A.; De Rydt, J.; Graham, A. G. C.; Spagnolo, M.

    2016-12-01

    Deglaciated landscapes and landforms are much used in the quest to reconstruct past ice-sheet behaviour, on the principle that aspects of landform shapes, sizes and relative associations "fossilise" palaeo-ice-sheet processes. Such techniques have been widely used around the margin of the marine West Antarctic Ice Sheet, taking advantage of bathymetric surveying techniques which have exposed a rich suite of landform assemblages across West Antarctica's continental shelf. Though these geomorphological interpretations are solidly grounded in glacial geological theory, there has, until now, been little ability to compare these deglaciated, and potentially postglacially-modified, landforms offshore with landforms currently situated (and potentially still evolving) beneath the contemporary ice sheet. This paper presents a widespread view of glacial landforms presently situated beneath 1-2 km of ice in multi-square-km "windows to the bed" distributed throughout the catchment of Pine Island Glacier, West Antarctica. Imaged over three field seasons between 2007 and 2013 by dedicated radar surveys designed specifically to capture landforms analogous to those surveyed offshore by bathymetric surveying, the results provide significant insights for the interpretation of palaeo-ice-stream landforms, and their use in modelling ice-ocean interactions around the fringes of marine ice sheets. We show that landform sizes, shapes and associations vary significantly around Pine Island Glacier's catchment. The key controls appear to be substrate composition, pre-existing tectonic structure, and longstanding spatial stability of the ice-stream's flow distribution. The findings offer crucial information for modelling ice coupling to the bed, which should feed through to wider efforts to reconstruct the past behaviour of this significant marine ice sheet using its palaeoglacial landforms.

  2. A numerical simulation of the flow in the diffuser of the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Keith, Theo G., Jr.

    1990-01-01

    The flow in the diffuser section of the Icing Research Tunnel at the NASA Lewis Research Center is numerically investigated. To accomplish this, an existing computer code is utilized. The code, known as PARC3D, is based on the Beam-Warming algorithm applied to the strong conservation law form of the complete Navier-Stokes equations. The first portion of the paper consists of a brief description of the diffuser and its current flow characteristics. A brief discussion of the code work follows. Predicted velocity patterns are then compared with the measured values.

  3. On thin ice/in hot water: Rapid drawdown of Wordie Ice Shelf glaciers in the decades after collapse in response to a changing ocean

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Gardner, A. S.

    2016-12-01

    Over the past 50 years, several Antarctic Peninsula ice shelves have retreated or collapsed completely. One such collapse was the Wordie Ice Shelf (WIS), located in Marguerite Bay, which began to disintegrate around 1989. We use several observational datasets to show that the glaciers that used to maintain WIS have experienced a surprising acceleration in flow ( 500m/yr) that began 2008, nearly 20 years after the onset of WIS collapse. During the same period, airborne altimetry from NASA Operation IceBridge shows the glaciers experienced a drawdown at their calving fronts between 4 and 9 m/yr, a near-doubling in rate of elevation change from the 1990's and early-2000's. The time lag between WIS collapse and rapid glacier drawdown suggests that these recent changes are unrelated to loss of buttressing. We identify possible links to changes in ocean conditions using in-situ Palmer Station Long-Term Ecological Research (PAL LTER) ocean CTD-gridded observations (Martinson et al., 2008) taken along the continental shelf on the west Antarctic Peninsula (WAP) since 1993. We use ECCO2 simulations and atmospheric reanalysis data to characterize changes in atmospheric forcing. We also measure changes in ice shelf area using historic archives and Landsat imagery for 50 glacier systems along the WAP from 1945 to present. Surface structural changes in the WIS system, e.g., melt ponds, sea/fast ice presence, and crevasse density/orientation, are also examined. We conclude that recent changes in WIS tributaries likely resulted from a significant increase in upwelling of warm, salty Upper Circumpolar Deep Water (UCDW) due to enhanced wind forcing following coincident global atmospheric oscillation events, namely a positive Southern Annular Mode and a moderate La Nina event. This enabled enhanced incursions of UCDW into Marguerite Bay between 2008-2014, in part due to the deep Marguerite Trough that connects the bay to the continental shelf break, along which the southern boundary

  4. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  5. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  6. Greenland ice sheet beyond 2100: Simulating its evolution and influence using the coupled climate-ice sheet model EC-Earth - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Christensen, J. H.; Madsen, M. S.; Ringgaard, I. M.; Petersen, R. A.; Langen, P. P.

    2017-12-01

    Greenland ice sheet (GrIS) is observed undergoing a rapid change in the recent decades, with an increasing area of surface melting and ablation and a speeding mass loss. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems incorporating with an explicit and physically consistent ice sheet module. In this work we study the GrIS evolution and its interaction with the climate system using a fully coupled global climate model with a dynamical ice sheet model for the GrIS. The coupled model system, EC-EARTH - PISM, consisting of the atmosphere-ocean-sea ice model system EC-EARTH, and the Parallel Ice Sheet Model (PISM), has been employed for a 1400-year simulation forced by CMIP5 historical forcing from 1850 to 2005 and continued along an extended RCP8.5 scenario with the forcing peaking at 2200 and stabilized hereafter. The simulation reveals that, following the anthropogenic forcing increase, the global mean surface temperature rapidly rises about 10 °C in the 21st and 22nd century. After the forcing stops increasing after 2200, the temperature change slows down and eventually stabilizes at about 12.5 °C above the preindustrial level. In response to the climate warming, the GrIS starts losing mass slowly in the 21st century, but the ice retreat accelerates substantially after 2100 and ice mass loss continues hereafter at a constant rate of approximately 0.5 m sea level rise equivalence per 100 years, even as the warming rate gradually levels off. Ultimately the volume and extent of GrIS reduce to less than half of its preindustrial value. To understand the interaction of GrIS with the climate system, the characteristics of atmospheric and oceanic circulation in the warm climate are analyzed. The circulation patterns associated with the negative surface mass balance that leads to GrIS retreat are investigated

  7. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  8. Numerical studies of unsteady two dimensional subsonic flows using the ICE method. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.

    1973-01-01

    A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.

  9. How will melting of ice affect volcanic hazards in the twenty-first century?

    PubMed

    Tuffen, Hugh

    2010-05-28

    Glaciers and ice sheets on many active volcanoes are rapidly receding. There is compelling evidence that melting of ice during the last deglaciation triggered a dramatic acceleration in volcanic activity. Will melting of ice this century, which is associated with climate change, similarly affect volcanic activity and associated hazards? This paper provides a critical overview of the evidence that current melting of ice will increase the frequency or size of hazardous volcanic eruptions. Many aspects of the link between ice recession and accelerated volcanic activity remain poorly understood. Key questions include how rapidly volcanic systems react to melting of ice, whether volcanoes are sensitive to small changes in ice thickness and how recession of ice affects the generation, storage and eruption of magma at stratovolcanoes. A greater frequency of collapse events at glaciated stratovolcanoes can be expected in the near future, and there is strong potential for positive feedbacks between melting of ice and enhanced volcanism. Nonetheless, much further research is required to remove current uncertainties about the implications of climate change for volcanic hazards in the twenty-first century.

  10. Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machicoane, Nathanaël; Volk, Romain

    We investigate the response of large inertial particle to turbulent fluctuations in an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding particle dynamics and may permit stochastic process modelization using two-time models (for instance, Sawford’s). As particles are tracked over long timesmore » in the quasi-totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.« less

  11. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  12. The Milankovitch Signature of the air Content Along the EPICA DC Ice Record: a Tool Towards an Absolute Dating and Implication for ice Flow Modeling

    NASA Astrophysics Data System (ADS)

    Raynaud, D.; Duval, P.; Lemieux-Dudon, B.; Lipenkov, V.; Parrenin, F.

    2006-12-01

    Air content of polar ice, V, depends primarily on air pressure, temperature and pore volume at close-off prevailing at the site of ice formation. Here we present the recently measured V record of the EPICA DC (EDC) Antarctic ice core covering the last 650,000 years. The first 440,000 years remarkably displays the fundamental Milankovitch orbital frequencies. The 100 kyr period, corresponding to the eccentricity of the Earth's orbit and found in the V record, likely reflects essentially the pressure/elevation signature of V. But most of the variations observed in the V record cannot be explained neither by air pressure nor by temperature changes, and then should reflect properties influencing the porosity at close-off other than temperature. A wavelet analysis indicates a dominant period around 41 kyr, the period characteristic of the obliquity variations of the Earth's axis. We propose that the local insolation, via the solar radiation absorbed by the snow, leaves its imprint on the snow structure, then affects the snow-firn transition, and therefore is one of the controlling factors for the porosity at close-off. Such mechanism could account for the observed anti-correlation between local insolation and V. We estimate the variations of the absorbed solar flux in the near-surface snow layers on the basis of a simple albedo model (Lemieux-Dudon et al., this session). We compare the dating of the ice obtained using the local insolation signal deduced from the V record with a chronology based on ice flow modelling. We discuss the glaciological implications of the comparison between the two chronologies, as well as the potential of local insolation markers for approaching an absolute dating of ice core. The latest results covering the period 440-650 kyr BP will also be presented.

  13. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  14. Accelerated redox reaction between chromate and phenolic pollutants during freezing.

    PubMed

    Ju, Jinjung; Kim, Jaesung; Vetráková, Ľubica; Seo, Jiwon; Heger, Dominik; Lee, Changha; Yoon, Ho-Il; Kim, Kitae; Kim, Jungwon

    2017-05-05

    The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at -20°C) was compared with the corresponding reaction in water (i.e., at 25°C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV-vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A turbulence model for iced airfoils and its validation

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Chen, Hsun H.; Cebeci, Tuncer

    1992-01-01

    A turbulence model based on the extension of the algebraic eddy viscosity formulation of Cebeci and Smith developed for two dimensional flows over smooth and rough surfaces is described for iced airfoils and validated for computed ice shapes obtained for a range of total temperatures varying from 28 to -15 F. The validation is made with an interactive boundary layer method which uses a panel method to compute the inviscid flow and an inverse finite difference boundary layer method to compute the viscous flow. The interaction between inviscid and viscous flows is established by the use of the Hilbert integral. The calculated drag coefficients compare well with recent experimental data taken at the NASA-Lewis Icing Research Tunnel (IRT) and show that, in general, the drag increase due to ice accretion can be predicted well and efficiently.

  16. Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2016-01-01

    Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.

  17. Flexural-gravity Wave Attenuation in a Thick Ice Shelf

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.

  18. Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.

    2017-12-01

    The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.

  19. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    NASA Astrophysics Data System (ADS)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  20. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.

    2017-12-01

    projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.

  1. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  2. Possible recent and ancient glacial ice flow in the south polar region of Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1992-01-01

    Martian polar science began almost as soon as small telescopes were trained on the planet. The seasonal expansion and contraction of the polar caps and their high albedoes led most astronomers to think that water ice is the dominant constituent. In 1911 Lowell perceived a bluish band around the retreating edge of the polar caps, and interpreted it as water from melting polar ice and seasonal snow. An alternative idea in his time was that the polar caps consist of frozen carbonic acid. Lowell rejected the carbonic acid hypothesis on account of his blue band. He also pointed out that carbonic acid would sublimate rather than melt at confining pressures near and below one bar, hence, carbonic acid could not account for the blue band. In comparing Lowell's theories with today's knowledge, it is recognized that (1) sublimation is mainly responsible for the growth and contraction of Mars' polar caps, (2) carbon dioxide is a major component of the southern polar cap, and (3) Lowell's blue band was probably seasonal dust and/or clouds. Geomorphic evidence that glacial ice and glacial melt waters once flowed over broad areas of the southern polar region. Two aspects of the south polar region suggest possible glacial processes during two distinct eras in Mars' history.

  3. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    PubMed

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  4. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  5. Oceanic Low Blows Hitting Ice Sheets Where It Hurts

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    2006-01-01

    The recent acceleration, thinning and retreat of large outlet glaciers in both Antarctica and Greenland is altering the mass balance of these two large ice sheets and increasing their contribution to rising sea level. In this short Perspective solicited by Science for a special March 24th issue on sea level change, I argue that the cause of these bihemispheric changes is that warmer water has gained access to the undersides of these glaciers where they come afloat from the continent. This process is particularly effective at accelerating glaciers because the beds of the large outlet glaciers are well below sea level (1000 meters or more) but "guarded" downstream by a shallow moraine formed when the glacier was more advanced. Once warmer water can breach this moraine, it sinks in the colder, fresh water behind the moraine and reaches the submarine front of the glacier. The pressure melting effect lowers the melting point of this deep ice allowing the warmer water to melt ice at rates of many tens of meters per year. This melting reduces . the frictional hold of the bed on the ice, allowing the ice to accelerate in agreement with the observations, Hansen has discussed the likelihood that approximately half of the Earth's radiation imbalance is manifesting in warmer ocean waters and Levitus et al. have seen warming in ocean temperature measurements at mid and low latitudes. The behavior of these outlet glaciers indicates this ocean warmth is reaching polar waters. The prognosis is for a continuation of this process, more negative ice sheet mass balances and increased rates of sea level rise.

  6. Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation

    NASA Technical Reports Server (NTRS)

    Ryser, Claudia; Luthi, Martin P.; Andrews, Lauren C.; Hoffman, Matthew, J.; Catania, Ginny A.; Hawley, Robert L.; Neumann, Thomas A.; Kristensen, Steen S.

    2014-01-01

    Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.

  7. IceBridge Provides Novel Evidence for Thick Units of Basal Freeze-on Ice Along Petermann Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Wolovick, M.; Block, A. E.; Frearson, N.; Das, I.; Abdi, A.; Creyts, T. T.; Cochran, J. R.; Csatho, B. M.; Babonis, G. S.

    2011-12-01

    The Petermann Glacier, one of the major outlet glaciers in Greenland, drains six percent of the Greenland ice from a basin largely below sea level. Petermann Glacier and its large ice shelf may be susceptible to increased change as the waters along the Greenland margin warm. The 2010 and 2011 Operation IceBridge mission, acquired a comprehensive aerogeophysical data set over the Petermann Glacier that provides insights into the ice sheet structure. This analysis employs most of the data streams acquired by the Icebridge platform including ice-penetrating radar, laser altimetry, gravity and magnetics. An orthogonal 10 km grid extends from 60 km upstream of the grounding line to 240 km inland. The ice velocities in the region range from <50m/yr to >200m/yr. On the interior lines the internal layers are pulled down over 2-3 km wide regions. Up to 400m of ice from the base of the ice sheet appears to be absent in these regions. We interpret these pulled down regions as basal melt. These melt regions are mainly located along the upstream side of a 80 km wide east-west trending topographic ridge that separates the interior ice from the Petermann Fjord. The IceBridge magnetic data indicates that this broad flat ridge is the boundary between the Franklinian Basins and the Ellsmerian Foldbelt to the north. Downstream of these pull-down layers we have identified 4 distinct packages of ice that thicken downstream and are characterized by a strong upper reflector. These packages develop at the base of the ice sheet and reach thicknesses of 500-700m over distances of 10-20 km. These basal packages can be traced for 30-100 km following the direction of flow, and may be present close to the grounding line. These basal reflectors deflect the overlying internal layers upward indicating the addition of ice to the base of the ice sheet. The IceBridge gravity data indicates that these features are probably not off-nadir topography since these would show up as around 30mGal anomalies

  8. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  9. Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream.

    PubMed

    Goldstein, R M; Engelhardt, H; Kamb, B; Frolich, R M

    1993-12-03

    Satellite radar interferometry (SRI) provides a sensitive means of monitoring the flow velocities and grounding-line positions of ice streams, which are indicators of response of the ice sheets to climatic change or internal instability. The detection limit is about 1.5 millimeters for vertical motions and about 4 millimeters for horizontal motions in the radar beam direction. The grounding line, detected by tidal motions where the ice goes afloat, can be mapped at a resolution of approximately 0.5 kilometer. The SRI velocities and grounding line of the Rutford Ice Stream, Antarctica, agree fairly well with earlier ground-based data. The combined use of SRI and other satellite methods is expected to provide data that will enhance the understanding of ice stream mechanics and help make possible the prediction of ice sheet behavior.

  10. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  11. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  12. Do Europa's Mountains Have Roots? Erosion of Topography at the Ice-Water Interface via the "Ice Pump"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.

  13. The safety band of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier

    2016-05-01

    The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.

  14. An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System

    NASA Technical Reports Server (NTRS)

    Chapman, Gilbert E.

    1946-01-01

    A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 percent less than the initial value for cold-air conditions.

  15. EBSD in Antarctic and Greenland Ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming

  16. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  17. Observations reveal external driver for Arctic sea-ice retreat

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Marotzke, Jochem

    2012-04-01

    The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.

  18. Experimental and analytical investigation of a freezing point depressant fluid ice protection system. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Albright, A. E.

    1984-01-01

    A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.

  19. Snow, Firn and Ice Heterogeneity within Larsen C Ice Shelf Revealed by Borehole Optical-televiewing

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Luckman, A. J.; Kulessa, B.; Bevan, S. L.; Booth, A.; Kuipers Munneke, P.; O'Leary, M.; Sevestre, H.

    2016-12-01

    The north-western sector of Larsen C Ice Shelf (LCIS), Antarctica, hosts intermittent surface ponds resulting from intense melting, largely driven by warm föhn winds. The fate of such surface melt water is largely controlled by the shelf's firn structure, which also dictates shelf density (widely used to reconstruct ice shelf thickness from altimetric data) and preconditioning to hydrofracture. Here, we report a suite of five 90 m long optical-televiewer (OPTV) borehole logs from the northern and central regions of LCIS recorded in spring 2014 and 2015. For each OPTV log we reconstruct vertical variations in material density via an empirical OPTV log-ice core calibration, and apply a thresholding technique to estimate refrozen ice content within the firn column. These data are combined to define five material facies present within this sector of LCIS. The firn/ice column is anomalously dense at all five sites, having an overall mean depth-averaged density of 873 +/-32 kg m-3. In terms of spatial variability, our findings generally support previous estimates of firn air content fields and implied infiltration ice content. However, they also highlight finer-resolution complexity of ice shelf structure. For example, the most dense ice, with the lowest equivalent firn air content, is not located within the most westerly inlets, where firn-driven melting and ponding are most active, but some tens of km down-flow of these areas. We interpret this effect in terms of the inheritance nearer the grounding line of relatively low-density glacial ice (e.g., 52 m thick with a density of 852 +/-21 kg m-3 in northernmost Cabinet Inlet) advected from inland. This inherited ice forms one of five facies identified across the study region. These are, extending broadly downwards into the shelf, and with different representation at each site: local accumulation (F1); local accumulation hosting substantial infiltration ice, i.e. influenced by intense melt but insufficient to form

  20. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    PubMed

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  1. Ice-shelf Dynamics Near the Front of Filchner-Ronne Ice Shelf, Antarctica, Revealed by SAR Interferometry: Model/Interferogram Comparison

    NASA Technical Reports Server (NTRS)

    MacAyeal, D. R.; Rignot, E.; Hulbe, C. L.

    1998-01-01

    We compare Earth Remote Sensing (ERS) satellite synthetic-aperture radar (SAR) interferograms with artificial interferograms constructed using output of a finite-element ice-shelf flow model to study the dynamics of Filchner-Ronne Ice Shelf (FRIS) near Hemmen Ice Rise (HIR) where the iceberg-calving front itersects Berkener Island (BI).

  2. Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.

    1994-01-01

    Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.

  3. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  4. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  5. How ice shelf morphology controls basal melting

    NASA Astrophysics Data System (ADS)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  6. Constraining the Timing of Lobate Debris Apron Emplacement at Martian Mid-Latitudes Using a Numerical Model of Ice Flow

    NASA Astrophysics Data System (ADS)

    Parsons, R. A.; Nimmo, F.

    2010-03-01

    SHARAD observations constrain the thickness and dust content of lobate debris aprons (LDAs). Simulations of dust-free ice-sheet flow over a flat surface at 205 K for 10-100 m.y. give LDA lengths and thicknesses that are consistent with observations.

  7. The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces

    NASA Astrophysics Data System (ADS)

    Vuik, C.; Saghir, A.; Boerstoel, G. P.

    2000-08-01

    Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright

  8. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  9. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  10. Ice/water slurry blocking phenomenon at a tube orifice.

    PubMed

    Hirochi, Takero; Yamada, Shuichi; Shintate, Tuyoshi; Shirakashi, Masataka

    2002-10-01

    The phenomenon of ice-particle/water mixture blocking flow through a pipeline is a problem that needs to be solved before mixture flow can be applied for practical use in cold energy transportation in a district cooling system. In this work, the blocking mechanism of ice-particle slurry at a tube orifice is investigated and a criterion for blocking is presented. The cohesive nature of ice particles is shown to cause compressed plug type blocking and the compressive yield stress of a particle cluster is presented as a measure for the cohesion strength of ice particles.

  11. Relationship between Physiological Off-Ice Testing, On-Ice Skating, and Game Performance in Division I Women's Ice Hockey Players.

    PubMed

    Boland, Michelle; Miele, Emily M; Delude, Katie

    2017-10-07

    The purpose was to identify off-ice testing variables that correlate to skating and game performance in Division I collegiate women ice hockey players. Twenty female, forward and defensive players (19.95 ± 1.35 yr) were assessed for weight, height, percent fat mass (%FAT), bone mineral density, predicted one repetition maximum (RM) absolute and relative (REL%) bench press (BP) and hex bar deadlift (HDL), lower body explosive power, anaerobic power, countermovement vertical jump (CMJ), maximum inspiratory pressure (MIP), and on-ice repeated skate sprint (RSS) performance. The on-ice RSS test included 6 timed 85.6 m sprints with participants wearing full hockey equipment; fastest time (FT), average time (AT) and fatigue index (FI) for the first length skate (FLS; 10 m) and total length skate (TLS; 85.6 m) were used for analysis. Game performance was evaluated with game statistics: goals, assists, points, plus-minus, and shots on goal (SOG). Correlation coefficients were used to determine relationships. Percent fat mass was positively correlated (p < 0.05) with FLS-FI and TLS-AT; TLS-FT was negatively correlated with REL%HDL; BP-RM was negatively correlated with FLS-FT and FLS-AT; MIP positively correlated with assists, points, and SOG; FLS-AT negatively correlated with assists. Game performance in women ice hockey players may be enhanced by greater MIP, repeat acceleration ability, and mode-specific training. Faster skating times were associated with lower %FAT. Skating performance in women ice hockey players may be enhanced by improving body composition, anaerobic power, and both lower and upper body strength in off-ice training.

  12. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  13. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model

    NASA Astrophysics Data System (ADS)

    Birch, L.; Cronin, T.; Tziperman, E.

    2017-12-01

    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  14. The effect of changing wind forcing on Antarctic ice shelf melting in high-resolution, global sea ice-ocean simulations with the Accelerated Climate Model for Energy (ACME)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Price, Stephen; Petersen, Mark; Wolfe, Jonathan

    2017-04-01

    The capability for simulating sub-ice shelf circulation and submarine melting and freezing has recently been added to the U.S. Department of Energy's Accelerated Climate Model for Energy (ACME). With this new capability, we use an eddy permitting ocean model to conduct two sets of simulations in the spirit of Spence et al. (GRL, 41, 2014), who demonstrate increased warm water upwelling along the Antarctic coast in response to poleward shifting and strengthening of Southern Ocean westerly winds. These characteristics, symptomatic of a positive Southern Annular Mode (SAM), are projected to continue into the 21st century under anthropogenic climate change (Fyfe et al., J. Clim., 20, 2007). In our first simulation, we force the climate model using the standard CORE interannual forcing dataset (Large and Yeager; Clim. Dyn., 33, 2009). In our second simulation, we force our climate model using an altered version of CORE interannual forcing, based on the latter half of the full time series, which we take as a proxy for a future climate state biased towards a positive SAM. We compare ocean model states and sub-ice shelf melt rates with observations, exploring sources of model biases as well as the effects of the two forcing scenarios.

  15. Anchor ice and benthic disturbance in shallow Antarctic waters: interspecific variation in initiation and propagation of ice crystals.

    PubMed

    Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan

    2011-10-01

    Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates.

  16. Ice Accretion Roughness Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching; Broeren, Andy P.; Lee, Sam

    2017-01-01

    Roughness on aircraft ice accretions is very important to the overall ice accretion process and to the resulting degradation in aircraft aerodynamic performance. Roughness enhances the local convection leading to more rapid ice accumulation rates, and roughness generates local flow perturbations that lead to higher skin friction. This paper presents 1) a review of the developments in ice shape three-dimensional laser scanning developed at NASA Glenn, 2) a review of the approach of McClain and Kreeger employed to characterize ice roughness evolution on an airfoil surface, and 3) a review of the experimental efforts that have been performed over the last five years to characterize, scale, and model ice roughness evolution physics.

  17. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Walker, E.

    1986-01-01

    Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms.

  18. Patterned basal seismicity shows sub-ice stream bedforms

    NASA Astrophysics Data System (ADS)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (< 3km) network of 8 surface and 5 borehole seismometers installed in the main central sticky spot of the WIP. We use a network beamforming technique to detect and roughly locate thousands of small (magnitude < 0), local basal micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs

  19. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  20. Unsteady Blood Flow with Nanoparticles Through Stenosed Arteries in the Presence of Periodic Body Acceleration

    NASA Astrophysics Data System (ADS)

    Fatin Jamil, Dzuliana; Roslan, Rozaini; Abdulhameed, Mohammed; Che-Him, Norziha; Sufahani, Suliadi; Mohamad, Mahathir; Ghazali Kamardan, Muhamad

    2018-04-01

    The effects of nanoparticles such as Fe 3O4,TiO2, and Cu on blood flow inside a stenosed artery are studied. In this study, blood was modelled as non-Newtonian Bingham plastic fluid subjected to periodic body acceleration and slip velocity. The flow governing equations were solved analytically by using the perturbation method. By using the numerical approaches, the physiological parameters were analyzed, and the blood flow velocity distributions were generated graphically and discussed. From the flow results, the flow speed increases as slip velocity increases and decreases as the values of yield stress increases.

  1. Investigation of radiative bow-shocks in magnetically accelerated plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bott-Suzuki, S. C., E-mail: sbottsuzuki@ucsd.edu; Caballero Bendixsen, L. S.; Cordaro, S. W.

    2015-05-15

    We present a study of the formation of bow shocks in radiatively cooled plasma flows. This work uses an inverse wire array to provide a quasi-uniform, large scale hydrodynamic flow accelerated by Lorentz forces to supersonic velocities. This flow impacts a stationary object placed in its path, forming a well-defined Mach cone. Interferogram data are used to determine a Mach number of ∼6, which may increase with radial position suggesting a strongly cooling flow. Self-emission imaging shows the formation of a thin (<60 μm) strongly emitting shock region, where T{sub e} ∼ 40–50 eV, and rapid cooling behind the shock. Emission is observed upstreammore » of the shock position which appears consistent with a radiation driven phenomenon. Data are compared to 2-dimensional simulations using the Gorgon MHD code, which show good agreement with the experiments. The simulations are also used to investigate the effect of magnetic field in the target, demonstrating that the bow-shocks have a high plasma β, and the influence of B-field at the shock is small. This consistent with experimental measurement with micro bdot probes.« less

  2. Climate Modeling: Ocean Cavities below Ice Shelves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Mark Roger

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolutionmore » below ice shelves and near grounding lines.« less

  3. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  4. The North Polar Layered Deposits on Mars: The Internal Layering of Gemina Lingula and Implications for Ice Flow

    NASA Astrophysics Data System (ADS)

    Karlsson, Nanna B.; Holt, John W.; Hindmarsh, Richard C. A.; Choudhary, Prateek

    2010-05-01

    The North Polar Layered Deposits (NPLD) is one of the largest reservoirs of surface water on Mars and, via an active exchange of water vapour with the atmosphere, it plays an important role in the Martian climate. The impact of ice flow on the overall shape of the NPLD is still widely debated. A study by Winebrenner et al. (2008) found evidence for relict flow lines in the southernmost part of the NPLD called Gemina Lingula (GL). Other studies have concluded that the upper part of the NPLD shows no evidence of flow (Fishbaugh and Hvidberg, 2006) and that surface mass balance alone can produce the topography (Greve et al., 2004 and Greve and Mahajan, 2005) . This paper presents results from an analysis of radar data from the SHARAD (SHallow RADar) instrument on board NASA's Mars Reconnaissance Orbiter. The SHARAD instrument operates with a 20MHz centre frequency and a 10MHz bandwidth and one of its primary mission goals is to map the state and distribution of water on Mars. For more details on the SHARAD instrument please refer to Seu et al. (2007). In the SHARAD data we identified and mapped six internal horizons from over 80 radar lines retrieved over GL. All horizons were easily identifiable in the majority of the data and were on average present in over 80% of the radar data considered. The observed layers were then compared to modelled layers from a 3D ice flow model. The model uses a smoothed surface topography, where troughs and scarps have been filled in, and assumes that the shape and the mass balance of the NPLD are constant in time. The shape of the internal layers are then calculated as they would appear in a flowing ice cap given those parameters. More information on the model can be found in Hindmarsh et al. (2009). The overall fit between modelled and observed layers is reasonably good, but the goodness of the fit varies both between the different horizons and the different regions of GL. Horizons in the upper part of the ice fit less well than

  5. Unusual ice diamicts emplaced during the December 15, 1989 eruption of redoubt volcano, Alaska

    USGS Publications Warehouse

    Waitt, R.B.; Gardner, C.A.; Pierson, T.C.; Major, J.J.; Neal, C.A.

    1994-01-01

    Ice diamict comprising clasts of glacier ice and subordinate rock debris in a matrix of ice (snow) grains, coarse ash, and frozen pore water was deposited during the eruption of Redoubt Volcano on December 15, 1989. Rounded clasts of glacier ice and snowpack are as large as 2.5 m, clasts of Redoubt andesite and basement crystalline rocks reach 1 m, and tabular clasts of entrained snowpack are as long as 10 m. Ice diamict was deposited on both the north and south volcano flanks. On Redoubt's north flank along the east side of Drift piedmont glacier and outwash valley, ice diamict accumulated as at least 3 units, each 1-5 m thick. Two ice-diamict layers underlie a pumice-lithic fall tephra that accumulated on December 15 from 10:15 to 11:45 AST. A third ice diamict overlies the pumiceous tephra. Some of the ice diamicts have a basal 'ice-sandstone' layer. The north side icy flows reached as far as 14 km laterally over an altitude drop of 2.3 km and covered an area of about 5.7 km2. On Crescent Glacier on the south volcano flank, a composite ice diamict is locally as thick as 20 m. It travelled 4.3 km over an altitude drop of 1.7 km, covering about 1 km2. The much higher mobility of the northside flows was influenced by their much higher water contents than the southside flow(s). Erupting hot juvenile andesite triggered and turbulently mixed with snow avalanches at snow-covered glacier heads. These flows rapidly entrained more snow, firn, and ice blocks from the crevassed glacier. On the north flank, a trailing watery phase of each ice-diamict flow swept over and terraced the new icy deposits. The last (and perhaps each) flood reworked valley-floor snowpack and swept 35 km downvalley to the sea. Ice diamict did not form during eruptions after December 15 despite intervening snowfalls. These later pyroclastic flows swept mainly over glacier ice rather than snowpack and generated laharic floods rather than snowflows. Similar flows of mixed ice grains and pyroclastic

  6. Boundary Waves on the Ice Surface Created by Currents

    NASA Astrophysics Data System (ADS)

    Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.

    2013-12-01

    The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance

  7. The Broken Belt: Meteorite Concentrations on Stranded Ice

    NASA Technical Reports Server (NTRS)

    Harvey, R. P.

    2003-01-01

    Since the first Antarctic meteorite concentrations were discovered more than 25 years ago, many theories regarding the role of iceflow in the production of meteorite concentrations have been put forward, and most agree on the basic principles. These models suggest that as the East Antarctic icesheet flows toward the margins of the continent, meteorites randomly located within the volume of ice are transported toward the icesheet margin. Where mountains or subsurface obstructions block glacial flow, diversion of ice around or over an obstruction reduces horizontal ice movement rates adjacent to the barriers and creates a vertical (upward) component of movement. If local mechanisms for ice loss (ablation) exist at such sites, an equilibrium surface will develop according to the balance between ice supply and loss, and the cargo of meteorites is exhumed on a blue ice surface. The result is a conceptual conveyor belt bringing meteorite-bearing volumes of ice from the interior of the continent to stagnant or slowmoving surfaces where ice is then lost and a precious cargo is left as a lag deposit. Cassidy et al. provides an excellent overview of how this model has been adapted to several Antarctic stranding surfaces.

  8. ROV dives under Great Lakes ice

    USGS Publications Warehouse

    Bolsenga, S.J.; Gannon, John E.; Kennedy, Gregory; Norton, D.C.; Herdendorf, Charles E.

    1989-01-01

    Observations of the underside of ice have a wide variety of applications. Severe under-ice roughness can affect ice movements, rough under-ice surfaces can scour the bottom disturbing biota and man-made structures such as pipelines, and the flow rate of rivers is often affected by under-ice roughness. A few reported observations of the underside of an ice cover have been made, usually by cutting a large block of ice and overturning it, by extensive boring, or by remote sensing. Such operations are extremely labor-intensive and, in some cases, prone to inaccuracies. Remotely operated vehicles (ROV) can partially solve these problems. In this note, we describe the use, performance in a hostile environment, and results of a study in which a ROV was deployed under the ice in Lake Erie (North American Great Lakes).

  9. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  10. Balance Velocities of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  11. Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA

    USGS Publications Warehouse

    Patterson, C.J.

    1997-01-01

    Regional mapping in southern Minnesota has illuminated a suite of landforms developed by the Des Moines Lobe that delimit the position of the lobe at its maximum and at lesser readvances. The ice lobe repeatedly advanced, discharged its subglacial water, and subsequently stagnated. Recent glaciological research on Antarctic ice streams has led some glacial geologists to postulate that ice streams drained parts of the marine-based areas of the Laurentide Ice Sheet. I postulate that such ice streams may develop in land-based areas of an ice sheet as well, and that the Des Moines Lobe, 200 km wide and 900 km long, was an outlet glacier of an ice stream. It appears to have been able to advance beyond the Laurentide Ice Sheet as long as adequate water pressure was maintained. However, the outer part of the lobe stagnated because subglacial water that facilitated the flow was able to drain away through tunnel valleys. Stagnation of the lobe is not equivalent to stoppage of the ice stream, because ice repeatedly advanced into and onto the stagnant margins, stacking ice and debris. Similar landforms are also seen in other lobes of the upper midwestern United States.

  12. Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Koziol, Conrad P.; Arnold, Neil

    2018-03-01

    Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25 % increase in annual surface velocities as surface melt increases to 4 × present levels.

  13. Recent progress in the analysis of iced airfoils and wings

    NASA Technical Reports Server (NTRS)

    Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

    1992-01-01

    Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  14. Behavioural and physiological responses of brook trout Salvelinus fontinalis to midwinter flow reduction in a small ice-free mountain stream.

    PubMed

    Krimmer, A N; Paul, A J; Hontela, A; Rasmussen, J B

    2011-09-01

    This study presents an experimental analysis of the effects of midwinter flow reduction (50-75%, reduction in discharge in 4 h daily pulses) on the physical habitat and on behaviour and physiology of overwintering brook trout Salvelinus fontinalis in a small mountain stream. Flow reduction did not result in significant lowering of temperature or formation of surface or subsurface ice. The main findings were (1) daily movement by S. fontinalis increased (c. 2·5-fold) during flow reduction, but was limited to small-scale relocations (<10 m). (2) Undercut banks were the preferred habitat and availability of these habitats was reduced during flow reduction. (3) Although both experimental and reference fish did lose mass and condition during the experiment, no effects of flow reduction on stress indicators (blood cortisol or glucose) or bioenergetics (total body fat, water content or mass loss) were detected, probably because access to the preferred type of cover remained available. Like other salmonids, S. fontinalis moves little and seeks physical cover during winter. Unlike many of the more studied salmonids, however, this species overwinters successfully in small groundwater-rich streams that often remain ice-free, and this study identifies undercut banks as the critical winter habitat rather than substratum cover. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  15. Ice shelf breaking and increase velocity of glacier: the view from analogue experiment

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Iandelli, Irene

    2013-04-01

    Collapse of the Larsen II platform during the late 90s has generated an increase in velocity if ice sheet discharge, highlighting that these processes may strongly destabilize large ice masses speeding up the plateau discharge toward the sea. Parameters such as ice thickness, valley width and slope, ice pack dimensions may contribute to modulate the effect of increase in ice flow velocity following the removal of ice. We analyze this process through scale analogue models, aimed at reproducing the flow of ice from a plateau into the sea through a narrow valley. The ice is reproduced with a transparent silicone (Polydimethisiloxane), flowing at velocities of a few centimeters per hour and simulating natural velocities in the range of a few meters per year. Having almost the same density of the ice, PDMS floats on water and simulate the ice-shelf formation. Results of preliminary experimental series support that this methodology is able to reasonably reproduce the process and support a significant increase in velocity discharge following the removal of ice pack. Additional tests are designed to verify the influence of the above-mentioned parameters on the increase in ice velocity.

  16. A fully coupled transient thermomechanical ice-flow/permafrost model of the Rhine Glacier, Switzerland: effects of permafrost on basal conditions

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Zwinger, T.; Haeberli, W.; Fischer, U. H.

    2016-12-01

    The safe disposal of radioactive wastes in deep geological repositories requires their containment and isolation for up to one million years. Over that time period, the performance of the repositories in mid- and high-latitude regions can be impacted by future ice-age conditions which may cause deep glacial erosion, permafrost development, and changes in groundwater fluxes. In Switzerland, repositories are planned in the northern Swiss lowlands near the marginal zone of the former Rhine Glacier that repeatedly formed two extensive piedmont lobes (the Rhine and Linth lobes) over the Swiss Plateau. There, overdeepenings formed by glacial erosion indicate that the glacier was warm-based. Yet the Last Glacial Maximum (LGM) occurred under cold conditions: central Europe experienced extremely cold and dry conditions caused by the penetration of winter sea ice to low latitudes in the Atlantic Ocean and the corresponding closure of the primary humidity source north of the Alps. At the LGM, flat and extended lobes of large piedmont glaciers spreading out over much of the Swiss Plateau were polythermal, characterized by low driving stresses (typically around 30 kPa) and surrounded by continuous periglacial permafrost up to 150 m thick. Subsurface temperatures and groundwater flow conditions were strongly influenced by the presence of extended surface and subsurface ice. Using numerical models we explore the effects of permafrost on basal conditions of the piedmont lobes during the build-up of the Rhine Glacier. We apply a two-dimensional transient fully coupled thermomechanical full stress ice-flow and permafrost model along a flowline characterizing the Rhine lobe. The energy equation is solved in both ice and rock and permafrost is modeled using an effective heat capacity formulation to account for phase transitions. Transient effects during ice advances and permafrost build-up up to the LGM are resolved by modeling the full glacial cycle using reconstructed temperature

  17. Ice shelf structure and stability: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.

    2017-12-01

    We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C Ice Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the ice shelf, result in the formation of several tens of metres of (relatively dense) subsurface ice within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen ice to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting ice types and associating each with a simple flow-line model of ice motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' ice bands, widely considered to be composed of marine ice, is contrasted with that of its propagation through meteoric ice.

  18. Ecological consequences of sea-ice decline.

    PubMed

    Post, Eric; Bhatt, Uma S; Bitz, Cecilia M; Brodie, Jedediah F; Fulton, Tara L; Hebblewhite, Mark; Kerby, Jeffrey; Kutz, Susan J; Stirling, Ian; Walker, Donald A

    2013-08-02

    After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.

  19. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process hasmore » proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.« less

  20. Subglacial hydrology and the formation of ice streams

    PubMed Central

    Kyrke-Smith, T. M; Katz, R. F; Fowler, A. C

    2014-01-01

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. PMID:24399921

  1. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  2. Mounting evidence for intense ocean interaction with the Pine Island Glacier Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.; Holland, D.; Vaughan, D.; Vornberger, P.

    2008-12-01

    The spatial signature of thinning and acceleration of the Pine Island Glacier has led to the inference that these changes originate at the seaward end of the glacier, possibly within or under the ice shelf (Payne et al., 2004; Shepherd et al., 2004). We present new analyses resulting from both new and archived satellite imagery of the ice shelf that supports this inference and provides new insights into strong seasonal and intra- annual characters of ocean-ice shelf interaction. Strong longitudinal variations in both thickness and surface elevation measured by British Antarctic Survey airborne radars (Vaughan et al., 2006) have wavelengths that correspond roughly to the annual motion of the ice shelf. These could be caused by seasonal variations in flow speed, but such variations of flow speed have never been reported and are not seen in the most recent continuous GPS observations of the ice shelf. We suggest that these strong variations in ice thickness, as large as 200 meters in an average thickness of 600 meters, are caused by seasonal variations in the properties of the water circulating underneath the ice shelf. One likely explanation is that the dominant water mass reaching the deepest parts of the ice shelf alternates between cold High Salinity Shelf Water in the winter and warm Circumpolar Deep Water in the summer. Evidence for recent strengthening of the sub- shelf circulation is the sudden occurrence of three persistent polynyas immediately adjacent to the ice front. These are located in precisely the locations expected from modeled sub-shelf circulation (Payne et al., 2007). This mode was never observed in any satellite imagery prior to the 1999-2000 austral summer (data of 7 summers since 1973 were available), but has occurred in 7 of the 9 summers since and persists throughout the summer. Payne, A.J., A. Vieli, A.P. Shepherd, D.J. Wingham and E. Rignot, 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans, Geophysical

  3. Palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Klages, Johann P.; Kuhn, Gerhard; Graham, Alastair G. C.; Smith, James A.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Larter, Rob D.; Gohl, Karsten

    2015-04-01

    Multibeam swath bathymetry datasets collected over the past two decades have been compiled to identify palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment. We mapped 3010 glacial landforms to reconstruct palaeo-ice flow in the ~250 km-long Abbot Glacial Trough that was occupied by a large palaeo-ice stream, fed by two tributaries (Cosgrove and Abbot) that reached the continental shelf edge during the last maximum ice-sheet advance. The mapping has enabled a clear differentiation between glacial landforms interpreted as indicative of wet- (e.g. mega-scale glacial lineations) and cold-based ice (e.g. hill-hole pairs) during the last glaciation of the continental shelf. Both the regions of fast palaeo-ice flow within the palaeo-ice stream troughs, and the regions of slow palaeo-ice flow on adjacent seafloor highs (referred to as inter-ice stream ridges) additionally record glacial landforms such as grounding-zone wedges and recessional moraines that indicate grounding line stillstands of the ice sheet during the last deglaciation from the shelf. As the palaeo-ice stream flowed along a trough with variable geometry and variable subglacial substrate, it appears that trough sections characterized by constrictions and outcropping hard substrate that changes the bed gradient, led the pace of grounding-line retreat to slow and subsequently pause, resulting in the deposition of grounding-zone wedges. The stepped retreat recorded within the Abbot Glacial Trough corresponds well to post-glacial stepped retreat interpreted for the neighbouring Pine Island-Thwaites Palaeo-Ice Stream trough, thus suggesting a uniform pattern of episodic retreat across the eastern Amundsen Sea Embayment. The correlation of episodic retreat features with geological boundaries further emphasises the significance of subglacial geology in steering ice stream flow. Our new geomorphological map of the easternmost Amundsen Sea Embayment resolves the pathways of palaeo-ice streams that

  4. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  5. The Influence of Viscous Effects on Ice Accretion Prediction and Airfoil Performance Predictions

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Wright, William B.

    2005-01-01

    A computational study was conducted to evaluate the effectiveness of using a viscous flow solution in an ice accretion code and the resulting accuracy of aerodynamic performance prediction. Ice shapes were obtained for one single-element and one multi-element airfoil using both potential flow and Navier-Stokes flowfields in the LEWICE ice accretion code. Aerodynamics were then calculated using a Navier-Stokes flow solver.

  6. Assessment of East Antarctic ice flow directions, ice grounding events, and glacial thermal regime across the middle Miocene climate transition from the ANDRILL-SMS and CRP drill holes

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Hauptvogel, D.; Hansen, M.; Falk, C.; Martin, L.

    2010-12-01

    Here we present a synthesis of early and middle Miocene ice sheet development based on facies analyses and multiple compositional studies on the AND-2A and CRP drillcores from the Ross Sea, ca. 10 km off the coast of East Antarctica. The middle Miocene is characterized by one of the three largest shifts in deep-sea oxygen isotope records. During this time the East Antarctic ice sheet became dry-based at high elevation in the Transantarctic Mountains and advanced across the Ross Sea continental shelf to create widespread glacial unconformities. However, detailed proxy records also indicate that ice development was complex and may have occurred in a stepwise fashion, instead of one major episode. Our analyses of “grounded ice” diamictites from both the CRP and AND-2A cores show a significant change in composition across the middle Miocene transition. More detailed analyses of the stratigraphic distribution of facies, heavy mineral provenance, particle size, and major and trace element geochemistry in AND-2A show that relatively large polythermal ice-sheets similar in size to the modern were already present between 17.6 and 17.1 Ma. These results are in agreement with proxy records suggesting that Antarctic ice volumes were larger than today’s volume during the Mi-1b glaciation. Between 17.1 and 15.6-14.9 Ma, a predominance of iceberg debris sourced from the Ferrar Group in the Transantarctic Mountains suggests vigorous glacial erosion and fjord incision by East Antarctic outlet glaciers. The facies characteristics and comparison with compositional data from Neogene tills in the Transantarctic Mountains further suggest that the East Antarctic ice sheet may have been smaller than today during the Miocene climatic optimum (~17-15 Ma) with ice possibly reaching sea level only near the central Transantarctic Mountains. Advance of the grounding line and the development of glacial flow patterns compatible with a larger ice sheet than the modern commenced between 15

  7. 77 FR 11607 - Self-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing and Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ...-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing and Order Granting Accelerated Approval... \\2\\ notice is hereby given that on February 7, 2012, ICE Clear Europe Limited (``ICE Clear Europe... in Items I, II and III below, which Items have been prepared primarily by ICE Clear Europe. The...

  8. 78 FR 15775 - Self-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing and Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ...-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing and Order Granting Accelerated Approval...\\ notice is hereby given that on February 28, 2013, ICE Clear Europe Limited (``ICE Clear Europe'') filed... Items I and II below, which Items have been prepared primarily by ICE Clear Europe. The Commission is...

  9. 77 FR 62289 - Self-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing and Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ...-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing and Order Granting Accelerated Approval... thereunder,\\2\\ notice is hereby given that on September 25, 2012, ICE Clear Europe Limited (``ICE Clear... described in Items I and II below, which items have been prepared primarily by ICE Clear Europe. The...

  10. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  11. Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Naoki, K.; Cho, K.

    2018-04-01

    Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.

  12. Full Stokes finite-element modeling of ice sheets using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.

    2016-12-01

    Thermo-mechanical simulation of ice sheets is an important approach to understand and predict their evolution in a changing climate. For that purpose, higher order (e.g., ISSM, BISICLES) and full Stokes (e.g., Elmer/Ice, http://elmerice.elmerfem.org) models are increasingly used to more accurately model the flow of entire ice sheets. In parallel to this development, the rapidly improving performance and capabilities of Graphics Processing Units (GPUs) allows to efficiently offload more calculations of complex and computationally demanding problems on those devices. Thus, in order to continue the trend of using full Stokes models with greater resolutions, using GPUs should be considered for the implementation of ice sheet models. We developed the GPU-accelerated ice-sheet model Sainō. Sainō is an Elmer (http://www.csc.fi/english/pages/elmer) derivative implemented in Objective-C which solves the full Stokes equations with the finite element method. It uses the standard OpenCL language (http://www.khronos.org/opencl/) to offload the assembly of the finite element matrix on the GPU. A mesh-coloring scheme is used so that elements with the same color (non-sharing nodes) are assembled in parallel on the GPU without the need for synchronization primitives. The current implementation shows that, for the ISMIP-HOM experiment A, during the matrix assembly in double precision with 8000, 87,500 and 252,000 brick elements, Sainō is respectively 2x, 10x and 14x faster than Elmer/Ice (when both models are run on a single processing unit). In single precision, Sainō is even 3x, 20x and 25x faster than Elmer/Ice. A detailed description of the comparative results between Sainō and Elmer/Ice will be presented, and further perspectives in optimization and the limitations of the current implementation.

  13. Upper Ocean Circulation in the Glacial Northeast Atlantic during Heinrich Stadials Ice-Sheet Retreat

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Soulet, G.; Bosq, M.; Marjolaine, S.; Zaragosi, S.; Bourillet, J. F.; Bayon, G.

    2016-12-01

    Intermediate ocean water variability is involved in climate changes over geological timescales. As a prominent example, changes in North Atlantic subsurface water properties (including warming) during Heinrich Stadials may have triggered the so-called Heinrich events through ice-shelf loss and attendant ice-stream acceleration. While the origin of Heinrich Stadials and subsequent iceberg calving remains controversial, paleoceanographic research efforts mainly focus on the deep Atlantic overturning, leaving the upper ocean largely unexplored. To further evaluate variability in upper ocean circulation and its possible relationship with ice-sheet instabilities, a depth-transect of eight cores (BOBGEO and GITAN-TANDEM cruises) from the Northeast Atlantic (down to 2 km water depth) have been used to investigate kinematic and chemical changes in the upper ocean during the last glacial period. Our results reveal that near-bottom flow speeds (reconstructed by using sortable silt mean grain-size and X-ray fluorescence core-scanner Zr/Rb ratio) and water-masses chemistry (carbon and neodymium isotopes performed on foraminifera) substantially changed in phase with the millennial-scale climate changes recognized in the ice-core records. Our results are compared with paleoceanographic reconstructions of the 'Western Boundary Undercurrent' in order to discuss regional hydrographic differences at both sides of the North Atlantic, as well as with the fluctuations of both the marine- (through ice-rafted debris) and terrestrial-terminating ice-streams (through meltwater discharges) of the circum-Atlantic ice-sheets. Particular attention will be given to the Heinrich Stadials and concomitant Channel River meltwater discharges into the Northeast Atlantic in response to the melting of the European Ice-Sheet. This comparison helps to disentangle the cryosphere-ocean interactions throughout the last ice age, and the sequence of events occurring in the course of the Heinrich Stadials.

  14. Ice Waves

    NASA Image and Video Library

    2017-12-08

    Ice Waves - May 21st, 2001 Description: Along the southeastern coast of Greenland, an intricate network of fjords funnels glacial ice to the Atlantic Ocean. During the summer melting season, newly calved icebergs join slabs of sea ice and older, weathered bergs in an offshore slurry that the southward-flowing East Greenland Current sometimes swirls into stunning shapes. Exposed rock of mountain peaks, tinted red in this image, hints at a hidden landscape. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  15. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels was 1 to 2 km, according to the height of bordering scarps. The similarity between Antarctic ice streams and martian outflow channels suggests that ice may have flowed through and shaped the outflow channels, and that perhaps the mechanism of motion of Antarctic ice streams also operated in outflow channels. In addition, sliding on deformable rubble may explain the formation of small valley networks. The large Siple Coast Antarctic ice streams are thought to slide over longitudinally grooved, deforming till, where much of the movement is within the till. The till is saturated with water at high pore pressures that nearly supports all of the weight of the ice. The small differential between overburden pressure and pore pressure at the bed is more important than the volume of water, but water needs to be supplied to the till interface. For pore pressures to remain high, the ice streams have to act as a seal that blocks the flow of water through them, and the rock underneath has to be of low permeability to prevent the water from draining away.

  16. Ice-Free Arctic Ocean?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years, according to a new report. The melting is accelerating, and researchers were unable to identify any natural processes that might slow the deicing of the Arctic. "What really makes the Arctic different…

  17. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2017 with ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, K.; Box, J.; Schlegel, N.; Larour, E. Y.; Morlighem, M.; Solgaard, A.; Kjeldsen, K. K.; Larsen, S. H.; Rignot, E. J.; Dupont, T. K.; Kjaer, K. H.

    2017-12-01

    Tidewater terminus changes have a significant influence on glacier velocity and mass balance and impact therefore Greenland's ice mass balance. Improving glacier front changes in ice sheet models helps understanding the processes that are driving glacier mass changes and improves predictions on Greenland's mass loss. We use the level set based moving boundary capability (Bondzio et al., 2016) included in the Ice Sheet System Model ISSM to reconstruct velocity and thickness changes on Upernavik Isstrøm, Greenland from 1849 to 2017. During the simulation, we use various data sets. For the model initialization, trim line data and an observed calving front position determine the shape of the ice surface elevation. The terminus changes are prescribed by observations. Data sets like the GIMP DEM, ArcticDEM, IceBridge surface elevation and ice surface velocities from the ESA project CCI and NASA project MEaSUREs help evaluating the simulation performance. The simulation is sensitive to the prescribed terminus changes, showing an average acceleration along the three flow lines between 50% and 190% from 1849 to 2017. Simulated ice surface velocity and elevation between 1990 and 2012 are within +/-20% of observations (GIMP, ArcticDEM, IceBridge, CCI and MEaSUREs). Simulated mass changes indicate increased dynamical ice loss from 1932 onward, amplified by increased negative SMB anomalies after 1998. More detailed information about methods and findings can be found in Haubner et al., 2017 (in TC discussion, describing simulation results between 1849-2012). Future goals are the comparison of ice surface velocity changes simulated with prescribed terminus retreat against other retreat schemes (Morlighem et al., 2016; Levermann et al., 2012; Bondzio et al., 2017) and applying the method onto other tidewater glaciers.

  18. Ice dynamics of Heinrich events: Insights and implications

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.

    2017-12-01

    Physical understanding of ice flow provides important constraints on Heinrich (H) events, which in turn provide lessons for ice dynamics and future sea-level change. Iceberg-rafted debris (IRD), the defining feature of H events, is a complex indicator; however, in cold climates with extensive marine-ending ice, increased IRD flux records ice-shelf loss. Ice shelves fed primarily by inflow from grounded ice experience net basal melting, giving sub-ice-sedimentation rather than open-ocean IRD. Ice-shelf loss has been observed recently in response to atmospheric warming increasing surface meltwater that wedged open crevasses (Larsen B), but also by break-off following thinning from warming of waters reaching the grounding line (Jakobshavn). The H events consistently occurred during cold times resulting from reduced North Atlantic overturning circulation ("conveyor"), but as argued by Marcott et al. (PNAS 2011), this was accompanied by delayed warming at grounding-line depths of the Hudson Strait ice stream, the source of the Heinrich layers, implicating oceanic control. As shown in a rich literature, additional considerations involving thermal state of the ice-stream bed, isostasy and probably other processes influenced why some reduced-conveyor events triggered H-events while others did not. Ice shelves, including the inferred Hudson Strait ice shelf, typically exist in high-salinity, cold waters produced by brine rejection from sea-ice formation, which are the coldest abundant waters in the world ocean. Thus, almost any change in air or ocean temperature, winds or currents can remove ice shelves, because "replacement" water masses are typically warmer. And, because ice shelves almost invariably slow flow of non-floating ice into the ocean, climatic perturbations to regions with ice shelves typically lead to sea-level rise, with important implications.

  19. Ice and debris in the fretted terrain, Mars

    NASA Astrophysics Data System (ADS)

    Lucchitta, B. K.

    1984-02-01

    Viking moderate and high resolution images along the northern highland margin have been monoscopically and stereoscopically examined in order to study the development of fretted terrain. Young debris aprons around mesas and debris in tributary channels create typical fretted morphologies identical to ancient fretted morphologies. This suggests that the debris-apron process operating relatively recently also shaped the fretted terrain of the past. The debris aprons were lubricated by interstitial ice derived from ground ice. Abundant collapse features suggest that ground ice existed and may have flowed in places. The fretting process has been active for a long period and may be active today. The location of debris aprons in two latitudinal belts may be controlled by atmospheric conditions that permit ice in the region to remain in the ground below depths of about one meter and temperatures warm enough for ice to flow.

  20. Measurements of Ice Nuclei properties at the Jungfraujoch using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, Cédric

    2010-05-01

    Ice clouds and mixed-phase clouds have different microphysical properties. Both affect the climate in various ways. Ice phase present in these clouds have the ability to scatter the incoming solar radiation and absorb terrestrial radiation differently from water droplets. Ice is also responsible for most of the precipitation in the mid-latitudes. Ice crystals can be formed via two main processes: homogeneous and heterogeneous ice nucleation. Investigation of thermodynamic conditions at which ice nuclei (IN) trigger nucleation and their number concentrations is necessary in order to understand the formation of the ice phase in the atmosphere. In order to investigate the presence of IN in the free troposphere, the Institute for Atmospheric and Climate Sciences of the ETH Zurich has recently designed a new chamber: the Portable Ice Nucleation Chamber (PINC), which is the field version of the Zurich Ice Nucleation Chamber (Stetzer et al., 2008). Both chambers follow the principle of a "continuous flow diffusion chamber" (Rogers, 1988) and can measure the number concentration of IN at different temperatures and relative humidities. Aerosols are collected through an inlet where an impactor removes larger particles that could be counted as ice crystals. The aerosol load is layered between two dry sheath air flows as it enters the main chamber. Both walls of the chamber are covered with a thin layer of ice and maintained at two different temperatures in order to create supersaturation with respect to ice (and with respect to water in case of a larger temperature difference between the walls). At the exit of the main chamber, the sample goes throught the evaporation part that is kept saturated with respect to ice. There, water droplets evaporate and only ice crystals and smaller aerosol particles are counted by the Optical Particle Counter (OPC) at the bottom of the chamber. The high alpine research station Jungfraujoch is located at 3580 m a.s.l. It is mainly in

  1. A Comparative Study Using CFD to Predict Iced Airfoil Aerodynamics

    NASA Technical Reports Server (NTRS)

    Chi, x.; Li, Y.; Chen, H.; Addy, H. E.; Choo, Y. K.; Shih, T. I-P.

    2005-01-01

    WIND, Fluent, and PowerFLOW were used to predict the lift, drag, and moment coefficients of a business-jet airfoil with a rime ice (rough and jagged, but no protruding horns) and with a glaze ice (rough and jagged end has two or more protruding horns) for angles of attack from zero to and after stall. The performance of the following turbulence models were examined by comparing predictions with available experimental data. Spalart-Allmaras (S-A), RNG k-epsilon, shear-stress transport, v(sup 2)-f, and a differential Reynolds stress model with and without non-equilibrium wall functions. For steady RANS simulations, WIND and FLUENT were found to give nearly identical results if the grid about the iced airfoil, the turbulence model, and the order of accuracy of the numerical schemes used are the same. The use of wall functions was found to be acceptable for the rime ice configuration and the flow conditions examined. For rime ice, the S-A model was found to predict accurately until near the stall angle. For glaze ice, the CFD predictions were much less satisfactory for all turbulence models and codes investigated because of the large separated region produced by the horns. For unsteady RANS, WIND and FLUENT did not provide better results. PowerFLOW, based on the Lattice Boltzmann method, gave excellent results for the lift coefficient at and near stall for the rime ice, where the flow is inherently unsteady.

  2. Ice flood velocity calculating approach based on single view metrology

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xu, L.

    2017-02-01

    Yellow River is the river in which the ice flood occurs most frequently in China, hence, the Ice flood forecasting has great significance for the river flood prevention work. In various ice flood forecast models, the flow velocity is one of the most important parameters. In spite of the great significance of the flow velocity, its acquisition heavily relies on manual observation or deriving from empirical formula. In recent years, with the high development of video surveillance technology and wireless transmission network, the Yellow River Conservancy Commission set up the ice situation monitoring system, in which live videos can be transmitted to the monitoring center through 3G mobile networks. In this paper, an approach to get the ice velocity based on single view metrology and motion tracking technique using monitoring videos as input data is proposed. First of all, River way can be approximated as a plane. On this condition, we analyze the geometry relevance between the object side and the image side. Besides, we present the principle to measure length in object side from image. Secondly, we use LK optical flow which support pyramid data to track the ice in motion. Combining the result of camera calibration and single view metrology, we propose a flow to calculate the real velocity of ice flood. At last we realize a prototype system by programming and use it to test the reliability and rationality of the whole solution.

  3. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  4. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  5. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  6. Are annual layers preserved in NorthGRIP Eemian ice?

    NASA Astrophysics Data System (ADS)

    Kettner, E.; Bigler, M.; Nielsen, M. E.; Steffensen, J. P.; Svensson, A.

    2009-04-01

    A newly developed setup for continuous flow analysis (CFA) of ice cores in Copenhagen is optimized for high resolution analysis of four components: Soluble sodium (mainly deriving from sea salt), soluble ammonium (related to biological processes and biomass burning events), insoluble dust particles (basically transported from Asian deserts to Greenland), and the electrolytic melt water conductivity (which is a bulk signal for all ionic constituents). Furthermore, we are for the first time implementing a flow cytometer to obtain high quality dust concentration and size distribution profiles based on individual dust particle measurements. Preliminary measurements show that the setup is able to resolve annual layers of 1 cm thickness. Ice flow models predict that annual layers in the Eemian section of the Greenland NorthGRIP ice core (130-115 ka BP) have a thickness of around 1 cm. However, the visual stratigraphy of the ice core indicates that the annual layering in the Eemian section may be disturbed by micro folds and rapid crystal growth. In this case study we will measure the impurity content of an Eemian segment of the NorthGRIP ice core with the new CFA setup. This will allow for a comparison to well-known impurity levels of the Holocene in both Greenland and Antarctic ice and we will attempt to determine if annual layers are still present in the ice.

  7. Airborne gravity measurement over sea-ice: The western Weddel Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, J.; Peters, M.; LaBrecque, J.

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less

  8. The Rapid Ice Sheet Change Observatory (RISCO)

    NASA Astrophysics Data System (ADS)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    and image animations from the ice sheet scale down to scales of meters, (2) maps of ice flow velocity and acceleration and (3) digital elevation models and elevation change maps. These products are created both from user-tasked data acquisitions and from a decade of archived data. An online user interface will allow browsing of the data catalog, product ordering and requests for sensor tasking. Over the next few years, RISCO will develop into a long-term observational system, with an adaptable infrastructure to accommodate new sensors and currently unforeseeable demands. RISCO has the potential to greatly enhance observation of ice sheets, moving from ad hoc studies of past changes using whatever data happens to be available, to scalable, targeted, near-real time monitoring of events as they occur.

  9. Sea Ice Flows, Sea of Okhotsk, CIS

    NASA Image and Video Library

    1991-05-06

    STS039-84-29AL (28 April-6 May 1991) --- This nearly vertical photograph of the North Atlantic, taken outside of the sunglint pattern, illustrates the extreme contrast between highly reflective ice, having a large percentage of between-crystal air space, and the low-reflectance water, which absorbs most of the light that propagates into it from the air. The ice drifts along with the surface currents and wind and may therefore be used as a natural Langranian* tracer. Photographs such as this, taken several times over the course of a mission, may be used to investigate near-surface circulation in high-latitude oceans. *A Langranian tracer is anything that can be tracked as it drifts along with the water, as opposed to staying in one position and measuring how fast the water goes by.

  10. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  11. Growth of Greenland ice sheet - Interpretation

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    1989-01-01

    An observed 0.23 m/year thickening of the Greenland ice sheet indicates a 25 percent to 45 percent excess ice accumulation over the amount required to balance the outward ice flow. The implied global sea-level depletion is 0.2 to 0.4 mm/year, depending on whether the thickening is only recent (5 to 10 years) or longer term (less than 100 years). If there is a similar imbalance in the northern 60 percent of the ice-sheet area, the depletion is 0.35 to 0.7 mm/year. Increasing ice thickness suggests that the precipitation is higher than the long-term average; higher precipitation may be a characteristic of warmer climates in polar regions.

  12. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    NASA Astrophysics Data System (ADS)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  13. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    (Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant

  14. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith

    2017-01-01

    This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  15. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  16. Geomorphological Mapping of Sputnik Planum on Pluto: Convection, Glacial Flow, Sublimation and Re-deposition of Nitrogen Ice

    NASA Astrophysics Data System (ADS)

    White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Cheng, A. F.

    2016-12-01

    The New Horizons flyby of Pluto provided extensive high-resolution coverage of its encounter hemisphere. The most prominent surface feature in this hemisphere is the high albedo region informally named Tombaugh Regio, the western portion of which is represented by the expansive nitrogen ice plains informally named Sputnik Planum. A large fraction of Sputnik Planum displays a distinct cellular pattern, with individual cells typically displaying ovoid planforms and shallow pitting on a scale of a few hundred meters. Troughs with medial ridges define the boundaries between cells. Prior studies have argued that this pattern is indicative of solid-state convection occurring within the nitrogen ice. The southern non-cellular plains are either featureless or display dense fields of often elongate and aligned pits typically reaching a few km across, interpreted to have formed via sublimation. The mapping that will be presented at AGU focuses on identifying the different plains units that compose Sputnik Planum and defining the boundaries between them, which aids in assessing their time sequencing and correlation to one another. The cellular plains are divided into bright and dark units, with the bright unit forming a continuous high albedo zone with the bright uplands of east Tombaugh Regio. We interpret the dark plains to represent the main body of convecting N2 ice that forms the cellular plains of Sputnik Planum, with the low albedo caused by a high concentration of entrained dark material (likely tholins). Preferential sublimation of N2 ice from these plains would leave the dark ice exposed, and re-deposition of the N2 ice on the eastern cellular plains and uplands of east Tombaugh Regio would create a thin veneer of pure, bright N2 ice covering these landscapes. The non-cellular plains are universally bright and display evidence for southwards flow of the N2 ice, based on the orientations of fields of elongate sublimation pits as well as the presence of `extinct cells

  17. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf

    NASA Astrophysics Data System (ADS)

    Gourmelen, Noel; Goldberg, Dan N.; Snow, Kate; Henley, Sian F.; Bingham, Robert G.; Kimura, Satoshi; Hogg, Anna E.; Shepherd, Andrew; Mouginot, Jeremie; Lenaerts, Jan T. M.; Ligtenberg, Stefan R. M.; van de Berg, Willem Jan

    2017-10-01

    Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40-50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.

  18. Ice sculpture in the Martian outflow channels

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1982-01-01

    Viking Orbiter and terrestrial satellite images are examined at similar resolution to compare features of the Martian outflow channels with features produced by the movement of ice on earth, and many resemblances are found. These include the anastomoses, sinuosities, and U-shaped cross profiles of valleys; hanging valleys; linear scour marks on valley walls; grooves and ridges on valley floors; and the streamlining of bedrock highs. Attention is given to the question whether ice could have moved in the Martian environment. It is envisaged that springs or small catastrophic outbursts discharged fluids from structural outlets or chaotic terrains. These fluids built icings that may have grown into substantial masses and eventually flowed like glaciers down preexisting valleys. An alternative is that the fluids formed rivers or floods that in turn formed ice jams and consolidated into icy masses in places where obstacles blocked their flow.

  19. Mathematical modeling of ice accretion on airfoils

    NASA Technical Reports Server (NTRS)

    Macarthur, C. D.; Keller, J. L.; Luers, J. K.

    1982-01-01

    The progress toward development of a computer model suitable for predicting icing behavior on airfoils over a wide range of environmental conditions and airfoils shapes is reported. The LEWICE program was formulated to solve a set of equations which describe the physical processes which occur during accretion of ice on an airfoil, including heat transfer in a time dependent mode, with the restriction that the flow must be describable by a two-dimensional flow code. Input data comprises the cloud liquid water content, mean droplet diameter, ambient air temperature, air velocity, and relative humidity. A potential flowfield around the airfoil is calculated, along with the droplet trajectories within the flowfield, followed by local values of water droplet collection efficiency at the impact points. Both glaze and rime ice conditions are reproduced, and comparisons with test results on icing of circular cylinders showed good agreement with the physical situation.

  20. Effects of seawater flow rate and evaporation temperature on performance of Sherbet type ice making machine

    NASA Astrophysics Data System (ADS)

    Son, C. H.; Yoon, J. I.; Choi, K. H.; Lee, H. K.; Lee, K. S.; Moon, C. G.; Seol, S. H.

    2018-01-01

    This study analyzes performance of the sherbet type ice making machine using seawater with respect to seawater volumetric flow rate, evaporation temperature, cooling water inlet and seawater inlet temperature as variables. Cooling water inlet and seawater inlet temperature are set considering average temperature of South Korea and the equator regions. Volumetric flow rate of seawater range is 0.75-1.75 LPM in this experiment. The results obtained from the experiment are as follows. As the seawater volumetric flow rate increases, or seawater inlet temperature increases, evaporation capacity tends to increase. At the point of seawater inlet temperature of 27°C and volumetric flow rate of 1.0LPM, evaporation capacity is over 2kW. On the other hand, results of COP change tendency are different from that of evaporation capacity. It appears to increase until volumetric flow rate of 1.0LPM, and decrease gradually from volumetric flow rate of 1.5LPM. This is due to the increase of compressor work to keep the evaporation pressure in accordance with the temperature of heat source. As the evaporation temperature decreases from -8 to -15°C, the evaporation capacity increases, but the COP decreases.