Science.gov

Sample records for ice flow patterns

  1. Flow-pattern evolution of the last British Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hughes, Anna L. C.; Clark, Chris D.; Jordan, Colm J.

    2014-04-01

    We present a 10-stage reconstruction of the evolution in ice-flow patterns of the last British Ice Sheet from build-up to demise derived from geomorphological evidence. 100 flowsets identified in the subglacial bedform record (drumlins, mega-scale glacial lineations, and ribbed moraine) are combined with ancillary evidence (erratic-transport paths, absolute dates and a semi-independently reconstructed retreat pattern) to define flow patterns, ice divides and ice-sheet margins during build-up, maximum glaciation and retreat. Overprinting and cross-cutting of landform assemblages are used to define the relative chronology of flow patterns and a tentative absolute chronology is presented based on a collation of available dates for ice advance and retreat. The ice-flow configuration of the last British Ice Sheet was not static. Some ice divides were remarkably stable, persisting through multiple stages of the ice-sheet evolution, whereas others were transient features existing for a short time and/or shifting in position 10s km. The 10 reconstructed stages of ice-sheet geometry capture two main modes of operation; first as an integrated ice sheet with a broadly N-S orientated ice divide, and second as a multi-domed ice sheet orientated parallel with the shelf edge. A thick integrated ice sheet developed as ice expanded out of source areas in Scotland to envelop southerly ice caps in northern England and Wales, and connect with the Irish Ice Sheet to the west and the Scandinavian Ice Sheet across the North Sea. Following break-up of ice over the North Sea, ice streaming probably drove mass loss and ice-sheet thinning to create a more complex divide structure, where ice-flow patterns were largely controlled by the form of the underlying topography. Ice surface lowering occurred before separation of, and retreat to, multiple ice centres centred over high ground. We consider this 10-stage reconstruction of the evolution in ice-sheet configuration to be the simplest palaeo

  2. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Crater deposit thicknesses (~50 m) cannot fill the craters in a time period compatible with the interpreted formation times of the Pedestal Crater mantled ice layers. We use a representative obliquity solution to drive an ice flow model and show that a cyclical pattern of multiply recurring layers can both fill the craters with a significant volume of ice, as well as transport debris from the crater walls out into the central regions of the craters. The cyclical pattern of waxing and waning mantling layers results in a rippled pattern of surface debris extending out into the crater interiors that would manifest itself as an observable concentric pattern, comparable in appearance to concentric crater fill. In this scenario, the formation of mantling sublimation till layers seals the accumulating ice and sequesters it from significant temperature variations at diurnal, annual and spin-axis/orbital cycle time scales, to produce ancient ice records preserved today below CCF crater floors. Lack of meltwater features associated with concentric crater fill provides evidence that the Late Amazonian climate did not exceed the melting temperature in the mid- to high-latitudes for any significant period of time. Continued sequestration of ice with time in CCF and related deposits (lobate debris aprons and lineated valley fill) further reduces the already supply-limited polar ice sources, suggesting that there has been a declining reservoir of available ice with each ensuing glacial period. Together, these deposits represent a candidate library of climate chemistry and global change dating from the Late Amazonian, and a non-polar water resource for future exploration.

  3. Greenland Ice Flow

    NASA Video Gallery

    Greenland looks like a big pile of snow seen from space using a regular camera. But satellite radar interferometry helps us detect the motion of ice beneath the snow. Ice starts flowing from the fl...

  4. Influence of ice sheet bed morphology on spatial and seasonal patterns of ice flow in Greenland: preliminary results from an automated method for interpreting high resolution ice velocity data derived from Landsat imagery.

    NASA Astrophysics Data System (ADS)

    Jones, Andrew H.; Swift, Darrel A.; Livingstone, Stephen J.

    2016-04-01

    Ice sheet bed morphology affects ice flow rates and patterns by topographically directing and resisting ice flow and by modulating rates of basal sliding. Notably, reverse bedslopes are anticipated to modulate basal sliding rates and mechanisms through their control on subglacial drainage system morphology and efficiency. In ice sheet contexts, understanding of the significance of these controls, their relative importance and ubiquity, remains weak. We aim to use contemporary remote sensing data products that provide high spatial and temporal resolution ice velocity and bed data for the Greenland ice sheet to attempt a comprehensive and systematic analysis of spatial and seasonal variation in flow behaviour and its links to bed morphology. Here we present an automated method for high resolution 4-dimensional analysis of a large archive dataset (Rosenau et al, 2015) of Landsat-derived ice velocity that enables the extraction of velocity data along a large number of longitudinal flowlines for individual glacier catchments and the analysis of along-flow velocity patterns. Analysis can be undertaken on individual flowlines, or adjacent flowlines can be custom aggregated both spatially and temporarily to investigate factors such as intra-annual or inter-annual seasonal patterns. We present initial analyses of seasonal velocity changes at a sample of glacier catchments and their relationship to glacier bed characteristics.

  5. Spatially-resolved mean flow and turbulence help explain observed erosion and deposition patterns of snow over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.

    2014-12-01

    Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the

  6. Patterns of accumulation and flow of ice in the mid-latitudes of Mars during the Amazonian

    NASA Astrophysics Data System (ADS)

    Dickson, James L.; Head, James W.; Fassett, Caleb I.

    2012-06-01

    Evidence has accumulated that non-polar portions of Mars have undergone significant periods of glaciation during the Amazonian Period. This evidence includes tropical mountain glacial deposits, lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, and related landforms, some of which suggest that ice thicknesses exceeded a kilometer in many places. In some places, several lines of evidence suggest that ice is still preserved today in the form of relict debris-coved glaciers. The vast majority of deposit morphologies are analogous to those seen in cold-based glacial deposits on Earth, suggesting that little melting has taken place. Although these features have been broadly recognized, and their modes of ice accumulation and flow analyzed at several scales, they have not been analyzed and well-characterized globally despite their significance for understanding the evolution of the martian climate. A major outstanding question is the global extent of accumulation and flow of ice during periods of non-polar glaciation: As a mechanism to address this question, we outline two end-member scenarios to provide a framework for further discussion and analysis: (1) ice accumulation was mainly focused within individual craters and valleys and flow was largely local to regional in scale, and (2) ice accumulation was dominated by global latitudinal scale cold-based ice sheets, similar in scale to the Laurentide continental ice sheets on Earth. In order to assess these end members, we conducted a survey of ice-related features seen in Context Camera (CTX) images in each hemisphere and mapped evidence for flow directions within well-preserved craters in an effort to decipher orientation preferences that could help distinguish between these two hypotheses: regional/hemispheric glaciation or local accumulation and flow. These new crater data reveal a latitudinal-dependence on flow direction: at low latitudes in each hemisphere (<40-45°) cold, pole

  7. Revealing the early ice flow patterns with historical Declassified Intelligence Satellite Photographs back to 1960s

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Liu, Hongxing; Yu, Bailang; Zhou, Guoqing; Cheng, Xiao

    2016-06-01

    The reconnaissance ARGON satellites collected the earliest images of Antarctica from space dating back to the 1960s, providing valuable historical baseline information for studying polar ice sheets. Those photographs are underutilized for ice motion mapping, due to lack of sufficient ground controls for image orthorectification. In this study, we orthorectified the ARGON photographs by fully exploiting the metric qualities of WorldView satellite images: very high spatial resolution and precise geolocation. Through a case study over Larsen Ice Shelf, we demonstrated that the camera model with bundle block adjustment can achieve geolocation accuracy of better than the nominal resolution (140 m) for orthorectifying ARGON images, with WorldView imagery as ground control source. This allowed us to extend the ice velocity records of Larsen Ice Shelf back into 1960s~1970s for the first time. The retrospective analysis revealed that acceleration of the collapsed Larsen B occurred much earlier than previously thought.

  8. Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2015-02-01

    pattern was disorganized and followed topography, with no radial flow pattern typical of an equilibrium ice sheet. Virtually the entire ice sheet is predicted to be cold-based, and thus the range of wet-based features typically associated with temperate glaciers (e.g., drumlins, eskers, etc.) is not predicted to occur. Wet-based conditions are predicted only locally in the thickest ice (on the floors of the deepest craters), where limited subglacial lakes may have formed. These LNIH regional ice-sheets provide a huge reservoir of potential meltwater as a source for forming the observed fluvial and lacustrine features and deposits. Top-down melting scenarios applied to our LNIH ice sheet model predict that periods of punctuated warming could lead to elevated temperatures sufficient to melt enough snow and ice to readily account for the observed fluvial and lacustrine features and deposits. Our model indicates that such melting should take place preferentially at the margins of the ice sheets, a prediction that can be tested with further analyses.

  9. Are longitudinal ice-surface structures on the Antarctic Ice Sheet indicators of long-term ice-flow configuration?

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Jennings, S. J. A.; Hambrey, M. J.; Hubbard, B.

    2014-07-01

    Continent-wide mapping of longitudinal ice-surface structures on the Antarctic Ice Sheet reveals that they originate in the interior of the ice sheet and are arranged in arborescent networks fed by multiple tributaries. Longitudinal ice-surface structures can be traced continuously down-ice for distances of up to 1200 km. They are co-located with fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of m yr-1 and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. Associating these structures with the AIS' surface velocity field reveals (i) ice residence times of ~ 2500 to 18 500 years, and (ii) undeformed flow-line sets for all major flow units analysed except the Kamb Ice Stream and the Institute and Möller Ice Stream areas. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow and ice-velocity configuration of the ice sheet may have remained largely unchanged for several thousand years, and possibly even since the end of the last glacial cycle. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition.

  10. Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage

    NASA Astrophysics Data System (ADS)

    Beaud, Flavien; Flowers, Gwenn E.; Pimentel, Sam

    2014-08-01

    Field data and numerical modeling show that glaciations have the potential either to enhance relief or to dampen topography. We aim to model the effect of the subglacial hydraulic system on spatiotemporal patterns of glacial erosion by abrasion and quarrying on time scales commensurate with drainage system fluctuations (e.g., seasonal to annual). We use a numerical model that incorporates a dual-morphology subglacial drainage system coupled to a higher-order ice-flow model and process-specific erosion laws. The subglacial drainage system allows for a dynamic transition between two morphologies: the distributed system, characterized by an increase in basal water pressure with discharge, and the channelized system, which exhibits a decrease in equilibrium water pressure with increasing discharge. We apply the model to a simple synthetic glacier geometry, drive it with prescribed meltwater input variations, and compute sliding and erosion rates over a seasonal cycle. When both distributed and channelized systems are included, abrasion and sliding maxima migrate ~ 20% up-glacier compared to simulations with distributed drainage only. Power-law sliding generally yields to a broader response of abrasion to water pressure changes along the flowline compared to Coulomb-friction sliding. Multi-day variations in meltwater input elicit a stronger abrasion response than either diurnal- or seasonal variations alone for the same total input volume. An increase in water input volume leads to increased abrasion. We find that ice thickness commensurate with ice sheet outlet glaciers can hinder the up-glacier migration of abrasion. Quarrying patterns computed with a recently published law differ markedly from calculated abrasion patterns, with effective pressure being a stronger determinant than sliding speeds of quarrying rates. These variations in calculated patterns of instantaneous erosion as a function of hydrology-, sliding-, and erosion-model formulation, as well as model

  11. Flow variability in the Scandinavian ice sheet: modelling the coupling between ice sheet flow and hydrology

    NASA Astrophysics Data System (ADS)

    Arnold, Neil; Sharp, Martin

    2002-02-01

    There is increasing geologic evidence for periodic flow variability within large ice sheets, manifested as spatially and temporally variable areas of fast ice flow, and resulting in the very complex patterns of lineations observed in formerly glaciated areas. However, many ice sheet models do not replicate this behaviour. A possible reason for this is that such models do not include a detailed treatment of basal hydrology. Changes in the character of sub-glacial drainage systems are believed to cause surges in valley glaciers. Recent ice sheet models, which have included basal hydrology or at least a link between basal velocity and the presence of water at the bed, often show flow variability. However, these models have typically assumed a deformable bed, or have made no assumptions about the nature of the bed. Whilst these assumptions seem applicable to areas close to the former margins of Quaternary ice sheets, they are less applicable to interior areas. These areas typically show thin or scanty till cover over eroded bedrock, and the presence of eskers, which are indicative of drainage in sub-glacial tunnels. We have developed a two-dimensional time-dependent ice sheet model that includes hard-bed basal hydrology. This allows calculation of sub-glacial water pressures and the use of a water pressure dependent sliding law to calculate ice sheet velocities. When used to simulate the Weichselian Scandinavian ice sheet, with late Quaternary climate and sea level as forcing functions, this model develops localised areas of fast-flowing ice, which vary in extent and in distance of penetration into the interior of the ice sheet both spatially and temporally. The behaviour of these lobes depends crucially on the influence of the evolving ice sheet topography on the routing of subglacial water flow, due to the resulting variations in the subglacial hydraulic potential which drive the water flow. Bedrock topography also has some influence, but fast flow areas are not

  12. Ice-Confined Basaltic Lava Flows: Review and Discussion

    NASA Astrophysics Data System (ADS)

    Skilling, I.; Edwards, B. R.

    2012-12-01

    Basaltic lavas that are interpreted as having been emplaced in subglacial or ice-confined subaerial settings are known from several localities in Iceland, British Columbia and Antarctica. At least four different types of observations have been used to date to identify emplacement of basaltic lavas in an ice-rich environment: i) gross flow morphology, ii) surface structures, iii) evidence for ice-confined water during emplacement, and iv) lava fracture patterns. Five types of ice-confined lava are identified: sheets, lobes, mounds, linear ridges and sinuous ridges. While the appearance of lavas is controlled by the same factors as in the submarine environment, such as the geometry and configuration of vents and lava tubes, flow rheology and rates, and underlying topography, the presence of ice can lead to distinct features that are specific to the ice-confined setting. Other types have very similar or identical equivalents in submarine environment, albeit with some oversteepening/ice contact surfaces. Ice-confined lavas can form as (1) subaerial or subaqueous lavas emplaced against ice open to the air, (2) subaqueous lavas emplaced into pre-existing sub-ice drainage networks, and (3) subaqueous lavas emplaced into ponded water beneath ice. Their surface structures reflect the relationship between rates of lava flow emplacement at the site of ice-water-lava contact, ice melting and water drainage. Variations in local lava flow rates could be due to lava cooling, constriction, inflation, tube development, ice melting, ice collapse, lava collapse, changes in eruption rate etc. Episodes of higher lava flow rate would favour direct ice contact and plastic compression against the ice, generating oversteepened and/or overthickened chilled margins, cavities in the lava formed by melting of enveloped ice blocks (cryolith cavities) and structures such as flattened pillows and lava clasts embedded into the glassy margins. Melting back of the confining ice generates space to

  13. Estimating Ice Volumes of Mid-Latitude Glaciers on Mars Using Simple Ice-Flow Models and Inverse Methods

    NASA Astrophysics Data System (ADS)

    Schmidt, L. S.; Karlsson, N. B.; Hvidberg, C. S.

    2016-09-01

    High-resolution images of the martian surface have revealed numerous deposits with complex patterns consistent with the flow of ice. Here we applied ice-flow models and inverse methods to estimate the ice thickness and volume of these deposits.

  14. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet

  15. Flow Dynamics and Stability of the NE Greenland Ice Stream from Active Seismics and Radar

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Alley, R. B.; Anandakrishnan, S.; Christianson, K. A.; Peters, L. E.; Muto, A.

    2015-12-01

    We find that dilatant till facilitates rapid ice flow in central Greenland, and regions of dryer till limit the expansion of ice flow. The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining 8.4% of the ice sheet's area. Fast ice flow initiates near the ice sheet summit in a region of high geothermal heat flow and extends some 700km downstream to three outlet glaciers along the NE Coast. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. In this study, we present the results of the first-ever ground-based geophysical survey of the initiation zone of NEGIS. Based on radar and preliminary seismic data, Christianson et al. (2014, EPSL) propose a flow mechanism for the ice stream based on topographically driven hydropotential lows which generate 'sticky' regions of the bed under the ice stream margins. We further test this hypothesis using a 40km reflection seismic survey across both ice stream margins. We find that regions of 'sticky' bed as observed by the radar survey are coincident with regions of the bed with seismic returns indicating drier subglacial sediments. These findings are further supported by five amplitude-verses-offset seismic surveys indicating dilatant till within the ice stream and consolidated sediments within its margins.

  16. Ice patterns and hydrothermal plumes, Lake Baikal, Russia - Insights from Space Shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Helfert, Michael R.; Helms, David R.

    1992-01-01

    Earth photography from the Space Shuttle is used to examine the ice cover on Lake Baikal and correlate the patterns of weakened and melting ice with known hydrothermal areas in the Siberian lake. Particular zones of melted and broken ice may be surface expressions of elevated heat flow in Lake Baikal. The possibility is explored that hydrothermal vents can introduce local convective upwelling and disrupt a stable water column to the extent that the melt zones which are observed in the lake's ice cover are produced. A heat flow map and photographs of the lake are overlaid to compare specific areas of thinned or broken ice with the hot spots. The regions of known hydrothermal activity and high heat flow correlate extremely well with circular regions of thinned ice, and zones of broken and recrystallized ice. Local and regional climate data and other sources of warm water, such as river inlets, are considered.

  17. Distinct Seasonal Velocity Patterns Based on Ice-Sheet-Wide Analysis of Greenland Outlet Glaciers

    NASA Astrophysics Data System (ADS)

    Moon, T. A.; Joughin, I. R.; Smith, B. E.; van den Broeke, M. R.; Usher, M.

    2014-12-01

    Mass loss from the Greenland Ice Sheet increased significantly over the last several decades and current mass losses of 260-380 Gt ice/yr contribute 0.7-1.1 mm/yr to global sea-level rise. Greenland mass loss includes ice discharge via marine-terminating outlet glaciers and surface meltwater runoff, the former now making up a third to a half of total ice loss. The magnitude of ice discharge depends in part on ice-flow speed, which has broadly increased since 2000 but varies locally, regionally, and from year to year. Research on a limited set of Greenland glaciers also shows that speeds vary seasonally. However, for much of the west, northwest, and southeast coasts where ice loss is increasing most rapidly, there are few or no records of seasonal velocity variation. Ice velocity is influenced by several key components of the ice-sheet-ocean-climate system: subglacial environment, surface melt and runoff, and ice-ocean interaction at the ice-front (terminus). Thus, knowledge of seasonal velocity patterns is important for predicting annual ice discharge, understanding the effects of increased surface melt on total mass loss, and establishing how ice-flow responds to other climatic changes. We developed 5-year records of seasonal velocity measurements for 55 glaciers around the ice-sheet margin. Among glaciers with significant speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position, with seasonal summer speedup sustained through fall. The other two patterns appear to be meltwater controlled and indicate regional differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. These differences in dominant velocity control mechanisms reveal likely spatiotemporal variations in the dynamic response of the ice sheet to climate change.

  18. The flow history of Siple Dome and Ice Streams C and D, West Antarctica: Inferences from geophysical measurements and ice flow models

    NASA Astrophysics Data System (ADS)

    Nereson, Nadine Ann

    1998-09-01

    Siple Dome (81.65sp° S. 148.81sp° W) is an ice ridge between Ice Streams C and D on the Siple Coast of West Antarctica. Its location near the coast and between two ice streams makes it a favorable place for the study of paleo-climate and paleo-ice-stream activity. The analyses presented in this dissertation are based on geophysical measurements made at Siple Dome in 1994 and 1996 as part of a collaborative project among the University of Washington, St. Olaf College, and the University of Colorado. The measurements were made to characterize the geometry of the dome, investigate its stability, infer possible changes in the ice stream configuration, and support an ice core paleo-climate project at the Siple Dome summit. In this dissertation, geophysical measurements are used with quasi-time-dependent ice flow models and inverse methods to infer the history of ice flow at Siple Dome and place limits on the past activity of adjacent ice streams C and D. Information about past ice flow is inferred primarily from the shapes of internal layers detected across Siple Dome from radio-echo sounding measurements. The continuity of the internal layers and the shape of a warp feature in the layer pattern at the divide suggest that Siple dome has not been over-run by ice streams over the past 10sp4 years and that the divide position has been slowly migrating northward toward Ice Stream D for the past few thousand years. Gradual thinning of the boundary between Siple Dome and a relict piece of Ice Stream C prior to its stagnation may be responsible for the divide migration. The pattern of ice thickness change across the south flank of Siple Dome, calculated from measurements of ice flow and an inferred accumulation pattern, is interpreted as a response to recent ({<}500 a) stagnation of a piece of Ice Stream C adjacent to Siple Dome. The topography of surface lineations on the Ice Stream D-side of Siple Dome indicates recent ({<}500 a) stagnation of another relict ice stream

  19. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  20. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  1. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site

    NASA Astrophysics Data System (ADS)

    Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-05-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  2. Investigations on the origins and maintenance of the Scharffenbergbotnen blue ice area by combined surface wind and ice flow simulations

    NASA Astrophysics Data System (ADS)

    Zwinger, Thomas; Malm, Torsten; Schäfer, Martina; Martín, Carlos; Moore, John C.

    2015-04-01

    Using the turbulent flow modeling capabilities of the Finite Element code Elmer we model the spatial and temporal distributions of wind impact speeds caused by a katabatic wind front on the by nunataks surrounded glacier valley of Scharffenbergbotnen (SBB), Dronning Maud Land, East Antarctica. Comparison of these patterns to the steady state mass balance distribution obtained using a prescribed fabric distribution to solve the prognostic ice flow problem with a the full-stress code Elmer/Ice reveal a significant correspondence over the inner part of the valley and in particular the blue ice area (BIA) where the snow and even multi-year firn is removed by very high winds. This leads us to the conclusion that topographically accelerated winds are the dominant factor determining the mass balance of high elevation BIA's. Based on geomorphological evidence we further reconstruct the surface terrain to resemble the situation at the Late Glacial Maximum (LGM), where the ice inside the valley was ~200 m thicker and the nunataks were smoothed out by the ice cover. The same turbulent flow simulation, utilizing the Virtual Multi-Scale (VMS) method, on this altered terrain reveals that the focusing effect of the present day surface did not exist at the LGM. This supports the finding of ice sample ages and flow model results that the inner BIA at SBB was created as a consequence of the lowering ice surface clearly after LGM.

  3. In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice area

    NASA Astrophysics Data System (ADS)

    Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.

    2012-06-01

    Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in ice, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.

  4. Seasonal Greenland Ice Sheet ice flow variations in regions of differing bed and surface topography

    NASA Astrophysics Data System (ADS)

    Sole, A. J.; Livingstone, S. J.; Rippin, D. M.; Hill, J.; McMillan, M.; Quincey, D. J.

    2015-12-01

    The contribution of the Greenland Ice Sheet (GrIS) to future sea-level rise is uncertain. Observations reveal the important role of basal water in controlling ice-flow to the ice sheet margin. In Greenland, drainage of large volumes of surface meltwater to the ice sheet bed through moulins and hydrofracture beneath surface lakes dominates the subglacial hydrological system and provides an efficient means of moving mass and heat through the ice sheet. Ice surface and bed topography influence where meltwater can access the bed, and the nature of its subsequent flow beneath the ice. However, no systematic investigation into the influence of topographic variability on Greenland hydrology and dynamics exists. Thus, physical processes controlling storage and drainage of surface and basal meltwater, and the way these affect ice flow are not comprehensively understood. This presents a critical obstacle in efforts to predict the future evolution of the GrIS. Here we present high-resolution satellite mapping of the ice-surface drainage network (e.g. lakes, channels and moulins) and measurements of seasonal variations in ice flow in south west Greenland. The region is comprised of three distinct subglacial terrains which vary in terms of the amplitude and wavelength and thus the degree to which basal topography is reflected in the ice sheet surface. We find that the distribution of surface hydrological features is related to the transfer of bed topography to the ice sheet surface. For example, in areas of thinner ice and high bed relief, moulins occur more frequently and are more uniformly dispersed, indicating a more distributed influx of surface-derived meltwater to the ice sheet bed. We investigate the implications of such spatial variations in surface hydrology on seasonal ice flow rates.

  5. Heat Flow and the Pleistocene Ice Margin

    NASA Astrophysics Data System (ADS)

    Klenner, R.; Gosnold, W.

    2012-04-01

    Several observations lead us to suggest that the geothermal gradient measurements near the Pleistocene ice margin require re-analysis to account for the effects of micro-climates at the drill holes, including modification of the temperature gradients by recent climate change and by post-glacial warming. Post-glacial climatic changes affect temperature gradients in the upper two kilometers of the crust and this has not been consistently accounted for in previously published heat flow values. Human and natural drivers affecting our climate lead us to suggest that the geothermal gradients in shallow boreholes have been significantly underestimated of present day heat flow. In most cases, heat flow increases with depth in northern hemisphere periglacial regions in Eurasia and North America. This includes temperature gradients increasing with depth in thick clastic rocks in the Williston Basin where compaction causes an increase in thermal conductivity. Using a pollen analyses in upland lakes in southern Manitoba indicate that MJJA surface temperatures are 13 ° C higher than they were 12,500 ka. Conductive heat flow models using the pollen temperature history as a forcing signal for surface temperature produce temperature vs. depth profiles with increasing gradients that are similar to profiles observed in the Williston Basin. Other observational evidence includes heat flow calculated from radioactivity in Minnesota is systematically higher than borehole measurements. This evidence leads us to believe the temperature has increased 15° C since the last glaciation and temperature gradients are underestimated by 25-40%. This study proposes corrections for post-glacial warming using conductive heat flow models based on 15 degrees of warming and for recent warming.

  6. Investigating the Flow Dynamics at Ice Shelf Calving Fronts

    NASA Astrophysics Data System (ADS)

    Wearing, Martin; Hindmarsh, Richard; Worster, Grae

    2015-04-01

    Ice-shelf calving-rates and the buttressing ice shelves provide to grounded ice are both difficult to model and quantify. An increased understanding of the mechanics of this process is imperative in determining the dynamics of marine ice sheets and consequently predicting their future extent, thickness and discharge. Alley et al. (2008) proposed an empirically derived calving law, relating the calving rate to the strain rate at the calving front. However, Hindmarsh (2012) showed that a similar relationship could be deduced by considering the viscous flow of the ice shelf. We investigate the relationship between the ice shelf flow field and the strain rate field in the area close to the calving front. Analysis is undertaken of ice surface velocity data for a range of Antarctic ice shelves (data from Rignot et al., 2011) and an inferred strain rate field produced from that data. These geophysical results are compared with a simple mathematical model for laterally confined ice shelf flow. Correlations are calculated between the same variables as Alley et al. but using a new and larger data compilation, which gives a greater degree of scatter. Good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of laterally confined ice shelves. This lateral confinement ensures flow is aligned in the along-shelf direction and resistance to flow is provided by near stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute on a case-by-case basis to marginal weakening or the presence of ice tongues. We develop statistical methodologies for identifying these outliers.

  7. Antarctic Sea Ice Patterns and Its Relationship with Climate

    NASA Astrophysics Data System (ADS)

    Barreira, S.

    2015-12-01

    Antarctic sea ice concentration fields show a strong seasonal and interannual variation closely tied to changes in climate patterns. The Ross, Amundsen, Bellingshausen, and Weddell Seas during Summer-Autumn and the Southern Ocean regions north of these areas during Winter-Spring have the greatest sea ice variability. Principal components analysis in T- mode, Varimax-rotated applied on Antarctic monthly sea ice concentration anomaly (SICA) fields for 1979-2015 (NASA Team algorithm data sets available at nsidc.org) revealed the main spatial characteristics of Antarctic sea ice patterns and their relationship with atmospheric circulation. This analysis yielded five patterns of sea ice for winter-spring and three patterns for summer-autumn, each of which has a positive and negative phase. To understand the links between the SICA patterns and climate, we extracted the mean pressure and temperature fields for the months with high loadings (positive or negative) of the sea ice patterns. The first pattern of winter-spring sea ice concentration is a dipole structure between the Drake Passage and northern regions of the Bellingshausen and Weddell Seas and, the South Atlantic Ocean. The negative phase shows a strong negative SICA over the Atlantic basin. This pattern can be associated with to the atmospheric structures related to a positive SAM index and a wave-3 arrangement around the continent. That is, a strong negative pressure anomaly centered over the Bellingshausen Sea accompanied by three positive pressure anomalies in middle-latitudes. For summer-autumn, the first pattern shows two strong positive SICA areas, in the eastern Weddell Sea and the northwestern Ross Sea. A negative SICA covers the Amundsen-Bellingshausen Seas and northwest of the Antarctic Peninsula. This pattern, frequently seen in summers since 2008, is associated with cool conditions over the Weddell Sea but warmer temperatures and high surface air pressure west, north and northwest of the Peninsula.

  8. Fast-flowing outlet glaciers on Svalbard ice caps

    SciTech Connect

    Dowdeswell, J.A. ); Collin, R.L. )

    1990-08-01

    Four well-defined outlet glaciers are present on the 2510 km{sup 2} cap of Vestfonna in Nordaustlandet, Svalbard. Airborne radio echo sounding and aerial-photograph and satellite-image analysis methods are used to analyze the morphology and dynamics of the ice cap and its component outlet glaciers. The heavily crevassed outlets form linear depressions in the ice-cap surface and flow an order of magnitude faster than the ridges of uncrevassed ice between them. Ice flow on the ridges is accounted for by internal deformation alone, whereas rates of outlet glacier flow require basal motion. One outlet has recently switched into and out of a faster mode of flow. Rapid terminal advance, a change from longitudinal compression to tension, and thinning in the upper basin indicate surge behavior. Observed outlet glacier discharge is significantly greater than current inputs of mass of the ice cap, indicating that present rates of flow cannot be sustained under the contemporary climate.

  9. Insights into ice shelf buttressing and ice rheology on Rutford Ice Stream, West Antarctica, from synoptic-scale observations of tidally driven ice flow variations

    NASA Astrophysics Data System (ADS)

    Minchew, Brent; Simons, Mark; Riel, Bryan; Millio, Pietro

    2016-04-01

    Synoptic-scale observations of the response of ice streams to well-constrained forcing functions provide unique insights into ice stream dynamics and the underlying mechanics of glacier flow. Rutford Ice Stream, West Antarctica, is one of the few recognized ice streams with strong, observed, periodic ice-flow variability (e.g., Gudmundsson, 2006; Murray et al., 2007); numerous in situ observations of the subglacial environment (e.g., Smith et al., 2015); and extensive modeling efforts focused on understanding the mechanisms that drive the observed variations in glacier flow (e.g. Thompson et al., 2014; Rosier et al., 2014; 2015). Despite these efforts, the processes underlying the ~20% modulation in horizontal ice flow at Msf (14.77-day) periods - which corresponds to the beat frequency of the lunar and solar semi-diurnal ocean tides - remain a mystery. To help resolve the salient processes, we contribute a first-of-its-kind observational dataset that provides ice-stream-scale measurements of 3D secular and time-varying ice flow on Rutford with ~40-m spatial resolution. These data were inferred from 9 months of continuous synthetic aperture radar observations collected with the COSMO-SkyMed 4-satellite constellation from multiple satellite viewing geometries. The resulting velocity fields provide constraints on ice flow in all three spatial dimensions and in time, making them true 4D surface velocity fields. The time-varying velocity field components elucidate the spatial characteristics of the response of ice flow on Rutford to ocean tidal forcing and agree with collocated GPS measurements. We show that the response of horizontal ice flow to ocean tidal forcing is most pronounced over the ice shelf and subsequently propagates through the grounded ice stream at ~29 km/day, decaying quasi-linearly with distance over ~85 km upstream of the grounding zone. We observe multiple regions over the ice shelf whose motion is consistent with subglacial pinning points and that

  10. Regular patterns in frictional resistance of ice-stream beds seen by surface data inversion.

    PubMed

    Sergienko, Olga V; Hindmarsh, Richard C A

    2013-11-29

    Fast-flowing glaciers and ice streams are pathways for ice discharge from the interior of the Antarctic Ice Sheet to ice shelves, at rates controlled by conditions at the ice-bed interface. Using recently compiled high-resolution data sets and a standard inverse method, we computed basal shear stress distributions beneath Pine Island and Thwaites Glaciers, which are currently losing mass at an accelerating rate. The inversions reveal the presence of riblike patterns of very high basal shear stress embedded within much larger areas with zero basal shear stress. Their colocation with highs in the gradient of hydraulic potential suggests that subglacial water may control the evolution of these high-shear-stress ribs, potentially causing migration of the grounding line by changes in basal resistance in its vicinity.

  11. Zonal flow as pattern formation

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-01

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  12. Zonal flow as pattern formation

    SciTech Connect

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-15

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  13. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  14. Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II

    USGS Publications Warehouse

    Bennett, K.; Wenk, H.-R.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1997-01-01

    The preferred crystallographic orientation developed during the ice I ← II transformation and during the plastic flow of ice II was measured in polycrystalline deuterium oxide (D2O) specimens using low-temperature neutron diffraction. Samples partially transformed from ice I to II under a non-hydrostatic stress developed a preferred crystallographic orientation in the ice II. Samples of pure ice II transformed from ice I under a hydrostatic stress and then when compressed axially, developed a strong preferred orientation of compression axes parallel to (1010). A match to the observed preferred orientation using the viscoplastic self-consistent theory was obtained only when (1010) [0001] was taken as the predominant slip system in ice II.

  15. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  16. Cavitation erosion in blocked flow with a ducted ice-class propeller

    SciTech Connect

    Doucet, J.M.; Bose, N.; Walker, D.; Jones, S.J.

    1996-12-31

    Ships that operate in ice often encounter momentary increased propeller cavitation because ice pieces block the flow into the propeller. For ducted propellers, this additional cavitation is more significant than it is for open propellers; ice pieces may become lodged against and within the duct and subject the propeller to longer periods of increased cavitation due to the blocked flow. Associated with this blocked flow is the possibility of cavitation erosion on the propeller. An erosion study, using paint films, was conducted in a cavitation tunnel with a model propeller of the type fitted to the Canadian Marine Drilling Ltd. vessel MV Robert LeMeur. A simulated ice blockage was installed ahead of the propeller model and within the duct. Tests were carried out over a range of advance coefficients for various test conditions. The resulting types of cavitation were documented, the erosion patterns were photographed and comparisons between each test were made.

  17. Flow and fracture of ice and ice mixtures

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.

    1991-01-01

    Frozen volatiles make up an important volume fraction of the low density moons of the outer solar system. Understanding the tectonic history of the surfaces of these moons, as well as the evolution of their interiors, requires knowledge of the mechanical strength of these icy materials under the appropriate planetary conditions (temperature, hydrostatic pressure, strain rate). Ongoing lab research is being conducted to measure mechanical properties of several different ices under conditions that faithfully reproduce condition both at the moons' surfaces (generally low temperature, to about 100 K, and low pressures) and in the deep interiors (warmer temperatures, pressures to thousands of atmospheres). Recent progress is reported in two different phases of the work: rheology of ices in the NH3-H2O system at temperatures and strain rates lower than ever before explored, with application to the ammonia-rich moons of Saturn and Uranus; and the water ice I yields II phase transformation, which not only applies directly to process deep in the interiors of Ganymede and Callisto, but holds implications for deep terrestrial earthquakes as well.

  18. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  19. Cross Flow Effects on Glaze Ice Roughness Formation

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2004-01-01

    The present study examines the impact of large-scale cross flow on the creation of ice roughness elements on the leading edge of a swept wing under glaze icing conditions. A three-dimensional triple-deck structure is developed to describe the local interaction of a 3 D air boundary layer with ice sheets and liquid films. A linear stability analysis is presented here. It is found that, as the sweep angle increases, the local icing instabilities enhance and the most linearly unstable modes are strictly three dimensional.

  20. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  1. Examination of upstream flow dynamics in response to the front retreat of ice shelves with different geometric configurations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Liu, H.

    2015-12-01

    Ice shelves fringe ~75% of Antarctica's coastline, nourished by numerous terrestrial glacier systems. The ice-shelf disintegrations in recent decades and the observed thinning trends have revealed their susceptibility to the atmospheric and oceanic changes in the climate warming context. The buttressing effect of an ice shelf constrains the ice discharge of its upstream land ice, thus regulating the contribution to sea level of the terrestrial glaciers. The important role of ice shelves in stabilizing the upstream glacier flow dynamics is emphasized by the rapid accelerations and thinning of the tributary glaciers in response to the collapses of the northern Larsen Ice Shelf in Antarctic Peninsula. However, this buttressing effect is determined by the stress balance conditions of an ice shelf, which is further affected by the ice-shelf geometric configurations. The ice shelves confined by fjords, islands, promontories or seabed topographic highs exert greater buttressing effects than those less confined by the lateral or basal shear stresses. This research aims to assess the influences of different ice-shelf configurations on upstream flow dynamics in response to large ice-shelf retreat events. By using remotely sensed imagery acquired by multiple satellite missions, we derived the time series surface velocity records for the Larsen B glacier-ice shelf system in Antarctic Peninsula during 1995 - 2015 and for the Mertz glacier-ice shelf system in East Antarctica during 1997 - 2015, respectively. The former was well confined in the embayment, while the latter is unconfined by lateral margins. We compared the different temporal variation patterns in flow dynamics between these two sites before and after their large retreating events, i.e. the collapse event of Larsen B Ice Shelf in 2002 and the large calving event of Mertz Ice Shelf in 2010. The surface velocity profiles reveal the less sensitivity of upstream responses to the front retreat for the Mertz Ice Shelf.

  2. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  3. Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows

    NASA Technical Reports Server (NTRS)

    Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy

    2015-01-01

    To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.

  4. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  5. Caterpillar-like flow of the Greenland Ice Sheet: observations of basal control on ice motion

    NASA Astrophysics Data System (ADS)

    Ryser, C.; Luethi, M. P.; Funk, M.; Catania, G. A.; Andrews, L. C.; Hawley, R. L.; Neumann, T.; Hoffman, M. J.

    2012-12-01

    Varying basal motion due to episodic basal water supply is a long-established component of ice flow. However, the physical processes that govern the role of water in basal motion still remain only weakly understood. We instrumented four boreholes at two sites with sensor systems to better understand the processes controlling seasonal flow velocity variations in the marginal zone of the Greenland Ice Sheet. We present measurements of borehole deformation, subglacial water pressure and surface motion during one year (July 2011 to September 2012). Subglacial water pressure and ice deformation show periodic variations on several time scales which are delayed by up to half a period, depending on sensor depth. These observations are interpreted as ice motion in a caterpillar-like fashion, as opposed to the conventionally assumed shear flow. Using a time-dependent, Full-Stokes ice flow model we find that spatially and temporally varying basal motion can explain the observed variations in deformation, and the delayed reaction at different depths. These new data show that the reaction to basal motion is not uniform throughout the ice column, but varies with depth.

  6. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  7. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  8. Driving Stresses in Mars Polar Ice Caps and Conditions for Ice Flow

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Saba, Jack L.

    1999-01-01

    Measurements of the topography of the North polar ice cap by the Mars Orbiter Laser Altimeter (MOLA) show that the ice cap is 2950 +/- 200 meters thick. The volume of the cap is about 1.2 x 10(exp 6) cu km covering an area of 1.04 x 10(exp 6) sq km, which is about 40 percent of the Greenland ice sheet in volume and 62 percent in area. The composition of the Northern cap was previously concluded to be predominately H2O, rather than CO2 ice, based on thermodynamic considerations of the insustainablity of CO2 during summer. Principal questions about the cap are: does the ice move and at what rate, is the cap currently growing or depleting in volume, and how and when was the cap formed? Recent research on terrestrial ice sheets indicates that rates of ice deformation at the low stress values characteristic of ice sheets are significantly higher than the rates given by the classic viscous-plastic flow laws commonly used.

  9. Instability of water-ice interface under turbulent flow

    NASA Astrophysics Data System (ADS)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  10. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    SciTech Connect

    Bougamont, M.; Christoffersen, P.; Price, S. F.; Fricker, H. A.; Tulaczyk, S.; Carter, S. P.

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leading to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.

  11. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  12. Tidal controls on the flow of ice streams

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Gudmundsson, G. Hilmar

    2016-05-01

    The flow of many Antarctic ice streams is known to be significantly influenced by tides. In the past, modeling studies have implemented the tidal forces acting on a coupled ice stream/ice shelf system in a number of different ways, but the consequences that this has on the modeled response of ice streams to tides have, until now, not been considered. Here we investigate for the first time differences in model response that are only due to differences in the way tidal forcings are implemented. We find that attempts to simplify the problem by neglecting flexural stresses are generally not valid and forcing models with only changes in ocean back pressure will not capture either the correct amplitudes or length scale.

  13. Magnetically stimulated fluid flow patterns

    ScienceCinema

    Martin, Jim; Solis, Kyle

    2016-07-12

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  14. Magnetically stimulated fluid flow patterns

    SciTech Connect

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  15. High geothermal heat flow, Basal melt, and the origin of rapid ice flow in central Greenland.

    PubMed

    Fahnestock, M; Abdalati, W; Joughin, I; Brozena, J; Gogineni, P

    2001-12-14

    Age-depth relations from internal layering reveal a large region of rapid basal melting in Greenland. Melt is localized at the onset of rapid ice flow in the large ice stream that drains north off the summit dome and other areas in the northeast quadrant of the ice sheet. Locally, high melt rates indicate geothermal fluxes 15 to 30 times continental background. The southern limit of melt coincides with magnetic anomalies and topography that suggest a volcanic origin. PMID:11743197

  16. Ice flow models and glacial erosion over multiple glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Headley, R. M.; Ehlers, T. A.

    2015-03-01

    Mountain topography is constructed through a variety of interacting processes. Over glaciological timescales, even simple representations of glacial-flow physics can reproduce many of the distinctive features formed through glacial erosion. However, detailed comparisons at orogen time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. We present a comparison using two different numerical models for glacial flow over single and multiple glaciations, within a modified version of the ICE-Cascade landscape evolution model. This model calculates not only glaciological processes but also hillslope and fluvial erosion and sediment transport, isostasy, and temporally and spatially variable orographic precipitation. We compare the predicted erosion patterns using a modified SIA as well as a nested, 3-D Stokes flow model calculated using COMSOL Multiphysics. Both glacial-flow models predict different patterns in time-averaged erosion rates. However, these results are sensitive to the climate and the ice temperature. For warmer climates with more sliding, the higher-order model yields erosion rates that vary spatially and by almost an order of magnitude from those of the SIA model. As the erosion influences the basal topography and the ice deformation affects the ice thickness and extent, the higher-order glacial model can lead to variations in total ice-covered area that are greater than 30% those of the SIA model, again with larger differences for temperate ice. Over multiple glaciations and long timescales, these results suggest that higher-order glacial physics should be considered, particularly in temperate, mountainous settings.

  17. Late Wisconsinan ice sheet flow across northern and central Vermont, USA

    NASA Astrophysics Data System (ADS)

    Wright, Stephen F.

    2015-12-01

    A compilation of over 2000 glacial striation azimuths across northern and central Vermont, northeastern USA, provides the basis for interpreting a sequence of ice flow directions across this area. The oldest striations indicate widespread ice flow to the southeast, obliquely across the mountains. Similarly oriented striations between northern Vermont and the ice sheet's terminus in the Gulf of Maine suggest that a broad area of southeast ice flow existed at the Last Glacial Maximum. Younger striations with more southerly azimuths on both the mountain ridgelines and within adjacent valleys indicate that ice sheet flow trajectories in most areas rotated from southeast to south, parallel to the North-South alignment of the mountains, as the ice sheet thinned. This transition in ice flow direction was time transgressive from south to north with the Green Mountains eventually separating a thick south-flowing lobe of ice in the Champlain Valley from a much thinner lobe of south-flowing ice east of the mountains. While this transition was taking place yet ice was still thick enough to flow across the mountains, ice flow along a narrow ˜65 km long section of the Green Mountains shifted to the southwest such that ice was flowing into the Champlain Valley. The most likely process driving this change was a limited period of fast ice flow in the Champlain Valley, a short-lived ice streaming event, that drew down the ice surface in the valley. The advancing ice front during this period of fast ice flow may be responsible for the Luzerne Readvance south of Glens Falls, New York. Valley-parallel striations across the area indicate strong topographic control on ice flow as the ice sheet thinned.

  18. Paleo-Ice flow and overdeepenings in an Alpine setting: Examples from the Tyrolian Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Reitner, J. M.; Gruber, W.

    2009-04-01

    Overdeepened valleys and basins are the most interesting features of former glacial action in Alpine areas. Understanding the formation of such phenomena are not only a scientific task but also an important challenge for a society increasingly exploiting sustainable natural resources even in remote areas. The feasibility of hydrogeological or geothermal projects, for instance, depends on the bedrock depth and the sedimentary infill of such valleys. Generally, overdeepened valleys are formed in areas where the ice discharge was high, such as near the equilibrium line, at valley junctions, or at narrowings of the valley profile. The long known overdeepened tongue basins in the Eastern Alps are regarded as typical examples of the impact of high ice flow velocities combined with increased debris load and running water under hydrostatic pressure around the former (LGM, and older glaciations) equilibrium lines (e.g. van Husen, 2000). However, within a highly dissected mountain topography like that of the Eastern Alps the existence of overdeepened valleys-parts supposedly also reflects changes in ice flow direction and velocity during glacial history within one glacial event (like the LGM) as well as during the Pleistocene. For example, ice flow in the phase of ice build-up at the beginning of major glaciations is controlled by the topography and trend of the valleys whereas during the climax of the big glaciations a mountain ice cap exists with a continuous discharge across water divides. Thus, the onsets of ice transfluences as well as the valley orientation in relation to the changing ice flow direction are regarded as major conditions for overdeepenings in an inneralpine setting. Such a complex and changing pattern of ice flow will be shown by the example of the Inn valley and its tributary valleys in the S and E (valley of the Wildschönauer Ache and of the Brixentaler Ache). Based on extensive geological mapping and lithostratigraphy in combination with geophysical

  19. New ways of studying ice sheet flow directions and glacial erosion by computer modelling—examples from Fennoscandia

    NASA Astrophysics Data System (ADS)

    Näslund, J. O.; Rodhe, L.; Fastook, J. L.; Holmlund, P.

    2003-02-01

    A computer ice sheet model has been used to study regional ice flow directions and glacial erosion of the Weichselian ice sheet, adopting a new method of presenting modelled ice flow directions. Ice sheet model results from different time periods during the Weichselian were extracted for five regions and presented in rose diagrams. When comparing these computer-generated results with information on flow directions obtained from current conceptual geological models based on field data, large similarities were observed. In comparing the ice flow directions as such, the similarities were strikingly good. In many cases there was also a good agreement in the timing of the events, while in some cases a certain flow direction was assigned to a different time period by the ice sheet model than in the current interpretation of geological information. Nevertheless, the overall agreement between the data sets shows that results from ice sheet models can aid in placing geological information into a coarse timeframe and chronostratigraphic context, and also fill in time gaps in the glacial geological record where chronological control is sparse. Ice sheet model results thus constitute a new data set against which glacial geological information can be compared and tested. A new quantity, basal sliding distance, has also been calculated from the ice sheet model results, describing the over time accumulated length of ice that has passed over the landscape by basal sliding. The results show high basal sliding distance values in SW Sweden/SE Norway, in Skagerrak, and along the Gulf of Bothnia, implying relatively large amounts of glacial erosion in these regions. On elevated parts of the Scandinavian mountain range and on adjacent plains in the east the basal sliding distance values are low, implying weaker glacial erosion. This compares well with different types of geological and morphological data, suggesting that basal sliding distance is a useful entity for studying regional

  20. A test bed for investigating the flow of outlet glaciers and ice streams embedded in the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Calov, Reinhard; Rückamp, Martin; Schlegel, Rebecca; Ganopolski, Andrey; Humbert, Angelika

    2016-04-01

    Here, we define a test bed for fast flow regions and its vicinity embedded in an ice sheet. This test bed is designed for outlet glaciers and ice streams of the Greenland ice sheet. It consists of a fine resolution part with a manufactured basal trough over which the professional software COMSOL (Multiphysics Modeling Software) operates as a full-Stokes model. Results by COMSOL are compared with coarse resolution simulations with the ice-sheet model SICOPOLIS operating in shallow-ice-approximation mode and using parameterizations of the fast flow effects. For simplification, in this preliminary approach, both models run in isothermal mode. Definition of surface mass balance follows the EISMINT intercomparison project with parameters adapted to the Greenland ice sheet. In particular, we inspect with this test bed upstream and lateral flow effects of ice streams and outlet glaciers. We present first simulations with this approach, although presentation of the test bed itself is the main emphasis of this presentation.

  1. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what

  2. Comparison of Ice-shelf Creep Flow Simulations with Ice-front Motion of Filchner-Ronne Ice Shelf, Antarctica, Detected by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).

  3. Flow resistance of ice slurry in bends and elbow pipes

    NASA Astrophysics Data System (ADS)

    Niezgoda-Żelasko, B.; Żelasko, J.

    2014-08-01

    The present paper covers the flow of ice slurry made of a 10.6% ethanol solution through small-radius bends and elbow pipes. The paper presents the results of experimental research on the flow resistances of Bingham-fluid ice slurry in bends and elbows. The research, performed for three pipe diameters and a relative bend radius of 1<=D/di<=2, has made it possible to take into consideration the influence of friction resistances as well the of the flow geometry on the total local resistance coefficients. The study attempts to make the local resistance coefficient dependent on the Dean number defined for a generalized Reynolds number according to Metzner-Reade

  4. Multiphase flow of the late Wisconsinan Cordilleran ice sheet in Western Canada

    USGS Publications Warehouse

    Stumpf, A.J.; Broster, B.E.; Levson, V.M.

    2000-01-01

    In central British Columbia, ice flow during the late Wisconsinan Fraser glaciation (ca. 25-10 ka) occurred in three phases. The ice expansion phase occurred during an extended period when glaciers flowed westward to the Pacific Ocean and east-southeastward onto the Nechako Plateau from ice centers in the Skeena, Hazelton, Coast, and Omineca Mountains. Initially, glacier flow was confined by topography along major valleys, but eventually piedmont and montane glaciers coalesced to form an integrated glacier system, the Cordilleran ice sheet. In the maximum phase, a Cordilleran ice divide developed over the Nechako Plateau to 300 km inland from the Pacific coast. At this time, the surface of the ice sheet extended well above 2500 m above sea level, and flowed westward over the Skeena, Hazelton, and Coast Mountains onto the continental shelf, and eastward across the Rocky Mountains into Alberta. In the late glacial phase, a rapid rise of the equilibrium line caused ice lobes to stagnate in valleys, and restricted accumulation centers to high mountains. Discordant directions in ice flow are attributed to fluctuations of the ice divide representing changes in the location of accumulation centers and ice thickness. Ice centers probably shifted in response to climate, irregular growth in the ice sheet, rapid calving, ice streaming, and drainage of proglacial and subglacial water bodies. Crosscutting ice-flow indicators and preservation of early (valley parallel) flow features in areas exposed to later (cross-valley) glacier erosion indicate that the ice expansion phase was the most erosive and protracted event.

  5. An ice-rich flow origin for the banded terrain in the Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Guallini, L.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Sutton, S.; Grindrod, P. M.

    2015-12-01

    The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (Context Camera and High-Resolution Imaging Science Experiment) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds, and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summertime temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively "temperate" climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

  6. Englacial Structures as Indicators of the Controls on Ice Flow

    NASA Astrophysics Data System (ADS)

    Holschuh, N.; Parizek, B. R.; Alley, R. B.; Anandakrishnan, S.

    2015-12-01

    Direct sampling of the subglacial environment is costly, and will therefore never supply the spatial coverage needed to determine the basal boundary conditions required for large-scale ice-sheet modeling. Studies of the West Antarctic Ice Sheet (WAIS) show that the frictional and rheologic properties of the bed are a leading control on the evolution of the system, so developing geophysical methods to help constrain the basal characteristics of WAIS will reduce uncertainty in predictions of the timing and magnitude of future sea-level rise. Radar-imaged structures within the ice are an attractive data set for this pursuit, as they contain information about the flow dynamics that transform the horizontally deposited layers to their modern configuration; however, they can be challenging to interpret, given the number of processes acting to deform the internal layers and the difficulty in automating their analysis. In this study, we move away from the layer-tracing paradigm in favor of an automated slope extraction algorithm. This has several advantages: it does not require feature-continuity, providing a more stable result in regions of intense deformation, and it results in a data product that maps directly to model output. For steady-state features, layer slopes reflect the horizontal and vertical velocity structure, making quantitative comparison of the model and observations simple compared to the more qualitative, particle tracer comparisons done in the past. Using a higher order ice-flow model, we attempt to refine our understanding of basal properties using reflector slope fields at the grounding line of Whillans Ice Stream and the shear margin of the North East Greenland Ice Stream, with the hope of eventually using this method for basin-scale inversions.

  7. Geomorphological Evidence for Pervasive Ground Ice on Ceres from Dawn Observations of Craters and Flows.

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Chilton, H.; Hughson, K.; Scully, J. E. C.; Russell, C. T.; Sizemore, H. G.; Nathues, A.; Platz, T.; Bland, M. T.; Schenk, P.; Hiesinger, H.; Jaumann, R.; Byrne, S.; Schorghofer, N.; Ammannito, E.; Marchi, S.; O'Brien, D. P.; Sykes, M. V.; Le Corre, L.; Capria, M. T.; Reddy, V.; Raymond, C. A.; Mest, S. C.; Feldman, W. C.

    2015-12-01

    Five decades of observations of Ceres' albedo, surface composition, shape and density suggest that Ceres is comprised of both silicates and tens of percent of ice. Historical suggestions of surficial hydrated silicates and evidence for water emission, coupled with its bulk density of ~2100 kg/m3 and Dawn observations of young craters containing high albedo spots support this conclusion. We report geomorphological evidence from survey data demonstrating that evaporative and fluid-flow processes within silicate-ice mixtures are prevalent on Ceres, and indicate that its surface materials contain significant water ice. Here we highlight three classes of features that possess strong evidence for ground ice. First, ubiquitous scalloped and "breached" craters are characterized by mass wasting and by the recession of crater walls in asymmetric patterns; these appear analogous to scalloped terrain on Mars and protalus lobes formed by mass wasting in terrestrial glaciated regions. The degradation of crater walls appears to be responsible for the nearly complete removal of some craters, particularly at low latitudes. Second, several high latitude, high elevation craters feature lobed flows that emanate from cirque-shaped head walls and bear strikingly similar morphology to terrestrial rock glaciers. These similarities include lobate toes and indications of furrows and ridges consistent with ice-cored or ice-cemented material. Other lobed flows persist at the base of crater walls and mass wasting features. Many flow features evidently terminate at ramparts. Third, there are frequent irregular domes, peaks and mounds within crater floors that depart from traditional crater central peaks or peak complexes. In some cases the irregular domes show evidence for high albedo or activity, and thus given other evidence for ice, these could be due to local melt and extrusion via hydrologic gradients, forming domes similar to pingos. The global distribution of these classes of features

  8. Two-dimensional numerical ice flow modelling of an empirically reconstructed martian glacier-like form

    NASA Astrophysics Data System (ADS)

    Brough, Stephen; Hubbard, Bryn; Hubbard, Alun

    2016-04-01

    Although a substantial reservoir of glacier ice has been identified in the mid-latitudes of Mars, debate still persists regarding the formation, current and former extent, and dynamic evolution of these ice masses. Here we present initial results from a higher-order, two-dimensional (2D) numerical model of ice flow for an empirically reconstructed glacier-like form (GLF), a distinctive ice related landform, similar in planform appearance to valley or debris-covered glaciers on Earth, in eastern Hellas Planitia, Mars (˜38.65 oS and 113.16 oE). The main aim of this study is to investigate the long-term temperature requirement to yield surface ice flow rates consistent with those recently reconstructed from boulder trails observed in a comparable GLF. We apply our numerical model to the GLF's central flowline under steady-state conditions and vary the viscosity related rate factor parameter, A, for a range of temperatures from 0 to -100 oC for our three reconstruction scenarios (lower [12 kPa], mean [22 kPa] and upper [38 kPa]; Karlsson et al. [2015] Geophys. Res. Lett., 42[8]). The model converges for all realistic temperatures yielding a range of 2D stress and strain configurations for our reconstructed GLF. The mean annual surface velocities across the three reconstruction scenarios show a similar pattern, with motion recorded at temperatures ranging from 0 oC to ˜ -70 oC, below which motion reduces to <10-5 m a‑1. In order to simulate flow rates to 7.5 mm a‑1 (Hubbard et al. [2014] The Cryosphere, 8), as determined for other martian GLFs, the model experiments reveal a required ice temperature for the GLF of between ˜ -7.5 and -27 oC.

  9. Precipitation patterns during channel flow

    NASA Astrophysics Data System (ADS)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  10. Coupling and feedback between Pacific sea ice and the Western Pacific pattern

    NASA Astrophysics Data System (ADS)

    Matthewman, N. J.; Magnusdottir, G.

    2010-12-01

    Coupling between sea ice variability in the Pacific basin and large scale modes of atmospheric variability are examined using weekly averaged data for December-April between 1979 and 2008. We define the large scale patterns of variability for sea ice concentration and 500hPa geopotential height over the Pacific basin and North America using Empirical Orthogonal Functions (EOFs). The patterns associated with the leading two EOFs of sea ice variability are a dipole in sea ice concentration with centers of action in the Bering Sea and Sea of Okhotsk (first EOF, ICE1), and an advance or retreat of sea ice in both seas simultaneously (second EOF, ICE2). Correlation analysis between the 500hPa geopotential height field and the principal component of the ICE2 pattern shows a large non-local response in geopotential height to changes in the ICE2 sea ice pattern. At extratropical latitudes this response in 500hPa geopotential height has two strong centers of action over the Bering Strait and Hudson Bay, with two somewhat weaker centers of action in the subtropics over the Western Pacific Ocean and the Atlantic Ocean. Further analysis suggests this response is due to sea ice in the Bering Sea region of the the ICE2 pattern, rather than the Sea of Okhotsk. This response pattern closely resembles a leading mode of 500hPa geopotential height variability, the Western Pacific (WP) pattern, indicating a coupled relationship between the WP pattern and the overall advance and retreat of sea ice in the Pacific basin. By considering intraseasonal time series of the principal components (indices) associated with the ICE2 and WP patterns, causality and coupling between the two is quantified using a stochastically forced Vector Autoregressive (VAR) model. Fitting the VAR model to observed time series for each index, we find that co-dependence between the ICE2 and WP significantly improves model performance compared with model configurations where dependence in either direction is

  11. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  12. Paleo-ice flow directions of the Northern Antarctic Peninsula ice sheet based upon a new synthesis of seabed imagery

    NASA Astrophysics Data System (ADS)

    Lavoie, C.; Domack, E. W.; Pettit, E. C.; Scambos, T. A.; Larter, R. D.; Schenke, H.-W.; Yoo, K. C.; Gutt, J.; Wellner, J.; Canals, M.; Anderson, J. B.; Amblas, D.

    2014-10-01

    We present a new seafloor map for the northern Antarctic Peninsula (AP), including swath multibeam data sets from five national programs. Our map allows for the examination and interpretation of Last Glacial Maximum (LGM) paleo-ice sheet/stream flow directions developed upon the seafloor from the preservation of: mega-scale glacial lineations, drumlinized features, and selective linear erosion. We combine this with terrestrial observations of flow direction to place constraints on ice divides and accumulation centers (ice domes) on the AP continental shelf. The results show a flow bifurcation as ice exits the Larsen-B embayment. Flow emanating off the Seal Nunataks (including Robertson Island) is directed toward the southeast, then eastward as the flow transits toward the Robertson Trough. A second, stronger "streaming flow" is directed toward the southeast then southward, as ice overflowed the tip of the Jason Peninsula to reach the southern perimeter of the embayment. Our reconstruction also refines the extent of at least five other distinct paleo-ice stream systems which, in turn, serve to delineate seven broad regions where contemporaneous ice domes must have been centered on the continental shelf during the LGM time interval. Our reconstruction is more detailed than other recent compilations because we followed specific flow indicators and have kept tributary flow paths parallel.

  13. Ice melting and downward transport of meltwater by two-phase flow in Europa's ice shell

    NASA Astrophysics Data System (ADS)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2014-03-01

    With its young surface, very few impact craters, and the abundance of tectonic and cryovolcanic features, Europa has likely been subjected to relatively recent endogenic activity. Morphological analyses of chaos terrains and double ridges suggest the presence of liquid water within the ice shell a few kilometers below the surface, which may result from enhanced tidal heating. A major issue concerns the thermal/gravitational stability of these water reservoirs. Here we investigate the conditions under which water can be generated and transported through Europa's ice shell. We address particularly the downward two-phase flow by solving the equations for a two-phase mixture of water ice and liquid water in one-dimensional geometry. In the case of purely temperate ice, we show that water is transported downward very efficiently in the form of successive porosity waves. The time needed to transport the water from the subsurface region to the underlying ocean varies between ˜1 and 100 kyr, depending mostly on the ice permeability. We further show that water produced in the head of tidally heated hot plumes never accumulates at shallow depths and is rapidly extracted from the ice shell (within less than a few hundred kiloyears). Our calculations indicate that liquid water will be largely absent in the near subsurface, with the possible exception of cold conductive regions subjected to strong tidal friction. Recently active double ridges subjected to large tidally driven strike-slip motions are perhaps the most likely candidates for the detection of transient water lenses at shallow depths on Europa.

  14. Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland

    NASA Technical Reports Server (NTRS)

    Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.

  15. Investigating Concentric Crater Fill on Mars with an Ice Flow Model

    NASA Astrophysics Data System (ADS)

    Weitz, N.; Osinski, G. R.; Fastook, J. L.; Zanetti, M.

    2016-09-01

    We use ice flow modeling to understand the process of concentric crater fill and subsequent ice flow on Mars and determine if there is potential for remnant ice buried in the subsurface. Our model recreates the measured MOLA surface elevation well.

  16. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities

    NASA Astrophysics Data System (ADS)

    Kingslake, Jonathan; Martín, Carlos; Arthern, Robert J.; Corr, Hugh F. J.; King, Edward C.

    2016-09-01

    We date a recent ice-flow reorganization of an ice divide in the Weddell Sea Sector, West Antarctica, using a novel combination of inverse methods and ice-penetrating radars. We invert for two-dimensional ice flow within an ice divide from data collected with a phase-sensitive ice-penetrating radar while accounting for the effect of firn on radar propagation and ice flow. By comparing isochronal layers simulated using radar-derived flow velocities with internal layers observed with an impulse radar, we show that the divide's internal structure is not in a steady state but underwent a disturbance, potentially implying a regional ice-flow reorganization, 2.5 (1.8-2.9) kyr B.P. Our data are consistent with slow ice flow in this location before the reorganization and the ice divide subsequently remaining stationary. These findings increase our knowledge of the glacial history of a region that lacks dated constraints on late-Holocene ice-sheet retreat and provides a key target for models that reconstruct and predict ice-sheet behavior.

  17. Ice and thermal cameras for stream flow observations

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Petroselli, Andrea; Grimaldi, Salvatore

    2016-04-01

    Flow measurements are instrumental to establish discharge rating curves and to enable flood risk forecast. Further, they are crucial to study erosion dynamics and to comprehend the organization of drainage networks in natural catchments. Flow observations are typically executed with intrusive instrumentation, such as current meters or acoustic devices. Alternatively, non-intrusive instruments, such as radars and microwave sensors, are applied to estimate surface velocity. Both approaches enable flow measurements over areas of limited extent, and their implementation can be costly. Optical methods, such as large scale particle image velocimetry, have proved beneficial for non-intrusive and spatially-distributed environmental monitoring. In this work, a novel optical-based approach is utilized for surface flow velocity observations based on the combined use of a thermal camera and ice dices. Different from RGB imagery, thermal images are relatively unaffected by illumination conditions and water reflections. Therefore, such high-quality images allow to readily identify and track tracers against the background. Further, the optimal environmental compatibility of ice dices and their relative ease of preparation and storage suggest that the technique can be easily implemented to rapidly characterize surface flows. To demonstrate the validity of the approach, we present a set of experiments performed on the Brenta stream, Italy. In the experimental setup, the axis of the camera is maintained perpendicular with respect to the water surface to circumvent image orthorectification through ground reference points. Small amounts of ice dices are deployed onto the stream water surface during image acquisition. Particle tracers' trajectories are reconstructed off-line by analyzing thermal images with a particle tracking velocimetry (PTV) algorithm. Given the optimal visibility of the tracers and their low seeding density, PTV allows for efficiently following tracers' paths in

  18. Degradation of ground ice in a changing climate: the potential impact of groundwater flow

    NASA Astrophysics Data System (ADS)

    de Grandpré, I.; Fortier, D.; Stephani, E.

    2011-12-01

    Climate changes affecting the North West portion of Canada alter the thermal state of the permafrost and promote ground ice degradation. Melting of ground ice leads to greater water flow into the ground and to significant hydraulic changes (i.e. drainage of peatland and lakes, triggering of thermokarst and new groundwater flow patterns). Road infrastructures built on permafrost are particularly sensitive to permafrost degradation. Road construction and maintenance induce heat flux into the ground by the increase of solar radiation absorption (comparing to natural ground), the increase of snow cover on side slopes, the infiltration of water in embankment material and the migration of surface water in the active layer. The permafrost under the roads is therefore submitted to a warmer environment than in natural ground and his behavior reflects how the permafrost will act in the future with the global warming trend. The permafrost degradation dynamic under a road was studied at the Beaver Creek (Yukon) experimental site located on the Alaska Highway. Permafrost was characterized as near-zero Celcius and highly susceptible to differential thaw-settlement due to the ground ice spatial distribution. Ice-rich cryostructures typical of syngenetic permafrost (e.g. microlenticular) were abundant in the upper and lower cryostratigraphic units of fine-grained soils (Units 1, 2A, and 2C). The middle ice-poor silt layer (Unit 2B) characterized by porous cryostructure comprised the top of a buried ice-wedge network extending several meters in the underlying layers and susceptible to degradation by thermo-erosion. These particular features of the permafrost at the study site facilitated the formation of taliks (unfrozen zones) under the road which leaded to a greater water flow. We believe that water flow is promoting an acceleration of permafrost degradation by advective heat transfer. This process remains poorly studied and quantified in permafrost environment. Field data on

  19. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  20. Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Horwath, Martin; Legrésy, Benoît; Rémy, Frédérique; Blarel, Fabien; Lemoine, Jean-Michel

    2012-05-01

    Interannual variations of the Antarctic ice sheet due to surface mass balance (SMB) fluctuations are important for mass balance estimates and interpretations. To date, these variations are primarily assessed by global or regional atmospheric modelling. Satellite altimetry and satellite gravimetry over the ice sheet provide complementary observations of the related volume and mass effects, respectively. Yet, so far the interannual signal contents of these observations have not been extensively studied. We compare and jointly interpret ENVISAT radar altimetry (RA) and GRACE satellite gravimetry results, relying on RA products from the along-track repeat satellite RA approach and on the GRACE 10-d solutions by CNES/GRGS. RA results and GRACE results are expressed in terms of variations of ice sheet thickness, Δz(t), and ice-equivalent thickness, Δzice(t), respectively. In view of the different errors and limitations of both techniques and of differences between Δz(t) and Δzice(t) expected due to firn-related processes, our principal approach is a comparison of qualitative patterns in space and time. To adjust the spatial resolution of both data sets, we describe the spatial filtering inherent to the regularization of the CNES/GRGS GRACE solutions and apply this filtering to the ENVISAT RA height changes in a consistent fashion. After correction for glacial isostatic adjustment, the spatial patterns of linear trends seen by ENVISAT RA and GRACE over the period 2002 October to 2009 August agree well, not only for the extreme ice losses in the West Antarctic Amundsen Sea Sector but also for an alternating sequence of gains and losses along the East Antarctic coast. Our main focus is on interannual signals, which we represent by the low-pass filtered non-linear, non-seasonal components of the Δz(t) and Δzice(t) time-series. These components should reflect interannual SMB variations, apart from effects of changes in ice flow. We find an agreement between the

  1. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    DOE PAGES

    Bougamont, M.; Christoffersen, P.; Price, S. F.; Fricker, H. A.; Tulaczyk, S.; Carter, S. P.

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  2. Sensitivity Analysis and Variational Data Assimilation for ice flow - Application to the Mertz ice-tongue

    NASA Astrophysics Data System (ADS)

    Martin, N.; Monnier, J.

    2012-12-01

    To be confident in the accuracy of the modelling of ice flows requires to con- front numerical experiments to actual observations. This type of flow is strongly sensitive to its input parameters such as rheological parameters and boundary conditions like the friction on the bedrock. Using optimal control theory, we build a global 4D-Var algorithm using direct and adjoint model of the variational problem thus providing local sensitivity analysis and data assimilation (see [1]). In order to compute approximation of these flows, one consider the non newtonian velocity- pressure Stokes system described using mixed finite element method. The treat- ment of the free surface is performed using an Arbitrary Lagrangian Eulerian de- scription with robus elastic deformation and the adjoint method is constructed by algorithmic differentiation of the direct code using Tapenade software (INRIA). We lean on prior developments of the software DassFlow (see [2]). One of the major question for inverse methods in glaciology is to infer the fric- tion coefficient at bottom through data assimilation because it cannot be measured. In other respect, our first results based on real data shows that the rheological expo- nent and/or the thermal coefficient of the constitutive law (distributed parameter) has the same type of influence (see Figure 1) and can be inferred as well. Another modeling issue lies in the dynamic of the grounding line when con- sidering the floating part of the ice domain. Then, sensitivity analysis of the model response with respect to this grounding line dynamic leads to a better understand- ing of this unstable process and its empirical modelling. We present a real data application on the Mertz ice-shelf (Antarctica). Topography and surface velocities data are being provided by B. Legrésy (see [3]). References [1] Martin, N. and Monnier, J. : A three fields finite elements solver for viscoplas- tic free surface flows and variational data assimilation. In

  3. Modelling of Kealey ice rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia

    NASA Astrophysics Data System (ADS)

    Martin, Carlos; Hilmar Gudmundsson, G.

    2013-04-01

    Ice divides are dynamical features, and their evolution or stability reflects the conditions of the surrounding ice masses. The East of Ellsworth Land, West Antarctic Ice Sheet, is ringed by divides showing linear features parallel to the ridge in satellite imagery and a conspicuous layering in the ground-penetrating radar data known as Raymond bumps. These features have been shown to be the result of stability over a time-scale comparable to the characteristic time of the divide, ice thickness divided by accumulation, that varies between centuries and millennia in this area. In this study, we focus in Kealey ice rise, an ice divide situated between two distributaries of Rutford ice stream, Carlson and Talutis Inlets.Through numerical modelling, by using an anisotropic full-Stokes thermomechanical flow solver, we analyze the stability of Kealey ice rise and the time-scales involved. We show that our modelling approach can reproduce the radar data only if we use a non-linear anisotropic rheology, and that the asymmetry observed in radar data is forced mainly by the topography of the bedrock. We conclude that the features observed in the surface and stratigraphy of Kealey ice rise are a consequence of, at least, 5 kyr of flow regime stability. However, we can not exclude the possibility of a recent flow reorganization in the last century that could only be reflected in the shallower areas of the ice rise. We stress that the signs of stability observed in Kealey Ice Rise are widespread in the Ellsworth Land area, suggesting recent stability on the millennium time-scale.

  4. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results

  5. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  6. Overview of the Icing and Flow Quality Improvements Program for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Kevdzija, Susan L.; Sheldon, David W.; Spera, David A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper describes the rationale behind this latest program of IRT upgrades and the program's requirements and goals. An overview is given of the scope of work undertaken by the design and construction contractors, the scale-model IRT (SMIRT) design verification program, the comprehensive reactivation test program initiated upon completion of construction, and the overall management approach followed.

  7. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments. PMID:17314977

  8. Patterns and trends in Southern Ontario lake ice phenology.

    PubMed

    Futter, Martyn N

    2003-01-01

    An analysis is presented of 46 ice break up and 15 ice free season phenology data series obtained largely through volunteer monitoring efforts in Southern Ontario. Observations spanned the years 1853-2001. Available data included dates of ice formation and ice break up as well as the number of ice free days in a year. A high degree of temporal coherence in ice phenology between lakes was observed (137/365 pairwise correlations significant at P < 0.05). Significant monotonic trends towards earlier break up dates and longer ice free seasons were observed across the region both in the entire series and in the last thirty years of data. Trends in longer series may be associated with the end of the Little Ice Age. The significantly longer ice free seasons and earlier ice break up dates observed in the study area have important implications for lakes in other parts of Canada where climate change effects are predicted to be more extreme than in South-Central Ontario.

  9. Flow-separation patterns on symmetric forebodies

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.

    1986-01-01

    Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves

  10. Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.

    2009-12-01

    The Austfonna ice cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine ice dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the ice cap. We employ the thermodynamic, large-scale ice sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-ice approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing ice thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar ice cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick ice column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the ice cap and the

  11. A Theoretical and Experimental Investigation of Ice-Shelf Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Worster, G.; Hindmarsh, R. C. A.

    2015-12-01

    Ice-shelf buttressing is a major control on the rate of ice discharged from fast-flowing ice streams that drain the Antarctic Ice Sheet. The collapse of an ice shelf can lead to dramatic acceleration and thinning of the ice streams and glaciers that flowed into the former shelf. The magnitude of the buttressing force depends on the shelf geometry and confinement. This geometry is determined by the ice-shelf extent, resulting from retreat due to iceberg calving and shelf advance due to flow. In contrast to large-scale ice-sheet models, which require high resolution datasets, we aim to gain insight using simple idealized models, focusing on the transition from lateral confinement to non-confinement. By considering a confined shelf with lateral shear stresses controlling the flow, steady-state analytical solutions can be calculated. These solutions are then compared to a numerical model for a confined flow, which incorporates both shear and extensional stresses. A boundary layer close to the calving front is identified, where both extensional and shear stresses control the dynamics. We test these idealized models against fluid-mechanical laboratory experiments, designed to simulate the flow of an ice shelf in a narrow channel. From these experiments velocity fields and altimetry for the ice-shelf are collected, allowing for comparison with the theoretical models and geophysical data.

  12. Bedform signature of a West Antarctic palaeo-ice stream reveals a multi-temporal record of flow and substrate control

    NASA Astrophysics Data System (ADS)

    Graham, Alastair G. C.; Larter, Robert D.; Gohl, Karsten; Hillenbrand, Claus-Dieter; Smith, James A.; Kuhn, Gerhard

    2009-12-01

    The presence of a complex bedform arrangement on the sea floor of the continental shelf in the western Amundsen Sea Embayment, West Antarctica, indicates a multi-temporal record of flow related to the activity of one or more ice streams in the past. Mapping and division of the bedforms into distinct landform assemblages reveals their time-transgressive history, which implies that bedforms can neither be considered part of a single downflow continuum nor a direct proxy for palaeo-ice velocity, as suggested previously. A main control on the bedform imprint is the geology of the shelf, which is divided broadly between rough bedrock on the inner shelf, and smooth, dipping sedimentary strata on the middle to outer shelf. Inner shelf bedform variability is well preserved, revealing information about local, complex basal ice conditions, meltwater flow, and ice dynamics over time. These details, which are not apparent at the scale of regional morphological studies, indicate that past ice streams flowed across the entire shelf at times, and often had onset zones that lay within the interior of the Antarctic Ice Sheet today. In contrast, highly elongated subglacial bedforms on sedimentary strata of the middle to outer shelf represent a timeslice snapshot of the last activity of ice stream flow, and may be a truer representation of fast palaeo-ice flow in these locations. A revised model for ice streams on the shelf captures complicated multi-temporal bedform patterns associated with an Antarctic palaeo-ice stream for the first time, and confirms a strong substrate control on a major ice stream system that drained the West Antarctic Ice Sheet during the Late Quaternary.

  13. Spatial patterns in backscatter strength across the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.

    1993-01-01

    The relationship between the physical properties of the Greenland ice sheet and Synthetic Aperture Radar (SAR) data collected from aircraft and from ERS-1 is addressed. Limited aircraft data are combined with a description of the glacier surface to predict qualitatively the spatial and seasonal variation in backscatter strength across the ice sheet. In particular the model predicts relatively low backscatter near the ice edge where scattering is dominated by rough surface effects. Backscatter increases through the lake zone as volume scattering becomes important. Strongest backscatter is found in the percolation facies where volume scatter from snow grains and volume scatter from large, buried ice bodies becomes important. Backscatter weakens in the interior ice sheet where fine grained snow is the only mechanism producing backscatter.

  14. Mean Flow and Turbulence Structure in Ice-Covered Channels: Laboratory Experiments and Preliminary Field Observations

    NASA Astrophysics Data System (ADS)

    Robert, A.; Tran, T.

    2009-12-01

    Northern rivers experience freeze-up over the winter, creating asymmetric under-ice flows. Field measurements were conducted along an ice-covered, gravel-bed river in order to investigate average downstream velocity profile characteristics and the spatial variability of under-ice average flow conditions (itself attributed to the areal distribution of sediment and the heterogeneous nature of ice cover roughness). At the reach scale, measured under-ice flows typically exhibit flow asymmetry and its characteristics depend on the presence of roughness elements on the ice cover underside. River flows were subsequently modeled in the flume laboratory based on an average Froude number derived from field data. Extensive experiments were performed for shallower and deeper flows with a simulated ice cover of varying roughness and a gravel bed. Detailed profile measurements of the root-mean square components of turbulence intensity, Reynolds stresses and turbulent kinetic energy indicate that the turbulence structure is strongly influenced by the presence of an ice cover and its roughness characteristics. A central region of faster flow can develop with the addition of a rough cover at the height where average velocity is routinely sampled. For the case of deeper flows, streamwise and vertical turbulence intensities generally increase in the near-bed and outer flow regions when a cover is added. For deeper flows, Reynolds stresses also increase with addition of a cover and its roughening. Spatially-averaged profiles also suggest that flow depth significantly affects the turbulent flow structure of covered flows with similar low Froude numbers. Bed roughness elements appear to exert the greatest influence on near-bed flow distribution. Laboratory experiments also suggest that the addition of a cover - and its roughening - does not significantly alter estimates of near-bed velocity gradients. These results are discussed in the context of the impact of a warming climate on

  15. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-08-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low-frequency, long-duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  16. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-06-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass-balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low frequency, long duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  17. A Radial Pattern of Six Paleo Ice Streams Emanating from the Bruce Plateau Ice Dome, Antarctic Peninsula Ice Sheet: Constraints from Multibeam Bathymetry and GPS Rebound

    NASA Astrophysics Data System (ADS)

    Fried, M.; Domack, E.; Canals, M.; Casamor, J.; King, M.

    2008-12-01

    We reconstructed ice thicknesses along six paleo ice streams emanating out of the Bruce Plateau in the Northern Antarctic Peninsula. This was done in order to generate models of potential isostatic rebound along the flow paths since the LGM and thereby provide a theoretical test for empirical observations of vertical displacement (rebound) as measured by seven coastal GPS stations (to be deployed during the current IPY- LARISSA project). This study is pertinent to realizing the effect of moderate ice sheet size during collapse and resulting sea level rise. The Palmer, Vernadsky, Hugo Island and Gerlache and Boyd Strait ice stream paths (flow lines) were highlighted on the Western side of the Peninsula. The Drygalski, Crane and Hektoria ice streams were studied on the Eastern side. Using detailed and near complete swath bathymetry data available for the Western Peninsula coastal region and partial swath mapping data generated at the site of the former Larsen B ice shelf (and Roberston Trough), we constructed hypothetical longitudinal profiles of all six ice streams along precisely located flow paths. These profiles extended from the accumulation zones in the upper elevations of the Bruce Plateau to the terminus along the continental shelf edge. The profiles included detailed elevations of the bedrock and hypothetical ice thickness values along the ice streams as they would have been during the Last Glacial Maximum (~ 16 ka). Ice thickness values were based on the elevations of bedrock, trim lines, surrounding topography, influence of surrounding glaciers and previous estimates of LGM ice thickness values around the Antarctic Peninsula. Using the components of the hypothetical longitudinal profiles, total isostatic rebound since the LGM can be calculated for the region (assuming reasonable mantle viscosities). In all the profiles reconstructed ice thicknesses are characterized by an order of magnitude increase across inner shelf troughs (such as the Palmer Deep and

  18. Trends in ice formation at Lake Neusiedl since 1931 and large-scale oscillation patterns

    NASA Astrophysics Data System (ADS)

    Soja, Anna-Maria; Maracek, Karl; Soja, Gerhard

    2013-04-01

    Ice formation at Lake Neusiedl (Neusiedler See, Fertitó), a shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary, is of ecological and economic importance. Ice sailing and skating help to keep a touristic off-season alive. Reed harvest to maintain the ecological function of the reed belt (178 km2) is facilitated when lake surface is frozen. Changes in ice formation were analysed in the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU. Data records of ice-on, ice duration and ice-off at Lake Neusiedl starting with the year 1931, and air temperature (nearby monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG)) were used to investigate nearly 80 winters. Additionally, influences of 8 teleconnection patterns, i.e. the Atlantic Multidecadal Oscillation (AMO), the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. Ice cover of Lake Neusiedl showed a high variability between the years (mean duration 71±27 days). Significant trends for later ice-on (p=0.02), shorter ice duration (p=0.07) and earlier ice-off (p=0.02) for the period 1931-2011 were found by regression analysis and trend analysis tests. On an average, freezing of Lake Neusiedl started 2 days later per decade and ice melting began 2 days earlier per decade. Close relationships between mean air temperature and ice formation could be found: ice-on showed a dependency on summer (R=+0.28) and autumn air temperatures (R=+0.51), ice duration and ice off was related to autumn (R=-0.36 and -0.24), winter (R=-0.73 and -0.61) and concurrent spring air temperatures (R=-0.44). Increases of air temperature by 1° C caused an 8.4 days later

  19. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    PubMed Central

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-01-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274

  20. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet.

    PubMed

    Bons, Paul D; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C; Binder, Tobias; Eisen, Olaf; Jessell, Mark W; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-01-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274

  1. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  2. Using Capillary Flows to Pattern Lines

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Craig, Kate; Scherer, Axel

    2006-03-01

    One can appreciate how capillary forces cause unexpected patterns and shapes by looking at a soap bubble. Pattern formation by surface tension is seen in ring patterns of coffee stains, fingering patterns in Hele-Shaw cells, ordering of two dimensional micro-sphere crystals, combing of DNA and skeleton formation in marine creatures called radiolarians. Though comman, problems involving the understanding and control of the self-assembly mechanism need to be resolved before using capillary forces as a practical lithographic tool. Here, we report capillary flows create line patterns in evaporating liquids between closely spaced parallel plates. The widths of these lines range from a few microns to a few nanometers. Deliberate patterning of such lines requires pinning of the contact line and the presence of foaming surfactants. The position and type of line can be controlled with artificial pinning points and varying solutes respectively, and large-scale photolithography can be used to guide and control the definition of nanostructures. We provide ``proof of principle'' demonstrations of this method's application by creating lines of colloidal quantum dots and micro-spheres. This represents the first step in using capillary phenomena to create controlled, self--assembling, one-dimensional wire-like structures

  3. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery

    NASA Astrophysics Data System (ADS)

    Cooley, Sarah; Pavelsky, Tamlin

    2016-04-01

    The annual spring breakup of river ice has important consequences for northern ecosystems and significant economic implications for Arctic industry and transportation. River ice breakup research is restricted by the sparse distribution of hydrological stations in the Arctic, where limited available data suggests a trend towards earlier ice breakup. The specific climatic mechanisms driving this trend, however, are complex and can vary both regionally and within river systems. Consequently, understanding the response of river ice processes to a warming Arctic requires simultaneous examination of spatial and temporal patterns in breakup timing. Here we present an automated algorithm for river ice breakup detection using MODIS satellite imagery that enables identification of spatial and temporal breakup patterns at large scales. We examine breakup timing on the Mackenzie, Lena, Ob' and Yenisey rivers for the period 2000-2014. First, we split each river into 10 km segments. Next, for each day of the breakup season, we classify each river pixel as snow/ice, mixed ice/water or open water based on MODIS reflectance values and remove all cloud-covered segments using the MODIS cloud product. We then define the breakup date as the first day where the segment is 75% open water. Using this method, we are able to determine breakup dates with a mean uncertainty of +/-1.3 days. We find our remotely sensed breakup dates to be highly correlated to ground breakup dates and the timing of peak discharge. All statistically significant temporal trends in breakup timing are negative, indicating an overall shift towards earlier breakup. Considerable variability in the statistical significance and magnitude of trends along each river suggests that different climatic and physiographic drivers are impacting spatial patterns in breakup. Trends detected on the lower Mackenzie corroborate recent studies indicating weakening ice resistance and earlier breakup timing near the Mackenzie Delta. In

  4. Micromechanics of emergent patterns in plastic flows

    PubMed Central

    Biswas, Santidan; Grant, Martin; Samajdar, Indradev; Haldar, Arunansu; Sain, Anirban

    2013-01-01

    Crystalline solids undergo plastic deformation and subsequently flow when subjected to stresses beyond their elastic limit. In nature most crystalline solids exist in polycrystalline form. Simulating plastic flows in polycrystalline solids has wide ranging applications, from material processing to understanding intermittency of earthquake dynamics. Using phase field crystal (PFC) model we show that in sheared polycrystalline solids the atomic displacement field shows spatio-temporal heterogeneity spanning over several orders of length and time scales, similar to that in amorphous solids. The displacement field also exhibits localized quadrupolar patterns, characteristic of two dislocations of the opposite sign approaching each other. This is a signature of crystallinity at microscopic scale. Polycrystals being halfway between single crystals and amorphous solids, in terms of the degree of structural order, descriptions of solid mechanics at two widely different scales, namely continuum plastic flow and discrete dislocation dynamics turns out to be necessary here. PMID:24056757

  5. Baltic Sea Ice Regional Indices and their relationship with atmospheric circulation patterns and maritime navigation

    NASA Astrophysics Data System (ADS)

    Sztobryn, M.; Kowalska, B.

    2009-04-01

    The Baltic navigation and urban activities of the coastal communities around the Baltic Sea depended always very much on the ice conditions in the sea. The sea ice occurs different in form and amount, depending on the sea area and the winter season. The aim of the work was the investigation of influence of atmospheric circulation patterns on sea ice condition of Baltic Sea (by the sea ice regional indices). The atmospheric circulation patterns were represented by the German Weather Service's - Grosswetterlagen. The relationship between the ice severity indices and icebreakers activities (number of cases, in which the Swedish and Finnish icebreakers assisted the ships) were investigated. The work was done under the Seaman project (Norwegian Financial Mechanism)

  6. ICEd-ALE Treatment of 3-D Fluid Flow.

    1999-09-13

    Version: 00 SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitudemore » results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.« less

  7. Characteristic flow patterns generated by macrozoobenthic structures

    NASA Astrophysics Data System (ADS)

    Friedrichs, M.; Graf, G.

    2009-02-01

    A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s - 1 and 10 cm s - 1 ) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1-2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of

  8. Tidal Modulation of the Flow of Rutford Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Adalgeirsdottir, G.; Murray, T.; Smith, A.; Nicholls, K.; Makinson, K.; King, M.; Behar, A.

    2005-12-01

    Ice from the interior of Antarctica is delivered to the ice shelves and the oceans through fast flowing ice streams and glaciers. The ice streams flow up to two orders of magnitude faster than the surrounding ice and are the most dynamic components of the ice sheet system. As a part of the RABID project an array of 5 GPS receivers, was operated continuously on the Rutford Ice stream, West Antarctica, from 28 December 2004 - 3 February 2005, about 40 km upstream from the grounding line. The chosen sampling rate was 10 sec, which gives high resolution data on the ice stream motion. A base station was deployed on rock in the Ellsworth Mountains, ~30 km from the array, providing a fixed control for the ice stream network. The data are processed with rigorous kinematic methods. The measured velocity of the ice stream is about 1 m per day. After removing the mean velocity along the ice stream from the measurement the residual of the horizontal displacement shows periodicity of ~15 days, which is related to the spring-neap tides. The variation in velocity is about 5%. Highest velocity is measured during the transition from spring to neap tide, with the largest increase in speed during spring tide and decrease during neap tides. A weak diurnal signal is visible during spring tides. The amplitude of the diurnal signal decreases during neap tides.

  9. Pattern and timing of retreat of the last British-Irish Ice Sheet

    NASA Astrophysics Data System (ADS)

    Clark, Chris D.; Hughes, Anna L. C.; Greenwood, Sarah L.; Jordan, Colm; Sejrup, Hans Petter

    2012-06-01

    During the last glacial the ice sheet that subsumed most of Britain, Ireland and the North Sea attained its maximum extent by 27 ka BP and with an ice volume sufficient to raise global sea level by ca 2.5 m when it melted. We reconstruct the demise of this British-Irish Ice Sheet (BIIS) and present palaeo-glaciological maps of retreat stages between 27 and 15 ka BP. The whole land area was investigated using remote sensing data and we present maps of moraines, meltwater channels, eskers, and drumlins and a methodology of how to interpret and bring them together. For the continental shelf, numerous large moraines were discovered recording an extensive pattern of retreat stretching from SW Ireland to the Shetland Isles. From an integration of this new mapping of glacial geomorphology (>26,000 landforms) with previously published evidence, compiled in the BRITICE database, we derive a pattern of retreat for the whole BIIS. We review and compile relevant dates (881 examples) that constrain the timing of retreat. All data are held within a Geographic Information System (GIS), and are deciphered to produce a best-estimate of the combined pattern and timing of retreat. Pattern information reveals an ice sheet mainly comprised of a shelf-parallel configuration from SW Ireland to NE Scotland but it spread far enough to the south to incorporate outlying ice domes over Wales, the Lake District and Kerry. Final disintegration was into a number of separate ice caps, rather than reduction as a single mass, and paradoxically, retreat was not always back to high ground. By 23 ka BP ice withdrew along its northern boundaries at the same time as the southern margins were expanding, including transient ice streaming down the Irish Sea and advances of lobes in the Cheshire Basin, Vale of York and east coast of England. Ice divides migrated south. By 19 ka the ice sheet was in crisis with widespread marine-based ice losses, particularly in the northern North Sea and the Irish Sea

  10. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  11. Patterns and flow in frictional fluid dynamics

    PubMed Central

    Sandnes, B.; Flekkøy, E.G.; Knudsen, H.A.; Måløy, K.J.; See, H.

    2011-01-01

    Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams. PMID:21505444

  12. A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1983-01-01

    A proposed method of analytically predicting the minimum fluid flow rate required to provide anti-ice protection with a porous leading edge system on a wing under a given set of flight conditions is presented. Results of the proposed method are compared with the actual results of an icing test of a real wing section in the NASA Lewis Icing Research Tunnel.

  13. The role of ice dynamics in shaping vegetation in flowing waters.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  14. Surface micro-grooves for near-wall exergy and flow control: application to aircraft intake de-icing

    NASA Astrophysics Data System (ADS)

    Naterer, G. F.; Glockner, P. S.; Thiele, D.; Chomokovski, S.; Venn, G.; Richardson, G.

    2005-03-01

    This paper develops a new surface micro-profiling technique for reducing exergy losses and controlling near-wall flow processes, particularly for anti-icing of a helicopter surface. Fabrication of embedded surface microchannels entails surface etching with KOH and XeF2 gas, so that the interspersed microchannels can be assembled into a surface layer of silicon. Testing of the micro-profiled surfaces is performed with particle image velocimetry in a water tunnel. Experimental data indicate that converging open microchannels lead to certain differences of flow patterns on the downstream side of an engine cooling bay. Furthermore, exergy losses for external flow past the parallel embedded microchannels are shown to be lower than previous benchmark results without microchannels. Analytical results are presented for these losses of available energy and exergy destruction. Reduced drag of slip-flow conditions within each microchannel offsets the added friction irreversibility of larger surface area. By altering the near-wall flow patterns, it is anticipated that embedded surface microchannels can provide a useful new approach for dealing with flow-related problems of aircraft icing.

  15. Generation of pyroclastic flows by explosive interaction of lava flows with ice/water-saturated substrate

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Behncke, Boris; Belousova, Marina

    2011-04-01

    We describe a new type of secondary rootless phreatomagmatic explosions observed at active lava flows at volcanoes Klyuchevskoy (Russia) and Etna (Italy). The explosions occurred at considerable (up to 5 km) distances from primary volcanic vents, generally at steep (15-35°) slopes, and in places where incandescent basaltic or basaltic-andesitic lava propagated over ice/water-saturated substrate. The explosions produced high (up to 7 km) vertical ash/steam-laden clouds as well as pyroclastic flows that traveled up to 2 km downslope. Individual lobes of the pyroclastic flow deposits were up to 2 m thick, had steep lateral margins, and were composed of angular to subrounded bomb-size clasts in a poorly sorted ash-lapilli matrix. Character of the juvenile rock clasts in the pyroclastic flows (poorly vesiculated with chilled and fractured cauliflower outer surfaces) indicated their origin by explosive fragmentation of lava due to contact with external water. Non-juvenile rocks derived from the substrate of the lava flows comprised up to 75% in some of the pyroclastic flow deposits. We suggest a model where gradual heating of a water-saturated substrate under the advancing lava flow elevates pore pressure and thus reduces basal friction (in the case of frozen substrate water is initially formed by thawing of the substrate along the contact with lava). On steep slope this leads to gravitational instability and sliding of a part of the active lava flow and water-saturated substrate. The sliding lava and substrate disintegrate and intermix, triggering explosive "fuel-coolant" type interaction that produces large volume of fine-grained clastic material. Relatively cold steam-laden cloud of the phreatomagmatic explosion has limited capacity to transport upward the produced clastic material, thus part of it descends downslope in the form of pyroclastic flow. Similar explosive events were described for active lava flows of Llaima (Chile), Pavlof (Alaska), and Hekla (Iceland

  16. The Importance of Ablation on ice Flow and Meteorite Exhumation: the Physical Modeling Approach at Frontier Mountain, Antarctica

    NASA Astrophysics Data System (ADS)

    Zeoli, A.; Folco, L.; Corti, G.

    2008-12-01

    progressive ice deformation during the experiments, passive grids of carbon-black particles are printed both inside and on the model surface using the unbaked photocopy method. In a first series of experiment we tested the flow variation for submerged obstacle with dimensions 3cm x 10cm x 1÷5 cm placed inside the Plexiglas box which is inclined of 3°; the PDMS is allowed to flow by opening the front end of the box. Afterward we introduced the ablation effect in the model with emerged obstacle for two natural case: upstream and downstream of the bedrock obstacle. In these models, ablation was simulated by physically removing pieces of PDMS from the surface with a small knife at regular intervals of 30 minutes in order to maintain a constant depression on the free surface of the ice. Later we used the Frontier Mountain bedrock topographic model used for previous work with addition of ablation downstream the mountain outcrop, as in the natural environment. Experimental results show how the flow field and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles, but only limited uplift of internal layers is observed in these experiments. The exhumation of deep material embedded in the ice is observed only if ablation is be included in the physical models. In this case, the analogue ice replenishes the area of ablation (simulated by material removal), thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern.

  17. Investigation of rapid freeze prototyping and investment casting with ice patterns

    NASA Astrophysics Data System (ADS)

    Liu, Qingbin

    Rapid Freeze Prototyping (RFP) can generate three-dimensional ice patterns from CAD models by depositing and solidifying water droplets layer by layer. The waiting time between two successive layers is a critical factor. Finite Element Analysis (FEA) is employed to predict the solidification time of a newly deposited water layer in order to develop a better understanding of heat transfer during the RFP process. The result is used to investigate the effects of various process parameters on the solidification time of an ice column and a vertical ice wall. Experiments are conducted and the measured results are shown to agree well with simulation results. Investment casting with ice patterns is similar to that with wax patterns but with significant process differences. An interface agent can be coated around the ice pattern to protect it from damage during the process. To compensate for the thickness of the interface agent, analytical models have been constructed to predict the thickness of the interface agent for a large ice cylinder and for a small ice part. The dimensional accuracy of the generated metal castings for small parts can be much improved by compensating the interface layer thickness. Due to the use of ice, canned models must be made at sub-freezing temperatures. Success of this process depends significantly on curing kinetics of the slurries and the fracture toughness of mold materials. The curing kinetics of the slurries and mold material fracture toughness from different compositions are examined and the effects of various processing parameters on the results are examined and discussed.

  18. Large-Scale Patterns of Waves in Partial Ice Cover in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Smith, M.; Thomson, J. M.; Rogers, W.

    2014-12-01

    Surface waves are becoming a central feature of the emerging Arctic Ocean; however, few direct measurements of waves have been made. We present multi-year time series of wave height and ice draft from moorings at two locations in the Beaufort Sea, as well as wavelength and direction estimated from high-resolution satellite imagery. In situ wave and ice data are used to examine large-scale spatial and temporal patterns of waves in the previously ice-covered Arctic Ocean. In particular, we investigate the dependence of waves on ice-controlled fetch, and wave physics in partial ice cover in the Beaufort Sea. These results are compared with WaveWatch III hindcasts to evaluate the model's accuracy in the marginal ice zone. We will expand on the approach of Thomson and Rogers (2014), who found that the energy of waves in the Arctic is directly correlated with open water distances. Incorporating new (2014) data collected throughout the marginal ice zone, we will examine adjustments to conventional fetch scaling laws in the presence of partial ice cover.

  19. Analysing subglacial geology hidden beneath the ice streams flowing into the Weddell Sea (West Antarctica)

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; King, O.; Jordan, T. A.; Ross, N.; Bingham, R. G.; Le Brocq, A. M.; Smith, A.; Hindmarsh, R. C. A.; Siegert, M. J.

    2014-12-01

    Subglacial geology provides important controls on the onset and maintenance of fast glacial flow in the West Antarctic Ice Sheet (WAIS). Widespread subglacial sediments deposited within deep rift basins, thinner drapes of marine sediments within the West Antarctic Rift System (WARS) and high geothermal heat flux associated with Cenozoic magmatism have been previously identified as key geological controls that can modulate ice sheet dynamics. Here, we compile a suite of new and vintage aeromagnetic and airborne gravity observations to examine the large-scale geological setting of several major ice streams flowing into the Weddell Sea Embayment and assess the role of geological controls on subglacial topography and WAIS flow regimes. We focus on the subglacial geology beneath the Institute and Moeller ice streams, the Rutford ice stream and the Evans ice stream. We show that the Moeller ice stream is underlain by a major strike-slip fault system, which is part of the tectonic boundary between East and West Antarctica. A set of en-echelon subglacial basins formed along the strike-slip fault and these basins appear to steer enhanced flow far inland. Deep sedimentary basins are not present along this fault system, however, suggesting that subglacial sediments are not necessarily a geological template for the onset of fast glacial flow. The recently identified Robin Subglacial Basin that underlies the fast flowing coastal region of the Institute ice stream contains 1-3 km of sedimentary infill and smooth bedrock topography. Enhanced flow in the tributaries of the Institute ice stream cuts across the Ellsworth Mountains and is controlled by basement faults displacing metasedimentary and metavolcanic rocks. Prominent magnetic anomalies overlie outcrops of Jurassic granitic intrusions and enable us to trace their subglacial extent beneath the catchments of Institute, Moeller and Rutford ice streams. These large granitoid bodies form topographic highs that appear to divert

  20. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015

    NASA Astrophysics Data System (ADS)

    Li, Xin; Rignot, Eric; Mouginot, Jeremie; Scheuchl, Bernd

    2016-06-01

    Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic-aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989-1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature.

  1. Heterogeneous Heat Flow and Groundwater Effects on East Antarctic Ice Sheet Dynamics

    NASA Astrophysics Data System (ADS)

    Gooch, B. T.; Soderlund, K. M.; Young, D. A.; Blankenship, D. D.

    2015-12-01

    We present the results numerical models describing the potential contributions groundwater and heterogeneous heat sources might have on ice dynamics. A two-phase, 1D hydrothermal model demonstrates the importance of groundwater flow in heat flux advection near the ice-bed interface. Typical, conservative vertical groundwater volume fluxes on the order of +/- 1-10 mm/yr can alter vertical heat flux by +/- 50-500 mW/m2 that could produce considerable volumes of meltwater depending on basin geometry and geothermal heat production. A 1D hydromechanical model demonstrates that during ice advance groundwater is mainly recharged into saturated sedimentary aquifers and during retreat groundwater discharges into the ice-bed interface, potentially contributing to subglacial water budgets on the order of 0.1-1 mm/yr during ice retreat. A map of most-likely elevated heat production provinces, estimated sedimentary basin depths, and radar-derived bed roughness are compared together to delineate areas of greatest potential to ice sheet instability in East Antarctica. Finally, a 2D numerical model of crustal fluid and heat flow typical to recently estimated sedimentary basins under the East Antarctic Ice Sheet is coupled to a 2.5D Full Stokes ice sheet model (with simple basal hydrology) to test for the sensitivity of hydrodynamic processes on ice sheet dynamics. Preliminary results show that the enhanced fluid flow can dramatically alter the basal heating of the ice and its temperature profile, as well as, the sliding rate, which heavily alter ice dynamics.

  2. Paleo-Ice Sheet/Stream Flow Directions of the Northern Antarctic Peninsula Ice Sheet Based Upon New Synthesis of Multibeam Seabed Imagery

    NASA Astrophysics Data System (ADS)

    Domack, E. W.; Lavoie, C.; Scambos, T. A.; Pettit, E. C.; Schenke, H. W.; Yoo, K. C.; Larter, R. D.; Gutt, J.; Wellner, J.; Canals, M.; Anderson, J. B.; Amblas, D.

    2014-12-01

    We provide a new map of swath bathymetry for the northern Antarctic Peninsula, including data sets from five national programs. Our map allows for the compilation and examination of Late Glacial Maximum (LGM) paleo-ice sheet/stream flow directions developed upon the seafloor from the preservation of: mega-scale glacial lineations, drumlinized features, and selective linear erosion. We combine this with terrestrial observations of flow direction to place constraints on ice divides and accumulation centers (ice domes). The results show a flow divergence in Larsen B embayment, between flow emanating off the Seal Nunataks (including Robertson Island) that directed ice in a southeast direction, then easterly as the flow transits toward the Robertson Trough. A second, stronger "streaming flow" directed ice southeasterly then southward, as ice overflowed the Jason Peninsula to reach the Jason Trough, the southern perimeter of the embayment. This reconstruction is far more detailed than other recent compilations because we followed specific flow indicators and have kept tributary flow paths parallel. Our reconstitution also refines the extent of at least five other distinct paleo-ice stream systems which in turn serve to delineate seven broad regions where ice domes must have been centered across the continental shelf during the LGM.

  3. Flow variability and ongoing margin shifts on Bindschadler and MacAyeal Ice Streams, West Antarctica

    NASA Astrophysics Data System (ADS)

    Hulbe, C. L.; Scambos, T. A.; Klinger, M.; Fahnestock, M. A.

    2016-02-01

    Ice streams on the Ross Sea side of the West Antarctic Ice Sheet are known to experience flow variability on hourly, annual, and multicentury time scales. We report here on observations of flow variability at the decade scale on the Bindschadler and MacAyeal Ice Streams (BIS and MacIS). Our analysis makes use of archived ice velocity data and new mappings from composited Landsat 7 and Landsat 8 imagery that together span the interval from 1985 to 2014. Both ice streams speedup and slowdown in a range of about ±5 m a-2 over our various comparison intervals. The rates of change are variable in both time and space, and there is no evidence of external forcing at work across the two streams. Widespread changes are most likely linked to instability in the subglacial till and/or subglacial water flow. Sticky spots near the confluence of the two ice streams are loci for speed changes. These relatively young and slow-flowing features appear to be forcing shifts in margin position near the outlets of both streams. The margin jumps reduce the effective outlet widths of the streams by 20% and 30% on BIS and MacIS, respectively. Those magnitudes are similar to the outlet narrowing experienced by Kamb Ice Stream prior to its stagnation.

  4. Characteristics and distribution patterns of snow and meteoric ice in the Weddell Sea and their contribution to the mass balance of sea ice

    NASA Astrophysics Data System (ADS)

    Eicken, Hajo; Lange, Manfred A.; Wadhams, Peter

    1994-01-01

    Based on snow- and ice-thickness measurements at >11 000 points augmented by snow- and icecore studies during 4 expeditions from 1986 - 92 in the Weddell Sea, we describe characteristics and distribution patterns of snow and meteoric ice and assess their importance for the mass balance of sea ice. For first-year ice (FY) in the central and eastern Weddell Sea, mean snow depth amounts to 0.16 m (mean ice thickness 0.75 m) compared to 0.53 m (mean ice thickness 1.70 m) for second-year ice (SY) in the northwestern Weddell Sea. Ridged ice retains a thicker snow cover than level ice, with ice thickness and snow depth negatively correlated for the latter, most likely due to aeolian redistribution. During the different expeditions, 8, 15, 17 and 40% of all drill holes exhibited negative freeboard. As a result of flooding and brine seepage into the snow pack, snow salinities averaged 4‰. Through 18O measurements the distribution of meteoric ice (i.e. precipitation) in the sea-ice cover was assessed. Roughly 4% of the total ice thickness consist of meteoric ice (FY 3%, SY 5%). With a mean density of 290 kg/m3, the snow cover itself contributes 8% to total ice mass (7% FY, 11% SY). Analysis of 18O in snow indicates a local maximum in accumulation in the 65 to 75°S latitude zone. Hydrogen peroxide in the snow has proven useful as a temporal tracer and for identification of second-year floes. Drawing on accumulation data from stations at the Weddell Sea coast, it becomes clear that the onset of ice growth is important for the evolution of ice thickness and the interaction between ice and snow. Loss of snow to leads due to wind drift may be considerable, yet is reduced owing to metamorphic processes in the snow column. This is confirmed by a comparison of accumulation data from coastal stations and from snow depths over sea ice. Temporal and spatial accumulation patterns of snow are shown to be important in controlling the sea-ice cover evolution.

  5. A study of grout flow pattern analysis

    SciTech Connect

    Lee, S. Y.; Hyun, S.

    2013-01-10

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here.

  6. Observed anomalous atmospheric patterns in summers of unusual Arctic sea ice melt

    NASA Astrophysics Data System (ADS)

    Knudsen, Erlend M.; Orsolini, Yvan J.; Furevik, Tore; Hodges, Kevin I.

    2015-04-01

    The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979-2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of anomalous low sea ice melt, high melt months are characterized by anomalous high sea level pressure in the Arctic (up to 7 hPa), with a corresponding tendency of storms to track on a more zonal path. As a result, the Arctic receives less precipitation overall and 39% less snowfall. This lowers the albedo of the region and reduces the negative feedback the snowfall provides for the sea ice. With an anticyclonic tendency, 12 W/m2 more incoming shortwave radiation reaches the surface in the start of the season. The melting sea ice in turn promotes cloud development in the marginal ice zones and enhances downwelling longwave radiation at the surface toward the end of the season. A positive cloud feedback emerges. In midlatitudes, the more zonally tracking cyclones give stormier, cloudier, wetter, and cooler summers in most of northern Europe and around the Sea of Okhotsk. Farther south, the region from the Mediterranean Sea to East Asia experiences significant surface warming (up to 2.4°C), possibly linked to changes in the jet stream.

  7. A Numerical Evaluation of Icing Effects on a Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Chung, James J.; Addy, Harold E., Jr.

    2000-01-01

    As a part of CFD code validation efforts within the Icing Branch of NASA Glenn Research Center, computations were performed for natural laminar flow (NLF) airfoil, NLF-0414. with 6 and 22.5 minute ice accretions. Both 3-D ice castings and 2-D machine-generated ice shapes were used in wind tunnel tests to study the effects of natural ice is well as simulated ice. They were mounted in the test section of the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley that the 2-dimensionality of the flow can be maintained. Aerodynamic properties predicted by computations were compared to data obtained through the experiment by the authors at the LTPT. Computations were performed only in 2-D and in the case of 3-D ice, the digitized ice shape obtained at one spanwise location was used. The comparisons were mainly concentrated on the lift characteristics over Reynolds numbers ranging from 3 to 10 million and Mach numbers ranging from 0.12 to 0.29. WIND code computations indicated that the predicted stall angles were in agreement with experiment within one or two degrees. The maximum lift values obtained by computations were in good agreement with those of the experiment for the 6 minute ice shapes and the minute 3-D ice, but were somewhat lower in the case of the 22.5 minute 2-D ice. In general, the Reynolds number variation did not cause much change in the lift values while the variation of Mach number showed more change in the lift. The Spalart-Allmaras (S-A) turbulence model was the best performing model for the airfoil with the 22.5 minute ice and the Shear Stress Turbulence (SST) turbulence model was the best for the airfoil with the 6 minute ice and also for the clean airfoil. The pressure distribution on the surface of the iced airfoil showed good agreement for the 6 minute ice. However, relatively poor agreement of the pressure distribution on the upper surface aft of the leading edge horn for the 22.5 minute ice suggests that improvements are needed in the grid or

  8. Unsaturated Zone Flow Patterns and Analysis

    SciTech Connect

    C. Ahlers

    2001-10-17

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be reduced and

  9. Ice flow in the Weddell Sea sector of West Antarctica as elucidated by radar-imaged internal layering

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.

    2012-12-01

    Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial

  10. Measurement of flow under ice covers in North America

    USGS Publications Warehouse

    Walker, J.F.; Wang, D.

    1997-01-01

    A substantial proportion of natural streams in the United States and Canada are affected by ice cover during the winter. To substantiate the currently used procedures for measuring streamflow during the winter, the U.S. Geological Survey (USGS) and Water Survey of Canada (WSC) began independent, coordinated programs for research and development related to the measurement of streamflow under an ice cover. Detailed measurements of vertical velocity profiles under ice covers in field settings were collected by each agency in accordance with standardized guidelines. The data were then compiled into a joint database. This paper presents a description of the two measurement programs, describes the structure and format of the joint database, and provides preliminary summaries of the data. Ongoing research efforts by the USGS and WSC are described briefly to give examples of the use of the joint database.

  11. Application of composite flow laws to grain size distributions derived from polar ice cores

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; de Bresser, Hans; Jansen, Daniela; Weikusat, Ilka; Garbe, Christoph; Kipfstuhl, Sepp

    2014-05-01

    Apart from evaluating the crystallographic orientation, focus of microstructural analysis of natural ice during the last decades has been to create depth-profiles of mean grain size. Several ice flow models incorporated mean grain size as a variable. Although such a mean value may coincide well with the size of a large proportion of the grains, smaller/larger grains are effectively ignored. These smaller/larger grains, however, may affect the ice flow modeling. Variability in grain size is observed on centimeter, meter and kilometer scale along deep polar ice cores. Composite flow laws allow considering the effect of this variability on rheology, by weighing the contribution of grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep mechanisms taking the full grain size distribution into account [1]. Extraction of hundreds of grain size distributions for different depths along an ice core has become relatively easy by automatic image processing techniques [2]. The shallow ice approximation is widely adopted in ice sheet modeling and approaches the full-Stokes solution for small ratios of vertical to horizontal characteristic dimensions. In this approximation shear stress in the vertical plain dominates the strain. This assumption is not applicable at ice divides or dome structures, where most deep ice core drilling sites are located. Within the upper two thirds of the ice column longitudinal stresses are not negligible and ice deformation is dominated by vertical strain. The Dansgaard-Johnsen model [3] predicts a dominating, constant vertical strain rate for the upper two thirds of the ice sheet, whereas in the lower ice column vertical shear becomes the main driver for ice deformation. We derived vertical strain rates from the upper NEEM ice core (North-West Greenland) and compared them to classical estimates of strain rates at the NEEM site. Assuming intervals of constant accumulation rates, we found a

  12. The Importance of Ice Flow at the North Pole of Mars

    NASA Astrophysics Data System (ADS)

    Sori, M. M.; Byrne, S.; Hamilton, C. W.; Landis, M. E.

    2016-09-01

    We investigate the importance of ice flow at the north pole of Mars for features only recently discovered by HiRISE. We use a combination of image analysis and finite element modeling to quantify flow and discuss implications for NPLD evolution.

  13. Evolution of crystal fabric: Ice-Age ice versus Holocene ice

    NASA Astrophysics Data System (ADS)

    Kennedy, J. H.; Pettit, E. C.

    2009-12-01

    Ice-Age ice has smaller crystals and higher concentrations of impurities than Holocene ice; these properties cause it to develop a more strongly-aligned crystal-orientation fabric. In many regions of the Antarctic and Greenland ice sheets, the Ice-Age ice is now at depth and its flow properties may dominate the ice flow patterns, particularly where sliding is minimal. We use a fabric evolution model, based on that developed by Thorsteinsson (2002), to explore the evolution of Ice-Age ice fabric along particle paths for ice within Taylor Glacier, a cold-based outlet glacier of the East Antarctic Ice Sheet. The bulk of the ice within Taylor Glacier consists of Ice-Age and older ice because the Holocene ice has ablated away (there is no Holocene ice remaining within 25km of the terminus, Aciego, 2007). We initialize the evolving fabric based on fabric measurements from Taylor Dome where available (DiPrinzio, 2003) and other ice core records. We compare model results with thin-section data from shallow cores taken near the terminus. As expected, crystal alignment strengthens along the ice particle path. Due to lateral shearing along valley walls and the ice cliffs (terminal ice cliffs are cold in winter and present a resistance to flow), a tilted single maximum is common near the terminus. The highly-aligned fabric of Ice-Age ice is significantly softer than Holocene ice in simple shear parallel to the bed, this softness not only results in faster flow rates for glaciers and ice sheets such as Taylor, but creates a climate-flow-fabric feedback loop through concentrating ice-sheet flow within the Ice-Age ice. Thorsteinsson, T. (2002), Fabric development with nearest-neighbor interaction and dynamic recrystallization, J. Geophys. Res., 107(B1), 2014, doi:10.1029/2001JB000244. S.M. Aciego, K.M. Cuffey, J.L. Kavanaugh, D.L. Morse, J.P. Severinghaus, Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica, Quaternary Research, Volume 68, Issue 3, November 2007

  14. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 2. Observed and Modeled Ice Flow

    NASA Technical Reports Server (NTRS)

    Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed

    2012-01-01

    Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.

  15. Regulation of ice stream flow through subglacial formation of gas hydrates

    NASA Astrophysics Data System (ADS)

    Winsborrow, Monica; Andreassen, Karin; Hubbard, Alun; Plaza-Faverola, Andreia; Gudlaugsson, Eythor; Patton, Henry

    2016-05-01

    Variations in the flow of ice streams and outlet glaciers are a primary control on ice sheet stability, yet comprehensive understanding of the key processes operating at the ice-bed interface remains elusive. Basal resistance is critical, especially sticky spots--localized zones of high basal traction--for maintaining force balance in an otherwise well-lubricated/high-slip subglacial environment. Here we consider the influence of subglacial gas-hydrate formation on ice stream dynamics, and its potential to initiate and maintain sticky spots. Geophysical data document the geologic footprint of a major palaeo-ice-stream that drained the Barents Sea-Fennoscandian ice sheet approximately 20,000 years ago. Our results reveal a ~250 km2 sticky spot that coincided with subsurface shallow gas accumulations, seafloor fluid expulsion and a fault complex associated with deep hydrocarbon reservoirs. We propose that gas migrating from these reservoirs formed hydrates under high-pressure, low-temperature subglacial conditions. The gas hydrate desiccated, stiffened and thereby strengthened the subglacial sediments, promoting high traction--a sticky spot--that regulated ice stream flow. Deep hydrocarbon reservoirs are common beneath past and contemporary glaciated areas, implying that gas-hydrate regulation of subglacial dynamics could be a widespread phenomenon.

  16. Simulation of flow and habitat conditions under ice, Cache la Poudre River - January 2006

    USGS Publications Warehouse

    Waddle, Terry

    2007-01-01

    The objectives of this study are (1) to describe the extent and thickness of ice cover, (2) simulate depth and velocity under ice at the study site for observed and reduced flows, and (3) to quantify fish habitat in this portion of the mainstem Cache la Poudre River for the current winter release schedule as well as for similar conditions without the 0.283 m3/s winter release.

  17. Numerical study of the effects of icing on viscous flow over wings

    NASA Technical Reports Server (NTRS)

    Sankar, L. N.

    1993-01-01

    The progress made during the period 1 Jan. - 30 Jun. 1993 on the numerical study of the effects of icing on viscous flow over wings is summarized. The tasks performed were development of 3-D boundary layer methods for accurate estimates of the velocity field and surface heat transfer rates in the vicinity of the leading edge ice shape; studies of the effects of icing on 3-D highlift system performance; and continued improvement and validation of the 3-D Navier-Stokes solver. Results are discussed.

  18. Ice flow physical processes derived from the ERS-1 high-resolution map of the Antarctica and Greenland ice sheets

    NASA Astrophysics Data System (ADS)

    Rémy, Frédérique; Shaeffer, Philippe; Legrésy, Benoît

    1999-12-01

    The ERS-1 satellite, launched in 1991, has provided altimetric observations of the Greenland Ice Sheet and 80 per cent of the Antarctica Ice Sheet north of 82 degS. It was placed in a geodetic (168-day repeat) orbit between April 1994 and March 1995, yielding a 1.5 km across-track spacing at latitude 70 deg with a higher along-track sampling of 350 m. We have analysed the waveform altimetric data from this period to compute maps with a 1/30 deg grid size. Data processing consists of correcting for environmental factors and editing and retracking the waveforms. A further step consists of reducing the radial orbit error through crossover analysis and correcting the slope error to second order. The high-resolution topography of both ice sheets reveals numerous details. A kilometre-scale surface roughness running at 45 deg from the flow direction is the dominant topographic characteristic of both continents. Antarctica also exhibits many scars due to local flow anomalies. Several physical processes can be identified: abrupt transitions from deformation to sliding and vice versa, and impressive strike-slip phenomena, inducing en echelon folds.

  19. Detached-Eddy Simulations of Separated Flow Around Wings With Ice Accretions: Year One Report

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Technical Monitor); Thompson, David; Mogili, Prasad

    2004-01-01

    A computational investigation was performed to assess the effectiveness of Detached-Eddy Simulation (DES) as a tool for predicting icing effects. The AVUS code, a public domain flow solver, was employed to compute solutions for an iced wing configuration using DES and steady Reynolds Averaged Navier-Stokes (RANS) equation methodologies. The configuration was an extruded GLC305/944-ice shape section with a rectangular planform. The model was mounted between two walls so no tip effects were considered. The numerical results were validated by comparison with experimental data for the same configuration. The time-averaged DES computations showed some improvement in lift and drag results near stall when compared to steady RANS results. However, comparisons of the flow field details did not show the level of agreement suggested by the integrated quantities. Based on our results, we believe that DES may prove useful in a limited sense to provide analysis of iced wing configurations when there is significant flow separation, e.g., near stall, where steady RANS computations are demonstrably ineffective. However, more validation is needed to determine what role DES can play as part of an overall icing effects prediction strategy. We conclude the report with an assessment of existing computational tools for application to the iced wing problem and a discussion of issues that merit further study.

  20. Microgravity two-phase fluid flow pattern modeling

    NASA Technical Reports Server (NTRS)

    Lee, Doojeong; Best, Frederick R.

    1988-01-01

    When gas and liquid mixtures flow in a pipe, the distribution of the two phases may take many forms. A flow pattern, or flow regime, is the characteristic spatial distribution of the phases of flow in a pipe. Because heat transfer and pressure drop are dependent on the characteristic distribution of phases, it is necessary to describe flow patterns in an appropriate manner so that a hydrodynamic or heat transfer theory applicable to that can be chosen. A theoretical two phase flow regime transition map under a microgravity environment was developed on physical concepts. These transitions use four basic flow patterns: dispersed flow, slug flow, stratified flow, and annular flow. The forces considered are body force, surface tension force, inertial force, friction, and the force from eddy turbulent fluctuation. Three dimensionless parameters were developed. Because these transition boundaries were developed based on physical concepts, they should be applicable to flow regimes occurring in various design conditions. Because the flow pattern data from KC-135 experiments are insufficient to verify these theoretical transition lines completely, an adiabatic experiment for flow regime analysis is recommended.

  1. Dynamics and energetics of the cloudy boundary layer in simulations of off-ice flow in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Olsson, Peter Q.; Harrington, Jerry Y.

    2000-05-01

    The case under consideration occurred on March 4, 1993, and was observed as part of the Radiation and Eddy Flux Experiment (REFLEX II) 1993 observational campaign northwest of Spitsbergen. The off-ice flow on this day brought very cold surface air temperatures (-35°C) over a relatively warm ocean surface. The resultant latent and sensible surface heat fluxes produced intense convection and a thermal internal boundary layer (TIBL) which deepened with distance from the ice edge. Two-dimensional cloud-resolving model (CRM) simulations were performed to determine the impact of various cloud parameterizations on the structure and evolution of the TIBL. The model was able to reproduce the observed thermal structure of the boundary layer to within the acknowledged limitations of the CRM approach. Sensitivity studies of cloud type showed that inclusion of mixed-phase microphysics had a large impact of BL depth and structure. Radiative heating of the cloud near cloud base and cooling near cloud top along with latent heat release were found to be significant sources of turbulence kinetic energy even in the present case where very strong surface heat fluxes occur. Ice-phase precipitation processes rapidly depleted the BL of condensate, weakening the radiative thermal forcing. A further consequence of condensate depletion in the mixed-phase cloud was a less humid boundary layer that was able to maintain a larger surface latent heat flux and continuously extract heat through condensation and deposition. Not surprisingly, the presence of clouds had a profound impact on the radiative budget at the surface, with the cloudy BL reducing surface radiative losses more that 60% over clear-sky values. Inclusion of the ice phase significantly affected the radiative budget as compared to purely liquid clouds, illustrating the importance of ice-phase-radiative couplings for accurate simulations of arctic clouds and boundary layer dynamics.

  2. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of

  3. Morphometry and pattern of a large sample (>20,000) of Canadian eskers and implications for subglacial drainage beneath ice sheets

    NASA Astrophysics Data System (ADS)

    Storrar, Robert D.; Stokes, Chris R.; Evans, David J. A.

    2014-12-01

    Ice sheet flow is strongly influenced by the nature and quantity of meltwater entering the subglacial system. Accessing and monitoring contemporary drainage systems beneath ice sheets is notoriously difficult, but it is possible to utilise the exposed beds of palaeo-ice sheets. In particular, eskers record deposition in glacial drainage channels and are widespread on the exposed beds of former ice sheets. However, unlike some other common glacial landforms (e.g. drumlins) there have been relatively few attempts to investigate and quantify their characteristics at the ice sheet scale. This paper presents data on the distribution, pattern, and morphometry of a large (>20,000) sample of eskers in Canada, formed under the Laurentide Ice Sheet, including quantification of their length, fragmentation, sinuosity, lateral spacing, number of tributaries, and downstream elevation changes. Results indicate that eskers are typically very long (hundreds of km) and often very straight (mean sinuosity approximates 1). We interpret these long esker systems to reflect time-transgressive formation in long, stable conduits under hydrostatic pressure. The longest eskers (in the Keewatin sector) are also the least fragmented, which we interpret to reflect formation at an ice margin experiencing stable and gradual retreat. In many locations, the lateral distance between neighbouring eskers is remarkably consistent and results indicate a preferred spacing of around 12 km, consistent with numerical models which predict esker spacing of 8-25 km. In other locations, typically over soft sediments, eskers are rarer and their patterns are more chaotic, reflecting fewer large R-channels and rapidly changing ice sheet dynamics. Comparison of esker patterns with an existing ice margin chronology reveals that the meltwater drainage system evolved during deglaciation: eskers became more closely spaced with fewer tributaries as deglaciation progressed, which has been interpreted to reflect increased

  4. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    NASA Astrophysics Data System (ADS)

    Tatar, V.; Yildizay, H.; Aras, H.

    2015-05-01

    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  5. Correlation between permeability and groundwater flow patterns in carbonate rocks

    NASA Astrophysics Data System (ADS)

    Park, Y.; Lee, J.; Park, Y.; Keehm, Y.

    2011-12-01

    Groundwater flow in carbonate rocks is controlled by many factors such as degree of fracture and pore development, weathering and diagenesis. Among these factors, fracture is main factor and can form main flow path. Also, flow patterns in carbonate area are decided by these factors. This study was performed to understand factors controlling permeability and flow patterns in carbonate area and to evaluate correlation between permeability and flow patterns. Data used in this study were collected from many literatures and these data were analyzed and evaluated using graphic and statistical analysis. In many carbonate areas, branching conduit patterns were dominant. Of these areas, permeability was relatively high in areas where moving distance of flow was short and hydraulic gradient was steep. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A).

  6. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, Mikhail; Shur, Yuri; Strauss, Jens; Jorgenson, Torre; Fortier, Daniel; Stephani, Eva; Vasiliev, Alexander

    2016-01-01

    Yedoma, a suite of syngenetically frozen silty ice- and organic-rich deposits with large ice wedges that accumulated during the late Pleistocene, is vulnerable to thermal degradation and erosion because of the extremely high ice contents. This degradation can result in significant surface subsidence and retreat of coastal bluffs and riverbanks with large consequences to landscape evolution, infrastructure damage, and water quality. We used remote sensing and field observations to assess patterns and rates of riverbank erosion at a 35-m-high active yedoma bluff along the Itkillik River in northern Alaska. The total volumetric ground-ice content-including wedge, segregated, and pore ice-was estimated to be ~ 86%. The process of riverbank erosion and stabilization include three main stages typical of the areas with ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. Active riverbank erosion at the main study site started in July 1995, when the Itkillik River changed its channel. The total retreat of the riverbank during 1995-2010 within different segments of the bluff varied from 180 to 280 m; the average retreat rate for the most actively eroded part of the riverbank was almost 19 m/y. From August 2007 to August 2011, the total retreat varied from 10 to almost 100 m. The average retreat rate for the whole 680-m-long bluff was 11 m/y. For the most actively eroded central part of the bluff (150 m long) it was 20 m/y, ranging from 16 to 24 m/y. More than 180,000 m3 of ground ice and organic-rich frozen soil, or almost 70,000 metric tons (t) of soil solids including 880 t of organic carbon, were transported to the river from the retreating bank annually. This study reports the highest long-term rates of riverbank erosion ever observed in permafrost regions of Eurasia and North America.

  7. Glacial geomorphology and past ice flows in the Larsen A embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Campo, J.; Wellner, J. S.; Lavoie, C.

    2012-12-01

    During the Last Glacial Maximum (LGM), the expanded Antarctic Peninsula Ice Sheet was grounded on the continental shelf in the Northwestern Weddell Sea at least 10 km past the modern grounding line. The grounded ice of the Antarctic Peninsula Ice Sheet sculpted a suite of characteristic geomorphic features onto the shelf - features that were uncovered upon the retreat of the ice sheet, indicating flow direction and style. The break up of the Larsen A Ice Shelf in recent decades has continued to expose more areas of the inner shelf. A US. Antarctic Program cruise aboard the NB Palmer, completed in April of this year as part of the LARISSA program, collected multibeam swath bathymetric data and 3.5 kHz chirp sub-bottom sediment profiler data in the Larsen A embayment. New multibeam data close to the shoreline, particularly in Drygalski Trough and Bombardier Bay, has been merged with existing swath data from the U.S. and British programs to permit mapping and interpretation of ice flow from the tributaries and across the shelf. Initial observations of chirp data suggest little marine or glaciomarine sediment has accumulated in these tributary fjords, hinting that glacial retreat there occurred relatively recently. All sediment volumes for which profiles were collected occur above the glacial unconformity carved by the post-glacial retreat. Interpretation of chirp data is ongoing for volume calculations and mapping of discrete units. Ongoing work is currently being completed to measure volumes of sediment accumulation, which will then be correlated to sediment cores studied by project collaborators. The multibeam data is being analyzed in ArcGIS to determine the changes in length/width scales of the geomorphic features. As expected, the subglacial features on the outer shelf are elongated compared to the linear features on the inner shelf. Based on Evans, et al. [2005] combined with data collected this year, we have mapped ice flow form the tributaries and out through

  8. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars

    USGS Publications Warehouse

    Head, J.W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; Van Gasselt, S.

    2005-01-01

    Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.

  9. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  10. Flow dynamics of the Whillans Ice Stream, West Antarctica: Implications for basal mechanics and subglacial hydrology

    NASA Astrophysics Data System (ADS)

    Beem, Lucas H.

    The Whillans Ice Stream (WIS) is a fast flow feature of the West Antarctic Ice Sheet and is an important conduit for the discharge of ice into the ocean. It is known that the dynamics of the WIS is variable on numerous time scales between daily and decadally. WIS is slowing down at an increasingly fast rate, with maximum observed deceleration, 6.1 to 10.9 +/- 2 m/yr2, occurring during 2009 - 2013. Deceleration of the ice stream can be explained by increases in basal resistance of 10 to 40 Pa/yr. Which may be the result of basal hydrological or thermodynamic processes, such as gradual drying of the subglacial till through basal freeze-on or subglacial hydrology geometry change. Subglacial hydrology, including the filling and draining of active subglacial lakes cause modification of basal effective pressure and resulting velocity anomalies. These changes are super imposed over the longer term deceleration trend. Five filling and draining events captured between December 2007 and October 2013, show variable sensitivity of ice flow to hydrological activity that might be related to location of the ice stream and the distribution of basal resistance magnitude. In each case small changes in basal resistance of 10s Pa/yr are sufficient to cause changes in the rate of ice motion. These changes, both positive and negative, depending on the forcing processes respond to subtile changes in basal effective pressure and distribution of water. The ice stream is a sensitive system that has numerous internal therm-dynamic feedbacks. How the subglacial sediments characteristics, including water content and void ratio evolve, are seen a critical to describe the changes in WIS motion over time scales varying from decades to weeks or shorter.

  11. Basal ice flow regime influenced by glacial lake formation in Rhonegletscher, Switzerland

    NASA Astrophysics Data System (ADS)

    Nishimura, D.; Tsutaki, S.; Sugiyama, S.

    2010-12-01

    After the retreat of glacier terminus over a bedrock bump, a glacial lake has formed in front of Rhonegletscher, Switzerland. It is suspected that ice flow regime is now significantly influenced by the lake water. To investigate the impact of lake formation on glacier dynamics, we carried out surface and borehole observations in the terminus region of Rhonegletscher. In 2008 and 2009 summer seasons, we drilled more than 20 boreholes to measure borehole deformation by repeated inclinometry. Ice surface speed was measured by surveying stakes installed nearby the boreholes. We used a borehole televiewer to measure basal sliding speed by tracking stones and markers at the bottom of the boreholes. We also measured basal sediment layer thickness by hammering a penetrometer at the bottom of the boreholes. Our measurements showed clear decrease in the ice deformation rate near the lake (Fig. 1). Ice deformation accounted for 60-80% in the upper part of our study site (e.g. boreholes 1 and 5), whereas it is less than 10% near the lake (e.g. boreholes 7, 10 and 11). This result suggests that the basal ice flow near the lake is enhanced by the lake water. According to the basal sliding speed measurement in borehole 2, sliding accounted for less than 10% of basal flow speed from 2 to 31 August 2009. Deformation of a subglacial sediment layer is thus important in this region. The penetrometer measurement confirmed that the study site is underlain by a subglacial sediment layer whose thickness was in a range of 0-70 m. Fig.1 Terminus of Rhonegletscher and proglacial lakes indicated by the shaded areas. The columns show ice surface and deformation speeds measured at each borehole site from 9 July to 5 September in 2009. Ice deformation speed was negligibly small at boreholes 7, 10, and 11. Surface contour spacing is 20 m.

  12. Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis.

    PubMed

    Ding, Z T; Li, C; Shi, H; Wang, H; Wang, Y

    2015-01-01

    CsICE1 is thought to be involved in hardiness resistance of tea plants. Using seedling cuttings of biennial Wuniuzao in this study, the pattern of CsICE1 expression under cold temperature (4°, -5°C), drought [20% polyethylene glycol 6000 (PEG-6000)], and plant hormone [200 mg/L abscisic acid (ABA), 1 mg/L brassinolide (BR)] treatment was studied by real-time quantitative PCR. Additionally, stress resistance, such as the freezing resistance of CsICE1, was studied using Arabidopsis lines transformed with sense or anti-sense CsICE1 via Agrobacterium tumefaciens infection. Our results showed that CsICE1 mRNA could be induced under -5°C, PEG, ABA, or BR treatment, although the pattern of expression differed for all treatments. Compared to wild type (WT) and anti-sense ICE1 transgenic lines, sense lines displayed higher relative germination rates under salt and drought stress. After freezing treatment, the sense transgenic lines over-expressing CsICE1 showed a higher survival rate, increased levels of proline, and decreased levels of malonaldehyde. Conversely, compared with WT, anti-sense ICE1 transgenic lines had lower proline levels and higher malonaldehyde levels under freezing conditions. Our study indicates that CsICE1 is an important anti-freezing gene and that over-expression of CsICE1 can improve cold resistance and enhance salt and drought tolerance of transgenic lines. PMID:26400357

  13. Patterns and instability of grannular flow

    SciTech Connect

    Ecke, Robert E; Borzsonyi, Tamas; Mcelwaine, Jim N

    2009-01-01

    Dense granular flows are often observed to become unstable and form inhomogeneous structures in nature or industry. Although recently significant advances have been made in understanding simple flows, instabilities are often not understood in detail. We present experimental and numerical results that show the formation of longitudinal stripes. These arise from instability of the uniform flowing state of granular media on a rough inclined plane. The form of the stripes depends critically on the mean density of the flow with a robust form of stripes at high density that consists of fast sliding plug-like regions (stripes) on top of highly agitated boiling material -- a configuration reminiscent of the Leidenfrost effect when a droplet of liquid lifted by its vapor is hovering above a hot surface.

  14. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-04-01

    The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.

  15. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2014-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Centers Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  16. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  17. The Extent of Channelized Basal Water Flow Under the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Downs, J.; Johnson, J. V.; Harper, J. T.

    2015-12-01

    Glacial ice flows due to a combination of deformation and basal sliding, with sliding accounting for most of the fastest ice flow. Basal sliding is controlled by the transport of water at the glacier's bed, which can be accomplished through both high pressure, low discharge, distributed flow, or low pressure, high discharge, channelized flow. Higher pressures are generally associated with more complete decoupling of a glacier from its bed and faster flow. As the intensity of summer melt in Greenland has increased, our poor understanding of the drainage network's discharge capacity and its coupling to sliding has generated fundamental questions, such as: will larger fluxes of liquid water promote or inhibit basal sliding? To investigate this question we have implemented a model of distributed and channelized flow developed by Werder et. al 2013. The sensitivity of the modeled channel network to basal and surface geometry, melt rate, boundary conditions, and other parameters is examined in a sequence of experiments using synthetic geometries. Expanding on these experiments, we run the model with realistic surface and bedrock data from Issunguata Sermia in Western Central Greenland. These experiments benefit from a wealth of in-situ data, including observations of basal water pressure. Our results suggest that the development of large channels is limited to the margins of the ice sheet, and that higher pressures continue to prevail in the interior.

  18. Flow pattern visualization in a mimic anaerobic digester using CFD.

    PubMed

    Vesvikar, Mehul S; Al-Dahhan, Muthanna

    2005-03-20

    Three-dimensional steady-state computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The gas phase was simulated with air and the liquid phase with water. The CFD results were first evaluated using experimental data obtained by computer automated radioactive particle tracking (CARPT). The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However, increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat-bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have an appreciable effect on the flow pattern of the digesters at the range of gas flow rates used. PMID:15685599

  19. Flow properties of ice cream mix prepared from palm oil: anhydrous milk fat blends.

    PubMed

    Rosnani, A I Wan; Aini, I Nor; Yazid, A M M; Dzulkifly, M H

    2007-05-15

    Ice cream mixes containing 33.4% total solids including 10% fat, 11.1% milk solid-non fat (MSNF), 12% sugar, 0.35% commercial blend of emulsifier/ stabiliser and water were produced. The blending of PO with AMF were conducted at three different ratios 30: 70, 50: 50 and 70: 30, respectively. The experimental ice cream mixes were compared with a control ice cream mix prepared from AMF. The flow properties were measured after ageing at 0, 1, 1.5, 2 and 24 h and determined using a controlled stress rheometer (Haake RS 100). The Power Law and Casson equation was employed to estimate the yield stress of an ice cream mixes. The regression coefficients (r) was represented well by the Casson model (r > 0.99) for all the samples, indicating goodness of fit. The profiles of the consistency coefficients (K(c)) were quite similar for all experimental samples, which could be attributed to the fact that all the samples exhibited similar viscoelastic behaviour. The flow behaviour index (n) of an ice cream mix prepared from PO and their blends with AMF were less then 1.0 (range 0.04-0.08) indicating that they were psuedoplastic fluid. The eta(o) at shear rate 20(-1) indicated higher degree of viscosity in AMF.

  20. Regionalization of patterns of flow intermittence from gauging station records

    NASA Astrophysics Data System (ADS)

    Snelder, T. H.; Datry, T.; Lamouroux, N.; Larned, S. T.; Sauquet, E.; Pella, H.; Catalogne, C.

    2013-07-01

    Understanding large-scale patterns in flow intermittence is important for effective river management. The duration and frequency of zero-flow periods are associated with the ecological characteristics of rivers and have important implications for water resources management. We used daily flow records from 628 gauging stations on rivers with minimally modified flows distributed throughout France to predict regional patterns of flow intermittence. For each station we calculated two annual times series describing flow intermittence; the frequency of zero-flow periods (consecutive days of zero flow) in each year of record (FREQ; yr-1), and the total number of zero-flow days in each year of record (DUR; days). These time series were used to calculate two indices for each station, the mean annual frequency of zero-flow periods (mFREQ; yr-1), and the mean duration of zero-flow periods (mDUR; days). Approximately 20% of stations had recorded at least one zero-flow period in their record. Dissimilarities between pairs of gauges calculated from the annual times series (FREQ and DUR) and geographic distances were weakly correlated, indicating that there was little spatial synchronization of zero flow. A flow-regime classification for the gauging stations discriminated intermittent and perennial stations, and an intermittence classification grouped intermittent stations into three classes based on the values of mFREQ and mDUR. We used random forest (RF) models to relate the flow-regime and intermittence classifications to several environmental characteristics of the gauging station catchments. The RF model of the flow-regime classification had a cross-validated Cohen's kappa of 0.47, indicating fair performance and the intermittence classification had poor performance (cross-validated Cohen's kappa of 0.35). Both classification models identified significant environment-intermittence associations, in particular with regional-scale climate patterns and also catchment area, shape

  1. The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed.

    PubMed

    Raymond, Méliane R; Wharton, David A

    2016-07-01

    A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whereas in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes.

  2. The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed.

    PubMed

    Raymond, Méliane R; Wharton, David A

    2016-07-01

    A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whereas in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes. PMID:27143749

  3. PATTERNS OF FLOWS IN AN INTERMEDIATE PROMINENCE OBSERVED BY HINODE

    SciTech Connect

    Ahn, Kwangsu; Chae, Jongchul; Cao Wenda; Goode, Philip R.

    2010-09-20

    The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of H{alpha} images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s{sup -1}. The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to the associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows-downward and upward-in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13{sup 0} and 39{sup 0} in the spine and the barb, respectively.

  4. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOEpatents

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  5. Flow Patterns Around a Complex Building

    SciTech Connect

    Calhoun, R; Chan, S; Lee, R; Leone, J, Shinn, J; Stevens, D

    1999-09-24

    The authors compare the results of a computer simulated flow field around building 170 (B170) at Lawrence Livermore National Laboratory (LLNL) with field measurements. In order to aid in the setup of the field experiments, the simulations were performed first. B170 was chosen because of its architectural complexity and because a relatively simple fetch exists upwind (a field lies southwest of the site). Figure 1 shows a computational model of the building which retains the major architectural features of the real building (e.g., courtyard, alcoves, and a multi-level roof). Several important characteristics of the cases presented here are: (1) the flow was assumed neutral and no heat flux was imposed at the ground, representing cloudy or morning conditions, (2) a simple canopy parameterization was used to model the effect of a large row of eucalyptus trees which is located to the northeast of the building, (3) the wind directions studied were 200, 225, 250 degrees measured clockwise from true north (the prevailing winds at LLNL are from the southwest in the summer), (4) the incoming wind profile was modeled as logarithmic with a maximum of about 3 meters per second. In addition, note that the building is rotated counterclockwise by 25 degrees with respect to the east/west axis. For convenience, the flow is modeled in a coordinate system that has been rotated with the building.

  6. Regionalization of patterns of flow intermittence from gauging station records

    NASA Astrophysics Data System (ADS)

    Snelder, T. H.; Datry, T.; Lamouroux, N.; Larned, S. T.; Sauquet, E.; Pella, H.; Catalogne, C.

    2013-01-01

    Understanding large-scale patterns in flow intermittence is important for effective water resource management. We used daily flow records from 628 gauging stations on rivers with minimally modified flows distributed throughout France to predict regional patterns of flow intermittence. For each station we calculated two annual times-series describing flow intermittence; the frequency of zero-flow periods (consecutive days of zero-flow) in each year of record (FREQ; yr-1), and the total number of zero-flow days in each year of record (DUR; days). These time series were used to calculate two indices for each station, the mean annual frequency of zero-flow periods (mFREQ; yr-1), and the mean duration of zero-flow periods (mDUR; days). Approximately 20% of stations had recorded at least one zero-flow period. Dissimilarities between pairs of gauges calculated from the annual times-series (FREQ and DUR) and geographic distances were weakly correlated, indicating that there was little spatial synchronization of zero-flow. A flow-regime classification for the gauging stations discriminated intermittent and perennial stations, and an intermittence classification grouped intermittent stations into three classes based on the values of mFREQ and mDUR. We used Random Forest (RF) models to relate the flow-regime and intermittence classifications to several environmental characteristics of the gauging station catchments. The RF model of the flow-regime classification had a cross-validated Cohen's kappa of 0.47, indicating fair performance and the intermittence classification had poor performance (cross-validated Cohen's kappa of 0.35). Both classification models identified significant environment-intermittence associations, in particular with regional-scale climate patterns and also catchment area, shape and slope. However, we suggest that the fair-to-poor performance of the classification models is because intermittence is also controlled by processes operating at scales smaller

  7. Study of flow patterns in fume hood enclosures

    SciTech Connect

    Pathanjali, C.; Rahman, M.M.

    1996-12-31

    A three-dimensional model for flow inside a fume hood enclosure was developed and numerical computations were carried out to explore the flow pattern and possible path of contaminant transport under different operating conditions of the hood. Equations for the conservation of mass and momentum were solved for different flow rate and opening conditions in the hood. The face velocity was maintained constant at its rated value of 0.4 m/s. The flow was assumed to enter through the front window opening (positive x-direction) and leave the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The {kappa}-{var_epsilon} model was used for the prediction of turbulence. The flow pattern for different sash openings were studied. The flow patterns around an object located at the bottom of the hood was studied for different locations of the object. In addition, the effect of a person standing in front of the hood on the flow pattern was investigated. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its trailing surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. The computed flow patterns will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air from inside the room.

  8. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel diffuser

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    The purpose was to document the airflow characteristics in the diffuser of the NASA Lewis Research Center Icing Research Tunnel and to determine the effects of vortex generators on the flow quality in the diffuser. The results were used to determine how to improve the flow in this portion of the tunnel so that it can be more effectively used as an icing test section and such that overall tunnel efficiency can be improved. The demand for tunnel test time and the desire to test models that are too large for the test section were two of the drivers behind this diffuser study. For all vortex generator configurations tested, the flow quality was improved.

  9. Flow and fracture of ices, with application to icy satellites (Invited)

    NASA Astrophysics Data System (ADS)

    Durham, W. B.; Stern, L. A.; Pathare, A.; Golding, N.

    2013-12-01

    Exploration of the outer planets and their satellites by spacecraft over the past 4 decades has revealed that the prevailing low temperatures in the outer solar system have not produced "dead" cryoworlds of generic appearance. Rather, there is an extraordinary diversity in average densities, presence/absence and compositions of atmospheres and planetary rings, average albedos and their seasonal changes, near-surface compositions, and surface records of impact cratering and endogenic tectonic and igneous processes. One reason for this diversity is that the icy minerals present in abundance on many of these worlds are now or once were at significant fractions of their melting temperatures. Hence, a host of thermally activated processes related to endogenic activity (such as crystal defect migration, mass diffusion, surface transport, solid-solid changes of state, and partial melting) may occur that can enable inelastic flow on the surfaces and in the interiors of these bodies. Planetary manifestations include viscous crater relaxation in ice-rich terrain, cryovolcanism, the presence of a stable subsurface ocean, and the effects of solid-ice convection in deep interiors. We make the connection between theoretical mechanisms of deformation and planetary geology through laboratory experiment. Specifically, we develop quantitative constitutive flow laws (strain rate vs. stress) that describe the effects of relevant environmental variables (hydrostatic pressure, temperature, phase composition, chemical impurities). Our findings speak to topics including (1) the behavior of an outer ice I layer, its thickness, the depth to which a stagnant lid might extend, and possibility of wholesale overturn; (2) softening effects of dissolved species such as ammonia and perchlorate; (3) hardening effects of enclathration and of rock dust; and (4) effects of grain size on strength and factors affecting grain size. Other applications of lab data include dynamics of the deep interiors of

  10. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Van Zante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and ow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  11. The importance of particulate texture to the flow strength of ice + dust

    USGS Publications Warehouse

    W. B. Durham,; N. Golding,; Stern, Laura A.; A. Pathare,; D. L. Goldsby,; D. Prior,

    2015-01-01

    Preliminary experimental surveys of the flow of dilute mixtures of ice plus hard particulates under planetary conditions indicate a strengthening effect with respect to pure ice, but with dependencies on environmental conditions (temperature, stress, grain size) that vary widely from study to study [1-4]. With the expectation that the textural character of the particulate fraction (size, shape, spatial distribution of particulates; relationship of particulates to ice grain boundaries, etc.) also influences rheological behavior, we have begun a more systematic investigation of the effect of particulates on strength. We rely extensively on cryogenic scanning electron microscopy (CSEM) and to maximize planetary relevance we focus on behavior at low stress and small grain size.

  12. Patterns of Flows in an Intermediate Prominence Observed by Hinode

    NASA Astrophysics Data System (ADS)

    Ahn, Kwangsu; Chae, Jongchul; Cao, Wenda; Goode, Philip R.

    2010-09-01

    The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of Hα images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s-1. The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to the associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows—downward and upward—in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13° and 39° in the spine and the barb, respectively.

  13. Using composite flow laws to extrapolate lab data on ice to nature

    NASA Astrophysics Data System (ADS)

    de Bresser, Hans; Diebold, Sabrina; Durham, William

    2013-04-01

    The progressive evolution of the grain size distribution of deforming and recrystallizing Earth materials directly affects their rheological behaviour in terms of composite grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep. After time, such microstructural evolution might result in strain progressing at a steady-state balance of mechanisms of GSS and GSI creep. In order to come to a meaningful rheological description of materials deforming by combined GSS and GSI mechanisms, composite flow laws are required that bring together individual, laboratory derived GSS and GSI flow laws, and that include full grain size distributions rather than single mean values representing the grain size. A composite flow law approach including grain size distributions has proven to be very useful in solving discrepancies between microstructural observations in natural calcite mylonites and extrapolations of relatively simple laboratory flow laws (Herwegh et al., 2005, J. Struct Geol., 27, 503-521). In the current study, we used previous and new laboratory data on the creep behavior of water ice to investigate if a composite flow law approach also results in better extrapolation of lab data to nature for ice. The new lab data resulted from static grain-growth experiments and from deformation experiments performed on samples with a starting grain size of either < 2 microns ("fine grained ice") or of 180-250 microns ("coarse grained ice"). The deformation experiments were performed in a special cryogenic Heard-type deformation apparatus at temperatures 180-240 K, at confining pressures 30-100 MPa, and strain rates between 1E-08/s and 1E-04/s. After the experiments, all samples were studied using cryogenic SEM and image analysis techniques. We also investigated natural microstructures in EPICA drilling ice core samples of Dronning Maud Land in Antartica. The temperature of the core ranges from 228 K at the surface to 272 K

  14. Scale invariance of subsurface flow patterns and its limitation

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Winkler, G.; Birk, S.

    2016-05-01

    Preferential flow patterns in the subsurface are of great importance for the availability and the quality of water resources. However, knowledge of their spatial structure is still behind their importance, so that understanding the nature of preferential flow patterns is a major issue in subsurface hydrology. Comparing the statistics of river catchment sizes and spring discharges, we found that the morphology of preferential subsurface flow patterns is probably scale invariant and similar to that of dendritic river networks. This result is not limited to karstic aquifers where the occurrence of dendritic structures has been known at least qualitatively for a long time. The scale invariance even seems to be independent of the lithology of the aquifer. However, scale invariance of river patterns seems to be only limited by the continental scale, while scale invariance of subsurface flow patterns breaks down at much smaller scales. The upper limit of scale invariance in subsurface flow patterns is highly variable. We found a range from thousands of square kilometers for limestone aquifers down to less than 1 km2 in the weathered zone and debris accumulations of crystalline rocks.

  15. Altered Doppler flow patterns in cirrhosis patients: an overview.

    PubMed

    Iranpour, Pooya; Lall, Chandana; Houshyar, Roozbeh; Helmy, Mohammad; Yang, Albert; Choi, Joon-Il; Ward, Garrett; Goodwin, Scott C

    2016-01-01

    Doppler ultrasonography of the hepatic vasculature is an integral part of evaluating precirrhotic and cirrhotic patients. While the reversal of the portal venous flow is a well-recognized phenomenon, other flow patterns, although not as easily understood, may play an important role in assessing the disease status. This article discusses the different characteristic flow patterns observed from the portal vein, hepatic artery, and hepatic vein in patients with liver cirrhosis or related complications and procedures. Knowledge of these different flow patterns provides additional information that may reinforce the diagnosis of cirrhosis, help in staging, and offer prognostic information for determining the direction of therapy. Doppler ultrasonography is invaluable when liver transplantation is being considered and aids in the diagnosis of cirrhosis and portal hypertension. PMID:26169079

  16. Morphometry and pattern of a large sample of Canadian eskers: new insights into ice sheet meltwater drainage

    NASA Astrophysics Data System (ADS)

    Storrar, Robert; Stokes, Chris; Evans, David

    2013-04-01

    Meltwater drainage systems beneath ice sheets are a poorly understood, yet fundamentally important environment for understanding glacier dynamics, which are strongly influenced by the nature and quantity of meltwater entering the subglacial system. Contemporary sub-ice sheet meltwater drainage systems are notoriously difficult to access and monitor, but it is possible to utilise the exposed beds of past ice sheets to further our understanding of subglacial drainage. In particular, eskers record deposition in glacial drainage channels and are widespread on the exposed beds of former ice sheets, although they have rarely been studied in detail at the ice sheet scale. This paper presents the results of a remote sensing investigation of a large sample (>20,000) of eskers mapped from Landsat imagery of Canada and formed under the North American Ice Sheet Complex. Within a GIS framework, we investigate their spatial arrangement and morphometry, including length, fragmentation, sinuosity, spacing, frequency and tributaries. Results indicate that the channels in which eskers formed were often very long (hundreds of km) and often very straight (mean sinuosity approximates 1). In some locations, the lateral distance between neighbouring eskers is remarkably consistent and results indicate a preferred spacing of around 12 km. In other locations, typically over soft sediments, esker patterns are more chaotic, as predicted by theory. Significantly, comparison to an existing ice margin chronology reveals that the meltwater drainage system of the ice sheet became more organised and efficient during deglaciation: the number of eskers at the ice margin increased as deglaciation progressed and eskers became more closely spaced. The data presented in this paper provide an alternative perspective on the problems surrounding ice sheet meltwater drainage and are particularly suitable for: (i), assessment of the factors that control esker location and formation; (ii), rigorous testing of

  17. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  18. Measurements of natural ice nuclei with a continuous flow diffusion chamber

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.

    1983-01-01

    A description is given of a continuous flow diffusion chamber technique for measuring the atmospheric concentrations of natural C-F nuclei. It is noted that the same device can also measure deposition nuclei; these two modes can thus be separated and compared. The laminar flow characteristics allow the temperature and supersaturation to be calculated with a high degree of precision and confidence. The method avoids the problems of a supporting substrate and of concentrating the sample into a small volume (as for membrane filters). The present measurements of natural ice nucleus concentrations at +1 percent water supersaturation are found to be comparable to research aircraft measurements of ice crystal concentrations in winter cap clouds over Elk Mountain, Wyoming (Vali et al., 1982).

  19. Flow patterns in free liquid film caused by thermocapillary effect

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Fei, Linhao; Kowata, Yosuke; Kaneko, Toshihiro; Pettit, Donald

    2015-11-01

    The basic flow patterns realized in a thin free liquid film driven by the thermocapillary effect are focused. Spetial attention is paied to the effect of the volume ratio of the liquid film to the hole sustaining the film on the flow patterns. We prepare a thin liquid film of less than 0 . 5 mm in thickness in order to stably realize the film under normal gravity. Liquid has in general negative temperature coefficient of it surface tension; that is, the fluid is driven to the colder to hotter regions by the non-uniform surface-tension distribution. In the case of thin free liquid film, however, it is found that a unique flow pattern is induced. One of the present authors, DRP, carried out a series of experiments under microgravity condition in the International Space Station (ISS) in 2003. He prepared a ring made of metal, and formed a thin film of water inside the ring. Once he added a non-uniform temperature distribution to the film by placing a heated iron at one end of the ring, a net flow toward the heated iron was realized. In order to understand flow patterns, we focus on the flow structures of the thermocapillary convection in a cross section normal to the end walls as well as the surface temperature distributions.

  20. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  1. Optical Imaging of Flow Pattern and Phantom

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.; Breisacher, K.

    1999-01-01

    Time-resolved optical imaging technique has been used to image the spatial distribution of small droplets and jet sprays in a highly scattering environment. The snake and ballistic components of the transmitted pulse are less scattered, and contain direct information about the sample to facilitate image formation as opposed to the diffusive components which are due to multiple collisions as a light pulse propagates through a scattering medium. In a time-gated imaging scheme, these early-arriving, image-bearing components of the incident pulse are selected by opening a gate for an ultrashort period of time and a shadowgram image is detected. Using a single shot cooled CCD camera system, the formation of water droplets is monitored as a function of time. Picosecond time-gated image of drop in scattering cells, spray droplets as a function of let speed and gas pressure, and model calcification samples consisted of calcium carbonate particles of irregular shapes ranging in size from 0. 1 to 1.5 mm affixed to a microscope slide have been measured. Formation produced by an impinging jet will be further monitored using a CCD with 1 kHz framing illuminated with pulsed light. The desired image resolution of the fuel droplets is on the 20 pm scale using early light through a highly scattering medium. A 10(exp -6)m displacement from a jet spray with a flow speed of 100 m/sec introduced by the ns grating pulse used in the imaging is negligible. Early ballistic/snake light imaging offers nondestructive and noninvasive method to observe the spatial distribution of hidden objects inside a highly scattering environment for space, biomedical, and materials applications. In this paper, the techniques we will present are time-resolved K-F transillumination imaging and time-gated scattered light imaging. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes

  2. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-08-01

    An improved understanding of the temporal variability and the spatial distribution of snowmelt on Antarctic sea ice is crucial to better quantify atmosphere-ice-ocean interactions, in particular sea-ice mass and energy budgets. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study, we combine diurnal brightness temperature differences (dTB(37 GHz)) and ratios (TB(19 GHz)/TB(37 GHz)) to detect and classify snowmelt processes. We distinguish temporary snowmelt from continuous snowmelt to characterize dominant melt patterns for different Antarctic sea-ice regions from 1988/1989 to 2014/2015. Our results indicate four characteristic melt types. On average, 38.9 ± 6.0% of all detected melt events are diurnal freeze-thaw cycles in the surface snow layer, characteristic of temporary melt (Type A). Less than 2% reveal immediate continuous snowmelt throughout the snowpack, i.e., strong melt over a period of several days (Type B). In 11.7 ± 4.0%, Type A and B take place consecutively (Type C), and for 47.8 ± 6.8% no surface melt is observed at all (Type D). Continuous snowmelt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 17 days after the onset of temporary melt. Comparisons with Snow Buoy data suggest that also the onset of continuous snowmelt does not translate into changes in snow depth for a longer period but might rather affect the internal stratigraphy and density structure of the snowpack. Considering the entire data set, the timing of snowmelt processes does not show significant temporal trends.

  3. Numerical study of eccentric Couette Taylor flows and effect of eccentricity on flow patterns

    NASA Astrophysics Data System (ADS)

    Shu, C.; Wang, L.; Chew, Y. T.; Zhao, N.

    2004-10-01

    In this study, the differential quadrature (DQ) method was used to simulate the eccentric Couette Taylor vortex flow in an annulus between two eccentric cylinders with rotating inner cylinder and stationary outer cylinder. An approach combining the SIMPLE (semi-implicit method for pressure-linked equations) and DQ discretization on a non-staggered mesh was proposed to solve the time-dependent, three-dimensional incompressible Navier Stokes equations in the primitive variable form. The eccentric steady Couette Taylor flow patterns were obtained from the solution of three-dimensional Navier Stokes equations. The reported numerical results for steady Couette flow were compared with those from Chou [1], and San and Szeri [2]. Very good agreement was achieved. For steady eccentric Taylor vortex flow, detailed flow patterns were obtained and analyzed. The effect of eccentricity on the eccentric Taylor vortex flow pattern was also studied.

  4. Ice front configuration and torrential flow features of the Late Wisconsinan interlobate region of southcentral Michigan

    SciTech Connect

    Taylor, L.D. . Dept. of Geological Sciences)

    1994-04-01

    A large re-entrant, bordered on three sides by ice of the Michigan, Saginaw and Huron-Erie lobes, developed over a five-county area in southcentral Michigan during ice retreat of the Port Bruce Stade of the Woodfordian Substage. At this time, ice occupied positions marked by the Sturgies, Tekonsha, and Kalamazoo Moraines. The presence of numerous boulder beds within outwash deposits attests to frequent episodes of torrential flow. A major source of the discharge was the draining of short-lived proglacial and subglacial lakes identified by lacustrine deposits which occur at different altitudes within moraine belts. Tunnel valleys, meltwater channels, and narrow chutes carried the high discharges of water that were partly responsible for the Kankakee torrent of northeastern Illinois. The configuration of abandoned meltwater channels in eastern Calhoun and western jackson counties, between the Kalamazoo Moraine on the northeast and the Tekonsha Moraine to the southwest, indicates that a large ice-collapsed depression, 30 km long and 8 km to 16 km wide, developed within the Saginaw lobe just behind its margin. For a short period of time it contained intermittent glacial lakes one of which drained through the Kesler Lakes sluiceway. A large outwash plain, the Union City-Mendon sluiceway, heads at the Tekonsha Moraine in southcentral Calhoun County and extends southwest through northeastern Branch County to the Sturgis Moraine. Several abandoned narrow chutes, up to 1.6 km long and 60 m to 300 m wide, are incised in the outwash plain in the vicinity of Union City. Channel geometry indicates that flow exceeded 850 cms (30,000 cfs) during bankfull discharge and came from the overflow of a lake dammed by ice blocks in the ancient St. Joseph River floodplain.

  5. Hydrodynamic performance and cavitation of an open propeller in a simulated ice-blocked flow

    SciTech Connect

    Walker, D.; Bose, N.; Yamaguchi, H. )

    1994-08-01

    Experiments were done on a 200-mm-dia open propeller behind a simulated ice blockage in a cavitation tunnel. The propeller performance in uniform flow and blocked flow is contrasted over a range of advance coefficients and at different cavitation numbers. Mean thrust and torque coefficients are presented. The types of cavitation, and its intermittent nature over a cycle of operation, are reported. The experiments indicate the likelihood of cavitation at full scale for blocked conditions and illustrate the effects of cavitation on mean values of thrust and torque.

  6. Patterning electrohydrodynamic flows with conductive obstacles in microfluidic channels.

    SciTech Connect

    Hill, Tyrone F.; Simmons, Blake Alexander; Barrett, Louis C.; Cummings, Eric B.; Fiechtner, Gregory J.; Harnett, Cindy K.; Skulan, Andrew J.

    2005-03-01

    Flow patterns with both recirculating and unidirectional characteristics are useful for controlled mixing and pumping within microfluidic devices. We have developed a fabrication process that converts injection-molded polymer chips into devices that demonstrate induced-charge electroosmosis (ICEO) effects (1,2) in AC fields. Polymeric insulating posts are coated with metal to produce a nonuniform zeta potential under an applied electric field. Induced flows are analyzed by particle image velocimetry. Stable, recirculating flow patterns are discussed, along with their potential to produce well-characterized and reversible streamlines for on-chip mixing in chemical separation and synthesis devices. Asymmetric conductive features can bias the flow direction, generating unidirectional pumping in an AC field. This pumping approach will be discussed in comparison with DC electrokinetic pumps we have studied.

  7. Patterns in the sky: Natural visualization of aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.

    1994-01-01

    The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.

  8. The pattern of anthropogenic signal emergence in Greenland Ice Sheet surface mass balance

    NASA Astrophysics Data System (ADS)

    Fyke, Jeremy G.; Vizcaíno, Miren; Lipscomb, William H.

    2014-08-01

    Surface mass balance (SMB) trends influence observed Greenland Ice Sheet (GrIS) mass loss, but the component of these trends related to anthropogenic forcing is unclear. Here we study the simulated spatial pattern of emergence of an anthropogenically derived GrIS SMB signal between 1850 and 2100 using the Community Earth System Model. We find emergence timing heterogeneity, with a bimodal structure reflecting interior snowfall increases against a background of low SMB variability, and peripheral surface melting increases against a backdrop of high SMB variability. We also find a nonemerging intermediate region. We conclude that (1) a bimodal pattern of GrIS SMB change will unambiguously reflect the impact of anthropogenic forcing; (2) present-day peripheral and interior SMB trends likely have an underlying anthropogenically forced component; (3) local emergence occurs well before emergence of a spatially integrated signal; and (4) the GrIS summit region may be an ideal location for monitoring regional/global climate change.

  9. Development of Three-Dimensional Flow Code Package to Predict Performance and Stability of Aircraft with Leading Edge Ice Contamination

    NASA Technical Reports Server (NTRS)

    Strash, D. J.; Summa, J. M.

    1996-01-01

    In the work reported herein, a simplified, uncoupled, zonal procedure is utilized to assess the capability of numerically simulating icing effects on a Boeing 727-200 aircraft. The computational approach combines potential flow plus boundary layer simulations by VSAERO for the un-iced aircraft forces and moments with Navier-Stokes simulations by NPARC for the incremental forces and moments due to iced components. These are compared with wind tunnel force and moment data, supplied by the Boeing Company, examining longitudinal flight characteristics. Grid refinement improved the local flow features over previously reported work with no appreciable difference in the incremental ice effect. The computed lift curve slope with and without empennage ice matches the experimental value to within 1%, and the zero lift angle agrees to within 0.2 of a degree. The computed slope of the un-iced and iced aircraft longitudinal stability curve is within about 2% of the test data. This work demonstrates the feasibility of a zonal method for the icing analysis of complete aircraft or isolated components within the linear angle of attack range. In fact, this zonal technique has allowed for the viscous analysis of a complete aircraft with ice which is currently not otherwise considered tractable.

  10. Patterns of 3D flow in a rotating cylinder array

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2015-11-01

    Experimental data are presented for large arrays of rotating, finite-height cylinders, which show that the three-dimensional flows are strongly dependent on the geometric and rotational configurations of the array. Two geometric configurations of the cylinders, each with two rotational configurations, were examined for a total of four arrays. 2D PIV was conducted in multiple intersecting horizontal and vertical sheets at a location far downstream of the leading edge of the array in order to build up a picture of the 3D developed flow patterns. It was found that the rotation of the cylinders drives the formation of streamwise and transverse flow patterns between cylinders. These horizontal flow patterns, by conservation of mass, drive vertical flows through the top of the array. As the array of rotating cylinders may provide insight into the flow kinematics of an array of vertical axis wind turbines, this planform flux is of particular interest as it would bring down into the array high kinetic energy fluid from above the array, thus increasing the energy resource available to turbines far downstream of the leading edge of the array.

  11. Analysis of spatial flow patterns across the Indian subcontinent via multi-basin hydrological modelling

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; Arheimer, Berit

    2016-04-01

    In here, we use examples from the recent HYPE hydrological model set-up across 6010 subbasins for the Indian subcontinent, named India-HYPE v1.0 (Pechlivanidis and Arheimer, 2015), and demonstrate the potential of multi-basin modelling for process understanding and comparative hydrology. We analyse the flow characteristics in all modelled 6010 subbasins and group them based on similarities in 12 flow signatures to gain insights in spatial patterns of flow generating processes. We applied a k-means clustering approach within the 12-dimensional space (consisting of the 12 calculated flow signatures) to categorise the subbasins based on their combined similarity in flow signatures. To highlight the hydrological insights gained during model identification, we conducted the clustering analysis on two different steps of the model calibration and explored the sensitivity of calibration on the spatial patterns of flow signatures. Analysis resulted into six different classes of varying size with different distribution in signatures. Although the classes are geographically distinct, their flow response is dependent on the physiographic and climatic characteristics at the regional scale. Factors including for instance the dominance of snow/ice processes, volume in precipitation and evaporation rates affect the catchment functioning and hence drive the clustering. Catchments in the Himalayan region and the Western Ghats respond similarly and are characterised by high mean annual specific runoff values and variable flow regime. Response of the catchments in the tropical zone is characterised by high peaks, while catchments in the dry regions show very strong flow variability and respond quickly to rainfall. Finally, model parameterisation can affect the spatial pattern of clusters in terms of catchment functioning. In particular, clusters after calibration seem to have a consistent spatial structure; this also justifies the validity of parameter regionalisation approaches based

  12. Deposition patterns and dispersion in reactive channel flows

    NASA Astrophysics Data System (ADS)

    Angheluta, L.; Hawkins, C.; Jamtveit, B.

    2015-12-01

    Flow of natural fluids is often associated with dispersion of dissolved chemical species and their surface deposition either by precipitation kinetics or aggregation. For most industrial or practical flows, this wall deposition has a detrimental effect that hiders transport by clogging or alters the fluid container; therefore it is important to gain a better understanding of transport in reactive flows and the range of deposition patterns developed. This talk has two main aims. Firstly, it is to present a combined theoretical and numerical approach to explore the diverse yet generic wall morphologies that develop in channel flows either due to precipitation kinetics or aggregation of spherical particles. These deposition patterns range from dendrites to needles and fan-like structures growing against the mean flow direction, and depend strongly on flow perturbations and dispersion properties. The second goal is to revisit classical Taylor's theory of dispersion in turbulent pipe flows and to show that, in fully developed turbulence, it predicts a nontrivial connection between longitudinal dispersion and the turbulent energy spectrum that we can also test and observe in numerical simulations.

  13. Effect of the mitral valve on diastolic flow patterns

    SciTech Connect

    Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat; Abraham, Theodore; Dawoud, Fady; Luo, Hongchang; Lardo, Albert C.

    2014-12-15

    The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diode type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed.

  14. Australia-East Antarctica geological linkages and ice-sheet flow

    NASA Astrophysics Data System (ADS)

    Aitken, Alan; Ferraccioli, Fausto; Betts, Peter; Young, Duncan; Richter, Tom; Greenbaum, Jamin; Roberts, Jason; Siegert, Martin; Blankenship, Don

    2013-04-01

    For much of Antarctica, geophysical data have been too spatially sparse to reliably image geology and tectonic structures beneath the ice sheet. Robust supercontinental reconstructions to provide context to interpretations have also been lacking. Here we interpret new airborne gravity and magnetics data to define geology and tectonic structures within the Wilkes Land/Terre Adelie sector from 90°E to 150°E, penetrating up to 1000 km into the East Antarctic continent. We co-interpret East Antarctic and Australian geophysical data in a robust and independent Gondwana-fit reconstruction. Geological features are reliably interpreted in context, and show that the major tectonic provinces of Australia, and their bounding fault zones continue into Antarctica. This allows their geometries to be defined. Features imaged include,the boundary between Indo-antarctic crust and Australo-antarctic crust, the Perth Basin, The Albany-Fraser-Musgrave Orogen, the Gawler-Mawson Craton and the Ross Delamerian Orogen. The data also reveals East Antarctic Ice Sheet (EAIS) catchments, and current flow, is controlled by large-scale faults and sedimentary basins. We hypothesise that the tectonic inheritance of Gondwana breakup provided strong boundary conditions for the initiation and development of the EAIS at 34 Ma. These conditions have remained in place since, to the extent that they exert major influence on the present flow of ice.

  15. Radar-based observatiions of variable thickness debris cover on martian ice masses: evidence of debris transfer by flowing ice on Mars

    NASA Astrophysics Data System (ADS)

    Souness, Colin; Brough, Stephen; Woodward, John; Hubbard, Bryn; Davis, Joel; Grindrod, Peter

    2016-04-01

    The mid-latitudes of Mars host a wide range of ice-based landforms, many of which display surface morphologies indicative of viscous flow of that ice. Despite being shrouded beneath a layer of rocky debris, these viscous flow features (VFFs) are thought to have similarities with terrestrial glaciers. Until recently most studies that focussed on the origin, structure and role of these martian VFFs were restricted to observations made from satellite imagery. Little data have been available to gain a clearer picture of VFF internal structure, which has impeded our collective ability to infer many particulars of VFF growth and flow, including the extent to which these ice flows have interacted with, and potentially helped shape, the martian landscape. However, the Shallow Radar (SHARAD) system mounted on the Mars Reconnaissance Orbiter (MRO) can, in some cases, provide a valuable insight into what lies beneath the surface of these ice masses. We present a SHARAD-based study of glacial systems on Mars which reveals pronounced heterogeneity in the thickness of their observed superficial debris covers. The surface debris layers in question appear to thicken in a down-slope direction. Radar data indicates that in the lower reaches of each studied glacial catchment, ice surface debris cover exceeds 10 m in thickness. The observed flow-parallel a-symmetry in debris thickness atop these martian glaciers is similar to that recorded on many terrestrial glaciers, indicating that cumulative down-flow debris mass transfer such as occurs within glacierised catchments on Earth may also currently operate, or have operated, on Mars. This suggests that glaciers on Mars have played a substantial role in redistributing lithic material from mountainous catchments to lower-lying areas, potentially throughout the glacial regions of Mars' mid-latitudes, thus making an important processual contribution to the evolution of Mars' contemporary landscape.

  16. Aeromagnetic and gravity imaging of subglacial geology beneath major ice streams flowing in the Weddell Sea Embayment

    NASA Astrophysics Data System (ADS)

    Ferraccioli, Fausto; King, Owen; Jordan, Tom; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Siegert, Martin; Smith, Andy; Hindmarsh, Richard

    2014-05-01

    Extensive airborne geophysical research has helped unveil subglacial geology beneath the West Antarctic Ice Sheet (WAIS) in particular over the Ross Sea Embayment. Three key geological controls on the onset and maintenance of fast glacial flow for the WAIS have emerged including the presence of widespread subglacial sediments deposited within deep rift basins, thinner drapes of marine sediments within the low lying topography of the West Antarctic Rift System (WARS) and high geothermal heat flux associated with Cenozoic rift-related magmatism. Here, we compile a suite of new and vintage aerogeophysical observations over the catchments of several major ice streams flowing into the Weddell Sea Embayment to examine their large-scale geological setting and assess the role of regional geological controls on subglacial topography and WAIS flow regimes. Specifically, we examine the subglacial geology beneath the catchments of the Institute and Moeller ice streams, the Rutford ice stream and the Evans ice stream using a combination of airborne radar, aeromagnetic and airborne gravity imaging. We show that the Moeller ice stream is underlain by the largest strike-slip fault system recognised so far along the tectonic boundary between East and West Antarctica. This fault system controls the location of a set of en-echelon subglacial basins that steer enhanced flow inland. We find no evidence, however, for deep sedimentary basins along this fault system, suggesting that subglacial sediments are not necessarily a geological template for the onset of fast flow. However, the newly identified Robin Subglacial Basin that underlies the fast flowing coastal region of the Institute ice stream contains 1-3 km of sedimentary infill and remarkably smooth bedrock topography. Enhanced flow in the tributaries of the Institute ice stream that cut through the Ellsworth Mountains are controlled by major basement faults likely active in Cambrian and Permian times and perhaps reactivated during

  17. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    NASA Astrophysics Data System (ADS)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  18. Anisotropic Peridotite Rheology and Regional Upper Mantle Flow Patterns

    NASA Astrophysics Data System (ADS)

    Blackman, D. K.; Boyce, D.; Dawson, P.; Castelnau, O.

    2014-12-01

    We investigate the rheologic impact of strong lattice preferred orientation (LPO), such as develops due to plate-driven shear, on the pattern of upper mantle flow near plate boundaries. We use finite element models to simulate a regional system of mantle flow, that includes LPO evolution in olivine polycrystal aggregates tracked along flow paths and anisotropic viscosity tensors based on the LPO. Our first, loosely coupled approach begins with a flow field based on a scalar viscosity. The results are postprocessed to compute LPO by integration along streamlines, and an anisotropic viscosity tensor field is derived from LPO. A new flow field is then computed based on the viscosity tensor field. For this case, the predicted flow field differed in a modest but geologically relevant way from the isotropic case. In preparation for incorporating the LPO and effective viscosity calculation directly into the flow code, we have been testing this step separately to assess the sensitivity of the computed tensor to specified deformation parameters. New work explores a power law stress:strain rate relation for the LPO development, upon which the aggregate's effective viscosity tensor depends. The pattern and amplitude of predicted deviation from isotropic viscosity are stronger than for the previously assumed linear stress:strain rate case, as expected. Initial runs that employ the power law viscosity tensor in updated flow calculations are underway at the time of this writing. In addition to the stress exponent for LPO and the resulting viscosity tensor, flow model parameters that notably impact the predictions include the specified stiffening as asthenosphere cools to lithospheric temperatures and mesh resolution within the axial and the base of lithosphere regions. We will present results for subaxial oceanic spreading center flow and report the outcomes of model parameter testing.

  19. Observations on traffic flow patterns and traffic engineering practice

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Gao, Lixin

    2002-07-01

    Border Gateway Protocol allows ASs to apply diverse routing policies for selecting routes and propagating reachability information to other ASs. This enables network operators to configure routing policies so as to control traffic flows between ASs. However, BGP is not designed for the inter-AS traffic engineering. This makes it difficult to implement effective routing policies to address network performance and utilization problems. Network operators usually tweak routing policies to influence the inter-domain traffic among the available links. This can lead to undesirable traffic flow patterns across the Internet and degrade the Internet traffic performance. In this paper, we show several observations on Internet traffic flow patterns and derive routing policies that give rise to the traffic flow patterns. Our results show that an AS can reach as much as 20% of the prefixes via a peer link even though there is a path via a customer link. In addition, an AS can reach as much as 80% of the prefixes via a provider link even though there is a path via a peer link. Second, we analyze the cause of the prevalence of these traffic patterns. Our analysis shows that an AS typically does not receive the potential route from its customers or peers. Third, we find that alternate routes have with lower propagation delay than the chosen routes for some prefixes. This shows that some traffic engineering practices might adversely affect Internet performance.

  20. Flow-driven instabilities during pattern formation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-06-01

    The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.

  1. Subcutaneous blood flow in early male pattern baldness

    SciTech Connect

    Klemp, P.; Peters, K.; Hansted, B.

    1989-05-01

    The subcutaneous blood flow (SBF) was measured by the /sup 133/Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness.

  2. Ice Flow Dynamics and Outlet Zone Morphology of Subglacial Lake Ellsworth

    NASA Astrophysics Data System (ADS)

    Ross, N.; Smith, A.; Woodward, J.; Siegert, M. J.; Hindmarsh, R. C.; Corr, H.; King, E. C.; Vaughan, D.; Gillet-Chaulet, F.; Jay-Allemand, M.

    2009-12-01

    Subglacial Lake Ellsworth (SLE) is located beneath 2.95-3.28 km of ice at the base of a deep subglacial trench ~30 km from the central ice divide of the West Antarctic Ice Sheet. Seismic reflection surveys indicate a maximum water column thickness of 155 m. Radio-echo sounding (RES) data have been used to map the lake, the morphology of the subglacial catchment and the structure and thickness of the overlying ice sheet. Direct access, measurement and sampling of the lake waters and underlying sediments will be undertaken during the 2012-13 Antarctic field season by the Lake Ellsworth Consortium. Internal ice sheet layers throughout the SLE catchment have been picked and transformed into 3D surfaces as input for radar layer modelling. SLE is bounded on either side by steep, ~2 km high, mountainous subglacial topography. Over the lake, anomalies between modelled and observed internal layers are recognised near the steeper bedrock wall. We have sought to understand these in terms of perturbations to the velocity field from higher order mechanical effects as well as being caused by melt anomalies. A closely-spaced grid of RES lines (area coverage 7.5 x 7.5 km, line spacing ~500 m or less) has been used to map the outlet area of the lake in detail, with the aim of identifying possible drainage routes. The downstream margin of the lake is characterised by a pronounced topographic ridge, trending obliquely to ice flow, which rises ~200 m above the elevation of the water surface. Beyond the ridge a 5 km by 0.75 km linear depression has been mapped. A narrow, low-lying breach in the ridge that connects to this depression may provide a subglacial hydrological outlet from SLE. Potential mechanisms for the formation of these features include: i) subaerial or subglacial processes pre-dating ice sheet development; ii) water discharge from SLE. Such models are not necessarily mutually exclusive. The origins of the subglacial geomorphology and its possible influence on the routing

  3. MODFLOW 2. 0: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F. . Dept. of Nuclear Engineering); Paik, I.K. )

    1991-07-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  4. Signature of recent ice flow acceleration in the radar attenuation and temperature structure of Thwaites Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Schroeder, Dustin; Seroussi, Helene; Chu, Winnie; Young, Duncan

    2016-04-01

    Englacial temperature structure exerts significant control on the rheology and flow of glaciers and ice sheets. It is however logistically prohibitive to directly measure at the glacier-catchment scale. As a result, numerical ice sheet models often make broad assumptions about englacial temperatures based on contemporary ice surface velocities. However, this assumption might break down in regions - like the Amundsen Sea Embayment - that have experienced recent acceleration since temperature and rheology do not respond instantaneously to changes in ice flow regime. To address this challenge, we present a new technique for estimating englacial attenuation rates using bed echoes from radar sounding data. We apply this technique to an airborne survey of Thwaites Glacier and compare the results to temperature and attenuation structures modeled using the numerical Ice Sheet System Model (ISSM) for three surface velocity scenarios. These include contemporary surface velocities, surface velocities from the early 1970s, and ice-sheet balance velocities. We find that the observed attenuation structure is much closer to those modeled with pre-acceleration surface velocities. This suggests that ice sheet models initialized with contemporary surface velocities are likely overestimating the temperature and underestimating the rheology of the fast-flowing trunk and grounding zone of Thwaites Glacier.

  5. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  6. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  7. Pattern formation in crystal growth under parabolic shear flow.

    PubMed

    Ueno, K

    2003-08-01

    Morphological instability of the solid-liquid interface occurring in a crystal growing from an undercooled thin liquid bounded on one side by a free surface and flowing down inclined plane, is investigated by a linear stability analysis under shear flow. It is found that restoring forces due to gravity and surface tension is an important factor for stabilization of the solid-liquid interface on long length scales. This is a stabilizing effect different from the Gibbs-Thomson effect. A particular long wavelength mode of about 1 cm of wavy pattern, observed on the surface of icicles covered with a thin layer of flowing water is obtained from the dispersion relation, including the effect of flow and restoring forces.

  8. Pattern formation in directional solidification under shear flow. I. Linear stability analysis and basic patterns.

    PubMed

    Marietti, Y; Debierre, J M; Bock, T M; Kassner, K

    2001-06-01

    An asymptotic interface equation for directional solidification near the absolute stability limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies which is described in the following paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.

  9. Modelling ice layer formation using a preferential flow formulation in the physics based multi-layer SNOWPACK model

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Würzer, Sebastian; Fierz, Charles; Lehning, Michael

    2016-04-01

    For physics based snow cover models, simulating the formation of dense ice layers inside the snowpack has been a long time challenge. In spite of their small vertical extend, the presence of ice lenses inside the snowpack can have a profound impact on vapor, heat and liquid water flow. These effects may ultimately influence processes on larger scales when, for example, looking at hydrological processes or wet snow avalanche formation. Also microwave emission signals from the snowpack are strongly influenced by the presence of ice layers. Recent laboratory experiments and modelling techniques of liquid water flow in snow have advanced the understanding of liquid water flow in snow, in particular the formation of preferential flow paths. We present a modelling approach in the one-dimensional, multi-layer snow cover model SNOWPACK for preferential flow that is based on a dual-domain approach (i.e., separation into a matrix flow and a preferential flow domain) and solving Richards equation for both. In recently published laboratory experiments, water ponding inside the snowpack has been identified to initiate preferential flow. Those studies also quantified the part of the snowpack involved in preferential flow as a function of grain size. By combining these concepts with an empirical function to determine refreezing of preferential flow water inside the snowpack, we are able to simulate preferential water flow in the model. We found that preferential flow paths arriving at a layer transition in the snowpack may lead to ponding conditions. Subsequent refreezing then may form dense ice layers (>700 kg/m3). We compare the simulations to 14 years of biweekly snow profiles made at the Weissfluhjoch study plot at 2540m altitude in the Eastern Swiss Alps. We show that we are able to reproduce several ice lenses that were observed in the field, whereas some profiles remain challenging to simulate.

  10. Lost Jim Lava Flow, Seward Peninsula, Alaska as an analog for lava-ice interactions on Mars

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Hamilton, C.; Herrick, R. R.

    2015-12-01

    On Mars, volcanism within Elysium Planitia may have occurred as recently as ~10 million years ago, which associated lava flows being emplaced with ice-bearing permafrost. On Earth, there are few active volcanic regions that are cold enough to support permafrost, but the Seward Peninsula in Alaska is a prime location to study recent volcano-ice interactions. In the early 2000s, J.E. Beget and J.S. Kargel explored two areas in Alaska that exhibit features characteristic of explosive volcanism that may be the result of lava-ice interaction. These locations include the Lost Jim Lava Flow (65°29'N, 163°17'W) and several large maars (66°23'N, 164°29'W). The work presented here focuses on the Lost Jim Lava Flow, emanating from Lost Jim Cone and flowing West and North. The flow was erupted 1000-2000 years ago, covers ~225 km2, and ranges 3-30 m in thickness. Previous fieldwork identified pits along the margins of the flow that were interpreted to be collapse features (i.e., thermokarst) that formed as ground-ice beneath the lava melted due to heat transfer from the overlaying lava flow. This investigation utilizes stereo photogrammetry to generate high-resolution digital terrain models (DTMs) of these flow features to assess if these pits are indeed the products of thermokarstification, or if they are lava-rise pits formed by lava flow inflation. The DTMs were generated from ALOS PRISM data and DigitalGlobe Worldview 1 and 2 panchromatic satellite images taken as stereo-pairs or -triplets. With these new models the extent and morphology of the flow and pits will be categorized across the entire flow. These results are also compared to young lava flows on Mars, which may have experienced lava-ice interactions. Understanding the expression of such interactions on Earth may aid in the identification and interpretation of analogous eruptions on Mars.

  11. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  12. Wettability control on multiphase flow in patterned microfluidics.

    PubMed

    Zhao, Benzhong; MacMinn, Christopher W; Juanes, Ruben

    2016-09-13

    Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate's affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms-cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)-responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge-from pore filling to postbridging-are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions. PMID:27559089

  13. Constraints on the formation and properties of a Martian lobate debris apron: Insights from high-resolution topography, SHARAD radar data, and a numerical ice flow model

    NASA Astrophysics Data System (ADS)

    Parsons, Reid; Holt, John

    2016-03-01

    Lobate debris aprons (LDAs) are midlatitude deposits of debris-covered ice formed during one or more periods of glaciation during the Amazonian period. However, little is known about the climate conditions that led to LDA formation. We explore a hypothesis in which a single, extended period of precipitation of ice on the steep slopes of Euripus Mons (45°S, 105°E—east of the Hellas Basin) produced a flowing ice deposit which was protected from subsequent ablation to produce the LDA found at this location. We test this hypothesis with a numerical ice flow model using an ice rheology based on low-temperature ice deformation experiments. The model simulates ice accumulation and flow for the northern and southern lobes of the Euripus Mons LDA using basal topography constrained by data from the Shallow Radar (SHARAD) and a range of ice viscosities (determined by ice temperature and ice grain size). Simulations for the northern lobe of the Euripus LDA produce good fits to the surface topography. Assuming an LDA age of ˜60 Myr and an expected temperature range of 200 to 204 K (for various obliquities) gives an ice grain size of ≈2 mm. Simulations of the southern section produce poor fits to surface topography and result in much faster flow timescales unless multiple ice deposition events or higher ice viscosities are considered.

  14. Consider an Ice Stream.

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2002-12-01

    positions in past millennia conform to radically different flow patterns while on the scale of hours an ice stream's motion is halted completely, then released to move at surge-like speeds, in tempo with the tides. Explaining these complexities constantly reminds us that the rigorous physics applied to ice so effectively by Nye still work.

  15. Density pattern in supercritical flow of liquid {sup 4}He

    SciTech Connect

    Ancilotto, F.; Toigo, F.; Dalfovo, F.; Pitaevskii, L.P.

    2005-03-01

    A density-functional theory is used to investigate the instability arising in superfluid {sup 4}He as it flows at velocity u just above the Landau critical velocity of rotons v{sub c}. Confirming an early theoretical prediction by one of us [JETP Lett. 39, 511 (1984)], we find that a stationary periodic modulation of the density occurs, with amplitude proportional to (u-v{sub c}){sup 1/2} and wave vector equal to the roton wave vector. This density pattern is studied for supercritical flow both in bulk helium and in a channel of nanometer cross section.

  16. Possible recent and ancient glacial ice flow in the south polar region of Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1992-01-01

    Martian polar science began almost as soon as small telescopes were trained on the planet. The seasonal expansion and contraction of the polar caps and their high albedoes led most astronomers to think that water ice is the dominant constituent. In 1911 Lowell perceived a bluish band around the retreating edge of the polar caps, and interpreted it as water from melting polar ice and seasonal snow. An alternative idea in his time was that the polar caps consist of frozen carbonic acid. Lowell rejected the carbonic acid hypothesis on account of his blue band. He also pointed out that carbonic acid would sublimate rather than melt at confining pressures near and below one bar, hence, carbonic acid could not account for the blue band. In comparing Lowell's theories with today's knowledge, it is recognized that (1) sublimation is mainly responsible for the growth and contraction of Mars' polar caps, (2) carbon dioxide is a major component of the southern polar cap, and (3) Lowell's blue band was probably seasonal dust and/or clouds. Geomorphic evidence that glacial ice and glacial melt waters once flowed over broad areas of the southern polar region. Two aspects of the south polar region suggest possible glacial processes during two distinct eras in Mars' history.

  17. The Influence of the Zonal Wave Three on Antarctic Sea Ice during Ice Advance Season

    NASA Astrophysics Data System (ADS)

    Khan, H. M.; Raphael, M. N.

    2015-12-01

    Previous works have looked at the influence of key atmospheric circulation patterns on sea ice in the Antarctic in terms of the atmosphere's seasonal cycle. This study examines the influence of one of these atmospheric patterns, the zonal wave three (ZW3), in terms of the sea ice's seasons from 1979-2009 in order to better understand the response of the sea ice. An index to represent the amplitude of the ZW3 was calculated using zonal anomalies of 850 hPa geopotential heights taken from the ERA-Interim data set. Sea ice concentrations (SIC), taken from the Hadley Center sea ice and sea surface temperature data set, were found to be significantly positively correlated with the ZW3 index during the ice advance season (March to August) in the Ross and Weddell Seas and off the Amery ice shelf. These regions align with where cold, southerly flow associated with the ZW3 are found. In the Amundsen-Bellingshausen Seas region, SIC was found to be negatively correlated with the ZW3 index, which coincides with where the warm, northerly flow of the wave is found in this region. Regression analysis showed SIC to be significantly dependent upon the ZW3 in parts of the Ross Sea, the ice edge in the Amundsen-Bellingshausen Seas and off the Amery ice shelf during ice advance season. The results suggest that the ZW3 plays a role in the occurrence of the observed sea ice trends in the Ross Sea, Amundsen-Bellingshausen Seas, Weddell Sea and off the Amery ice shelf regions during the ice advance season, the critical period for sea ice growth. The results also demonstrate that re-examining the influence of relevant atmospheric patterns on sea ice in terms of the ice's seasonal cycles could allow firmer connections to be established between sea ice trends and atmospheric patterns.

  18. 2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods

    NASA Astrophysics Data System (ADS)

    Tucker, Orenthal J.; Combi, Michael R.; Tenishev, Valeriy M.

    2015-09-01

    The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of ∼300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451, 685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number ∼10-250) and dense flows in narrow tubular channels (Reynolds number ∼106). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of ∼1014-1020 m-3 were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of ∼10 m, the much denser flows with number densities of 1021-1023 m-3 accelerated micron-sized grains to bulk gas speed of ∼600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains.

  19. Fundamental Study of Direct Contact Cold Energy Release by Flowing Hot Air through Ice Particles Packed Layer

    NASA Astrophysics Data System (ADS)

    Aoyama, Sigeo; Inaba, Hideo

    This paper has dealt with the direct contact heat exchange characteristics between ice particles (average ice particle diameter : 3.10mm) packed in the rectangular cold energy storage vessel and flowing hot air as a heat transfer medium. The hot air bubbles ascended in the fluidized ice particles layer, and they were cooled down directly by melting ice particles. The temperature efficiency increased as Reynolds number Re increased because the hot air flowing in the layer became active. The dehumidity efficiency increased with an increase in modified Stefan number and Re, since the heat capacity of inlet air and heat transfer coefficient increased. Finally, some empirical correlations for temperature efficiency, dehumidity efficiency and the completion time of cold energy release were derived in terms of various nondimensional parameters.

  20. Mantle Flow Pattern and Dynamic Topography beneath the Eastern US

    NASA Astrophysics Data System (ADS)

    Liu, S.; King, S. D.; Adam, C. M.; Long, M. D.; Benoit, M. H.; Kirby, E.

    2015-12-01

    The complex tectonic history of the eastern US over the past billion years includes episodes of subduction and rifting associated with two complete cycles of supercontinent assembly and breakup. Both the previous global tomography models (S40RTS, SAVANI, TX2011, GyPSuM, SMEAN) and the analysis of the shear-wave splitting from the broadband seismic stations find a distinct coast-to-inland differentiation pattern in the lithosphere and upper mantle. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) includes a dense linear seismic array from the Atlantic coast of Virginia to the western boarder of Ohio, crossing several different tectonic zones. To derive the regional mantle flow pattern along with its surface expression such as dynamic topography and aid the interpretation of the seismic observations, we are building a new geodynamic model based on ASPECT (Advanced Solver for Problems in Earth CovecTion) that uses buoyancy derived from seismic tomography along with realistic lithosphere and sub-lithosphere structure. At present, we use S40RTS and SAVANI tomography models together with the temperature-dependent viscosity to compute the mantle flow and dynamic topography. Beneath the eastern US, the upper mantle flow in our model is primarily parallel to the trend of the Appalachian belt, which is broadly consistent with the direction of the local shear-wave splitting. The dynamic topography results exhibit a coast-to-inland magnitude differentiation along the MAGIC seismic deployment. The numerical tests also show that both the magnitude and pattern of the dynamic topography are quite sensitive to the density perturbation and rigidity of the lithosphere/sub-lithosphere. Our future work involves using other tomography and viscosity models to obtain the mantle flow pattern as well as the resulting dynamic topography and geoid.

  1. Lymph flow pattern in the intact thoracic duct in sheep.

    PubMed

    Onizuka, M; Flatebø, T; Nicolaysen, G

    1997-08-15

    1. To study the lymph flow dynamics in the intact thoracic duct, we applied an ultrasound transit-time flow probe in seven anaesthetized and four unanaesthetized adult sheep (approximately 60 kg). In unanaesthetized non-fasting animals we found that lymph flow in the thoracic duct was always regular pulsatile (pulsation frequency, 5.2 +/- 0.8 min-1) with no relation to heart or respiratory activity. At baseline the peak level of the thoracic duct pulse flow was 11.6-20.7 ml min-1 with a nadir of 0-3.6 ml min-1. Mean lymph flow was 5.4 +/- 3.1 ml min-1. The flow pattern of lymph in the thoracic duct was essentially the same in the anaesthetized animals. 2. In both the anaesthetized and unanaesthetized animals, the lymph flow response to a stepwise increase in the outflow venous pressure showed interindividual variation. Some were sensitive to any increase in outflow venous pressure, but others were resistant in that lymph flow did not decrease until outflow venous pressure was increased to higher levels. This resistance was also observed in the high lymph flow condition produced by fluid infusion in the anaesthetized animal and mechanical constriction of the caudal vena cava in the unaesthetized animals. Pulsation frequency of the thoracic duct flow initially increased and then decreased with a stepwise increase in the outflow venous pressure. This initial increase might be a compensatory response to maintain lymph flow against elevated outflow venous pressure. 3. To test the effect of long-term outflow venous pressure elevation in unanaesthetized sheep, outflow venous pressure was increased by inflation of a cuff around the cranial vena cava for 1, 5 or 25 h. The cuff was inflated to a level where lymph flow was reduced. Lymph flow remained low or decreased further during the entire cuff-inflation period. We calculated the lymph debt caused by the outflow venous pressure elevation and the amount 'repaid' when venous pressure returned to normal. Lymph debt for 25 h

  2. Lymph flow pattern in the intact thoracic duct in sheep.

    PubMed Central

    Onizuka, M; Flatebø, T; Nicolaysen, G

    1997-01-01

    1. To study the lymph flow dynamics in the intact thoracic duct, we applied an ultrasound transit-time flow probe in seven anaesthetized and four unanaesthetized adult sheep (approximately 60 kg). In unanaesthetized non-fasting animals we found that lymph flow in the thoracic duct was always regular pulsatile (pulsation frequency, 5.2 +/- 0.8 min-1) with no relation to heart or respiratory activity. At baseline the peak level of the thoracic duct pulse flow was 11.6-20.7 ml min-1 with a nadir of 0-3.6 ml min-1. Mean lymph flow was 5.4 +/- 3.1 ml min-1. The flow pattern of lymph in the thoracic duct was essentially the same in the anaesthetized animals. 2. In both the anaesthetized and unanaesthetized animals, the lymph flow response to a stepwise increase in the outflow venous pressure showed interindividual variation. Some were sensitive to any increase in outflow venous pressure, but others were resistant in that lymph flow did not decrease until outflow venous pressure was increased to higher levels. This resistance was also observed in the high lymph flow condition produced by fluid infusion in the anaesthetized animal and mechanical constriction of the caudal vena cava in the unaesthetized animals. Pulsation frequency of the thoracic duct flow initially increased and then decreased with a stepwise increase in the outflow venous pressure. This initial increase might be a compensatory response to maintain lymph flow against elevated outflow venous pressure. 3. To test the effect of long-term outflow venous pressure elevation in unanaesthetized sheep, outflow venous pressure was increased by inflation of a cuff around the cranial vena cava for 1, 5 or 25 h. The cuff was inflated to a level where lymph flow was reduced. Lymph flow remained low or decreased further during the entire cuff-inflation period. We calculated the lymph debt caused by the outflow venous pressure elevation and the amount 'repaid' when venous pressure returned to normal. Lymph debt for 25 h

  3. Microscopic Current Flow Patterns in Nanoscale Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Sai, Na; Bushong, Neil; Hatcher, Ryan; di Ventra, Massimiliano

    2006-03-01

    Transport in nanoscale conductors has been studied extensively mainly using the stationary scattering approach. However, the dynamical nature of transport, and in particular, the flow patterns of the microscopic current through a nanoscale junction, have remained poorly understood. We apply a novel time-dependent transport approach [1], which combines closed and finite geometries with time-dependent density functional theory,to study current flow patterns in nanoscale quantum point contacts [2]. The results of both atomistic and jellium calculations show that surface charges form dynamically at the junction-electrode interfaces in both abrupt and adiabatic junctions. The curr ent exhibits some characteristics of a classical hydrodynamic liquid but also displays unique patterns arising from the interaction with the surface charges. We also investigate the effect of the flow velocity, charge density, and lattice structures on the electron dynamics. If time permits we also discuss the effects of the viscosity of the electron liquid [3]. Work supported by DOE (DE-FG02-05ER46204). [1] M. Di Ventra and T.N. Todorov, J. Phys. Cond. Matt. 16, 8025 (2004). [2] N. Bushong, N. Sai and, M. Di Ventra, Nano Lett. (in press). [3] N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005 ).

  4. Flow Pattern in a Converging-Diverging Nozzle

    NASA Technical Reports Server (NTRS)

    Oswatitsch, K.; Rothstein, W.

    1949-01-01

    The present report describes a new method for the prediction of the flow pattern of a gas in the two-dimensional and axially symmetrical case. It is assumed that the expansion of the gas is adiabatic and the flow stationary. The several assumptions necessary of the nozzle shape effect, in general, no essential limitation on the conventional nozzles. The method is applicable throughout the entire speed range; the velocity of sound itself plays no singular part. The principal weight is placed on the treatment of the flow near the throat of a converging-diverging nozzle. For slender nozzles formulas are derived for the calculation of the velocity components as function of the location.

  5. Animating streamlines with repeated asymmetric patterns for steady flow visualization

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Kuo; Liu, Zhanping; Lee, Tong-Yee

    2012-01-01

    Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.

  6. Gene flow on ice: the role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus).

    PubMed

    Elizabeth Alter, S; Rosenbaum, Howard C; Postma, Lianne D; Whitridge, Peter; Gaines, Cork; Weber, Diana; Egan, Mary G; Lindsay, Melissa; Amato, George; Dueck, Larry; Brownell, Robert L; Heide-Jørgensen, Mads-Peter; Laidre, Kristin L; Caccone, Gisella; Hancock, Brittany L

    2012-11-01

    Sea ice is believed to be a major factor shaping gene flow for polar marine organisms, but it remains unclear to what extent it represents a true barrier to dispersal for arctic cetaceans. Bowhead whales are highly adapted to polar sea ice and were targeted by commercial whalers throughout Arctic and subarctic seas for at least four centuries, resulting in severe reductions in most areas. Both changing ice conditions and reductions due to whaling may have affected geographic distribution and genetic diversity throughout their range, but little is known about range-wide genetic structure or whether it differed in the past. This study represents the first examination of genetic diversity and differentiation across all five putative stocks, including Baffin Bay-Davis Strait, Hudson Bay-Foxe Basin, Bering-Beaufort-Chukchi, Okhotsk, and Spitsbergen. We also utilized ancient specimens from Prince Regent Inlet (PRI) in the Canadian Arctic and compared them with modern stocks. Results from analysis of molecular variance and demographic simulations are consistent with recent and high gene flow between Atlantic and Pacific stocks in the recent past. Significant genetic differences between ancient and modern populations suggest PRI harbored unique maternal lineages in the past that have been recently lost, possibly due to loss of habitat during the Little Ice Age and/or whaling. Unexpectedly, samples from this location show a closer genetic relationship with modern Pacific stocks than Atlantic, supporting high gene flow between the central Canadian Arctic and Beaufort Sea over the past millennium despite extremely heavy ice cover over much of this period.

  7. Gene flow on ice: the role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus).

    PubMed

    Elizabeth Alter, S; Rosenbaum, Howard C; Postma, Lianne D; Whitridge, Peter; Gaines, Cork; Weber, Diana; Egan, Mary G; Lindsay, Melissa; Amato, George; Dueck, Larry; Brownell, Robert L; Heide-Jørgensen, Mads-Peter; Laidre, Kristin L; Caccone, Gisella; Hancock, Brittany L

    2012-11-01

    Sea ice is believed to be a major factor shaping gene flow for polar marine organisms, but it remains unclear to what extent it represents a true barrier to dispersal for arctic cetaceans. Bowhead whales are highly adapted to polar sea ice and were targeted by commercial whalers throughout Arctic and subarctic seas for at least four centuries, resulting in severe reductions in most areas. Both changing ice conditions and reductions due to whaling may have affected geographic distribution and genetic diversity throughout their range, but little is known about range-wide genetic structure or whether it differed in the past. This study represents the first examination of genetic diversity and differentiation across all five putative stocks, including Baffin Bay-Davis Strait, Hudson Bay-Foxe Basin, Bering-Beaufort-Chukchi, Okhotsk, and Spitsbergen. We also utilized ancient specimens from Prince Regent Inlet (PRI) in the Canadian Arctic and compared them with modern stocks. Results from analysis of molecular variance and demographic simulations are consistent with recent and high gene flow between Atlantic and Pacific stocks in the recent past. Significant genetic differences between ancient and modern populations suggest PRI harbored unique maternal lineages in the past that have been recently lost, possibly due to loss of habitat during the Little Ice Age and/or whaling. Unexpectedly, samples from this location show a closer genetic relationship with modern Pacific stocks than Atlantic, supporting high gene flow between the central Canadian Arctic and Beaufort Sea over the past millennium despite extremely heavy ice cover over much of this period. PMID:23170222

  8. Gene flow on ice: the role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales (Balaena mysticetus)

    PubMed Central

    Elizabeth Alter, S; Rosenbaum, Howard C; Postma, Lianne D; Whitridge, Peter; Gaines, Cork; Weber, Diana; Egan, Mary G; Lindsay, Melissa; Amato, George; Dueck, Larry; Brownell, Robert L; Heide-Jørgensen, Mads-Peter; Laidre, Kristin L; Caccone, Gisella; Hancock, Brittany L

    2012-01-01

    Sea ice is believed to be a major factor shaping gene flow for polar marine organisms, but it remains unclear to what extent it represents a true barrier to dispersal for arctic cetaceans. Bowhead whales are highly adapted to polar sea ice and were targeted by commercial whalers throughout Arctic and subarctic seas for at least four centuries, resulting in severe reductions in most areas. Both changing ice conditions and reductions due to whaling may have affected geographic distribution and genetic diversity throughout their range, but little is known about range-wide genetic structure or whether it differed in the past. This study represents the first examination of genetic diversity and differentiation across all five putative stocks, including Baffin Bay-Davis Strait, Hudson Bay-Foxe Basin, Bering-Beaufort-Chukchi, Okhotsk, and Spitsbergen. We also utilized ancient specimens from Prince Regent Inlet (PRI) in the Canadian Arctic and compared them with modern stocks. Results from analysis of molecular variance and demographic simulations are consistent with recent and high gene flow between Atlantic and Pacific stocks in the recent past. Significant genetic differences between ancient and modern populations suggest PRI harbored unique maternal lineages in the past that have been recently lost, possibly due to loss of habitat during the Little Ice Age and/or whaling. Unexpectedly, samples from this location show a closer genetic relationship with modern Pacific stocks than Atlantic, supporting high gene flow between the central Canadian Arctic and Beaufort Sea over the past millennium despite extremely heavy ice cover over much of this period. PMID:23170222

  9. Lithography patterns and data analysis for topologically frustrated artificial spin ice

    NASA Astrophysics Data System (ADS)

    Marsh, Thomas; Drisko, Jasper; Cumings, John

    Artificial spin ices (ASIs), lattices composed of nanoscale single-domain magnetic islands, have been studied extensively for their insights on frustrated systems. Recently, the square and kagome geometries have received the most attention. We study a variation of the square lattice, where we include one or more edge dislocations in an otherwise perfect arrangement, resulting in topological frustration of the system. We create lithography patterns using a MATLAB script that models the system as a lattice of connected nodes and starts by removing partial rows or columns of elements. We then allow the system to relax, reshaping these patterns with an algorithm that attempts to equalize the angles of the elements at each node and also maintain identical island lengths throughout the lattice. We then analyze experimental Lorentz Transmission Electron Microscopy (TEM) images of these lattices using another program, which manipulates the images in order to find and index all of the individual magnetic islands, and then uses the Lorentz contrast of the element to determine the direction of each island's magnetic moment. These moment directions are then combined to determine the type of each lattice vertex, using the traditional type I-IV notation for square lattices. The script then marks the TEM images to reflect the vertex classification, which allows us to clearly identify chains of type II & III vertices in the Lorentz images. The chains carry net magnetic moment, in a direction defined by the type II vertices, which may then reverse at the type III vertices.

  10. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  11. Computational analysis for dry-ice sublimation assisted CO2 jet impingement flow

    NASA Astrophysics Data System (ADS)

    Kwak, Songmi; Lee, Jaeseon

    2015-11-01

    The flow and heat transfer characteristics of the novel gas-solid two-phase jet impingement are investigated computationally. When the high pressure carbon dioxide (CO2) flow passes through a nozzle or orifice, it experiences the sudden expansion and the rapid temperature drop occurred by Joule-Thomson effect. This temperature drop causes the lower bulk jet fluid temperature than the CO2 sublimation line, so dry-ice becomes formed. By using CO2 gas-solid mixture as a working fluid of jet impingement, it is expected the heat transfer enhancement can be achieved due to the low bulk temperature and the additional phase change latent heat. In this study, 2D CFD model is created to predict the cooling effect of gas-solid CO2 jet. The gas-solid CO2 flow is considered by Euler-Lagrangian approach of mixed phase and the additional heat transfer module is embedded to account for the sublimation phenomena of the solid state CO2. The jet flow and heat transfer performance of gas-solid CO2 jet is investigated by the variance of flow parameter like Reynolds number, solid phase concentration and jet geometries.

  12. Caterpillar-like ice motion in the ablation zone of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ryser, C.; Lüthi, M. P.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R.; Hoffman, M.; Neumann, T. A.

    2014-10-01

    Current understanding of ice dynamics predicts that increasing availability and variability of meltwater will have an impact on basal motion and therefore on the evolution and future behavior of the Greenland ice sheet. We present measurements of ice deformation, subglacial water pressure, and surface velocity that show periodic and episodic variations on several time scales (seasonal, multiday, and diurnal). These variations, observed with GPS and sensors at different depths throughout the ice column, are not synchronous but show delayed responses of ice deformation with increasing depth and basal water pressure in antiphase with surface velocity. With the help of a Full-Stokes ice flow model, these observations are explained as ice motion in a caterpillar-like fashion. Caused by patches of different basal slipperiness, horizontal stress transfer through the stiff central part of the ice body leads to spatially varying surface velocities and ice deformation patterns. Variation of this basal slipperiness induces characteristic patterns of ice deformation variability that explain the observed behavior. Ice flow in the ablation zone of the Greenland ice sheet is therefore controlled by activation of basal patches by varying slipperiness in the course of a melt season, leading to caterpillar-like ice motion superposed on the classical shear deformation.

  13. Multiple ice flow directions during the Fraser Glaciation in the lower Skagit River drainage, northern Cascade Range, Washington.

    USGS Publications Warehouse

    Heller, P.L.

    1980-01-01

    Glacier reconstructions suggest that till exposed at one site in the lower Skagit Valley was deposited by a Baker Valley glacier that flowed westward down the Skagit Valley during the early part of the Fraser Glaciation (Evans Creek Stade). Stratigraphic relations show that the Cordilleran Ice Sheet subsequently advanced up the Skagit Valley and into the Baker Valley during the Vashon Stade. Flow-direction indicators, as well as clast compositional variations in till and recessional deposits of Vashon age, indicate that this upvalley, eastward-advancing glacier was later overwhelmed by south-east-flowing ice of the Cordilleran Ice Sheet which entered the Baker Valley across the valley divide to the northwest. -from Author

  14. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  15. Patterns of Gene Flow Define Species of Thermophilic Archaea

    PubMed Central

    Cadillo-Quiroz, Hinsby; Didelot, Xavier; Held, Nicole L.; Herrera, Alfa; Darling, Aaron; Reno, Michael L.; Krause, David J.; Whitaker, Rachel J.

    2012-01-01

    Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic “continents,” indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation. PMID:22363207

  16. Effect of Some Factors on Critical Condition of Ice Formation for Flowing Supercooled Organic Water Solution in Cooled Circular Tube

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Miyahara, Satoshi; Takeya, Kengo

    Supercooling characteristics of three kinds of organic water solutions (D-Sorbitol, Glycerol, Glucose) in a forced flow were investigated experimentally. The critical condition of ice nucleation in a cooled circular tube was examined for concentration of water solution and cooling temperature under various Reynolds numbers. It was found that the flow velocity and cooling temperature conditions in a laminar flow region. However, in a turbulent flow region, the critical degree of supercooling was influenced by the flow velocity and cooling temperature. As a result, non-dimensional correlation equations for the critical condition of ice formation were derived in the laminar and turbulent flow region as a function of some non-dimensional parameters. While the ice making efficiency of D-Sorbitol water solution was measured under various Reynolds numbers and cooling temperature conditions on the stable supercooling condition. The ice making efficiency of supercooled organic water solution was influenced by the degree of the supercooling based on the mixed organic water solution temperature at the outlet of the inner tube.

  17. How does tidal flow affect pattern formation in mussel beds?

    PubMed

    Sherratt, Jonathan A; Mackenzie, Julia J

    2016-10-01

    In the Wadden Sea, mussel beds self-organise into spatial patterns consisting of bands parallel to the shore. A leading explanation for this phenomenon is that mussel aggregation reduces losses from dislodgement and predation, because of the adherence of mussels to one another. Previous mathematical modelling has shown that this can lead to spatial patterning when it is coupled to the advection from the open sea of algae-the main food source for mussels in the Wadden Sea. A complicating factor in this process is that the advection of algae will actually oscillate with the tidal flow. This has been excluded from previous modelling studies, and the present paper concerns the implications of this oscillation for pattern formation. The authors initially consider piecewise constant ("square-tooth") oscillations in advection, which enables analytical investigation of the conditions for pattern formation. They then build on this to study the more realistic case of sinusoidal oscillations. Their analysis shows that future research on the details of pattern formation in mussel beds will require an in-depth understanding of how the tides affect long-range inhibition among mussels. PMID:27343625

  18. Ice stream reorganization and ice sheet mass balance following the reactivation of Kamb Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Bougamont, Marion; Christoffersen, Poul; Price, Stephen; Carter, Sasha

    2015-04-01

    Kamb Ice Stream tributaries. As a consequence, ice in the tributaries reaches the Whillans Ice Stream catchment, maintaining active flow in its main trunk for the next century. At the same time, the relict Siple Ice Stream reactivates, which significantly decreases the mass balance for this region. Because the modelled state of the bed is the coldest for the trunk of Kamb Ice Stream, this region reactivates last (during the second century of the experiment). Our modelled patterns of ice stream flow variability are similar to those in the past, as inferred from observations (e.g., Catania et al., J.Glac., 2012). We discuss the mechanisms for migrating ice flow regimes and the implication for the future mass balance of the Siple Coast region.

  19. Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome

    NASA Astrophysics Data System (ADS)

    Passalacqua, Olivier; Gagliardini, Olivier; Parrenin, Frédéric; Todd, Joe; Gillet-Chaulet, Fabien; Ritz, Catherine

    2016-07-01

    Three-dimensional ice flow modelling requires a large number of computing resources and observation data, such that 2-D simulations are often preferable. However, when there is significant lateral divergence, this must be accounted for (2.5-D models), and a flow tube is considered (volume between two horizontal flowlines). In the absence of velocity observations, this flow tube can be derived assuming that the flowlines follow the steepest slope of the surface, under a few flow assumptions. This method typically consists of scanning a digital elevation model (DEM) with a moving window and computing the curvature at the centre of this window. The ability of the 2.5-D models to account properly for a 3-D state of strain and stress has not clearly been established, nor their sensitivity to the size of the scanning window and to the geometry of the ice surface, for example in the cases of sharp ridges. Here, we study the applicability of a 2.5-D ice flow model around a dome, typical of the East Antarctic plateau conditions. A twin experiment is carried out, comparing 3-D and 2.5-D computed velocities, on three dome geometries, for several scanning windows and thermal conditions. The chosen scanning window used to evaluate the ice surface curvature should be comparable to the typical radius of this curvature. For isothermal ice, the error made by the 2.5-D model is in the range 0-10 % for weakly diverging flows, but is 2 or 3 times higher for highly diverging flows and could lead to a non-physical ice surface at the dome. For non-isothermal ice, assuming a linear temperature profile, the presence of a sharp ridge makes the 2.5-D velocity field unrealistic. In such cases, the basal ice is warmer and more easily laterally strained than the upper one, the walls of the flow tube are not vertical, and the assumptions of the 2.5-D model are no longer valid.

  20. Fluid flow patterns in porous media with partially ordered microstructure

    NASA Astrophysics Data System (ADS)

    Mirsaeidi, A.; Thompson, K. E.

    2014-12-01

    Natural granular porous media found in geosciences applications are disordered at the pore scale, which contributes to the interesting behavior that they exhibit including hydrodynamic dispersion, capillary pressure and wetting behavior, and various types of fingering. Many standard equations and models that have been developed for transport in porous media are based on the assumption of uniform disorder, randomly distributed parameters, and isotropic behavior. However, factors that cause partial ordering (e.g., settling of oblong grains, alignment of elongated particles, or packing structures near a boundary) can lead to anomalous flow behavior relative to the base case, when in turn requires different ways to understand and describe transport. In this work we examine the packing structure and fluid flow patterns in packings of equilateral cylindrical particles that are packed in a tube. The detailed packing structures are obtained experimentally from microCT experiments, and the flow patterns are simulated by numerical solution of the Stokes equations using the finite element method. This research is of interest in chemical engineering because this type of packing is used in catalytic reactors. However, the structures are also interesting from both a fundamental perspective and as prototypes for partially ordered natural materials because the packings undergo a transition from fully disordered internally to highly structured at the wall, and therefore provide insight into differences caused by the ordering.

  1. Investigating the Uptake Mechanisms of Hydrogen Peroxide to Single and Polycrystalline Ice with a Novel Flow Tube System

    NASA Astrophysics Data System (ADS)

    Hong, Angela; Ammann, Markus; Bartels-Rausch, Thorsten

    2016-04-01

    Air-ice chemical interactions are important for describing the distribution and subsequent chemical fate of trace atmospheric gases within ice and snow and determining the oxidative capacities of these environments. The nature of this interaction is governed by a compound's physicochemical properties as well as ice microstructure. Hydrogen peroxide (H2O2), a reservoir of HOx radicals in the atmosphere and an important chromophore in snow and ice, is a trace gas that demonstrates complex uptake behaviour to frozen aqueous media by the reversible, fast adsorption to the air-ice interface, aggregation, and lateral interactions, and a slower process, ostensibly via uptake into the bulk. However, the exact mechanism and kinetics for the slow uptake of H2O2 and the size of this reservoir is unknown. It is important to describe and quantify this loss term, over environmentally-relevant timescales, accommodation of H2O2 into the bulk may be the dominant process which controls the composition and chemistry of the snow and overlying atmosphere. We hypothesize that the slow uptake of H2O2 occurs by diffusion into the grain boundaries of ice. To provide mechanistic insight to the macroscopic phenomenon of atmospheric gas uptake to ice, and discern various mechanisms including adsorption to air-ice interface and accommodation into the bulk through uptake into grain boundaries, we design, machine, and validate a novel flow reactor system featuring a Drilled Ice Flow Tube (DIFT). Our flow reactor system is uniquely suited to testing these uptake mechanisms: by controlling the degree of grain boundaries present in the DIFT (ie. monocrystalline or polycrystalline), we can directly observe the effect of the ice microstructure on the adsorptive and bulk uptake of trace atmospheric gases over long timescales (eg. on the order of hours). Here, we describe method development of the DIFT and demonstrate using polarised microscopy imagery that our experimental set-up allows for the direct

  2. Intracardiac flow patterns in early embryonic life. A reexamination.

    PubMed

    Yoshida, H; Manasek, F; Arcilla, R A

    1983-09-01

    Microangiography, using methylene blue injected at eight vitelline vein sites, was performed on 156 developing chick embryos at Hamburger-Hamilton stages 14-22. Two stream patterns were observed. Type A coursed sequentially through the dorsal portion of the sinus venosus, the cranial segments of the primitive atrium and atrioventricular canal, the ventral parts of the primitive ventricle and conus cordis, and, finally, the left branchial arches. Type B coursed through the ventral portion of the sinus venosus, the caudal segments of the primitive atrium and atrioventricular canal, the dorsal parts of the primitive ventricle and conus cordis, and, finally, the right branchial arches. Both streams flowed in parallel fashion in the conus cordis. At Hamburger-Hamilton stages 17-18, the dye stream from the right lateral vitelline vein was chiefly type A, whereas that from the left lateral vitelline vein was type B. At Hamburger-Hamilton stages 19-22, those patterns reversed, i.e., the right lateral vitelline vein stream ran as type B, whereas the left lateral vitelline vein stream assumed type A pattern. The cranial-caudal relationship of the two streams at the primitive atrium and atrioventricular canal is not consistent with the hypothesis that these streams separately expand the future right atrium and left atrium. Their parallel direction at the conus cordis does not support the theory that spiral septation is initiated by two spiral streams. The longitudinal separation of the two streams at and beyond the branchial arches also argues against aortico-pulmonary septation as a consequence of flow streaming. Our observations do not support the traditional flow-molding theory.

  3. Gene flow pattern among Aedes aegypti populations in Mexico.

    PubMed

    de Lourdes Muñoz, Maria; Mercado-Curiel, Ricardo F; Diaz-Badillo, Alvaro; Pérez Ramirez, Gerardo; Black, William C

    2013-03-01

    Patterns of gene flow vary greatly among Aedes aegypti populations throughout Mexico. The populations are panmictic along the Pacific coast, isolated by distance in northeast Mexico, and exhibit moderate gene flow across the Yucatan peninsula. Nine Ae. aegypti collections from 6 cities in Oaxaca, Mexico, were taken to examine the local patterns of gene flow. Genetic variation was examined in a 387-bp region of the nicotinamide adenine dinucleotide dehydrogenase subunit 4 mitochondrial gene (ND4) using single-strand conformation polymorphism analysis, and 3 haplotypes were detected. Cluster analysis on the linearized FST genetic distances failed to group collections in geographic proximity. Regression analysis of linear or road distances on linearized F(ST) indicated that proximal collections were as diverse as distant collections across an approximately 800-km range. The geographical distribution of the Mexican mosquito haplotype frequencies was determined for the ND4 sequences from 524 individuals from Oaxaca (this study) and 2,043 individuals from our previous studies. Herein, we report on yet another pattern dominated by genetic drift among 9 Ae. aegypti collections from 6 cities in Oaxaca, Mexico, and compare it to those reported in other regions of Mexico. Molecular analysis of variance showed that there was as much genetic variation among collections 4 km apart as there was among all collections. The numbers of haplotypes and the amount of genetic diversity among the collections from Oaxaca were much lower than detected in previous studies in other regions of Mexico and may reflect the effects of control efforts or adaptations to the altitudinal limits (1,500 m) of the species in Mexico. The geographical distribution of mosquito haplotypes in Mexico is also reported. Furthermore, based on the distribution of the mosquito haplotypes in America, we suggest that mosquito dispersion is very efficient, most likely due to commercial transportation.

  4. Pattern formation during mixing and segregation of flowing granular materials

    NASA Astrophysics Data System (ADS)

    Metcalfe, Guy; Shattuck, Mark

    1996-02-01

    Powder mixing plays an important role in a number of industries ranging from pharmaceuticals and food to ceramics and mining. Avalanches provide a mechanism for the stretching and folding needed to mix granular solids. However, unlike fluids, when particles dissimilar in size, density, or shape flow, they can spontaneously demix or segregate. Using magnetic resonance imaging, we track the transport of granular solids in a slowly rotating tube both with and without segregation effects. Compared with experiments in a 2-dimensional rotating disk partially filled with colored particles, the mixing kinematics and the granular pattern formation in a tube are changed by an axial flow instability. From simple physical principles we argue how size and density segregation mechanisms can be made to cancel, allowing good mixing of dissimilar particles, and we show experiments verifying this. Further experiments isolate the axial transport in the slowly rotating tube. Axial transport can appear faster with segregation than without.

  5. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  6. Multiple convection patterns and thermohaline flow in an idealized OGCM

    SciTech Connect

    Rahmstorf, S.

    1995-12-01

    This paper investigates how multiple steady states arise in an ocean general circulation model, caused by the fact that many different convection patterns can be stable under the same surface boundary conditions. Two alternative boundary conditions are used in the experiments: classical mixed boundary conditions and a diffusive atmospheric heat balance combined with fixed salt fluxes. In both cases, transitions between different quasi-steady convection patterns can be triggered by briefly adding fresh water at convection sites. Either a large-scale freshwater anomaly is used to completely erase the previous convection pattern or a {open_quotes}surgical{close_quotes} anomaly is added to single grid points to turn off convection there. Under classical mixed-boundary conditions, different convection sites can lead to different overturning rates of deep water. The dynamics of the convection-driven flow is analyzed in some detail. With an energy balance atmosphere, in contrast, the overturning rate is very robust, apparently regulated by a negative thermal feedback. In spite of this, different convection patterns are associated with very different climatic states, since the heat transport of the deep circulation depends strongly on where convection takes place. It is suggested that considerable climate variability in the North Atlantic could be caused by changes in high-latitude convection.

  7. Body and blubber relationships in antarctic pack ice seals: implications for blubber depth patterns.

    PubMed

    Castellini, M A; Trumble, S J; Mau, T L; Yochem, P K; Stewart, B S; Koski, M A

    2009-01-01

    Morphometrics and blubber depths from all four high Antarctic seals (Weddell, Ross, crabeater, and leopard) were obtained during a midsummer research cruise in the Ross Sea as the physiological ecology component of the U.S. Antarctic Pack Ice Seals project. These data are the only in vivo measurements of all four species from the same location and time of year and focused on variances in morphometrics and blubber depth related to species, sex, and age. By controlling for location and season, this cross-species design provided the means to differentiate how blubber mass might be influenced in these groups. We measured both absolute blubber depth and ratio of blubber depth to body core diameter. We found that adult and younger animals showed differences in blubber depth, but male versus female seals did not show differences within any given species. However, when compared across species, the ratio of blubber ring depth to body core diameter suggests that adult Weddell seals differ in their use of blubber compared with the other three species. We propose that this difference in blubber pattern is most likely related to Weddell nutritional requirements during the breeding season having a greater influence on blubber depth than thermal requirements when compared with the other three species.

  8. Ice flow and mass continuity of Shumsky Glacier in the Djungarski Alatau Range of Kazakhstan, Central Asia

    NASA Astrophysics Data System (ADS)

    Cherkasov, Piotr A.; Ahmetova, Galia S.; Hastenrath, Stefan

    1996-05-01

    The glaciological monitoring program on the Shumsky Glacier in the Djungarski Alatau Range of southeastern Kazakhstan has included measurements of horizontal surface ice flow velocity, net balance, and emergence velocity at a network of more than 200 stakes during 1967-1991, as well as mappings of the ice surface topography by double-theodolite triangulation and determination of ice thickness and of bedrock topography by radio echo sounding in 1984. These observations are here evaluated together to deduce the long-term average dynamic behavior of Shumsky Glacier. The glacier extends between 3100 and 4400 m with a total area of 3 km2 and length of nearly 4 km. Maximum surface velocity is 20 m yr-1 and maximum volume flux 9 × 105 m3 yr-1, located near the equilibrium line altitude around 3680 m. The ice-volume-equivalent net balance is +0.5 m yr-1 in the average over the accumulation area, changing to about -1.5 m yr-1 near the terminus. The submergent flow in the accumulation area changes to emergence of 1 m yr-1 in the lower glacier. The rate of ice thinning is less than 0.1 m yr-1 in the middle glacier, increases to 2.5 m yr-1 near the terminus, and averages 0.12 m yr-1 for the glacier as whole. In fact, the Shumsky glacier differs little from equilibrium, being in a more favorable location that the other glaciers of the Djungarski Alatau. However, trends toward slower ice flow, more negative net balance, and faster rate of ice thinning indicate response to a progressively adverse climatic environment.

  9. Preferential accumulation of bubbles in Couette-Taylor flow patterns

    NASA Astrophysics Data System (ADS)

    Climent, Eric; Simonnet, Marie; Magnaudet, Jacques

    2007-08-01

    We investigate the migration of bubbles in several flow patterns occurring within the gap between a rotating inner cylinder and a concentric fixed outer cylinder. The time-dependent evolution of the two-phase flow is predicted through three-dimensional Euler-Lagrange simulations. Lagrangian tracking of spherical bubbles is coupled with direct numerical simulation of the Navier-Stokes equations. We assume that bubbles do not influence the background flow (one-way coupling simulations). The force balance on each bubble takes into account buoyancy, added-mass, viscous drag, and shear-induced lift forces. For increasing velocities of the rotating inner cylinder, the flow in the fluid gap evolves from the purely azimuthal steady Couette flow to Taylor toroidal vortices and eventually a wavy vortex flow. The migration of bubbles is highly dependent on the balance between buoyancy and centripetal forces (mostly due to the centripetal pressure gradient) directed toward the inner cylinder and the vortex cores. Depending on the rotation rate of the inner cylinder, bubbles tend to accumulate alternatively along the inner wall, inside the core of Taylor vortices or at particular locations within the wavy vortices. A stability analysis of the fixed points associated with bubble trajectories provides a clear understanding of their migration and preferential accumulation. The location of the accumulation points is parameterized by two dimensionless parameters expressing the balance of buoyancy, centripetal attraction toward the inner rotating cylinder, and entrapment in Taylor vortices. A complete phase diagram summarizing the various regimes of bubble migration is built. Several experimental conditions considered by Djéridi, Gabillet, and Billard [Phys. Fluids 16, 128 (2004)] are reproduced; the numerical results reveal a very good agreement with the experiments. When the rotation rate is increased further, the numerical results indicate the formation of oscillating bubble

  10. Fresh shallow valleys in the Martian midlatitudes as features formed by meltwater flow beneath ice

    NASA Astrophysics Data System (ADS)

    Hobley, Daniel E. J.; Howard, Alan D.; Moore, Jeffrey M.

    2014-01-01

    Significant numbers of valleys have been identified in the Martian midlatitudes (30-60°N/S), spatially associated with extant or recent ice accumulations. Many of these valleys date to the Amazonian, but their formation during these cold, dry epochs is problematic. In this study, we look in detail at the form, distribution, and quantitative geomorphology of two suites of these valleys and their associated landforms in order to better constrain the processes of their formation. Since the valleys themselves are so young and thus well preserved, uniquely, we can constrain valley widths and courses and link these to the topography from the Mars Orbiter Laser Altimeter and High-Resolution Stereo Camera data. We show that the valleys are both qualitatively and quantitatively very similar, despite their being >5000 km apart in different hemispheres and around 7 km apart in elevation. Buffered crater counting indicates that the ages of these networks are statistically identical, probably forming during the Late Amazonian, ~100 Ma. In both localities, at least tens of valleys cross local drainage divides, apparently flowing uphill. We interpret these uphill reaches to be characteristic of flow occurring beneath a now absent, relatively thin (order 101-102 m), regionally extensive ice cover. Ridges and mounds occasionally found at the foot of these valley systems are analogous to eskers and aufeis-like refreezing features. On the basis of their interaction with these aufeis-like mounds, we suggest that this suite of landforms may have formed in a single, short episode (perhaps order of days), probably forced by global climate change.

  11. Effects of tumors on inhaled pharmacologic drugs: I. Flow patterns.

    PubMed

    Martonen, T B; Guan, X

    2001-01-01

    Lung carcinomas are now the most common form of cancer. Clinical data suggest that tumors are found preferentially in upper airways, perhaps specifically at carina within bifurcations. The disease can be treated by aerosolized pharmacologic drugs. To enhance their efficacies site-specific drugs must be deposited selectively. Since inhaled particles are transported by air, flow patterns will naturally affect their trajectories. Therefore, in Part I of a systematic investigation, we focused on tumor-induced effects on airstreams, in Part II (the following article [p. 245]), particle trajectories were determined. To facilitate the targeted delivery of inhaled drugs, we simulated bifurcations with tumors on carinas using a commercial computational fluid dynamics (CFD) software package (FIDAP) with a Cray T90 supercomputer and studied effects of tumor sizes and ventilatory parameters on localized flow patterns. Critical tumor sizes existed; e.g., tumors had dominant effects when r/R > or = 0.8 for bifurcation 3-4 and r/R > or = 0.6 for bifurcation 7-8 (r = tumor radius and R = airway radius). The findings suggest that computer modeling is a means to integrate alterations to airway structures caused by diseases into aerosol therapy protocols.

  12. Decoding complex flow-field patterns in visual working memory.

    PubMed

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions.

  13. Can large scale sea ice cover changes affect precipitation patterns over California?

    NASA Astrophysics Data System (ADS)

    Cvijanovic, I.; Bonfils, C.; Lucas, D. D.; Santer, B. D.; Chiang, J. C. H.

    2015-12-01

    Pronounced Arctic sea ice loss since the beginning of the satellite era has intensified the interest into whether these high latitude changes can significantly influence the weather and climate far from the Arctic. Current attempts to demonstrate statistically significant remote responses to sea ice changes have been hindered by factors such as large high latitude variability, relatively short observational datasets, and model limitations in adequately representing current sea ice changes. In this study, we sample uncertainty in sea ice physics parameters and variability in atmospheric initial conditions to obtain an ensemble of simulations with substantially different states of Arctic and Antarctic sea ice cover. This large ensemble isolates a robust, statistically significant climate change response arising from changes in sea ice cover only. Our results show a significant link between Arctic and Antarctic sea ice cover changes and precipitation across the tropical Atlantic and Pacific basins, the Sahel, and the west coast of the United States. For example, large Arctic sea ice decline leads to a northward shift of the tropical convergence zone, increased subsidence over the southwest United States and a geopotential anomaly over the North Pacific; with all of these factors resulting in significant drying over California. We conclude that high-latitude sea ice cover changes are an important driver of low-latitude precipitation. Consequently, reliable predictions of future precipitation changes over areas such as California (and the Sahel) will strongly depend on our ability to adequately simulate both Arctic and Antarctic sea ice changes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and is released as LLNL-ABS-675694.

  14. Flow Pattern relative to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T.

    2013-12-01

    Magnetospheric substorms play a key role in the coupling of the solar wind and the magnetosphere. The Substorm Current Wedge (SCW) is a key element in the present physical model of substorms. It is widely accepted that the SCW is created by earthward busty flows, but the generation mechanism is still unknown. Previous studies suggest pressure gradients and magnetic vortices are possible candidates. Due to the sparse coverage of satellites in space, these studies were strongly dependent on the assumption that the satellites were in the generation region of the field-aligned currents (FAC) forming the SCW. In this work, we take advantage of an inversion technique that determines the parameters describing the SCW and perform a statistical study on the plasma and magnetic field parameters of the flow pattern relative to the SCW. The inversion technique finds the location and the intensity of the SCW from midlatitude magnetic data. The technique has been validated using auroral observations, Equivalent Ionospheric Currents (EIC), SYM-H index from SuperMAG, and magnetic perturbations at geosynchronous orbit by the GOES satellite. A database of substorm events has been created using midlatitude positive bays, which are the ground signature of the SCW at lower latitudes. The inversion technique is applied to each event in the database to determine the location of the origin of the SCW. The inversion results are also used to find conjunction events with space observations from VAP (RBSP), THEMIS and GOES. The plasma and magnetic field parameters such as the pressure gradient and magnetic vorticity are then categorized as a function of their location relative to the origin of the SCW. How the distribution/pattern of the pressure gradient and vorticity are related to the properties of the SCW (locations and intensity of the FAC), and flows (entropy, velocity and density) will be determined.

  15. Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Tziperman, Eli

    2011-03-01

    Ice streams are regions of fast flowing glacier ice that transport a significant portion of the total ice flux from present ice sheets. The flow pattern of ice streams can vary both temporally and spatially. In particular, ice streams can become stagnant and change their path. We study the dynamics of ice streams using an idealized model of an isothermal and power law viscous ice flow that includes horizontal (lateral) shear stresses. The basal sliding law is assumed to be triple-valued. We investigate the spatiotemporal patterns formed because of the flow over a flat bed, fed from an upstream mass source. The ice flows from the mass source region through one or two gaps in a prescribed upstream topographic ridge which restricts the flow, leading to the formation of one or two ice streams. We find a relation between the parameters of the ice rheology and the width of the ice stream shear margins and show how these parameters can affect the minimum width of an ice stream. We also find that complex asymmetric spatiotemporal patterns can result from the interaction of two ice streams sharing a common mass source. The rich spatiotemporal variability is found to mostly be a result of the triple-valued sliding law, but non-Newtonian effects are found to play a significant role in setting a more realistic shear margin width and allowing for relevant time scales of the variability.

  16. Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Tziperman, Eli

    2010-05-01

    Ice streams are regions of fast flowing glacier ice that transport a significant portion of the total ice flux from present ice sheets. The flow pattern of ice streams can vary both temporally and spatially. In particular, ice streams can become stagnant, and change their path. We study the dynamics of ice streams using an idealized two dimensional horizontal model of an isothermal, non-Newtonian power-law viscous ice flow. The basal sliding law is assumed to be triple-valued. We investigate the spatiotemporal patterns formed due to the flow over a flat bed, fed from a uniform upstream mass source. The ice flows from the mass source region through one or two gaps in a prescribed upstream topographic ridge which restricts the flow, leading to the formation of one or two ice streams. We find a relation between the parameters of the ice rheology and the width of the ice-stream shear margins, and show how these parameters can affect the minimum width of an ice stream. We also find that complex asymmetric spatiotemporal patterns can result from the interaction of two ice streams sharing a common mass source. The rich spatiotemporal variability is found to mostly be a result of the triple valued sliding law, but non-Newtonian effects are found to play a significant role in setting a more realistic shear margin width and allowing for relevant time scales of the variability.

  17. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  18. Dynamics of thermally induced ice streams simulated with a higher-order flow model

    NASA Astrophysics Data System (ADS)

    Brinkerhoff, D. J.; Johnson, J. V.

    2015-09-01

    We use a new discretization technique to solve the higher-order thermomechanically coupled equations of glacier evolution. We find that under radially symmetric continuum equations, small perturbations in symmetry due to the discretization are sufficient to produce the initiation of nonsymmetric thermomechanical instabilities which we interpret as ice streams, in good agreement with previous studieswhich have indicated a similar instability. We find that the inclusion of membrane stresses regularizes the size of predicted streams, eliminating the ill-posedness evident in previous investigations of ice stream generation through thermomechanical instability. Ice streams exhibit strongly irregular periodicity which is influenced by neighboring ice streams and the synoptic state of the ice stream. Ice streams are not always the same size but instead appear to follow a temperature-dependent distribution of widths that is robust to grid refinement. The morphology of the predicted ice streams corresponds reasonably well to extant ice streams in physically similar environments.

  19. A new method for high-resolution methane measurements on polar ice cores using continuous flow analysis.

    PubMed

    Schüpbach, Simon; Federer, Urs; Kaufmann, Patrik R; Hutterli, Manuel A; Buiron, Daphné; Blunier, Thomas; Fischer, Hubertus; Stocker, Thomas F

    2009-07-15

    Methane (CH4) is the second most important anthropogenic greenhouse gas in the atmosphere. Rapid variations of the CH4 concentration, as frequently registered, for example, during the last ice age, have been used as reliable time markers for the definition of a common time scale of polar ice cores. In addition, these variations indicate changes in the sources of methane primarily associated with the presence of wetlands. In order to determine the exact time evolution of such fast concentration changes, CH4 measurements of the highest resolution in the ice core archive are required. Here, we present a new, semicontinuous and field-deployable CH4 detection method, which was incorporated in a continuous flow analysis (CFA) system. In CFA, samples cut along the axis of an ice core are melted at a melt speed of typically 3.5 cm/min. The air from bubbles in the ice core is extracted continuously from the meltwater and forwarded to a gas chromatograph (GC) for high-resolution CH4 measurements. The GC performs a measurement every 3.5 min, hence, a depth resolution of 15 cm is achieved atthe chosen melt rate. An even higher resolution is not necessary due to the low pass filtering of air in ice cores caused by the slow bubble enclosure process and the diffusion of air in firn. Reproducibility of the new method is 3%, thus, for a typical CH4 concentration of 500 ppb during an ice age, this corresponds to an absolute precision of 15 ppb, comparable to traditional analyses on discrete samples. Results of CFA-CH4 measurements on the ice core from Talos Dome (Antarctica) illustrate the much higher temporal resolution of our method compared with established melt-refreeze CH4 measurements and demonstrate the feasibility of the new method.

  20. The Devdorak ice-rock avalanche and consequent debris flow from the slope of Mt. Kazbek (Caucasus, Georgia) in 2014

    NASA Astrophysics Data System (ADS)

    Chernomorets, Sergey; Savernyuk, Elena; Petrakov, Dmitry; Dokukin, Mikhail; Gotsiridze, George; Gavardashvili, Givi; Drobyshev, Valery; Tutubalina, Olga; Zaporozhchenko, Eduard; Kamenev, Nikolay; Kamenev, Vladimir; Kääb, Andreas; Kargel, Jeffrey; Huggel, Christian

    2016-04-01

    We have studied catastrophic glacial events of 2014 in the Kazbek-Dzhimaray massif, Caucasus Mts., Georgia. The first event is a so called "Kazbek blockage" of the Georgian Military Road, on 17 May 2014, which formed as a result of an ice-rock avalanche onto the Devdorak Glacier, and is similar to blockages which occurred in the same location in the 18th-19th century. The second event is a consequent debris flow on 20 August 2014. In May, June 2014 and September 2015 we conducted three field investigations of the disaster zone, which includes Devdorak Glacier, Amilishka and Kabakhi river valleys, the Terek River valley near the Kabakhi River mouth, and a temporary lake.We analyzed field research data, interpreted SPOT 6, Landsat-8 OLI, Terra ASTER, and Pleiades satellite imagery, as well as post-disaster helicopter imagery. To assess dynamic features of the ice-rock flow on 17 May 2014, we measured valley crossections with Bushnell laser ranger. In 2015 we have marked a 180-m baseline for ground stereosurvey and made a stereopair of the Devdorak glacier terminus from a distance of 700 m. The 17 May 2014 ice-rock avalanche initiated at 4500 m. a.s.l. It collapsed onto the tongue of the Devdorak Glacier which reaches down to 2300 m a.s.l. Downstream of the tongue, the avalanche transformed into an ice-rock "avalanche flow" which blocked the Terek River valley. The traffic on Military Georgian Road (part of E117 highway) which connects Russia with Georgia was stopped. 7 people were killed in their vehicles. The total length of the ice-rock avalanche and the subsequent flow was over 10 km. A temporary lake formed in the Terek river valley, reaching 300 m in length, and over 10 m in depth. For several hours, the lake was threatening another debris flow downstream the Terek river valley. According to field estimates at the Devdorak glacier tongue and in Amilishka, Kabakhi and Terek river valleys, the volume of the transported ice-rock avalanche mass, which deposited in

  1. Parameterizing ice-edge biological productivity in a changing Arctic: Growth factors associated with specific ice provenances

    NASA Astrophysics Data System (ADS)

    Sambrotto, R.

    2015-12-01

    Sea ice plays a significant role in the ecology of polar seas and a significant portion of the biological production in the Arctic occurs at ice edges. These environments are inherently variable in space and time and subject to climate variation as the summer ice extent changes. Recent field results from the northern Bering Sea suggest that the parameterization of ice edge production in coupled physical-biological models that ignore processes specific to the ice-melt environment will be insufficient to describe the variability and intensity of Arctic production. In addition to the stabilizing the surface layer, ice may contribute phytoplankton growth factors such as trace metals that have been derived from the regions of ice formation as well as aeolian deposition. Results of an analysis of sea ice formation, flow and melt suggests regions that are likely to receive trace metals from ice and has been validated with regions of known ice edge productivity in the Bering Sea. A similar analysis for the Chukchi Sea compared the likely ice-edge productivity regions between pre-2000 ice conditions and those in the more recent period of reduced summer ice cover. Changes are predicted in both the timing and distribution of these regions in proportion to the variations in the dominant ice flow patterns. Ways in which the non-local processes important to elevated ice edge productivity can be incorporated into couple arctic models will be discussed.

  2. Mixing dynamics and pattern formation around flow stagnation points

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    We study the mixing of two reactive fluids in the presence of convective instabilities. Such system is characterized by the formation of unique porosity patterns and mixing dynamics linked to the evolution of vortices and stagnation points. Around them, the fluid-fluid interface is stretched and compressed, which enhances mixing and triggers chemical reactions, and the system can be analyzed using fluid deformation model. We consider velocity fields generated by a double gyre synthetic velocity field and Rayleigh-Bénard and Rayleigh-Taylor instabilities. The different flow structures can be visualized by the strain rate and the finite time Lyapunov exponents. We show that the mixing enhancement given by the scalar dissipation rate is controlled by the equilibrium between interface compression and diffusion, which depends on the velocity field configuration. Furthermore, we establish a quantitative relation between the mixing rate and the evolution of the potential energy of the fluid when convection is driven by density instabilities.

  3. Flow pattern defects in Czochralski-grown silicon crystals

    NASA Astrophysics Data System (ADS)

    Rantamäki, R.; Molarius, J.; Tilli, M.; Tuomi, T.

    1997-01-01

    The radial distribution of grown-in microdefects in eight Czochralski-grown silicon crystals was measured by counting the flow pattern (FP) defects revealed by preferential etching. At the center of the crystal, the FP-defect density increased from 5.2 to 6.7 × 105 1/cm3, when the pulling speed was increased from 0.8 to 1.1 mm/min. The magnitude of this effect was only about half as large, when the pulling speed was increased from 1.1 to 1.3 mm/min. Annealing at 1200 °C for 2 h in argon ambient was found to decrease the FP-defect densities significantly, but less than that in oxygen ambient.

  4. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Arndt, S.; Willmes, S.; Dierking, W.

    2015-12-01

    The timing and regional distribution of surface properties of Antarctic sea ice is crucial for the atmosphere-ocean interaction and characterizes the mass and energy budgets of sea ice. Therefore, it is important to map and analyze changes and trends of the related processes and parameters. Since Antarctic sea ice is covered with snow during most of the year, inter-annual and regional variations in summer surface melt can be described through the timing of snowmelt onset. So far, the melt onset was described through the amplitude of diurnal freeze-thaw cycles detected by microwave brightness temperatures using a fixed threshold. However, other studies reveal that the strength of the diurnal variations is differing between the perennial snowpack characterized by strong snow metamorphism and the thinner and less complex seasonal snow cover. Therefore, we present two complementary approaches to improve the existing melt onset algorithms: (1) We consider regional differences of the diurnal variations in the brightness temperature. (2) We combine brightness temperature measured at different polarizations and frequencies in order to describe also subsurface melt processes. Our analysis includes a comparison with autonomous measurements from snow buoys and previous studies on snow melt onset detection of Antarctic sea ice. In doing so, we derive a distinct latitudinal dependence of the surface and subsurface snow melt onset. The major part of the East-Antarctic sea ice is dominated by lateral and bottom melt with negligible diurnal surface variations. Although a positive trend in sea-ice extent and concentration of Antarctic sea ice is observed, our melt onset time series do not indicate a significant trend from 1988/89 to 2014/15. Instead its inter-annual variability is not changing over time. From the assumed dynamically induced sea-ice growth in the Southern Ocean we expect an increasing importance of surface freeze-thaw cycles.

  5. Holocene deceleration of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.; Colgan, William T.; Fahnestock, Mark A.; Morlighem, Mathieu; Catania, Ginny A.; Paden, John D.; Gogineni, S. Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet’s radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet’s dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry.

  6. Holocene deceleration of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. PMID:26912699

  7. Investigations of Pressure Drops during Piston Flow Pneumatic Conveying of Ice Cubes and Applying It to High Density Conveying of Cold Energy

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi; Yanadori, Michio; Tsubota, Yuji

    To overcome the defect of conventional chilled water systems, we propose pneumatic conveying of ice cubes. We conducted experiments to investigate the pressure drops during pneumatic conveying of ice cubes in a prototype conveyance pipe, and obtained the following results : (1)The mean velocity of the ice cubes is proportional to the mean velocity of the conveying air flow regardless of balls in the pipe or the volume fraction of the ice cubes. (2) Difference in the velocity of the air flow cause variations in the density of ice cubes. If we convey ice cubes with balls, it is possible to convey a higher density. (3) The volume fraction of this method is about 10 times that of the previous experimental results. (4)The pump power of this proposed conveyance system is reduced to about 0.71 to 0.59 times that of the conventional chilled water systems.

  8. Simulating Ice-Flow and Calving on Store Glacier, West Greenland, with a 3D Full Stokes Model

    NASA Astrophysics Data System (ADS)

    Todd, J.; Christoffersen, P.; Zwinger, T.; Luckman, A. J.; Benn, D.

    2015-12-01

    The mass balance and long-term stability of the ice sheets in Greenland and Antarctica depend heavily on the dynamics of their ice-ocean margins. Iceberg calving accounts for the majority of the net annual loss of ice in Antarctica and around half of that from Greenland. Furthermore, climate driven changes to dynamics at these calving margins can be transmitted far inland. Thus, predicting future sea level contribution from the cryosphere requires an improved understanding of calving, and the processes which link it to climate and ice-sheet flow. We present results from a new 3D calving model coupled to a full-Stokes, time evolving glacier dynamic model, implemented for Store Glacier, a 5-km-wide calving glacier in the Uummannaq region of West Greenland, which flows at a rate of 20 m/day at its terminus. The model is developed using the open source finite element package Elmer/Ice, with the criterion that calving occurs when surface and basal crevasses meet. Crevasses open in response to tensile stresses near the terminus and water pressure at the bed. When the model was applied in 2D for the central flowline of Store Glacier, we found that basal topography exerts overarching control on the long term position of the calving front, while ice mélange buttressing allows the seasonal extension of a floating tongue, which collapses in early summer. New results emerging from implementation of calving in a 3D model indicate significant spatial heterogeneity in calving dynamics because the northern half of the terminus is grounded whereas the southern half is floating. This contrasting setting affects calving dynamics, further underlining the importance of geometry and basal topography, and suggesting that lower dimensional calving models may miss important aspects of calving dynamics. Our results also suggest that implementing grounding line dynamics is important for modelling calving, even for glaciers which are, for the most part, firmly grounded.

  9. Field constraints for modeling the emplacement of the 2010 Gigjökull lava flow, southern Iceland: interplay between subaqueous, ice contact and subaerial lava emplacement

    NASA Astrophysics Data System (ADS)

    Edwards, B.; Oddsson, B.; Gudmundsson, M. T.; Rossi, R.

    2012-04-01

    One of the least accessible products of the 2010 Eyjafjallajokull eruption is the trachyandesite lava that flowed north from the summit eruption site down through Gigjökull glacier. Based on numerous overflights during 2010, syn-eruption satellite imagery and two on-site investigations in 2011, we have developed a preliminary model to illustrate the progressive movement of the complex lava flow down through Gigjökull. Previous workers have documented the events surrounding the explosive summit eruptions, including the flow path for the majority of the water derived from melting ~0.1 cubic km of summit ice, which moved over, through and beneath Gigjökull producing a series of jokulhlaups during April and May 2010. Overflights in 2010 and 2011 show that most of the upper parts of the lava flow are surfaced by oxidized, blocky lava that appears very similar to what would be expected from an entirely subaerial lava flow. However, exposures at the lowest end of the flow preserve a record documenting lava emplacement in water and through ice tunnels. We describe 8 different components visible in this northernmost, lowest part of the lava flow, including: (1) upper subaerial levee-bounded lava flow, (2) subaerial blocky lava bench, (3) subaqueous/ice contact lava mounds, (4) subaqueous/ice contact sheet lava complex, (5) ponded, glaciolacustrine sediments, (6) subaerial slabby lava flow, (7) subaqueous pillow lava lobes, and (8) ice-tunnel confined lava flows. In combination these 8 components are consistent a model for lava emplacement through a valley glacier. We propose that the lava flow, which appears to have started moving down the glacier from a tephra cone immediately north of the main summit craters after the largest of the jokulhlaups, exploited newly formed and/or pre-existing sub-ice drainage systems along the base of Gigjökull. Initial meltwater from the eruption site created/enhanced basal ice drainage systems. Lava flows exploited these drainage systems

  10. Characterizing black carbon in rain and ice cores using coupled tangential flow filtration and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ellis, A.; Edwards, R.; Saunders, M.; Chakrabarty, R. K.; Subramanian, R.; van Riessen, A.; Smith, A. M.; Lambrinidis, D.; Nunes, L. J.; Vallelonga, P.; Goodwin, I. D.; Moy, A. D.; Curran, M. A. J.; van Ommen, T. D.

    2015-09-01

    Antarctic ice cores have been used to study the history of black carbon (BC), but little is known with regards to the physical and chemical characteristics of these particles in the remote atmosphere. Characterization remains limited by ultra-trace concentrations in ice core samples and the lack of adequate methods to isolate the particles unaltered from the melt water. To investigate the physical and chemical characteristics of these particles, we have developed a tangential flow filtration (TFF) method combined with transmission electron microscopy (TEM). Tests using ultrapure water and polystyrene latex particle standards resulted in excellent blanks and significant particle recovery. This approach has been applied to melt water from Antarctic ice cores as well as tropical rain from Darwin, Australia with successful results: TEM analysis revealed a variety of BC particle morphologies, insoluble coatings, and the attachment of BC to mineral dust particles. The TFF-based concentration of these particles has proven to give excellent results for TEM studies of BC particles in Antarctic ice cores and can be used for future studies of insoluble aerosols in rainwater and ice core samples.

  11. Characterizing black carbon in rain and ice cores using coupled tangential flow filtration and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ellis, A.; Edwards, R.; Saunders, M.; Chakrabarty, R. K.; Subramanian, R.; van Riessen, A.; Smith, A. M.; Lambrinidis, D.; Nunes, L. J.; Vallelonga, P.; Goodwin, I. D.; Moy, A. D.; Curran, M. A. J.; van Ommen, T. D.

    2015-06-01

    Antarctic ice cores have been used to study the history of black carbon (BC), but little is known with regards to the physical and chemical characteristics of these particles in the remote atmosphere. Characterization remains limited by ultra-trace concentrations in ice core samples and the lack of adequate methods to isolate the particles unaltered from the melt water. To investigate the physical and chemical characteristics of these particles, we have developed a tangential flow filtration (TFF) method combined with transmission electron microscopy (TEM). Tests using ultrapure water and polystyrene latex particle standards resulted in excellent blanks and significant particle recovery. This approach has been applied to melt water from Antarctic ice cores as well as tropical rain from Darwin, Australia with successful results: TEM analysis revealed a variety of BC particle morphologies, insoluble coatings, and the attachment of BC to mineral dust particles. The TFF-based concentration of these particles has proven to give excellent results for TEM studies of BC particles in Antarctic ice cores and can be used for future studies of insoluble aerosols in rainwater and ice core samples.

  12. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  13. Temporal Patterns in Bivalve Excurrent Flow Under Varying Ambient Flow Conditions

    NASA Astrophysics Data System (ADS)

    Delavan, S. K.; Webster, D. R.

    2008-11-01

    The predator-prey relationship between blue crabs (Callinectes sapidus) and bivalve clams (Mercenaria mercenaria) is mediated by the transport of metabolites released by the prey (clams) and transported downstream as a passive scalar. This study focuses on how the prey behavior contributes to the information available within the odorant plume. Clams may modify factors such as excurrent flux, flow unsteadiness, and siphon height and diameter. A Particle Image Velocimetry (PIV) system has been used to quantify the temporal patterns in the excurrent jet of the bivalve siphon under varying ambient flow conditions. According to a spectral analysis of siphon excurrent velocity time records, there is a low frequency periodic component that could contribute to the mixing of clam metabolites through the generation of persistent jet vorticies. Also, fractal analysis of the velocity time records shows that as the ambient velocity increases the excurrent velocity becomes more correlated and less random. These results suggest that for high ambient flow a low frequency periodicity may be sufficient to promote the mixing and dilution of metabolites. In contrast, for low ambient flow more random siphon excurrent velocity may be required to reduce the amount of information available to predators in the downstream odorant plume.

  14. Analytical Investigation of Icing Limit for Diamond-Shaped Airfoil in Transonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E.; Serafini, John S.

    1953-01-01

    Calculations have been made for the icing limit of a diamond airfoil at zero angle of attack in terms of the stream Mach number, stream temperature, and pressure altitude. The icing limit is defined as a wetted-surface temperature of 320 F and is related to the stream conditions by the method of Hardy. The results show that the point most likely to ice on the airfoil lies immediately behind the shoulder and is subject to possible icing at Mach numbers as high as 1.4.

  15. Effects of parent vessel geometry on intraaneurysmal flow patterns

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Putman, Christopher M.; Cebral, Juan R.

    2006-03-01

    This study shows the influence of the upstream parent artery geometry on intra-aneurysmal hemodynamics of cerebral aneurysms. Patient-specific models of four cerebral aneurysms at four typical locations were constructed from 3D rotational angiography images. Two geometrical models were constructed for each patient, one with the native parent vessel geometry and another with the parent vessel truncated approximately 1cm upstream from the aneurysm. For one aneurysm, two images were used to construct a model as realistic and large as possible - down to the carotid bifurcation - which was cut at seven different locations. Corresponding finite element grids were generated and computational fluid dynamics simulations were carried out under pulsatile flow conditions. It was found that truncated models tended to underestimate the wall shear stress in the aneurysm and to shift the impaction zone to the neck when compared with the native geometry. In one aneurysm the parent vessel included a tortuous segment close to the neck that strongly influenced the flow pattern entering the aneurysm. Thus, including longer portions of the parent vessel beyond this segment did not have a substantial effect. Depending on the dominant geometrical features the length of the parent artery needed for an accurate representation of the intraaneurysmal hemodynamics may vary among individuals. In conclusion, failure to properly model the inflow stream determined by the upstream parent artery can significantly influence the results of intra-aneurysmal hemodynamic models. The upstream portion of the parent vessel of cerebral aneurysms should be included in order to accurately represent the intraaneurysmal hemodynamics.

  16. Greenland Ice Sheet glacier motion and ice loss: New understanding of ice sheet behavior through remote sensing

    NASA Astrophysics Data System (ADS)

    Moon, T. A.; Fahnestock, M. A.; Scambos, T.; Joughin, I.

    2015-12-01

    Ice loss from the Greenland Ice Sheet makes up roughly a third of current sea level rise, also generating substantial local and regional freshwater fluxes. Containing more than 6 meters of sea level rise equivalent in ice, Greenland has the potential to contribute much more to rising ocean levels and freshening water in the future. Understanding the dynamics of the ice sheet, particularly the behavior of fast flowing coastal outlet glaciers, is critical to improving predictions of future ice sheet change and associated impacts. Combining velocity, glacier ice front, sea ice, and ice sheet surface melt data, we made several important advances in characterizing and understanding seasonal glacier behavior and the processes driving change: 1) seasonal velocity patterns fall into at least 3 distinct patterns, 2) these seasonal velocity patterns likely indicate differences in glacier responsiveness to ocean versus subglacial hydrologic processes, and 3) in some regions seasonal versus multi-year velocity changes appear most strongly influenced by different environmental factors. Further progress was previously hampered by limits in measurement resolution across space and time. To address this challenge, we are creating a new - and continuously growing - ice velocity dataset from Landsat 8 imagery. This data stream supports comprehensive global measurements of ice flow, providing a leap in our understanding of ice sheet motion across space and time. We offer a high-level discussion of our research findings and an introduction to the new Landsat 8-enabled data stream. Our results and measurement capabilities deliver critical new knowledge about ice sheet behavior and interaction with ocean and climate factors. These advances, in turn, have important implications for other elements of Earth system research, including climate, oceanography, and biology.

  17. Effects of deliquescent salts in soils of polar Mars on the flow of the Northern Ice Cap

    NASA Astrophysics Data System (ADS)

    Fisher, D. A.; Hecht, M. H.; Kounaves, S.; Catling, D.

    2008-12-01

    importance of it in the water cycle of Mars will be clearer. The ice cap has long been thought of as a possible re-charge area for the deep water return flow (Clifford , 1987) . If perchlorate is formed sufficiently quickly, this view would be strengthened in spite of the low temperatures. Clifford S.M. 1987. Polar basal melting. JGR. Vol. 92, No. B9, pp 9135-9152. Besley L. M. and G.A. Bottomley. 1969. The water vapour equilibria over magnesium perchlorate hydrates. Journal of Chemical Thermodynamics. 1, pp13-19. Fisher, D.A., Reeh, N., and Langley, K. 1985. Objective reconstructions of the late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds. Géographie physique et Quaternaire, v. 39, no. 3, p. 229-238. Pestova O. N.,Myund L.A.,Khripun M.K. and A.V. Prigaro. 2005. Polythermal study of systems M(ClO4)2-H2O (M2+=Mg2+, Ca2+, Sr2+, Ba2+). Russian Journal of Applied Chemistry , Vol.78.No.3,pp409-413. class="ab'>

  18. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Zhao, Jiyun; Skyllas-Kazacos, Maria; Xiong, Binyu

    2014-08-01

    The present study focuses on dynamic thermal-hydraulic modeling for the all-vanadium flow battery and investigations on the impact of stack flow patterns on battery performance. The inhomogeneity of flow rate distribution and reversible entropic heat are included in the thermal-hydraulic model. The electrolyte temperature in tanks is modeled with the finite element modeling (FEM) technique considering the possible non-uniform distribution of electrolyte temperature. Results show that the established model predicts electrolyte temperature accurately under various ambient temperatures and current densities. Significant temperature gradients exist in the battery system at extremely low flow rates, while the electrolyte temperature tends to be the same in different components under relatively high flow rates. Three stack flow patterns including flow without distribution channels and two cases of flow with distribution channels are compared to investigate their effects on battery performance. It is found that the flow rates are not uniformly distributed in cells especially when the stack is not well designed, while adding distribution channels alleviates the inhomogeneous phenomenon. By comparing the three flow patterns, it is found that the serpentine-parallel pattern is preferable and effectively controls the uniformity of flow rates, pressure drop and electrolyte temperature all at expected levels.

  19. Subsurface flow and vegetation patterns in tidal environments

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Silvestri, Sonia; Marani, Marco

    2004-05-01

    Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated

  20. Complex Greenland outlet glacier flow captured.

    PubMed

    Aschwanden, Andy; Fahnestock, Mark A; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  1. Complex Greenland outlet glacier flow captured

    PubMed Central

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  2. Gain fixed-pattern-noise correction via optical flow

    NASA Astrophysics Data System (ADS)

    Lim, SukHwan; El Gamal, Abbas

    2002-04-01

    Fixed pattern noise (FPN) or nonuniformity caused by device and interconnect parameter variations across an image sensor is a major source of image quality degradation especially in CMOS image sensors. In a CMOS image sensor, pixels are read out through different chains of amplifiers each with different gain and offset. Whereas offset variations can be significantly reduced using correlated double sampling (CDS), no widely used method exists for reducing gain FPN. In this paper, we propose to use a video sequence and its optical flow to estimate gain FPN for each pixel. This scheme can be used in a digital video or still camera by taking any video sequence with motion prior to capture and using it to estimate gain FPN. Our method assumes that brightness along the motion trajectory is constant over time. The pixels are grouped in blocks and each block's pixel gains are estimated by iteratively minimizing the sum of the squared brightness variations along the motion trajectories. We tested this method on synthetically generated sequences with gain FPN and obtained results that demonstrate significant reduction in gain FPN with modest computations.

  3. Dissolution patterns and mixing dynamics in unstable reactive flow

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Dentz, Marco; Cabeza, Yoar; Carrera, Jesus

    2015-08-01

    We study the fundamental problem of mixing and chemical reactions under a Rayleigh-Taylor-type hydrodynamic instability in a miscible two-fluid system. The dense fluid mixture, which is generated at the fluid-fluid interface, leads to the onset of a convective fingering instability and triggers a fast chemical dissolution reaction. Contrary to intuition, the dissolution pattern does not map out the finger geometry. Instead, it displays a dome-like, hierarchical structure that follows the path of the ascending fluid interface and the regions of maximum mixing. These mixing and reaction hot spots coincide with the flow stagnation points, at which the interfacial mixing layer is compressed and deformed. We show that the deformation of the boundary layer around the stagnation points controls the evolution of the global scalar dissipation and reaction rates and shapes the structure of the reacted zones. The persistent compression of the mixing layer explains the independence of the mixing rate from the Rayleigh number when convection dominates.

  4. Patterns in groundwater chemistry resulting from groundwater flow

    NASA Astrophysics Data System (ADS)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  5. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  6. Investigating the Effects of Water Ice Cloud Radiative Forcing on the Predicted Patterns and Strength of Dust Lifting on Mars

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Hollingsworth, Jeffery L.; Haberle, Robert M.

    2014-11-01

    The dust cycle is critical for the current Mars climate system because airborne dust significantly influences the thermal and dynamical structure of the atmosphere. The atmospheric dust loading varies with season and exhibits variability on a range of spatial and temporal scales. Until recently, interactive dust cycle modeling studies that include the lifting, transport, and sedimentation of radiatively active dust have not included the formation or radiative effects of water ice clouds. While the simulated patterns of dust lifting and global dust loading from these investigations of the dust cycle in isolation reproduce some characteristics of the observed dust cycle, there are also marked differences between the predictions and the observations. Water ice clouds can influence when, where, and how much dust is lifted from the surface by altering the thermal structure of the atmosphere and the character and strength of the general circulation. Using an updated version of the NASA Ames Mars Global Climate Model (GCM), we show that including water ice cloud formation and their radiative effects affect the magnitude and spatial extent of dust lifting, particularly in the northern hemisphere during the pre- and post- winter solstitial seasons. Feedbacks between dust lifting, cloud formation, circulation intensification and further dust lifting are isolated and shown to be important for improving the behavior of the simulated dust cycle.

  7. Changes in the number and timing of days of ice-affected flow on northern New England rivers, 1930-2000

    USGS Publications Warehouse

    Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G.

    2005-01-01

    Historical dates of ice-affected flows for 16 rural, unregulated rivers in northern New England, USA were analyzed. The total annual days of ice-affected flow decreased significantly (p < 0.1) over the 20th century at 12 of the 16 rivers. On average, for the nine longest-record rivers, the total annual days of ice-affected flow decreased by 20 days from 1936 to 2000, with most of the decrease occurring from the 1960s to 2000. Four of the 16 rivers had significantly later first dates of ice-affected flow in the fall. Twelve of the 16 rivers had significantly earlier last dates of ice-affected flow in the spring. On average, the last dates became earlier by 11 days from 1936 to 2000 with most of the change occurring from the 1960s to 2000. The total annual days of ice-affected flow were significantly correlated with November through April air temperatures (r = -0.70) and with November through April precipitation (r = -0.52). The last spring dates were significantly correlated with March through April air temperatures (r = -0.73) and with January through April precipitation (r = -0.37). March mean river flows increased significantly at 13 of the 16 rivers in this study. ?? Springer 2005.

  8. Evaluating glacier volume changes since the Little Ice Age maximum and consequences for stream flow by integrating models of glacier flow and hydrology in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Huh, K. I.; Mark, B. G.; Baraer, M.; Ahn, Y.

    2014-12-01

    Assessing the historical contribution of glacier ice volume loss to stream flow based on reconstructed volume changes through Little Ice Age (LIA) can be directly related to the understanding of glacier-hydrology in the current epoch of rapid glacier ice loss that has disquieting implications for water resources in the Cordillera Blanca of the Peruvian Andes. However, the accurate prediction of the future glacial meltwater availability for the increasing regional Andean society needs more extensive quantitative estimation from long-term glacial meltwater of reconstructed glacial volume. Modeling LIA paleoglaciers using a cellular automata glacier flow model in different catchments of the Cordillera Blanca allows us to reconstruct glacier volume and its change from likely combinations of climatic control variables and time. We compute the rate and magnitude of glacier volume changes for Yanamarey and Queshque glaciers between the LIA and modern defined by 2011 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2) from the Cordillera Blanca. Also, we employ a recently demonstrated hydrological stream model (Baraer et al., 2012) for integrating the reconstructed glacier volume and its change to calculate glacier contribution to meltwater runoff as a function of glacier loss rate in the Yanamarey and the Queshque catchments, and reconstruct long-term glacier significance to stream flow.

  9. The Devdorak ice-rock avalanche and consequent debris flow from the slope of Mt. Kazbek (Caucasus, Georgia) in 2014

    NASA Astrophysics Data System (ADS)

    Chernomorets, Sergey; Savernyuk, Elena; Petrakov, Dmitry; Dokukin, Mikhail; Gotsiridze, George; Gavardashvili, Givi; Drobyshev, Valery; Tutubalina, Olga; Zaporozhchenko, Eduard; Kamenev, Nikolay; Kamenev, Vladimir; Kääb, Andreas; Kargel, Jeffrey; Huggel, Christian

    2016-04-01

    We have studied catastrophic glacial events of 2014 in the Kazbek-Dzhimaray massif, Caucasus Mts., Georgia. The first event is a so called "Kazbek blockage" of the Georgian Military Road, on 17 May 2014, which formed as a result of an ice-rock avalanche onto the Devdorak Glacier, and is similar to blockages which occurred in the same location in the 18th-19th century. The second event is a consequent debris flow on 20 August 2014. In May, June 2014 and September 2015 we conducted three field investigations of the disaster zone, which includes Devdorak Glacier, Amilishka and Kabakhi river valleys, the Terek River valley near the Kabakhi River mouth, and a temporary lake.We analyzed field research data, interpreted SPOT 6, Landsat-8 OLI, Terra ASTER, and Pleiades satellite imagery, as well as post-disaster helicopter imagery. To assess dynamic features of the ice-rock flow on 17 May 2014, we measured valley crossections with Bushnell laser ranger. In 2015 we have marked a 180-m baseline for ground stereosurvey and made a stereopair of the Devdorak glacier terminus from a distance of 700 m. The 17 May 2014 ice-rock avalanche initiated at 4500 m. a.s.l. It collapsed onto the tongue of the Devdorak Glacier which reaches down to 2300 m a.s.l. Downstream of the tongue, the avalanche transformed into an ice-rock "avalanche flow" which blocked the Terek River valley. The traffic on Military Georgian Road (part of E117 highway) which connects Russia with Georgia was stopped. 7 people were killed in their vehicles. The total length of the ice-rock avalanche and the subsequent flow was over 10 km. A temporary lake formed in the Terek river valley, reaching 300 m in length, and over 10 m in depth. For several hours, the lake was threatening another debris flow downstream the Terek river valley. According to field estimates at the Devdorak glacier tongue and in Amilishka, Kabakhi and Terek river valleys, the volume of the transported ice-rock avalanche mass, which deposited in

  10. Geochemical cycling and depositional patterns across the northeast region of the Greenland Ice Sheet as determined from trace element chemistry

    NASA Astrophysics Data System (ADS)

    Wong, G. J.; Osterberg, E. C.; Courville, Z.; Hawley, R. L.; Lutz, E.; Overly, T. B.

    2012-12-01

    The Greenland Ice Sheet is both a repository of climate history and a major driver in Arctic and global climate. Between 1952 and 1955, Carl Benson led a series of traverses of the Greenland Ice Sheet (GIS), and characterized the GIS via mapping of the spatial distribution of annual net accumulation and classifying the diagenetic glacier facies (Benson, 1962). While polar ice sheets represent a unique archive of past atmospheric and climatic conditions, little information exists on large-scale geographical trends in trace element snow chemistry across GIS because of the remote, challenging location. In the spring of 2011, we undertook a 1120 km traverse of the GIS from Thule Air Base to Summit Station. Samples from 11 snow pits and 3 firn cores, dated by stable water isotopes, were analyzed and evaluated in seasonal resolution for their trace element content (23Na, 24Mg, 27Al, 32S, 39K, 44Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 63Cu, 66Zn, 75As, 88Sr, 111Cd, 133Cs, 138Ba, 139La, 140Ce, 141Pr, 208Pb, 209Bi, 238U). Here, we present an initial analysis of the spatial gradients of these trace elements and an interpretation of how their depositional patterns characterize the GIS. The seasonal trends coupled with spatial variability of certain trace elements establish the behavior of specific aerosols (e.g. dust, sea salt, pollution), which will be useful in quantifying geochemical cycling across the GIS and comparing characterizations with results from Benson's traverses. Benson, CS. 1962. Stratigraphic studies in the snow and firn of the Greenland Ice Sheet. SIPRE Research Report, 70, 89 pp.

  11. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  12. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-08-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  13. Two-Phase Flow Patterns in a Four by Four Rod Bundle

    SciTech Connect

    Yoshitaka Mizutani; Shigeo Hosokawa; Akio Tomiyama

    2006-07-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiber-scope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, and , in the present experiments were 0.1 < < 2.0 m/s and 0.04 < < 8.85 m/s, which covered typical two-phase flow patterns appearing in a fuel bundle of a boiling water nuclear reactor. As a result, the following conclusions were obtained: (1) the region of slug flow in the - flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima and Ishii's model. (authors)

  14. Numerical studies of unsteady two dimensional subsonic flows using the ICE method. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.

    1973-01-01

    A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.

  15. Simplification for Fraunhofer diffracting pattern of various randomly oriented ice crystals in cirrus.

    PubMed

    Pujol, Olivier; Brogniez, Gérard; Labonnote, Laurent

    2012-09-01

    This paper deals with Fraunhofer diffraction by an ensemble of independent randomly oriented ice crystals of assorted shapes, like those of cirrus clouds. There is no restriction on the shape of each crystal. It is shown that light flux density in the Fourier plane is azimuth-invariant and varies as 1/sin(4)θ, θ being the angle of diffraction. The analytical formula proposed is exact. The key point of this study is conservation of electromagnetic energy.

  16. Spatial patterns of increases and decreases in the length of the sea ice season in the north polar region, 1979-1986

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1992-01-01

    Recently it was reported that sea ice extents in the Northern Hemisphere showed a very slight but statistically significant decrease over the 8.8-year period of the Nimbus 7 scanning multichannel microwave radiometer (SMMR) data set. In this paper the same SMMR data are used to reveal spatial patterns in increasing and decreasing sea ice coverage. Specifically, the length of the ice season is mapped for each full year of the SMMR data set (1979-1986), and the trends over the 8 years in these ice season lengths are also mapped. These trends show considerable spatial coherence, with a shortening in the sea ice season apparent in much of the eastern hemisphere of the north polar ice cover, particularly in the Sea of Okhotsk, the Barents Sea, and the Kara Sea, and a lengthening of the sea ice season apparent in much of the western hemisphere of the north polar ice cover, particularly in Davis Strait, the Labrador Sea, and the Beaufort Sea.

  17. Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Khazendar, A.; Rignot, E.; Larour, E.

    2011-05-01

    The disintegration of several Antarctic Peninsula ice shelves has focused attention on the state of the Larsen C Ice Shelf. Here, we use satellite observations to map ice shelf speed from the years 2000, 2006 and 2008 and apply inverse modeling to examine the spatial pattern of ice-shelf stiffness. Results show that the northern half of the ice shelf has been accelerating since 2000, speeding up by 15% between 2000 and 2006 alone. The distribution of ice stiffness exhibits large spatial variations that we link to tributary glacier flow and fractures. Our results reveal that ice down-flow from promontories is consistently softer, with the exception of Churchill Peninsula where we infer a stabilizing role for marine ice. We conclude that although Larsen C is not facing imminent collapse, it is undergoing significant change in the form of flow acceleration that is spatially related to thinning and fracture.

  18. Stochastic ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  19. Stochastic ice stream dynamics.

    PubMed

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  20. Pathfinder Landing Site: Alternatives to Catastrophic Floods and An Antarctic Ice-Flow Analog for Outflow Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1998-01-01

    The Pathfinder spacecraft landed successfully at the mouth of the outflow channels Ares and Tiu Valles, returning a wealth of information about the surrounding landscape. One goal of the mission was to ascertain that catastrophic floods formed the outflow channels, the prevailing hypothesis for their origin. The follow-up reports on the mission proclaim that observations are "consistent" with an origin by catastrophic flood; no alternative mechanisms for channel origin are considered. Thus, the impression is given that the problem of channel origin has been solved. Yet none of the observations are diagnostic of origin by catastrophic floods. Other origins are possible but have been ignored, for instance origin as liquefaction mudflows, debris flows, mass flows, or ice flows. Here I will examine landing site observations that have been used to infer origin by catastrophic flooding and suggest alternative origins. Finally, I will highlight some new observation from Antarctica that make an ice-flow mechanism plausible for the origin of some of the outflow channels.

  1. Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows.

    PubMed

    Yatou, Hiroki

    2010-09-01

    We numerically find three types of steady solutions of viscoelastic flows and flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Weissenberg (Wi) and Reynolds (Re) numbers using a spectral element method. The solutions are called "convective," "transition," and "elastic" in ascending order of Wi. In the convective region in the Wi-Re parameter space, convective effect and pressure gradient balance on average. As Wi increases, elastic effect becomes comparable, and the first transition sets in. Through the transition, a separation vortex disappears, and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; the viscous drag significantly drops, and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic effect becomes greater than the convective effect, the second transition occurs but it is relatively moderate. The second transition seems to be governed by the so-called Weissenberg effect. These transitions are not sensitive to driving forces. By a scaling analysis, it is shown that the stress component is proportional to the Reynolds number on the boundary of the first transition in the Wi-Re space. This scaling coincides well with the numerical result.

  2. Patterning process exploration of metal 1 layer in 7nm node with 3D patterning flow simulations

    NASA Astrophysics Data System (ADS)

    Gao, Weimin; Ciofi, Ivan; Saad, Yves; Matagne, Philippe; Bachmann, Michael; Oulmane, Mohamed; Gillijns, Werner; Lucas, Kevin; Demmerle, Wolfgang; Schmoeller, Thomas

    2015-03-01

    In 7mn node (N7), the logic design requires the critical poly pitch (CPP) of 42-45nm and metal 1 (M1) pitch of 28- 32nm. Such high pattern density pushes the 193 immersion lithography solution toward its limit and also brings extremely complex patterning scenarios. The N7 M1 layer may require a self-aligned quadruple patterning (SAQP) with triple litho-etch (LE3) block process. Therefore, the whole patterning process flow requires multiple exposure+etch+deposition processes and each step introduces a particular impact on the pattern profiles and the topography. In this study, we have successfully integrated a simulation tool that enables emulation of the whole patterning flow with realistic process-dependent 3D profile and topology. We use this tool to study the patterning process variations of N7 M1 layer including the overlay control, the critical dimension uniformity (CDU) budget and the lithographic process window (PW). The resulting 3D pattern structure can be used to optimize the process flow, verify design rules, extract parasitics, and most importantly, simulate the electric field and identify hot spots for dielectric reliability. As an example application, we will report extractions of maximum electric field at M1 tipto- tip which is one of the most critical patterning locations and we will demonstrate the potential of this approach for investigating the impact of process variations on dielectric reliability. We will also present simulations of an alternative M1 patterning flow, with a single exposure block using extreme ultraviolet lithography (EUVL) and analyze its advantages compared to the LE3 block approach.

  3. Computational Fluid Dynamics Modeling of the Bonneville Project: Tailrace Spill Patterns for Low Flows and Corner Collector Smolt Egress

    SciTech Connect

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01

    In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is

  4. Pattern-based DTCO flow for early estimation of lithographic difficulty using optical image processing

    NASA Astrophysics Data System (ADS)

    Fakhry, Moutaz; Madkour, Kareem; ElManhawy, Wael; Cain, Jason; Kwan, Joe

    2016-03-01

    In this paper, we introduce a fast and reasonably accurate methodology to determine patterning difficulty based on the fundamentals of optical image processing techniques to analyze the frequency content of design shapes which determines patterning difficulties via a computational patterning transfer function. In addition, with the help of Monte- Carlo random pattern generator, we use this flow to identify a set of difficult patterns that can be used to evaluate the design ease-of-manufacturability via a scoring methodology as well as to help with the optimization phases of post-tape out flows. This flow offers the combined merits of scoring-based criteria and model-based approach for early designs. The value of this approach is that it provides designers with early prediction of potential problems even before the rigorous model-based DFM kits are developed. Moreover, the flow establishes a bi-directional platform for interaction between the design and the manufacturing communities based on geometrical patterns.

  5. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  6. Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Oddsson, Björn; Gudmundsson, Magnús T.; Edwards, Benjamin R.; Thordarson, Thorvaldur; Magnússon, Eyjólfur; Sigurðsson, Gunnar

    2016-07-01

    During the 2010 Eyjafjallajökull eruption in South Iceland, a 3.2-km-long benmoreite lava flow was emplaced subglacially during a 17-day effusive-explosive phase from April 18 to May 4. The lava flowed to the north out of the ice-filled summit caldera down the outlet glacier Gígjökull. The flow has a vertical drop of about 700 m, an area of ca. 0.55 km2, the total lava volume is ca. 2.5·107 m3 and it is estimated to have melted 10-13·107 m3 of ice. During the first 8 days, the lava advanced slowly (<100 m day-1), building up to a thickness of 80-100 m under ice that was initially 150-200 m thick. Faster advance (up to 500 m day-1) formed a thinner (10-20 m) lava flow on the slopes outside the caldera where the ice was 60-100 m thick. This subglacial lava flow was emplaced along meltwater tunnels under ice for the entire 3.2 km of the flow field length and constitutes 90 % of the total lava volume. The remaining 10 % belong to subaerial lava that was emplaced on top of the subglacial lava flow in an ice-free environment at the end of effusive activity, forming a 2.7 km long a'a lava field. About 45 % of the thermal energy of the subglacial lava was used for ice melting; 4 % was lost with hot water; about 1 % was released to the atmosphere as steam. Heat was mostly released by forced convection of fast-flowing meltwater with heat fluxes of 125-310 kWm-2.

  7. Longitudinal cerebral blood flow and amyloid deposition: an emerging pattern?

    PubMed Central

    Sojkova, Jitka; Beason-Held, Lori; Zhou, Yun; An, Yang; Kraut, Michael A; Ye, Weigo; Ferrucci, Luigi; Mathis, Chester A; Klunk, William E; Wong, Dean F; Resnick, Susan M

    2008-01-01

    Although cerebral amyloid deposition may precede cognitive impairment by decades, the relationship between amyloid deposition and longitudinal change in neuronal function has not been studied. The aim of this paper is to determine whether nondemented individuals with high and low amyloid burden show different patterns of longitudinal regional cerebral blood flow (rCBF) changes in the years preceding measurement of amyloid deposition. Methods Twenty-eight nondemented participants (mean (SD) age at [11C] PIB 82.5(4.8) yrs; 6 mildly impaired) from the Baltimore Longitudinal Study of Aging underwent yearly resting-state [15O]H2O PET scans for up to 8 years. [11C]PIB images of amyloid deposition were acquired on average 10.8(0.8) years after the first CBF scan. [11C]PIB distribution volume ratios (DVR) of regions of interest were estimated by fitting a reference tissue model to the measured time activity curves. Based on mean cortical DVR, participants were divided into high and low [11C]PIB retention groups. Differences in longitudinal rCBF changes between high and low [11C]PIB groups were investigated by voxel-based analysis. Results Longitudinal rCBF changes differed significantly between high (n=10) and low (n=18) [11C]PIB groups (p<=0.001). Greater longitudinal decreases in rCBF in the high [11C]PIB group were seen in right anterior/mid cingulate, right supramarginal gyrus, left thalamus and midbrain bilaterally relative to the low group. Greater increases in rCBF over time in the high [11C]PIB group were found in left medial and inferior frontal gyri, right precuneus, left inferior parietal lobule, and the left postcentral gyrus. Conclusion In this group of nondemented older adults, those with high [11C]PIB show greater longitudinal declines in rCBF in certain areas, representing regions with greater decrements in neuronal function. Greater longitudinal increases in rCBF are also observed in those with higher amyloid load and may represent an attempt to preserve

  8. Computer simulation of blood flow patterns in arteries of various geometries.

    PubMed

    Wong, P K; Johnston, K W; Ethier, C R; Cobbold, R S

    1991-11-01

    The purpose of this study is to illustrate the application of computer simulation to the study of blood flow through arteries and to demonstrate the relationship between geometry of the vessels and local flow patterns. A finite element computer program was developed to simulate steady and pulsatile blood flow by solving the continuity and Navier-Stokes equations. The accuracy of the computational method has been confirmed by comparing the numeric results to analytic solutions and to published experimental data from physical models. The results are presented as plots of the velocity vectors, streamlines, and pressure contours. The computational model has been applied to illustrate flow patterns in the following situations: pulsatile flow in a cylindric artery and an artery with an axisymmetric stenosis, steady flow in cylindric arteries with stenoses of varying severity and with different flow rates, steady flow in an artery containing a fusiform aneurysm, steady flow in a two-dimensional model of a symmetric Y-shaped bifurcation, and steady flow in a two-dimensional model of the carotid bifurcation. Regions that are commonly associated with arterial disease often coincide with zones of reversed or stagnant flow. In conclusion, the versatility and feasibility of computational simulation of blood flow is illustrated by this study. Although this mathematic model is a simplification of the real flow phenomena, it yields results that provide useful insights into the understanding of local blood flow patterns for a variety of complex geometries.

  9. Resonant pattern formation in active media driven by time-dependent flows.

    PubMed

    Pérez-Muñuzuri, Vincente

    2006-06-01

    The effect of a time-dependent flow in an oscillatory chemical system supporting front propagation is studied. Resonant target patterns depend on the strength and frequency of the time-dependent flow. The flow time scale needed to entrain the system to the resonant target period of oscillation depends on the closeness to the natural oscillation frequency of the medium. The flow strength needed to obtain these patterns is interpreted in terms of mixing optimization, and we give conditions for the flow that guarantee the best mixing with the Bernoulli property. PMID:16906952

  10. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    SciTech Connect

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    2011-02-15

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena into multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)

  11. Hyporheic flow patterns in relation to large river floodplain attributes

    EPA Science Inventory

    Field-calibrated models of hyporheic flow have emphasized low-order headwater systems. In many cases, however, hyporheic flow in large lowland river floodplains may be an important contributor to ecosystem services such as maintenance of water quality and habitat. In this study, ...

  12. Annual Movement Patterns of Endangered Ivory Gulls: The Importance of Sea Ice

    PubMed Central

    Spencer, Nora C.; Gilchrist, H. Grant; Mallory, Mark L.

    2014-01-01

    The ivory gull (Pagophila eburnea) is an endangered seabird that spends its entire year in the Arctic environment. In the past three decades, threats from various sources have contributed to a >70% decline in Canada. To assess the annual habitat needs of this species, we attached satellite transmitters to 12 ivory gulls on Seymour Island, Nunavut in 2010, which provided up to four breeding seasons of tracking data. Analysis of migratory behaviour revealed considerable individual variation of post-breeding migratory route selection. Ivory gulls traveled a median of 74 days during post-breeding migration, but only 18 days during pre-breeding migration. In contrast to predictions, ivory gulls did not use the Greenland coast during migratory periods. Ivory gulls overwintered near the ice edge in Davis Strait, but also used the Labrador Sea in late February and March. We suggest that the timing of formation and recession and extent of sea ice plays a large role in ivory gull distribution and migratory timing. PMID:25551556

  13. Annual movement patterns of endangered ivory gulls: the importance of sea ice.

    PubMed

    Spencer, Nora C; Gilchrist, H Grant; Mallory, Mark L

    2014-01-01

    The ivory gull (Pagophila eburnea) is an endangered seabird that spends its entire year in the Arctic environment. In the past three decades, threats from various sources have contributed to a >70% decline in Canada. To assess the annual habitat needs of this species, we attached satellite transmitters to 12 ivory gulls on Seymour Island, Nunavut in 2010, which provided up to four breeding seasons of tracking data. Analysis of migratory behaviour revealed considerable individual variation of post-breeding migratory route selection. Ivory gulls traveled a median of 74 days during post-breeding migration, but only 18 days during pre-breeding migration. In contrast to predictions, ivory gulls did not use the Greenland coast during migratory periods. Ivory gulls overwintered near the ice edge in Davis Strait, but also used the Labrador Sea in late February and March. We suggest that the timing of formation and recession and extent of sea ice plays a large role in ivory gull distribution and migratory timing.

  14. Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia

    USGS Publications Warehouse

    Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Kreutz, K.J.; Cecil, L.D.

    2004-01-01

    Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100-5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the ??18O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the and and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas. Copyright 2004 by the American Geophysical Union.

  15. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  16. Effect of diastolic flow patterns on the function of the left ventricle

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Mittal, Rajat

    2013-11-01

    Direct numerical simulations are used to study the effect of intraventricular flow patterns on the pumping efficiency and the blood mixing and transport characteristics of the left ventricle. The simulations employ a geometric model of the left ventricle which is derived from contrast computed tomography. A variety of diastolic flow conditions are generated for a fixed ejection fraction in order to delineate the effect of flow patterns on ventricular performance. The simulations indicate that the effect of intraventricular blood flow pattern on the pumping power is physiologically insignificant. However, diastolic flow patterns have a noticeable effect on the blood mixing as well as the residence time of blood cells in the ventricle. The implications of these findings on ventricular function are discussed.

  17. Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kubo, T.; Kirby, S.H.

    2005-01-01

    We selected two Europan-ice-shell candidate highly hydrated sulfate salts for a laboratory survey of ductile flow properties: MgSO4 ?? 7H2O (epsomite) and Na2SO4 ?? 10H2O (mirabilite), called MS7 and NS10, respectively. Polycrystalline samples in pure form and in mixtures with water ice I were tested using our cryogenic high-pressure creep apparatus at temperatures 232 ??? T ??? 294 K, confining pressures P = 50 and 100 MPa, and strain rates 4 ?? 10-8 ??? ???dot;e ??? 7 ?? 10-5 s-1. Grain size of NS10 samples was > 100 ??m. The flow strength ?? of pure MS7 was over 100 times that of polycrystalline ice I at comparable conditions; that of pure NS10 over 20 times that of ice. In terms of the creep law ???dot;e = A??n e-Q/RT, where R is the gas constant, we determine parameter values of A = 1012.1 MPa-ns-1, n = 5.4, and Q = 128 kJ/mol for pure NS10. Composites of ice I and NS10 of volume fraction ?? NS10 have flow strength ??c = [??NS10??NS10J + (1 - ?? NS10)??iceIJ]1/J where J ??? -0.5, making the effect on the flow of ice with low volume fractions of NS10 much like that of virtually undeformable hard rock inclusions. Being much stronger and denser than ice, massive sulfate inclusions in the warmer, ductile layer of the Europan ice shell are less likely to be entrained in convective ice flow and more likely to be drawn to the base of the ice shell by gravitational forces and eventually expelled. With only smaller, dispersed sulfate inclusions, at probable sulfate ?? < 0.2, the shell may be treated rheologically as pure, polycrystalline ice, with boundary conditions perhaps influenced by the high density and low thermal conductivity of the hydrated salts. Copyright 2005 by the American Geophysical Union.

  18. Non-linear Ice Sheet influence during deglaciation and its impact on the evolution of atmospheric teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Dietrich, Stephan; Wassenburg, Jasper; Wei, Wei; Lohmann, Gerrit; Jens, Fohlmeister; Adrian, Immenhauser

    2013-04-01

    During present conditions atmospheric teleconnections such as the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) have a major impact on Northern Hemispheric climate. However, the Early Holocene is characterized by the presence and melting of the Laurentide Ice Sheet (LIS) leading to a different background climate in comparison to today. Here we investigate the climate evolution during the early (9 ka BP, including LIS and melt water), mid (6 ka BP) and late Holocene (pre-industrial conditions) focussing on the mechanisms and feedbacks during deglaciation by applying the state-of-the-art earth system model COSMOS. A special interest is set on the evolution of atmospheric teleconnection patterns such as the AO/NAO and the Atlantic Multidecadal Oscillation (AMO) that have a major influence on North Atlantic/European climate. The evolution and relative importance of these oscillations throughout the Holocene, however, is still largely unknown. We demonstrate that North Atlantic/European climate is affected by a shift from a more ocean-ice-dominated climate during approx. 9 ka towards a more atmosphere-dominated one during the mid to late Holocene. To isolate the contributions of the presence of the LIS and the melt water we run four different model simulations for the early Holocene sensitivity study (a standard configuration only forced with green house gases and orbital parameters, one with the additional LIS topography, one with a melt water flux of 0.09 Sv, and a fourth that combines all the external forcings). The model results show that the influence of the LIS and its melt water contribution lead to a strong non-linear cooling of surface air temperatures during deglaciation. This synergetic influence of the Laurentide Ice Sheet strengthens the effect of melting on ocean circulation during the early Holocene. The severe colder background climate during deglaciation leads to a more vulnerable ocean circulation in terms of the Atlantic Meridional

  19. Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1994-01-01

    The length of the sea ice season summarizes in one number the ice coverage conditions for an individual location for an entire year. It becomes a particularly valuable variable when mapped spatially over a large area and examined for regional and interannual differences, as is done here for the Southern Ocean over the years 1979-1986, using the satellite passive microwave data of the Nimbus 7 scanning multichannel microwave radiometer. Three prominent geographic anomalies in ice season lengths occur consistently in each year of the data set, countering the general tendency toward shorter ice seasons from south to north: (1) in the Weddell Sea the tendency is toward shorter ice seasons from southwest to northeast, reflective of the cyclonic ice/atmosphere/ocean circulations in the Weddell Sea region. (2) Directly north of the Ross Ice Shelf anomalously short ice seasons occur, lasting only 245-270 days, in contrast to the perennial ice coverage at comparable latitudes in the southern Bellingshausen and Amundsen Seas and in the western Weddell Sea. The short ice season off the Ross Ice Shelf reflects the consistently early opening of the ice cover each spring, under the influence of upwelling along the continental slope and shelf and atmospheric forcing from winds blowing off the Antarctic continent. (3) In the southern Amundsen Sea, anomalously short ice seasons occur adjacent to the coast, owing to the frequent existence of coastal polynyas off the many small ice shelves bordering the sea. Least squares trends in the ice season lengths over the 1979-1986 period are highly coherent spatially, with overall trends toward shorter ice seasons in the northern Weddell and Bellingshausen seas and toward longer ice seasons in the Ross Sea, around much of East Antarctica, and in a portion of the south central Weddell Sea.

  20. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-26

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales. PMID:22538614

  1. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  2. Detailed spatially distributed geothermal heat-flow data for modeling of basal temperatures and meltwater production beneath the Fennoscandian ice sheet

    NASA Astrophysics Data System (ADS)

    Näslund, Jens-Ove; Jansson, Peter; Fastook, James L.; Johnson, Jesse; Andersson, Leif

    Accurate modeling of ice sheets requires proper information on boundary conditions, including the geothermal heat flow (or heat-flow density (HFD)). Traditionally, one uniform HFD value is adopted for the entire modeled domain. We have calculated a distributed, high-resolution HFD dataset for an approximate core area (Sweden and Finland) of the Scandinavian ice sheet, and imbedded this within lower-resolution data published for surrounding regions. Within the Last Glacial Maximum ice margin, HFD varies with a factor of as much as 2.8 (HFD values ranging between 30 and 83 mW m-2), with an average of 49 mW m-2. This average value is 17% higher than 42 mW m-2, a common uniform value used in ice-sheet modeling studies of Fennoscandia. Using this new distributed dataset on HFD, instead of a traditional uniform value of 42 mW m-2, yields a 1.4 times larger total basal meltwater production for the last glacial cycle. Furthermore, using the new dataset in high-resolution modeling results in increased spatial thermal gradients at the bed. This enhances and introduces new local and regional effects on basal ice temperatures and melt rates. We observed significant strengthening of local 'ice streaming', which in one case correlates to an ice-flow event previously interpreted from geomorphology. Regional to local variations in geothermal heat flow need to be considered for proper identification and treatment of thermal and hydraulic bed conditions, most likely also when studying Laurentide, Greenland and Antarctic ice sheets.

  3. The Dakota aquifer near Pueblo, Colorado; faults and flow patterns

    USGS Publications Warehouse

    Banta, E.R.

    1985-01-01

    The Dakota Sandstone and the underlying Purgatoire Formation consisting of the Glencairn Shale and Lytle Sandstone Members form a board outcrop at the southeastern margin of the Canon City Embankment. The two formations form the Dakota aquifer, which supplies water to many domestic, stock, and irrigation wells in addition to a few municipal wells in the 12-township study area. Five large faults and several small faults, all apparently of high angle, are found in the study area. Analysis of water levels and water quality shows that parts of some of these faults restrict the flow of groundwater in the Dakota aquifer. Lithology of the rocks, particularly in the Dakota Sandstone and in the Glencairn Shale Member, is extremely variable. The lithology appears to affect the flow regime, possibly by determining how a particular segment of a fault affects flow. (USGS)

  4. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    PubMed

    Gilmore, Rick O; Thomas, Amanda L; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  5. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    SciTech Connect

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  6. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    PubMed

    Gilmore, Rick O; Thomas, Amanda L; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood. PMID:27326860

  7. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed

    PubMed Central

    Thomas, Amanda L.; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood. PMID:27326860

  8. Infant-specific gaze patterns in response to radial optic flow

    PubMed Central

    Shirai, Nobu; Imura, Tomoko

    2016-01-01

    The focus of a radial optic flow is a valid visual cue used to perceive and control the heading direction of animals. Gaze patterns in response to the focus of radial optic flow were measured in human infants (N = 100, 4–18 months) and in adults (N = 20) using an eye-tracking technique. Overall, although the adults showed an advantage in detecting the focus of an expansion flow (representing forward locomotion) against that of a contraction flow (representing backward locomotion), infants younger than 1 year showed an advantage in detecting the focus of a contraction flow. Infants aged between 13 and 18 months showed no significant advantage in detecting the focus in either the expansion or in the contraction flow. The uniqueness of the gaze patterns in response to the focus of radial optic flow in infants shows that the visual information necessary to perceive heading direction potentially differs between younger and mature individuals. PMID:27708361

  9. Boundary layer flow visualisation patterns on a riblet surface

    NASA Astrophysics Data System (ADS)

    Clark, D. G.

    Boundary layer flow visualization methods, developed at Queen Mary and Westfield College, have been applied to a riblet surface. The results reveal cellular crossflows developing in the grooves between the riblets. These local flor regimes appear to have little direct effect on the flow in the wall layers immediately adjacent to them. Qualitatively, the behavior of the wall layers appears to be that which would be expected if a virtual surface existed at a level slightly above the riblet tops, but a tendency for the origin of longitudinal eddy pairs to become anchored to the top of a riblet is noted.

  10. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  11. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  12. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  13. Effect of blood flow parameters on flow patterns at arterial bifurcations--studies in models.

    PubMed

    Liepsch, D W

    1990-01-01

    Atherosclerotic lesions are found primarily at arterial bends and bifurcations. Flow disturbances at these anatomic sites play a major role in atherogenesis. How hemodynamic factors such as vessel geometry, the pulsatile nature of blood flow, vessel wall elasticity and the non-Newtonian flow behavior of blood influence the flow field at these sites must be clarified. We have performed fundamental studies using a birefringent solution in a simplified rigid 90 degree T-bifurcation and pulsatile flow. The velocity distribution was measured with a laser Doppler anemometer. Flow in an elastic abdominal aorta model has been visualized using magnetic resonance imaging. In both flow studies, zones with negative velocity were found. These model measurements demonstrate that no flow parameter can be neglected. Further detailed studies are necessary to examine the interaction between fluid dynamic and cellular surface properties. PMID:2404201

  14. Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry

    NASA Astrophysics Data System (ADS)

    Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric

    2013-11-01

    Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.

  15. Measurement of Flow Patterns and Dispersion in the Human Airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank E.; Prasad, Ajay K.

    2006-03-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF was used to determine the amount of convective dispersion across an individual generation of the lung.

  16. Flow pattern visualization in a mimic anaerobic digester: experimental and computational studies.

    PubMed

    Vesvikar, M S; Varma, R; Karim, K; Al-Dahhan, M

    2005-01-01

    Advanced non-invasive experiments like computer automated radioactive particle tracking and computed tomography along with computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have appreciable effect on the flow pattern of the digesters. PMID:16180475

  17. Formation of Interfacial Patterns in Aggregation and Viscous Flows

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás

    1987-01-01

    Computer simulations and experiments on viscous fingering are used to investigate the effects of fluctuations, driving force and anisotropy on the growth of two dimensional unstable interfaces. It is demonstrated that variations of the diffusion-limited aggregation model capture many of the most important features of Laplacian pattern formation. In the viscous fingering experiments carried out in a radial Hele-Shaw cell with nematic or smectic liquid crystals a number of unexpected morphological phase transitions can be observed including crossovers from tip splitting to dendritic growth and from fractal to homogeneous structures. The investigations reviewed here suggest that the role of noise, driving force and anisotropy is crucial in the formation of patterns and it is the complex interplay of these factors which produces the great variety of morphologies found in nature.

  18. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  19. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  20. [The correlation between flow pattern during cardiopulmonary bypass and patency of the coronary artery bypass grafts].

    PubMed

    Hagiwara, H; Shirakawa, M; Nakayama, T; Asai, T; Nakayama, M; Ito, T; Yano, Y

    2005-07-01

    Recently the availability of transit time flow measurement (TTFM) is reported especially in off-pump coronary artery bypass grafting (CABG). But little is known about TTFM findings in on-pump CABG. We examined the correlation between the TTFM flow pattern and the angiography findings in on-pump CABG. The subjects consisted of 52 patients who underwent on-pump CABG and angiography early after operation. In these patients, 55 internal thoracic artery (ITA), 17 gastroepiploic artery (GEA), 13 saphenous vein graft (SVG) and 41 radial artery (RA) were tested with TTFM during cardiopulmonary bypass (CPB). TTFM demonstrated a diastolic filling pattern in 53 ITA, 16 GEA, 13 SVG and 36 RA. The angiography revealed that all these grafts were perfectly patent with the exception of a GEA with a flow competition pattern. TTFM revealed an abnormal flow pattern in 2 ITA (these 2 grafts were revised during CPB and the angiography demonstrated their perfect patency), 1 GEA (to and fro pattern), 0 SVG and 5 RA (the abnormal pattern was due to graft spasm in 3 of 5, and the angiography revealed their perfect patency, however, the angiography detected stenosis in the remaining 2 grafts). The present study found that the TTFM flow pattern during CPB correlated well with the angiography findings. TTFM during CPB was useful to detect graft failure, and grafts were revised safely during CPB. PMID:16004331

  1. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    PubMed

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  2. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  3. Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores.

    PubMed

    Kjær, Helle Astrid; Vallelonga, Paul; Svensson, Anders; Kristensen, Magnus Elleskov L; Tibuleac, Catalin; Bigler, Matthias

    2013-01-01

    Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO4(3-) and has biological, terrestrial, and marine emission sources. Thus PO4(3-) detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO4(3-). The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO4(3-) for the period 1930-2005 with a standard deviation of 1.37 nM (0.13 ppb) PO4(3-) and values reaching as high as 10.52 nM (1 ppb) PO4(3-). Similar levels were detected for the period 1771-1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.

  4. Lake carbonate-δ18 records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns

    USGS Publications Warehouse

    Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.

    2011-01-01

    A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ∼AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ∼AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ∼250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.

  5. Analysis of the polishing slurry flow of chemical mechanical polishing by polishing pad with phyllotactic pattern

    NASA Astrophysics Data System (ADS)

    Lv, Yushan; Zhang, Tian; Wang, Jun; Li, Nan; Duan, Min; Xing, Xue-Ling

    2011-05-01

    In order to make the polishing slurry distribution more uniform over the polishing region, a new kind of polishing pad, which has sunflower seed pattern, has been designed based on the phyllotaxis theory of biology, and the boundary conditions of polishing slurry flow have been established. By the help of computational fluid dynamics software (FLUENT), the flow state of the polishing slurry is simulated and the effects of the phyllotactic parameters of polishing pad on the flow field of polishing slurry are analyzed. The results show that when the polishing slurry is imported from the center of phyllotaxis polishing pad, the slurry flows along the counterclockwise and clockwise spiral grooves of phyllotatic pattern, which make fluid flow divergence around, and the flow field becomes more uniform.

  6. Analysis of the polishing slurry flow of chemical mechanical polishing by polishing pad with phyllotactic pattern

    NASA Astrophysics Data System (ADS)

    Lv, Yushan; Zhang, Tian; Wang, Jun; Li, Nan; Duan, Min; Xing, Xue-Ling

    2010-12-01

    In order to make the polishing slurry distribution more uniform over the polishing region, a new kind of polishing pad, which has sunflower seed pattern, has been designed based on the phyllotaxis theory of biology, and the boundary conditions of polishing slurry flow have been established. By the help of computational fluid dynamics software (FLUENT), the flow state of the polishing slurry is simulated and the effects of the phyllotactic parameters of polishing pad on the flow field of polishing slurry are analyzed. The results show that when the polishing slurry is imported from the center of phyllotaxis polishing pad, the slurry flows along the counterclockwise and clockwise spiral grooves of phyllotatic pattern, which make fluid flow divergence around, and the flow field becomes more uniform.

  7. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  8. Reconstructing Flow Patterns from Tsunami Deposits with No Visible Sedimentary Structure

    NASA Astrophysics Data System (ADS)

    Kain, C. L.; Chague-Goff, C.; Goff, J. R.; Wassmer, P.; Gomez, C. A.; Hart, D. E.

    2014-12-01

    High energy coastal events, such as tsunamis, commonly leave sediment deposits in the landscape that may be preserved in the geological record. A set of anomalous sand and silt layers intercalated between soil units was identified alongside an estuary in Okains Bay, Banks Peninsula, New Zealand. Okains Bay, comprised of a coastal plain of Holocene progradational dune ridges, was flooded by tsunamis in 1868 and 1960. Previous research has assessed the relationship between tsunami flow patterns and sediment deposits for recent events, and we aim to extend this application to older deposits where flow patterns were not recorded and sedimentary structures are not visually apparent. A multi-proxy approach was used to investigate the sediment deposits at twelve sites along a 2 km length of the estuary margin and map inundation patterns. Measurements of Magnetic Fabric (MF: Anisotropy of Magnetic Susceptibility) were used to determine the flow direction during deposition, alongside stratigraphy and particle size analyses to assess wave energy. Flow direction results were overlaid on a digital elevation model of the study site to interpret flow patterns. Deposits became thinner and particle size decreased with distance from the coast, indicating waning flow energy with distance inland. MF results indicate that inundation occurred via the estuary channel, with primary flow directions oriented perpendicular or sub-perpendicular to the channel at each site. On a smaller scale, results showed evidence of current reversal at some sites, with flow directed alternately away from and towards the estuary channel. This is consistent with uprush and backwash patterns observed in tsunami wave sequences. Topographic control of flow patterns is also evident from the data. This research demonstrates a method for investigating older, structurally-degraded deposits and has implications for the reconstruction of paleotsunami inundation from their sedimentary deposits.

  9. An experimental mapping of the flow field behind a glaze ice shape on a NACA 0012 airfoil. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Spring, Samuel A.

    1988-01-01

    The flow field about a NACA 0012 airfoil with a simulated glaze ice shape was studied. Split hot-film anemometry was used to measure the streamwise velocity component in the upper and lower separation bubbles aft of the glaze ice horns. Velocity profiles were presented as well as the boundary layer momentum and displacement thickness distributions through the bubbles. Data were presented at angles of attack of 0, 2 and 4 deg and clearly showed the large region of reverse flow. A detailed discussion of split hot-film acquisition and data reduction, and possible sources of error has been included.

  10. Fractal patterns in turbulent flow for laden particles

    NASA Astrophysics Data System (ADS)

    Farhan, M.; Nicolleau, F. C. G. A.; Nowakowski, A. F.; Angilella, J.-R.

    2011-12-01

    We use Kinematic Simulation as a particular kind of synthetic turbulence model to study the preferential accumulation of laden particles with inertia and gravity. Particles are released as a unifrom cloud in the periodic simulation box. We allow particles to settle in synthetic flow and after some times particles concentrate in a particular sub-domain. We study the dimensional properties of these attractors as functions of drift parameter and Stokes number. The attractor's topology varies from curve(D = 1) to fractal plane.

  11. Experimental and numerical study of patterns in laryngeal flow

    NASA Astrophysics Data System (ADS)

    Chisari, N. E.; Artana, G.; Sciamarella, D.

    2009-05-01

    Unsteady airflow is investigated in a channel with a geometry approximating that of the human larynx. The laryngeal flow is simulated by solving the Navier-Stokes equations for an incompressible two-dimensional viscous fluid, and visualized using the Schlieren technique in an experimental setup consisting of a rigid replica of the larynx, with and without ventricular bands. This study shows the spontaneous formation of vortex couples in several regions of the laryngeal profile, and at different stages of the evolution of the starting glottal jet.

  12. Selection of two-phase flow patterns at a simple junction in microfluidic devices.

    PubMed

    Engl, W; Ohata, K; Guillot, P; Colin, A; Panizza, P

    2006-04-01

    We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.

  13. Flow-driven pattern formation in the calcium-oxalate system

    NASA Astrophysics Data System (ADS)

    Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota

    2016-04-01

    The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.

  14. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  15. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  16. Defect turbulence in a spiral wave pattern in the torsional Couette flow.

    PubMed

    Cros, A; Le Gal, P

    2004-01-01

    Our experimental study is devoted to the transition to defect turbulence of a periodic spiral wave pattern occurring in the flow between a rotating and a stationary disk. As the rotation rate Omega of the disk is increased, the radial phase velocity of the waves changes its sign: The waves that propagate first outward on average, then become stationary and finally propagate inward. As they become stationary, the nucleation of topological defects breaks the periodicity of the pattern. For higher Omega, more and more defects are generated in the flow pattern. This article presents the statistical study of this defect mediated turbulence.

  17. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  18. Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Marchant, David R.

    2010-05-01

    A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3°N and 39.2°E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid

  19. Pattern formation in directional solidification under shear flow. II. Morphologies and their characterization.

    PubMed

    Marietti, Y; Debierre, J M; Bock, T M; Kassner, K

    2001-06-01

    In the preceding paper, we have established an interface equation for directional solidification under the influence of a shear flow parallel to the interface. This equation is asymptotically valid near the absolute stability limit. The flow, described by a nonlocal term, induces a lateral drift of the whole pattern due to its symmetry-breaking properties. We find that at not-too-large flow strengths, the transcritical nature of the transition to hexagonal patterns shows up via a hexagonal modulation of the stripe pattern even when the linear instability threshold of the flowless case has not yet been attained. When the flow term is large, the linear description of the drift velocity breaks down and transitions to flow-dominated morphologies take place. The competition between flow-induced and diffusion-induced patterns (controlled by the temperature gradient) leads to new phenomena such as the transition to a different lattice structure in an array of hexagonal cells. Several methods to characterize the morphologies and their transitions are investigated and compared. In particular, we consider two different ways of defining topological defects useful in the description of patterns and we discuss how they are related to each other.

  20. Tropical Cyclone Track Convergence Patterns, Arctic Sea-Ice Loss, and Superstorm Sandy: Is There a Connection?

    NASA Astrophysics Data System (ADS)

    Barnes, C. C.; Francis, J. A.; Byrne, J. M.; Graham, J. R.; McDaniel, S. A.

    2013-12-01

    The potential for disruption to populations and food production due to global climate change will be catastrophic in some regions. Among the most vulnerable regions are those impacted by intensifying or changing tropical cyclones (TC). The objective of this research is to identify historical trends in TC tracks and regional circulation patterns that may forecast increasing risks due to TC intensification under global climate warming. We carry out spatial and temporal analysis of the 1979 - 2011 International Best Track Archive for Climate Stewardship (IBTrACS) historical hurricane database. The data were divided into several subsets to allow analysis of trend in: (i) early (JJAS) and late (OND) seasonal trends; and (ii) multi-year intervals (1979-95 and 1996-2011) to differentiate possible long term trends, if any. Geographical Information Systems (GIS) overlay analysis of the IBTrACS 64 knot hurricane wind radii data identified varying levels of historical tropical cyclone track convergence in the North Atlantic (NA) basin. Results of the track convergence analysis provide a first order analysis regarding changing potential population vulnerabilities due to changing seasonal or long-term tropical cyclone activity. During the summer of 2012, the amount of sea ice on the Arctic Ocean was diminished to about half of its normal extent and 25% of its normal volume relative to the nearly steady conditions that existed before the 1980s. This record loss continues an inexorable decline observed during recent decades. The dramatic increase in open water allows much more solar energy absorption at high latitude. Most of this extra heat returns to the atmosphere in autumn, contributing to the Arctic's rate of warming; exceeding that of mid-latitudes by a factor of two to three, a phenomenon called Arctic Amplification (AA). During October 2012, prior to the arrival of Superstorm Sandy along the eastern seaboard, AA was particularly strong, resulting in a substantial

  1. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  2. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  3. Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores.

    PubMed

    Kjær, Helle Astrid; Vallelonga, Paul; Svensson, Anders; Kristensen, Magnus Elleskov L; Tibuleac, Catalin; Bigler, Matthias

    2013-01-01

    Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO4(3-) and has biological, terrestrial, and marine emission sources. Thus PO4(3-) detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO4(3-). The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO4(3-) for the period 1930-2005 with a standard deviation of 1.37 nM (0.13 ppb) PO4(3-) and values reaching as high as 10.52 nM (1 ppb) PO4(3-). Similar levels were detected for the period 1771-1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland. PMID:24128116

  4. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa

  5. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  6. Luminal flow patterns dictate arterial drug deposition in stent-based delivery

    PubMed Central

    Kolachalama, Vijaya B.; Tzafriri, Abraham R.; Arifin, Davis Y.; Edelman, Elazer R.

    2010-01-01

    Endovascular stents reside in a dynamic flow environment and yet the impact of flow on arterial drug deposition after stent-based delivery is only now emerging. We employed computational fluid dynamic modeling tools to investigate the influence of luminal flow patterns on arterial drug deposition and distribution. Flow imposes recirculation zones distal and proximal to the stent strut that extend the coverage of tissue absorption of eluted drug and induce asymmetry in tissue drug distribution. Our analysis now explains how the disparity in sizes of the two recirculation zones and the asymmetry in drug distribution are determined by a complex interplay of local flow and strut geometry. When temporal periodicity was introduced as a model of pulsatile flow, the net luminal flow served as an index of flow-mediated spatio-temporal tissue drug uptake. Dynamically changing luminal flow patterns are intrinsic to the coronary arterial tree. Coronary drug eluting stents should be appropriately considered where luminal flow, strut design and pulsatility have direct effects on tissue drug uptake after local delivery. PMID:18926864

  7. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles.

    PubMed

    Hortal, Joaquín; Diniz-Filho, José Alexandre F; Bini, Luis Mauricio; Rodríguez, Miguel Ángel; Baselga, Andrés; Nogués-Bravo, David; Rangel, Thiago Fernando; Hawkins, Bradford A; Lobo, Jorge M

    2011-08-01

    Current climate and Pleistocene climatic changes are both known to be associated with geographical patterns of diversity. We assess their associations with the European Scarabaeinae dung beetles, a group with high dispersal ability and well-known adaptations to warm environments. By assessing spatial stationarity in climate variability since the last glacial maximum (LGM), we find that current scarab richness is related to the location of their limits of thermal tolerance during the LGM. These limits mark a strong change in their current species richness-environment relationships. Furthermore, northern scarab assemblages are nested and composed of a phylogenetically clustered subset of large-range sized generalist species, whereas southern ones are diverse and variable in composition. Our results show that species responses to current climate are limited by the evolution of assemblages that occupied relatively climatically stable areas during the Pleistocene, and by post-glacial dispersal in those that were strongly affected by glaciations.

  8. Visualized flow patterns of double concentric jets at low annulus velocities

    NASA Astrophysics Data System (ADS)

    Huang, Rong F.; Lin, Chih L.

    1994-09-01

    The flow structures in the near wake region of the unducted double concentric jets at low Reynolds numbers are studied by smoke-wire flow visualization technique. Four typical characteristic flow regimes -- weak flow, pre-penetration, transition, and penetration -- are identified for different jet velocities in the near disk region. Flow patterns and behvaior in each characteristic flow regime are investigated. The contours of the separation surfaces and the lengths of the recirculation zone in various flow regimes are correlated with nondimensional parameters. The recirculation length reaches a maximum in the transition region. The toroidal recirculation region exhibits both expelling and shear-layer vortex shedding. The shedding processes are presented, and the frequencies are correlated with Strouhal number and central-to-annular jet velocity ratio.

  9. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    PubMed

    Kim, Hun; Lim, Hee-Chang

    2015-06-01

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  10. Permeability and effective slip in confined flows transverse to wall slippage patterns

    NASA Astrophysics Data System (ADS)

    Kumar, Avinash; Datta, Subhra; Kalyanasundaram, Dinesh

    2016-08-01

    The pressure-driven Stokes flow through a plane channel with arbitrary wall separation having a continuous pattern of sinusoidally varying slippage of arbitrary wavelength and amplitude on one/both walls is modelled semi-analytically. The patterning direction is transverse to the flow. In the special situations of thin and thick channels, respectively, the predictions of the model are found to be consistent with lubrication theory and results from the literature pertaining to free shear flow. For the same pattern-averaged slip length, the hydraulic permeability relative to a channel with no-slip walls increases as the pattern wave-number, amplitude, and channel size are decreased. Unlike discontinuous wall patterns of stick-slip zones studied elsewhere in the literature, the effective slip length of a sinusoidally patterned wall in a confined flow continues to scale with both channel size and the pattern-averaged slip length even in the limit of thin channel size to pattern wavelength ratio. As a consequence, for sufficiently small channel sizes, the permeability of a channel with sinusoidal wall slip patterns will always exceed that of an otherwise similar channel with discontinuous patterns on corresponding walls. For a channel with one no-slip wall and one patterned wall, the permeability relative to that of an unpatterned reference channel of same pattern-averaged slip length exhibits non-monotonic behaviour with channel size, with a minimum appearing at intermediate channel sizes. Approximate closed-form estimates for finding the location and size of this minimum are provided in the limit of large and small pattern wavelengths. For example, if the pattern wavelength is much larger than the channel thickness, exact results from lubrication theory indicate that a worst case permeability penalty relative to the reference channel of ˜23% arises when the average slip of the patterned wall is ˜2.7 times the channel size. The results from the current study should

  11. Flow in microchannels with rough walls: flow pattern and pressure drop

    NASA Astrophysics Data System (ADS)

    Wang, Hao Li; Wang, Yuan

    2007-03-01

    In this paper perturbation methods are introduced to study the laminar flow in microchannels between two parallel plates with rough wall surfaces. By a coordinate transformation, the physical domain of the microchannel is transformed into the computational one. The relative roughness as a small parameter presents the governing equations resulting from the coordinate transformation. The equations are linearized through applying the perturbation method, and the spectral collocation method is employed to solve the perturbation equations. Furthermore, the boundary perturbation method is used to analyze the spatially-averaged pressure drop of the microchannel. The numerical results show that flow in microchannels with rough surfaces is quite different from Poiseuille flow: there exist apparent fluctuations and periodic variations of vorticity along the flow direction in the flow field; flow is viscously dominant under the conditions of a low Reynolds number and the flow separations happen in the troughs of wavy walls at a high Reynolds number. The spatially-averaged pressure drop being subject to the invariable flow rate could be greater than, equal to or even less than the theoretical value, which is qualitatively consistent with the results of the microfluidic experiments.

  12. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A.

    1990-01-01

    A complex sequence of pyroclastic flows and surges erupted by Nevado del Ruiz volcano on 13 November 1985 interacted with snow and ice on the summit ice cap to trigger catastrophic lahars (volcanic debris flows), which killed more than 23,000 people living at or beyond the base of the volcano. The rapid transfer of heat from the hot eruptive products to about 10 km2 of the snowpack, combined with seismic shaking, produced large volumes of meltwater that flowed downslope, liquefied some of the new volcanic deposits, and generated avalanches of saturated snow, ice and rock debris within minutes of the 21:08 (local time) eruption. About 2 ?? 107 m3 of water was discharged into the upper reaches of the Molinos, Nereidas, Guali, Azufrado and Lagunillas valleys, where rapid entrainment of valley-fill sediment transformed the dilute flows and avalanches to debris flows. Computed mean velocities of the lahars at peak flow ranged up to 17 m s-1. Flows were rapid in the steep, narrow upper canyons and slowed with distance away from the volcano as flow depth and channel slope diminished. Computed peak discharges ranged up to 48,000 m3 s-1 and were greatest in reaches 10 to 20 km downstream from the summit. A total of about 9 ?? 107 m3 of lahar slurry was transported to depositional areas up to 104 km from the source area. Initial volumes of individual lahars increased up to 4 times with distance away from the summit. The sedimentology and stratigraphy of the lahar deposits provide compelling evidence that: (1) multiple initial meltwater pulses tended to coalesce into single flood waves; (2) lahars remained fully developed debris flows until they reached confluences with major rivers; and (3) debris-flow slurry composition and rheology varied to produce gradationally density-stratified flows. Key lessons and reminders from the 1985 Nevado del Ruiz volcanic eruption are: (1) catastrophic lahars can be generated on ice- and snow-capped volcanoes by relatively small eruptions; (2

  13. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.

    PubMed

    Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G

    2015-01-01

    In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity. PMID:24962383

  14. Influence of flow patterns on chromatographic efficiency in centrifugal partition chromatography.

    PubMed

    Marchal, L; Foucaul, A; Patissier, G; Rosant, J M; Legrand, J

    2000-02-11

    Visualization of flow patterns in centrifugal partition chromatography (CPC) was performed with an asynchronous camera and a stroboscope triggered by the CPC rotor, allowing a channel to be selected and observed regardless of rotational speed. Three main types of flow states were noted as a function of rotational speed and flow-rate: jets stuck along channel walls, broken jets and atomization. Our observations emphasize the importance of Coriolis force on flow shape. Chromatographic efficiency was related to the dispersion of the mobile phase in the stationary phase.

  15. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  16. RADIAL FLOW PATTERN OF A SLOW CORONAL MASS EJECTION

    SciTech Connect

    Feng, Li; Gan, Weiqun; Inhester, Bernd

    2015-06-01

    Height–time plots of the leading edge of coronal mass ejections (CMEs) have often been used to study CME kinematics. We propose a new method to analyze the CME kinematics in more detail by determining the radial mass transport process throughout the entire CME. Thus, our method is able to estimate not only the speed of the CME front but also the radial flow speed inside the CME. We have applied this method to a slow CME with an average leading edge speed of about 480 km s{sup −1}. In the Lagrangian frame, the speeds of the individual CME mass elements stay almost constant within 2 and 15 R{sub S}, the range over which we analyzed the CME. Hence, we have no evidence of net radial forces acting on parts of the CME in this range or of a pile up of mass ahead of the CME. We find evidence that the leading edge trajectory obtained by tie-pointing may gradually lag behind the Lagrangian front-side trajectories derived from our analysis. Our results also allow a much more precise estimate of the CME energy. Compared with conventional estimates using the CME total mass and leading edge motion, we find that the latter may overestimate the kinetic energy and the gravitational potential energy.

  17. Mean flow velocity patterns within a ventricular assist device.

    PubMed

    Baldwin, J T; Tarbell, J M; Deutsch, S; Geselowitz, D B

    1989-01-01

    A laser Doppler anemometry system was used to measure fluid velocities at 127 locations within a plexiglas model of the 70 cm3 Penn State electric ventricular assist device (VAD) fitted with Bjork-Shiley convexo-concave tilting disk valves. The velocity measurements were made using a seeded blood analog fluid that matched the kinematic viscosity of blood and the refractive index of plexiglas. At each location, 250 instantaneous velocity realizations were collected at eight instances during the pump cycle. The data were filtered and averaged to calculate mean (ensemble averaged) velocities. The results indicate that the largest mean velocities are created during systole in the VADs outlet tract, and during diastole in the major orifice of the mitral valve. A single vortex centered roughly about the axis of the cylindrical portion of the pump is created during early diastole. This vortex, which persists into early systole, provides good washing of the VAD walls. However, it does appear to impede the flow entering the VAD through the minor orifice of the mitral valve. High velocities also occur during diastole along the minor orifice wall of the outlet tract and are directed into the chamber. These retrograde velocities suggest the presence of a regurgitant jet near the wall of the prosthetic valve.

  18. A GIS modeled DEM-based hydrologic watershed network of the Greenland Ice Sheet and non-ice land surface areas

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Smith, L. C.; Chu, V. W.; Wang, J.

    2011-12-01

    Increased mass loss of the Greenland Ice Sheet and subsequent global sea level rise has amplified the need to understand Greenland's hydrology and melt patterns. Drainage basins for Greenland's land surface and ice sheet were produced using the GLAS/IceSat 1km surface DEM and a hydrostatic surface pressure grid over the ice sheet. The pressure grid was modeled using the surface DEM and a 5km bedrock elevation grid (Bamber et al., 2001), assuming hydrostatic pressure and no conduit flow within the ice sheet as per Lewis & Smith (2009). Pour points were generated using an 8-pixel pour point derivation algorithm (Jenson & Domingue, 1988) and were used to model watersheds and flow networks. This work provides a complete watershed, flow and drainage network dataset for the entirety of Greenland - both land and ice surface regions. Potential applications include ice sheet melt water routing to the ocean, supraglacial melt water patterns, and the separation of specific ice melt drainage networks from snow melt networks. These basins act as a base for the incorporation of finer resolution IceBridge and GLAS/IceSat data products.

  19. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  20. Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, Roger H.; Williams, Trevor; Henry, Stuart; ,; Hansaraj, Dhiresh

    2010-01-01

    The Antarctic Drilling Program (ANDRILL) successfully drilled and cored a borehole, AND-1B, beneath the McMurdo Ice Shelf and into a flexural moat basin that surrounds Ross Island. Total drilling depth reached 1285 m below seafloor (mbsf) with 98 percent core recovery for the detailed study of glacier dynamics. With the goal of obtaining complementary information regarding heat flow and permeability, which is vital to understanding the nature of marine hydrogeologic systems, a succession of three temperature logs was recorded over a five-day span to monitor the gradual thermal recovery toward equilibrium conditions. These data were extrapolated to true, undisturbed temperatures, and they define a linear geothermal gradient of 76.7 K/km from the seafloor to 647 mbsf. Bulk thermal conductivities of the sedimentary rocks were derived from empirical mixing models and density measurements performed on core, and an average value of 1.5 W/mK ± 10 percent was determined. The corresponding estimate of heat flow at this site is 115 mW/m2. This value is relatively high but is consistent with other elevated heat-flow data associated with the Erebus Volcanic Province. Information regarding the origin and frequency of pathways for subsurface fluid flow is gleaned from drillers' records, complementary geophysical logs, and core descriptions. Only two prominent permeable zones are identified and these correspond to two markedly different features within the rift basin; one is a distinct lithostratigraphic subunit consisting of a thin lava flow and the other is a heavily fractured interval within a single thick subunit.

  1. Analyzing Unsatirated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    SciTech Connect

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-08-03

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.

  2. Effect of air-flow on the evaluation of refractive surgery ablation patterns.

    PubMed

    Dorronsoro, Carlos; Schumacher, Silvia; Pérez-Merino, Pablo; Siegel, Jan; Mrochen, Michael; Marcos, Susana

    2011-02-28

    An Allegretto Eye-Q laser platform (Wavelight GmbH, Erlangen, Germany) was used to study the effect of air-flow speed on the ablation of artificial polymer corneas used for testing refractive surgery patterns. Flat samples of two materials (PMMA and Filofocon A) were ablated at four different air flow conditions. The shape and profile of the ablated surfaces were measured with a precise non-contact optical surface profilometer. Significant asymmetries in the measured profiles were found when the ablation was performed with the clinical air aspiration system, and also without air flow. Increasing air-flow produced deeper ablations, improved symmetry, and increased the repeatability of the ablation pattern. Shielding of the laser pulse by the plume of smoke during the ablation of plastic samples reduced the central ablation depth by more than 40% with no-air flow, 30% with clinical air aspiration, and 5% with 1.15 m/s air flow. A simple model based on non-inertial dragging of the particles by air flow predicts no central shielding with 2.3 m/s air flow, and accurately predicts (within 2 μm) the decrease of central ablation depth by shielding. The shielding effects for PMMA and Filofocon A were similar despite the differences in the ablation properties of the materials and the different full-shielding transmission coefficient, which is related to the number of particles ejected and their associated optical behavior. Air flow is a key factor in the evaluation of ablation patterns in refractive surgery using plastic models, as significant shielding effects are found with typical air-flow levels used under clinical conditions. Shielding effects can be avoided by tuning the air flow to the laser repetition rate.

  3. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; Burke, Kevin M.; Nolan, Gerald J.; Brown, Dennis

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  4. Anisotropic stress accumulation in cooling lava flows and resulting fracture patterns: Insights from starch-water desiccation experiments

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Desiccation of starch-water slurries is a useful analog for the production of polygonal fractures/columnar joints in cooling lava flows. When left to dry completely, a simple mixture of 1:1 starch and water will produce columns that appear remarkably similar to natural columnar joints formed in cooled lava flows. Columns form when the accumulation of isotropic stress exceeds the tensile strength of a material, at which point a fracture forms and advances through the material perpendicular to the desiccating surface. Individual fractures will initially form orthogonal to the desiccation surface but will quickly evolve into a hexagonal fracture network that advances incrementally through the material. However, some fracture patterns found within natural lava flows are not hexagonal ( Lodge and Lescinsky, 2009-this issue), but rather have fracture lengths that are much longer than the distance to adjacent fractures. These fractures are commonly found at lava flows that have interacted with glacial ice during emplacement. The purpose of this study is to utilize starch analog experiments to better understand the formation of these fractures and the stress regimes responsible for their non-hexagonal patterns. To simulate anisotropic conditions during cooling, the starch slurry was poured into a container with a movable wall that was attached to a screw-type jack. The jack was then set to slowly extend or retract while the slurry desiccated. This resulted in either a decrease or increase in the chamber cross-sectional area thus creating compressional or extensional regimes. Decreasing chamber area (DCA) experiments resulted in fractures with larger lengths parallel to the direction of wall movement (also direction of compression). It also caused localized thrust faulting and curved column development. Increasing chamber area (ICA) experiments produced a zone of horizontal column development along the expanding margin (produced when the wall detached from the sample

  5. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side

    NASA Astrophysics Data System (ADS)

    Huang, Lihao; Li, Gang; Tao, Leren

    2016-07-01

    Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.

  6. Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1983-01-01

    Various flow visualization techniques were used to define the secondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.

  7. Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    NASA Astrophysics Data System (ADS)

    Gaugler, R. E.; Russell, L. M.

    1984-01-01

    Various flow visualization techniques were used to define the seondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious. Previously announced in STAR as N83-14435

  8. Comparison of visualized turbine endwall secondary flows and measured heat transfer patterns

    NASA Astrophysics Data System (ADS)

    Gaugler, R. E.; Russell, L. M.

    1983-03-01

    Various flow visualization techniques were used to define the secondary flows near the endwall in a large heat transfer data. A comparison of the visualized flow patterns and the measured Stanton number distribution was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a few techniques using permanent marker pen ink dots and synthetic wintergreen oil. Details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distribution. Near the cascade entrance there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.

  9. Analyzing flow patterns in unsaturated fractured rock of YuccaMountain using an integrated modeling approach

    SciTech Connect

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.

    2003-11-03

    This paper presents a series of modeling investigations to characterize percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The investigations are conducted using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model through model calibration. This integrated modeling approach, based on a dual-continuum formulation, takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. In particular, the model results are examined against different types of field-measured data and used to evaluate different hydrogeological conceptual models and their effects on flow patterns in the unsaturated zone. The objective of this work to provide understanding of percolation patterns and flow behavior through the unsaturated zone, which is a crucial issue in assessing repository performance.

  10. Numerical study of the effects of icing on viscous flow over wings

    NASA Technical Reports Server (NTRS)

    Sankar, L. N.

    1994-01-01

    An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the outer zone, the unsteady full-potential equation (FPE) is solved. In the inner zone, the Navier-Stokes equations are solved using a diagonal form of an alternating-direction implicit (ADI) approximate factorization procedure. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic-based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are less than 60 percent of that required for a full-blown Navier-Stokes analysis for steady flow applications and about 60 percent of the Navier-Stokes CPU times for unsteady flows in non-vector processing machines. Applications of the method are presented for a rectangular NACA 0012 wing in low subsonic steady flow at moderate and high angles of attack, and for an F-5 wing in steady and unsteady subsonic and transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to Navier-Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier-Stokes equations can be retained with a significant savings in computational time.

  11. An active region model for capturing fractal flow patterns in unsaturated soils: model development.

    PubMed

    Liu, H H; Zhang, R; Bodvarsson, G S

    2005-11-01

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  12. An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

    SciTech Connect

    Liu, Hui-Hai; Zhang, R.; Bodvarsson, Gudmundur S.

    2005-06-11

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  13. Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction

    NASA Astrophysics Data System (ADS)

    Maynes, D.; Jeffs, K.; Woolford, B.; Webb, B. W.

    2007-09-01

    This paper reports results of an analytical and experimental investigation of the laminar flow in a parallel-plate microchannel with ultrahydrophobic top and bottom walls. The walls are fabricated with microribs and cavities that are oriented parallel to the flow direction. The channel walls are modeled in an idealized fashion, with the shape of the liquid-vapor meniscus approximated as flat. An analytical model of the vapor cavity flow is employed and coupled with a numerical model of the liquid flow by matching the local liquid and vapor phase velocity and shear stress at the interface. The numerical predictions show that the effective slip length and the reduction in the classical friction factor-Reynolds number product increase with increasing relative cavity width, increasing relative cavity depth, and decreasing relative microrib/cavity module length. Comparisons were also made between the zero shear interface model and the liquid-vapor cavity coupled model. The results illustrate that the zero shear interface model underpredicts the overall flow resistance. Further, the deviation between the two models was found to be significantly larger for increasing values of both the relative rib/cavity module width and the cavity fraction. The trends in the frictional pressure drop predictions are in good agreement with experimental measurements made at similar conditions, with greater deviation observed at increasing size of the cavity fraction. Based on the numerical predictions, an expression is proposed in which the friction factor-Reynolds number product may be estimated in terms of the important variables.

  14. Effective Medium Theory for Drag Reducing Micro-patterned Surfaces in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Battiato, I.

    2013-12-01

    Inspired by the lotus effect, many studies in the last decade have focused on micro- and nano-patterned surfaces. They revealed that patterns at the micro-scale combined with high contact angles can significantly reduce skin drag. However, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats the latter as a porous medium, and provides a framework to model flow over patterned surfaces in both Cassie and Wenzel states. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or Karman) number in turbulent regime, the viscosity ratio between the fluid in and above the features, and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.

  15. Effective Medium Theory for Drag Reducing Micro-patterned Surfaces in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Battiato, Ilenia

    2013-11-01

    Inspired by the lotus effect, many studies in the last decade have focused on micro- and nano-patterned surfaces. They revealed that patterns at the micro-scale combined with high contact angles can significantly reduce skin drag. However, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features that treats the latter as a porous medium, and provides a framework to model flows over patterned surfaces in both Cassie and Wenzel states. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or Karman) number in turbulent regime. We apply the proposed model to turbulent flow over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.

  16. Impact of vegetation die-off on spatial flow patterns over a tidal marsh

    NASA Astrophysics Data System (ADS)

    Temmerman, Stijn; Moonen, Pieter; Schoelynck, Jonas; Govers, Gerard; Bouma, Tjeerd J.

    2012-02-01

    Large-scale die-off of tidal marsh vegetation, caused by global change, is expected to change flow patterns over tidal wetlands, and hence to affect valuable wetland functions such as reduction of shoreline erosion, attenuation of storm surges, and sedimentation in response to sea level rise. This study quantified for the first time the effects of large-scale (4 ha) artificial vegetation removal, as proxy of die-off, on the spatial flow patterns through a tidal marsh channel and over the surrounding marsh platform. After vegetation removal, the flow velocities measured on the platform increased by a factor of 2 to 4, while the channel flow velocities decreased by almost a factor of 3. This was associated with a change in flow directions on the platform, from perpendicular to the channel edges when vegetation was present, to a tendency of more parallel flow to the channel edges when vegetation was absent. Comparison with hydrodynamic model simulations explains that the vegetation-induced friction causes both flow reduction on the vegetated platform and flow acceleration towards the non-vegetated channels. Our findings imply that large-scale vegetation die-off would not only result in decreased platform sedimentation rates, but also in sediment infilling of the channels, which together would lead to further worsening of plant growth conditions and a potentially runaway feedback to permanent vegetation loss.

  17. The Effect of Water, Sugars, and Proteins on the Pattern of Ice Nucleation and Propagation in Acclimated and Nonacclimated Canola Leaves1

    PubMed Central

    Gusta, L.V.; Wisniewski, M.; Nesbitt, N.T.; Gusta, M.L.

    2004-01-01

    Infrared video thermography was used to observe ice nucleation temperatures, patterns of ice formation, and freezing rates in nonacclimated and cold acclimated leaves of a spring (cv Quest) and a winter (cv Express) canola (Brassica napus). Distinctly different freezing patterns were observed, and the effect of water content, sugars, and soluble proteins on the freezing process was characterized. When freezing was initiated at a warm subzero temperature, ice growth rapidly spread throughout nonacclimated leaves. In contrast, acclimated leaves initiated freezing in a horseshoe pattern beginning at the uppermost edge followed by a slow progression of ice formation across the leaf. However, when acclimated leaves, either previously killed by a slow freeze (2°C h−1) or by direct submersion in liquid nitrogen, were refrozen their freezing pattern was similar to nonacclimated leaves. A novel technique was developed using filter paper strips to determine the effects of both sugars and proteins on the rate of freezing of cell extracts. Cell sap from nonacclimated leaves froze 3-fold faster than extracts from acclimated leaves. The rate of freezing in leaves was strongly dependent upon the osmotic potential of the leaves. Simple sugars had a much greater effect on freezing rate than proteins. Nonacclimated leaves containing high water content did not supercool as much as acclimated leaves. Additionally, wetted leaves did not supercool as much as nonwetted leaves. As expected, cell solutes depressed the nucleation temperature of leaves. The use of infrared thermography has revealed that the freezing process in plants is a complex process, reminding us that many aspects of freezing tolerance occur at a whole plant level involving aspects of plant structure and metabolites rather than just the expression of specific genes alone. PMID:15247390

  18. The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves.

    PubMed

    Gusta, L V; Wisniewski, M; Nesbitt, N T; Gusta, M L

    2004-07-01

    Infrared video thermography was used to observe ice nucleation temperatures, patterns of ice formation, and freezing rates in nonacclimated and cold acclimated leaves of a spring (cv Quest) and a winter (cv Express) canola (Brassica napus). Distinctly different freezing patterns were observed, and the effect of water content, sugars, and soluble proteins on the freezing process was characterized. When freezing was initiated at a warm subzero temperature, ice growth rapidly spread throughout nonacclimated leaves. In contrast, acclimated leaves initiated freezing in a horseshoe pattern beginning at the uppermost edge followed by a slow progression of ice formation across the leaf. However, when acclimated leaves, either previously killed by a slow freeze (2 degrees C h(-1)) or by direct submersion in liquid nitrogen, were refrozen their freezing pattern was similar to nonacclimated leaves. A novel technique was developed using filter paper strips to determine the effects of both sugars and proteins on the rate of freezing of cell extracts. Cell sap from nonacclimated leaves froze 3-fold faster than extracts from acclimated leaves. The rate of freezing in leaves was strongly dependent upon the osmotic potential of the leaves. Simple sugars had a much greater effect on freezing rate than proteins. Nonacclimated leaves containing high water content did not supercool as much as acclimated leaves. Additionally, wetted leaves did not supercool as much as nonwetted leaves. As expected, cell solutes depressed the nucleation temperature of leaves. The use of infrared thermography has revealed that the freezing process in plants is a complex process, reminding us that many aspects of freezing tolerance occur at a whole plant level involving aspects of plant structure and metabolites rather than just the expression of specific genes alone.

  19. Flow pattern in the vicinity of self-propelling hot Janus particles.

    PubMed

    Bickel, Thomas; Majee, Arghya; Würger, Alois

    2013-07-01

    We study the temperature field and the resulting flow pattern in the vicinity of a heated metal-capped Janus particle. If its thickness exceeds about 10 nm, the cap forms an isotherm and the flow pattern comprises a quadrupolar term that decays with the square of the inverse distance ~r(-2). For much thinner caps the velocity varies as ~r(-3). These findings could be relevant for collective effects in dense suspensions and for the circular tracer motion observed recently in the vicinity of a tethered Janus particle. PMID:23944457

  20. Flow pattern in the vicinity of self-propelling hot Janus particles

    NASA Astrophysics Data System (ADS)

    Bickel, Thomas; Majee, Arghya; Würger, Alois

    2013-07-01

    We study the temperature field and the resulting flow pattern in the vicinity of a heated metal-capped Janus particle. If its thickness exceeds about 10 nm, the cap forms an isotherm and the flow pattern comprises a quadrupolar term that decays with the square of the inverse distance ˜r-2. For much thinner caps the velocity varies as ˜r-3. These findings could be relevant for collective effects in dense suspensions and for the circular tracer motion observed recently in the vicinity of a tethered Janus particle.

  1. Probabilistic and Other Neural Nets in Multi-Hole Probe Calibration and Flow Angularity Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Baskaran, Subbiah; Ramachandran, Narayanan; Noever, David

    1998-01-01

    The use of probabilistic (PNN) and multilayer feed forward (MLFNN) neural networks are investigated for calibration of multi-hole pressure probes and the prediction of associated flow angularity patterns in test flow fields. Both types of networks are studied in detail for their calibration and prediction characteristics. The current formalism can be applied to any multi-hole probe, however the test results for the most commonly used five-hole Cone and Prism probe types alone are reported in this article.

  2. Pattern recognition analysis of anterior cingulate cortex blood flow to classify depression polarity†

    PubMed Central

    Almeida, J. R. C.; Mourao-Miranda, J.; Aizenstein, H. J.; Versace, A.; Kozel, F. A.; Lu, H.; Marquand, A.; LaBarbara, E. J.; Brammer, M.; Trivedi, M.; Kupfer, D. J.; Phillips, M. L.

    2013-01-01

    Differentiating bipolar from recurrent unipolar depression is a major clinical challenge. In 18 healthy females and 36 females in a depressive episode - 18 with bipolar disorder type I, 18 with recurrent unipolar depression - we applied pattern recognition analysis using subdivisions of anterior cingulate cortex (ACC) blood flow at rest, measured with arterial spin labelling. Subgenual ACC blood flow classified unipolar v. bipolar depression with 81% accuracy (83% sensitivity, 78% specificity). PMID:23969484

  3. Using soil moisture and spatial yield patterns to identify subsurface flow pathways.

    PubMed

    Gish, T J; Walthall, C L; Daughtry, C S T; Kung, K-J S

    2005-01-01

    Subsurface soil water dynamics can influence crop growth and the fate of surface-applied fertilizers and pesticides. Recently, a method was proposed using only ground-penetrating radar (GPR) and digital elevation maps (DEMs) to identify locations where subsurface water converged into discrete pathways. For this study, the GPR protocol for identifying horizontal subsurface flow pathways was extended to a 3.2-ha field, uncertainty is discussed, and soil moisture and yield patterns are presented as confirming evidence of the extent of the subsurface flow pathways. Observed soil water contents supported the existence of discrete preferential funnel flow processes occurring near the GPR-identified preferential flow pathways. Soil moisture also played a critical role in the formation of corn (Zea mays L.) grain yield patterns with yield spatial patterns being similar for mild and severe drought conditions. A buffer zone protocol was introduced that allowed the impact of subsurface flow pathways on corn grain yield to be quantified. Results indicate that when a GPR-identified subsurface clay layer was within 2 m of the soil surface, there was a beneficial impact on yield during a drought year. Furthermore, the buffer zone analysis demonstrated that corn grain yields decreased as the horizontal distance from the GPR-identified subsurface flow pathways increased during a drought year. Averaged real-time soil moisture contents at 0.1 m also decreased with increasing distance from the GPR-identified flow pathways. This research suggests that subsurface flow pathways exist and influence soil moisture and corn grain yield patterns.

  4. A herringbone bedform pattern of possible Taylor-Görtler type flow origin seen in sonographs

    USGS Publications Warehouse

    Toimil, Lawrence J.; Reimnitz, Erk

    1979-01-01

    Side-scan sonar records collected in a shallow arctic lagoon (2–2.5 m depth) reveal a herringbone pattern of current-aligned linear reflectors with branching diagonals. The major longitudinal reflectors have no detectable relief (<20 cm), are spaced 5–10 m apart, and may represent current-aligned helical cell boundaries preserved in the silty fine sand of the lagoon floor. The pattern suggests a three-dimensional flow regime of the Taylor-Görtler type.

  5. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA.

    PubMed

    Neuner, Gilbert; Xu, Bingcheng; Hacker, Juergen

    2010-08-01

    Infrared differential thermal analysis (IDTA) was used to monitor the velocity and pattern of ice propagation and deep supercooling of xylem parenchyma cells (XPCs) during freezing of stems of Castanea sativa L., Morus nigra L. and Quercus robur L. that exhibit a macro- and ring-porous xylem. Measurements were conducted on the surface of cross- and longitudinal stem sections. During high-temperature freezing exotherms (HTEs; -2.8 to -9.4°C), initial freezing was mainly observed in the youngest year ring of the sapwood (94%), but occasionally elsewhere (older year rings: 4%; bark: 2%). Initially, ice propagated rapidly in the largest xylem conduits. This resulted in a distinct freezing pattern of concentric circles in C. sativa and M. nigra. During HTEs, supercooling of XPCs became visible in Q. robur stems, but not in the other species that have narrower pith rays. Intracellular freezing of supercooled XPCs of Q. robur became visible by IDTA during low-temperature freezing exotherms (<-17.4 °C). Infrared differential thermal analysis revealed the progress and the two-dimensional pattern of XPC freezing. XPCs did not freeze at once, but rather small cell groups appeared to freeze at random anywhere in the xylem. By IDTA, ice propagation and deep supercooling in stems can be monitored at meaningful spatial and temporal resolutions.

  6. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns.

    PubMed

    Yiu, Billy Y S; Lai, Simon S M; Yu, Alfred C H

    2014-09-01

    Achieving non-invasive, accurate and time-resolved imaging of vascular flow with spatiotemporal fluctuations is well acknowledged to be an ongoing challenge. In this article, we present a new ultrasound-based framework called vector projectile imaging (VPI) that can dynamically render complex flow patterns over an imaging view at millisecond time resolution. VPI is founded on three principles: (i) high-frame-rate broad-view data acquisition (based on steered plane wave firings); (ii) flow vector estimation derived from multi-angle Doppler analysis (coupled with data regularization and least-squares fitting); (iii) dynamic visualization of color-encoded vector projectiles (with flow speckles displayed as adjunct). Calibration results indicated that by using three transmit angles and three receive angles (-10°, 0°, +10° for both), VPI can consistently compute flow vectors in a multi-vessel phantom with three tubes positioned at different depths (1.5, 4, 6 cm), oriented at different angles (-10°, 0°, +10°) and of different sizes (dilated diameter: 2.2, 4.4 and 6.3 mm; steady flow rate: 2.5 mL/s). The practical merit of VPI was further illustrated through an anthropomorphic flow phantom investigation that considered both healthy and stenosed carotid bifurcation geometries. For the healthy bifurcation with 1.2-Hz carotid flow pulses, VPI was able to render multi-directional and spatiotemporally varying flow patterns (using a nominal frame rate of 416 fps or 2.4-ms time resolution). In the case of stenosed bifurcations (50% eccentric narrowing), VPI enabled dynamic visualization of flow jet and recirculation zones. These findings suggest that VPI holds promise as a new tool for complex flow analysis.

  7. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  8. Reconstructing the last Newfoundland Ice Sheet,Canada.

    NASA Astrophysics Data System (ADS)

    McHenry, Maureen; Dunlop, Paul

    2015-04-01

    attempt at unravelling this new record using flowset analysis which separates discrete ice flow patterns into snapshots of ice sheet behaviour through time. Our initial flowset analysis shows the NIS was a dynamic ice sheet which was susceptible to configuration changes throughout the last glacial cycle including ice divide migration, regional configuration changes, ice stream activity and enhanced ice flow caused by marine drawdown.

  9. The Roosevelt Island Climate Evolution (RICE) Project - Did the Ross Ice Shelf Collapse During MIS 5e?

    NASA Astrophysics Data System (ADS)

    Bertler, N. A. N.; Conway, H.; Dahl-Jensen, D.; Blunier, T.; Brook, E.; Dadic, R.; Delmonte, B.; Dongqi, Z.; Edwards, R.; Emanuelsson, D. B.; Fudge, T. J.; Golledge, N.; Hindmarsh, R. C. A.; Hawley, R. L.; Kipfstuhl, S.; Kjær, H. A.; Kurbatov, A.; Lee, J.; Mayewski, P. A.; Naish, T.; Neff, P. D.; Scherer, R. P.; Severinghaus, J. P.; Simonsen, M. F.; Steig, E. J.; Tuohy, A.; Vallelonga, P. T.; Waddington, E. D.

    2014-12-01

    Geological evidence and modelling experiments suggest that the removal of ice shelves from marine based ice sheets can lead to catastrophic collapse. Roosevelt and Ross Islands are thought to be key stabilization anchors for the Ross Ice Shelf and thus the West Antarctic Ice Sheet. As part of the Roosevelt Island Climate Evolution (RICE) project, a 763m deep ice core was recovered during 2011-2013 from Roosevelt Island, at the northern edge of the Ross Ice Shelf. The ice at Roosevelt Island is grounded 210m below sea level and accumulates in situ, with the Ross Ice Shelf flowing around the rise. High resolution radar surveys show a well developed Raymond Bump at the divide of the ice dome. With the conclusion of the RICE core processing campaign in July 2014, a preliminary age model is developed using annual layer count, volcanic ash layers; and high resolution methane data tied to the WAIS Divide ice core record, and a glacial flow model. Here we show preliminary data spanning over 100 ka including evidence of ice from the Eemian period (MIS 5e) at the base of the core. The presence of Eemian ice in the RICE record raises the question: how much of the Ross Ice Shelf and West Antarctic Ice Sheet collapsed during the last interglacial, when global sea level was 4-8m higher than today? We discuss reconstructions of sea surface and air temperature, sea ice extent, atmospheric circulation patterns, and ice shelf retreat. An ensemble of sensitivity modelling experiments is used to determine thresholds for the removal of ice on Roosevelt Island and correlated grounding line and ice volume changes of the Ross Ice Shelf and the West Antarctic Ice Sheet.

  10. Top Sounder Ice Penetration

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  11. SPOT satellite mapping of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.

    1993-01-01

    Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.

  12. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    PubMed

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  13. Zonal Flow as Pattern Formation: Merging Jets and the Ultimate Jet Length Scale

    SciTech Connect

    Jeffrey B. Parker and John A. Krommes

    2013-01-30

    Zonal flows are well known to arise spontaneously out of turbulence. It is shown that for statisti- cally averaged equations of quasigeostrophic turbulence on a beta plane, zonal flows and inhomoge- neous turbulence fit into the framework of pattern formation. There are many implications. First, the zonal flow wavelength is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  14. Holocene dynamics of the Rhone Glacier, Switzerland, deduced from ice flow models and cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Goehring, Brent M.; Vacco, David A.; Alley, Richard B.; Schaefer, Joerg M.

    2012-10-01

    We describe efforts to model the Holocene extent of the Rhone Glacier, Switzerland, using four paleoclimate records as templates for paleo-equilibrium line altitude to identify candidate driving mechanisms of glaciers in the Alps. We evaluate the success of each paleoclimate template by comparing cosmogenic 10Be and 14C concentrations in pro-glacial bedrock derived from modeled glacier configurations to measured values. An adequate fit can be obtained using mean summer insolation for 46.5°N. However, use of the Dongee Cave, China, speleothem record yields the best fit by accounting for both sub-millennial (e.g. Little Ice Age and Medieval Warm Period) and multi-millennial climate variations (summer insolation). Our result indicates that glaciers in the Alps primarily responded to changes in insolation during the Holocene were smaller than today during the early Holocene when insolation was relatively high, and became larger during the mid to late Holocene. Superimposed on the first-order insolation response were shorter, sometimes large amplitude, length changes in response to short-lived climate events such as the Medieval Warm Period and the LIA.

  15. Modality transition-based network from multivariate time series for characterizing horizontal oil-water flow patterns

    NASA Astrophysics Data System (ADS)

    Ding, Mei-Shuang; Jin, Ning-De; Gao, Zhong-Ke

    2015-11-01

    The simultaneous flow of oil and water through a horizontal pipe is a common occurrence during petroleum industrial processes. Characterizing the flow behavior underlying horizontal oil-water flows is a challenging problem of significant importance. In order to solve this problem, we carry out experiment to measure multivariate signals from different flow patterns and then propose a novel modality transition-based network to analyze the multivariate signals. The results suggest that the local betweenness centrality and weighted shortest path of the constructed network can characterize the transitions of flow conditions and further allow quantitatively distinguishing and uncovering the dynamic flow behavior underlying different horizontal oil-water flow patterns.

  16. Bronchodilator delivery by metered-dose inhaler in mechanically ventilated COPD patients: influence of flow pattern.

    PubMed

    Mouloudi, E; Prinianakis, G; Kondili, E; Georgopoulos, D

    2000-08-01

    In mechanically ventilated patients the flow pattern during bronchodilator delivery by metered-dose inhaler (MDI) could be a factor that might influence the effectiveness of this therapy. In order to test this the effect of two different inspiratory flow patterns on the bronchodilation induced by beta2-agonists administered via MDI and spacer in a group of mechanically ventilated patients with chronic obstructive pulmonary disease (COPD) was examined. Eighteen mechanically ventilated patients with COPD, were prospectively randomized to receive two (n=8, protocol A) or six (n=10 protocol B) puffs salbutamol (100 microg x puff(-1)) either under pressure control (decelerating flow pattern) or under volume control (square wave flow pattern). With both modes, tidal volume and inspiratory time were identical. Salbutamol was administered via an MDI adapted to the inspiratory limb of the ventilator circuit using an aerosol cloud-enhancer spacer. After a 6-h washout, patients were crossed over to receive the same dose of salbutamol (200 or 600 microg, respectively in protocols A and B) by the alternative mode of administration. Static and dynamic airway pressures, minimum (Rint) and maximum (Rrs) inspiratory resistance and the difference between Rrs and Rint (deltaR) were measured before and at 15, 30 and 60 min after salbutamol. Independent of the dose, salbutamol caused a significant decrease in dynamic and static airway pressures, Rint and Rrs. These changes were not influenced by the inspiratory flow pattern and were evident at 15, 30 and 60 min after salbutamol. It is concluded that salbutamol delivered via metered dose inhaler and spacer device, induces significant bronchodilation in mechanically ventilated patients with chronic obstructive pulmonary disease, the magnitude of which is not affected by the inspiratory flow/time profile.

  17. Beat-rate dependent mitral flow patterns for in vitro hemodynamic applications.

    PubMed

    Vismara, Riccardo; Fiore, Gianfranco B

    2010-12-01

    The conservative surgery approach for restoring the functionality of heart valves has predominated during the last two decades, particularly for the mitral valve. In vitro pulsatile testing is a key methodology for the investigation of heart valve hemodynamics, and particularly for the ideation, validation and optimization of novel techniques in heart valve surgery. Traditionally, however, pulsatile mock loops have been developed for the study of aortic valve substitutes, and scarce attention has been paid in replicating the mitral flow patterns with due hemodynamic fidelity. In this work we provide detailed analytical expressions to produce beat-rate dependent, physiologic-like mitral flow patterns for in vitro applications. The approach we propose is based on a biomechanical analysis of the factors which govern hemodynamic changes in the mitral flow pattern, namely in terms of E and A wave contours and E/A peaks ratio, when switching from rest to mild exercise conditions. The patterns from the model we obtained were in good agreement with clinical literature data in terms of i) gradual superimposition of the E and A wave, which yielded a single peak at 96 bpm; ii) decrease in the E/A ratio with increasing heart rate; iii) amount of flow delivered by each of the two waves. The proposed method provides a physiologically representative, beat-rate dependent analytical expression of the mitral flow pattern, which can be used in in vitro hydrodynamic investigations to accurately replicate the changes that the flow waves experience when the heart rate shifts from rest to mild exercise conditions.

  18. Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer

    SciTech Connect

    Budzinski, J.M.; Benjamin, R.F. ); Jacobs, J.W. )

    1994-11-01

    Previous observations of three flow patterns generated by shock acceleration of a thin perturbed, fluid layer are now correlated with asymmetries in the initial conditions. Using a different diagnostic (planar laser Rayleigh scattering) than the previous experiments, upstream mushrooms, downstream mushrooms, and sinuous patterns are still observed. For each experiment the initial perturbation amplitude on one side of the layer can either be larger, smaller, or the same as the amplitude on the other side, as observed with two images per experiment, and these differences lead to the formation of the different patterns.

  19. Breathing patterns of preterm infants during bottle feeding: role of milk flow.

    PubMed

    Mathew, O P

    1991-12-01

    Milk flow achieved during feeding may contribute to the ventilatory depression observed during nipple feeding. One of the important determinants of milk flow is the size of the feeding hole. In the first phase of the study, investigators compared the breathing patterns of 10 preterm infants during bottle feeding with two types of commercially available (Enfamil) single-hole nipples: one type designed for term infants and the other for preterm infants. Reductions in ventilation, tidal volume, and breathing frequency, compared with prefeeding control values, were observed with both nipple types during continuous and intermittent sucking phases; no significant differences were observed for any of the variables. Unlike the commercially available, mechanically drilled nipples, laser-cut nipple units showed a markedly lower coefficient of variation in milk flow. In the second phase of the study, two sizes of laser-cut nipple units, low and high flow, were used to feed nine preterm infants. Significantly lower sucking pressures were observed with high-flow nipples as compared with low-flow nipples. Decreases in minute ventilation and breathing frequency were also significantly greater with high-flow nipples. These results suggest that milk flow contributes to the observed reduction in ventilation during nipple feeding and that preterm infants have limited ability to self-regulate milk flow.

  20. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.

    PubMed

    Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B

    2016-02-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. PMID:26589329

  1. Application of the Colloidal Borescope to Determine a Complex Groundwater Flow Pattern

    SciTech Connect

    Narbutovskih, Susan M.; McDonald, John P.; Schalla, Ronald; Sweeney, Mark D.; M.N. Sara and L.G. Everett

    2002-10-01

    Pacific Northwest National Laboratory made in situ flow measurements in groundwater monitoring wells at the U.S. Department of Energy (DOE) Hanford Site to determine the flow direction in an aquifer with a flat water table. Given the total errors in water level elevations, flow directions based on the potentiometric surface are ambiguous at best. The colloidal borescope was used because it allows direct, real time observation of mobile colloidal particles in the open interval of a water well and thus, avoids the use of water level data. The results characterize a complex groundwater flow pattern under several buried waste storage tank farms. The aquifer, artificially high due to large volume liquid discharges to the soil column from Hanford's nuclear production era, is currently receding to original conditions. The aquifer lies in unconsolidated gravel beds overlying an impermeable basalt surface that has a plucked, flood-scoured, scabland structure. The current aquifer thickness is similar to the relief on the basalt basement. Thus the groundwater must flow around the impermeable basalt structures producing a complicated flow pattern under the waste storage unit. The original monitoring network was designed for northwest flow when the water table was held artificially high. Proper locations for new wells are dependent on our knowledge of the flow direction. The results of the colloidal borescope investigation agree with the southerly direction indicated from hydrographs, contaminant trends, other direct flow data and the general concept of a receding aquifer draining off the southern limb of a basalt anticline. Flow in the aquifer is diverted by irregular local structural highs of very low permeability basalt.

  2. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.

    PubMed

    Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B

    2016-02-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states.

  3. Simultaneous imaging of blood flow and hemoglobin concentration change in skin tissue using NIR speckle patterns

    NASA Astrophysics Data System (ADS)

    Aizu, Yoshihisa; Hirata, Tatsuya; Maeda, Takaaki; Nishidate, Izumi; Yokoi, Naomichi

    2009-07-01

    We propose a method for imaging simultaneously blood flow and hemoglobin concentration change in skin tissue using speckle patterns acquired at two wavelengths of 780 and 830 nm. Experimental results demonstrate that the method is useful for time-varying analysis of blood circulation in human forearm skin tissue from one set of sequential speckle images.

  4. Video camera observation for assessing overland flow patterns during rainfall events

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Oismüller, Markus; Blöschl, Günter

    2015-04-01

    Physically based hydrological models have been widely used in various studies to model overland flow propagation in cases such as flood inundation and dam break flow. The capability of such models to simulate the formation of overland flow by spatial and temporal discretization of the empirical equations makes it possible for hydrologists to trace the overland flow generation both spatially and temporally across surface and subsurface domains. As the upscaling methods transforming hydrological process spatial patterns from the small obrseved scale to the larger catchment scale are still being progressively developed, the physically based hydrological models become a convenient tool to assess the patterns and their behaviors crucial in determining the upscaling process. Related studies in the past had successfully used these models as well as utilizing field observation data for model verification. The common observation data used for this verification are overland flow discharge during natural rainfall events and camera observations during synthetic events (staged field experiments) while the use of camera observations during natural events are hardly discussed in publications. This study advances in exploring the potential of video camera observations of overland flow generation during natural rainfall events to support the physically based hydrological model verification and the assessment of overland flow spatial patterns. The study is conducted within a 64ha catchment located at Petzenkirchen, Lower Austria, known as HOAL (Hydrological Open Air Laboratory). The catchment land covers are dominated by arable land (87%) with small portions (13%) of forest, pasture and paved surfaces. A 600m stream is running at southeast of the catchment flowing southward and equipped with flumes and pressure transducers measuring water level in minutely basis from various inlets along the stream (i.e. drainages, surface runoffs, springs) to be calculated into flow discharge. A

  5. Blood flow patterns in the salamander, Ambystoma tigrinum, before, during and after metamorphosis.

    PubMed

    Malvin, G M; Heisler, N

    1988-07-01

    The patterns of blood flow through the complex circulation of the tiger salamander, Ambystoma tigrinum, were investigated during aquatic normoxia and hypoxia by application of the microsphere technique. The distribution of differently labelled microspheres injected into the bloodstream towards the left and right atria, respectively, was used to evaluate the role of the ductus arteriosus in lung perfusion before, during and after metamorphosis, as well as the general contribution of right and left atrial outputs to the blood flow in gills and lungs in neotenic and postmetamorphic animals. The distribution patterns of radioactive microspheres among pulmonary, branchial and systemic tissues indicated that the ductus arteriosus is the major pulmonary perfusion pathway in neotenic and metamorphosing animals, whereas after metamorphosis the main perfusion pathway is down the entire length of the pulmonary artery. In neotenes, the ductus arteriosus becomes even more important during aquatic hypoxia. The anterior branchial arches receive blood richer in pulmonary venous blood than the posterior arches. Approximately 26% of left atrial output and 36% of right atrial output perfuses the brachial respiratory lamellae during normoxia in neotenes. Severe aquatic hypoxia appears to increase the fraction of cardiac output flowing to the lung and decrease the fraction flowing into the first branchial arch in neotenes. This decrease into the first arch may facilitate lung perfusion and also reduce branchial O2 loss. In postmetamorphic animals, approximately 55% of right atrial output and 32% of left atrial output is directed to the lungs. The flow patterns in postmetamorphic animals remain unaffected by aquatic hypoxia.

  6. Pattern formation in multiphase flow through porous media: continuum models and phase diagrams

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2009-12-01

    Carbon capture and geologic storage, dissociation of methane hydrates in permafrost, infiltration of water in soil, and enhanced oil recovery, are some relevant examples of multiphase flow in porous media. While flow instabilities and pattern formation play a central role in these processes, our ability to describe them using mathematical models has been hampered by the lack of a macroscopic theory that explains the patterns observed in experimental and field conditions. We propose a new approach —phase-field modeling— to advance our fundamental understanding of multiphase porous media flow. The basic tenet, with origins in the mathematical description of solidification processes, is that the energy of the system is a function of the inhomogeneous distribution of fluid phases in the pore space, and should account for the presence of macroscopic interfaces. We present numerical simulations and compare our predictions with experimental observations. Numerical simulation of viscous fingering in a Hele-Shaw cell using the proposed phase-field modeling approach

  7. Flow patterns of natural convection in an air-filled vertical cavity

    NASA Astrophysics Data System (ADS)

    Wakitani, Shunichi

    1998-08-01

    Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.

  8. Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows

    NASA Astrophysics Data System (ADS)

    Battiato, Ilenia

    2014-11-01

    Many studies in the last decade have revealed that patterns at the microscale can reduce skin drag. Yet, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats the latter as a porous medium, and provides a framework to model turbulent flow over patterned surfaces. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or Karman) number in turbulent regime, the viscosity ratio between the fluid in and above the features, and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.

  9. Onset of thermal convection and its flow patterns in a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Fukazawa, Yoshinari; Funakoshi, Mitsuaki

    2015-12-01

    The onset of thermal convection of a fluid in a rectangular cavity of aspect ratios Ax and Ay exposed to a vertically linear temperature field is examined under the assumption that all its walls are rigid, and of perfect thermal conductance. For several Ax and Ay smaller than 6, the critical Rayleigh number Rc and the steady flow patterns of most unstable modes are computed by a Galerkin spectral method of high accuracy. Characteristics of flow patterns are examined by using upper-wall flow patterns based on near-wall velocity fields, distributions of vertical velocity, and trajectories of fluid particles. We find that a symmetry mode that is not the most unstable when the difference between Ax and Ay is large is the most unstable if both Ax and Ay are around 4 or around 5.5. The flow pattern of this mode is consistent with the results in a preceding experimental study. Rc increases rapidly as Ax or Ay decreases to zero and decreases slowly as they increase. The validity of the assumption of finite roll is found to be limited, even if the difference between Ax and Ay is large. The flow pattern for {A}x={A}y=A becomes more complicated, and the number of convection cells increases as A increases. The motion of fluid particles in each cell is roughly the circulation along closed curves around an axis that is on the central horizontal plane but is not necessarily parallel to side walls. Moreover, the motion of fluid particles near side walls can be much different from that in the central part of the cavity.

  10. Relationship between Oral Flow Patterns, Nasal Obstruction, and Respiratory Events during Sleep

    PubMed Central

    Suzuki, Masaaki; Furukawa, Taiji; Sugimoto, Akira; Katada, Koji; Kotani, Ryosuke; Yoshizawa, Takayuki

    2015-01-01

    Study Objectives: Sleep breathing patterns are altered by nasal obstruction and respiratory events. This study aimed to describe the relationships between specific sleep oral flow (OF) patterns, nasal airway obstruction, and respiratory events. Methods: Nasal flow and OF were measured simultaneously by polysomnography in 85 adults during sleep. OF was measured 2 cm in front of the lips using a pressure sensor. Results: OF could be classified into three patterns: postrespiratory event OF (postevent OF), during-respiratory event OF (during-event OF), and spontaneous arousal-related OF (SpAr-related OF). Postevent OFs begin at the end of airflow reduction, are preceded by respiratory arousal, and are accompanied by postapneic hyperventilation; during-event OFs occur during nasal flow reduction; and SpAr-related OFs to OF begin during stable breathing, and are preceded by spontaneous arousal but are rarely accompanied by apnea/hypopnea. Multivariate regression showed that nasal obstruction was predictive of SpAr-related OF. The relative frequency of SpAr-related OF events was negatively correlated with the apnea-hypopnea index. The fraction of SpAr-related OF duration relative to total OF duration was significantly greater in patients with nasal obstruction than in those without. Conclusions: SpAr-related OF was associated with nasal obstruction, but not respiratory events. This pattern thus functions as a “nasal obstruction bypass”, mainly in normal subjects and patients with mild sleep disordered breathing (SDB). By contrast, the other two types were related to respiratory events and were typical patterns seen in patients with moderate and severe SDB. Citation: Suzuki M, Furukawa T, Sugimoto A, Katada K, Kotani R, Yoshizawa T. Relationship between oral flow patterns, nasal obstruction, and respiratory events during sleep. J Clin Sleep Med 2015;11(8):855–860. PMID:25766699

  11. Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas.

    PubMed

    Bargagli, R

    2016-11-01

    Mercury in the Antarctic troposphere has a distinct chemistry and challenging long-term measurements are needed for a better understanding of the atmospheric Hg reactions with oxidants and the exchanges of the various mercury forms among air-snow-sea and biota. Antarctic mosses and lichens are reliable biomonitors of airborne metals and in short time they can give useful information about Hg deposition patterns. Data summarized in this review show that although atmospheric Hg concentrations in the Southern Hemisphere are lower than those in the Northern Hemisphere, Antarctic cryptogams accumulate Hg at levels in the same range or higher than those observed for related cryptogam species in the Arctic, suggesting an enhanced deposition of bioavailable Hg in Antarctic coastal ice-free areas. In agreement with the newest findings in the literature, the Hg bioaccumulation in mosses and lichens from a nunatak particularly exposed to strong katabatic winds can be taken as evidence for a Hg contribution to coastal ecosystems by air masses from the Antarctic plateau. Human activities on the continent are mostly concentrated in coastal ice-free areas, and the deposition in these areas of Hg from the marine environment, the plateau and anthropogenic sources raises concern. The use of Antarctic cryptogams as biomonitors will be very useful to map Hg deposition patterns in costal ice-free areas and will contribute to a better understanding of Hg cycling in Antarctica and its environmental fate in terrestrial ecosystems.

  12. Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas.

    PubMed

    Bargagli, R

    2016-11-01

    Mercury in the Antarctic troposphere has a distinct chemistry and challenging long-term measurements are needed for a better understanding of the atmospheric Hg reactions with oxidants and the exchanges of the various mercury forms among air-snow-sea and biota. Antarctic mosses and lichens are reliable biomonitors of airborne metals and in short time they can give useful information about Hg deposition patterns. Data summarized in this review show that although atmospheric Hg concentrations in the Southern Hemisphere are lower than those in the Northern Hemisphere, Antarctic cryptogams accumulate Hg at levels in the same range or higher than those observed for related cryptogam species in the Arctic, suggesting an enhanced deposition of bioavailable Hg in Antarctic coastal ice-free areas. In agreement with the newest findings in the literature, the Hg bioaccumulation in mosses and lichens from a nunatak particularly exposed to strong katabatic winds can be taken as evidence for a Hg contribution to coastal ecosystems by air masses from the Antarctic plateau. Human activities on the continent are mostly concentrated in coastal ice-free areas, and the deposition in these areas of Hg from the marine environment, the plateau and anthropogenic sources raises concern. The use of Antarctic cryptogams as biomonitors will be very useful to map Hg deposition patterns in costal ice-free areas and will contribute to a better understanding of Hg cycling in Antarctica and its environmental fate in terrestrial ecosystems. PMID:27529384

  13. Simulation of tidal flow and circulation patterns in the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Russell, G.M.; Goodwin, C.R.

    1987-01-01

    Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)

  14. Streaming driven by sessile microbubbles: Explaining flow patterns and frequency response

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2013-11-01

    Ultrasound excitation of bubbles drives powerful steady streaming flows which have found widespread applications in microfluidics, where bubbles are typically of semicircular cross section and attached to walls of the device (sessile). While bubble-driven streaming in bulk fluid is well understood, this practically relevant case presents additional complexity introduced by the wall and contact lines. We develop an asymptotic theory that takes into account the presence of the wall as well as the oscillation dynamics of the bubble, providing a complete description of the streaming flow as a function only of the driving frequency, the bubble size, and the physical properties of the fluid. We show that the coupling between different bubble oscillation modes sustains the experimentally observed streaming flow vortex pattern over a broad range of frequencies, greatly exceeding the widths of individual mode resonances. Above a threshold frequency, we predict, and observe in experiment, reversal of the flow direction. Our analytical theory can be used to guide the design of microfluidic devices, both in situations where robust flow patterns insensitive to parameter changes are desired (e.g. lab-on-a-chip sorters), and in cases where intentional modulation of the flow field appearance is key (e.g. efficient mixers). Current address: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology.

  15. Code requirements document: MODFLOW 2. 1: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F. . Dept. of Nuclear Engineering); Paik, I.K. )

    1992-03-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  16. MODFLOW 2.0: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F.; Paik, I.K.

    1991-07-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  17. Code requirements document: MODFLOW 2.1: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F.; Paik, I.K.

    1992-03-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  18. Dual-RiverSonde measurements of two-dimensional river flow patterns

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.

    2008-01-01

    Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.

  19. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    SciTech Connect

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  20. Color of Greenland: Tracing the Dark Ice Exposed at the Ice Sheet Margin

    NASA Astrophysics Data System (ADS)

    Starke, S. E.; Bell, R. E.; Tinto, K. J.; Das, I.; Winckler, G.

    2014-12-01

    The color and albedo of the surface of a large ice sheet is critical to its response to a changing climate. Decreasing the ice surface albedo enhances surface melt and has been suggested as a mechanism to trigger rapid collapse. Each summer, dark bands of ice 20-40 km wide are exposed along the margin of the Greenland ice sheet. These dark bands are clearly visible in satellite imagery and best developed along the west coast. We use airborne radar data in both northeast and western Greenland to demonstrate that the dark bands are the result of outcropping stratigraphy. Where these dark bands are exposed at the ice surface correlate with locations where the well defined stratigraphy imaged with airborne radar is truncated at the surface. Surface work in the northeast by Boogild and coworkers (2010) has constrained the age of the three major intervals of exposed strata. Pink or brown Pleistocene ice lies closest to the ice margin, and is overlain by white pre-Boreal ice. The impurity-rich dark strata, are dated as early Holocene. The dark strata are likely a result of either periods of elevated dust during the Holocene or excess melt during the Holocene Climatic Optimum. We use satellite data to map the extent of the exposed dark ice in Greenland using imagery from Landsat 8, Landsat 7, ASTER VNIR, EO1 Ali, and Quickbird with spatial resolutions ranging from 0.65m to 30m. Image acquisition focused on the months of July and August when the stratigraphy is best exposed. Little dark ice is presently exposed in the southeastern margin of the Greenland ice sheet as this region experiences higher surface accumulation. By examining satellite images from multiple years we have identified areas where the patterns of the dark ice are changing. Both movement of the strata towards the margin due to ice flow and inland retreat due to increased erosion are documented. An outstanding question is what will be color of the strata exposed as the bare ice region expands in Greenland

  1. Influence of Subglacial Conditions on Ice Stream Dynamics: Seismic and Potential Field Data from Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Jordan, T. A.; Ferraccioli, F.; Bingham, R. G.

    2012-12-01

    A synthesis of geophysical and glaciological data sets are used to investigate the relationship between ice dynamics and the underlying geology on Pine Island Glacier, West Antarctica. We find correlations between subglacial geology and the variability in the flow of the overlying ice. Seismic reflection amplitude analysis shows a layer of soft water-saturated sediment immediately beneath the ice. Beneath this, gravity and magnetic data indicate harder rocks containing a significant geological boundary, aligned in the ice-flow direction. Crossing this boundary, the ice velocity decreases whilst bed roughness and modeled basal drag both increase. The acoustic impedance of the soft sediments at the ice-bed interface shows no significant change across the boundary. The smoother glacier bed, overlying thicker sediments, appears to facilitate the fastest flow. Where the bed is rougher, the soft sediment layer beneath the ice is very thin and overlies basement rocks. We propose that the rough surface of the basement rocks beneath this thin sediment increases the basal drag on the ice, through the intervening soft sediment, without a detectable influence on the sediment's acoustic properties. Changes in the sub-bed (i.e. deeper than the ice-bed interface) lithology appear to account for the contrasting basal drag and ice velocity patterns over the glacier. Subglacial erosion could soon remove the thin sediment layer leading to increased basal drag and reduced ice flow in the future. We conclude that the subglacial geology plays a significant role in controlling the spatial pattern of present-day ice flow and that the consequences of subglacial erosion may be reflected in temporal changes to the ice dynamics in the past and perhaps also in the near future. Schematic of synthesized subglacial interpretation from the area of the seismic surveys. Arrow lengths for ice velocity and basal drag indicate relative magnitudes.

  2. Cerebral blood flow response pattern during balloon test occlusion of the internal carotid artery

    SciTech Connect

    Witt, J.P.; Yonas, H.; Jungreis, C.

    1994-05-01

    To evaluate the risk of temporary or permanent internal carotid artery occlusion. In 156 patients intraarterial balloon test occlusion in combination with a stable xenon-enhanced CT cerebral blood flow study was performed before radiologic or surgical treatment. All 156 patients passed the clinical balloon test occlusion and underwent a xenon study in combination with a second balloon test. Quantitative flow data were analyzed for absolute changes as well as changes in symmetry. Fourteen patients exhibited reduced flow values between 20 and 30 mL/100 g per minute, an absolute decrease in flow, and significant asymmetry in the middle cerebral artery territory during balloon test occlusion. These patients would be considered at high risk for cerebral infarction if internal carotid artery occlusion were to be performed. With one exception they belonged to a group (class I) of 61 patients who showed bilateral or ipsilateral flow decrease and significant asymmetry with lower flow on the side of occlusion. The other 95 patients, who showed a variety of cerebral blood flow response patterns including ipsilateral or bilateral flow increase, were at moderate (class II) or low (class III) stroke risk. In contrast to these findings, exclusively qualitative flow analysis failed to identify the patients at high risk: a threshold with an asymmetry index of 10% revealed only 16% specificity whereas an asymmetry index of 45% showed only 61% sensitivity for detection of low flow areas (<30 mL/100 g per minute). For achieving a minimal hemodynamic related-stroke rate associated with permanent clinical internal carotid artery occlusion we suggest integration of a thorough analysis of quantitative cerebral blood flow data before and during balloon test occlusion. 68 refs., 5 figs., 2 tabs.

  3. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin

  4. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect

    Wongwises, Somchai; Pipathattakul, Manop

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a

  5. Visualization of flow patterns induced by an impinging jet issuing from a circular planform

    NASA Astrophysics Data System (ADS)

    Saripalli, K. R.

    1983-12-01

    A four-jet impingement flow with application to high-performance VTOL aircraft is investigated. Flow visualization studies were conducted with water as the working medium. Photographs of different cross sections of the flow are presented to describe the properties of the fountain upwash and the stagnation-line patterns. The visualization technique involves the introduction of fluorescein-sodium, a fluorescent dye, into the jet flow and illumination by a sheet of light obtained by spreading a laser beam. Streak-line photographs were also taken using air bubbles as tracer particles. The strength and orientation of the fountain(s) were observed for different heights of the nozzle configuration above the ground and inclination angles of the forward nozzles.

  6. A study of the Marangoni flow and particle deposition patterns in an evaporating octane droplet

    NASA Astrophysics Data System (ADS)

    Hu, Hua; Larson, Ronald

    2004-03-01

    We investigate flow behavior in an evaporating octane droplet experimentally and theoretically. In the experiments, we for the first time observed a strong recirculatory flow, which we attribute to a Marangoni effect driven by a temperature gradient along the droplet surface due to thermal cooling. A micro-PIV technique is used to map the velocity field in the droplet, including the strong recirculation. An approximated analytical solution of the Marangoni flow is developed using the lubrication assumption and is confirmed to be accurate by an FEM analysis for the flow in the evaporating droplet. The experimental results are compared with the theoretical results and good agreement is found. Finally, the particle deposition patterns on the substrate formed at various Marangoni numbers are discussed.

  7. Consistency of groundwater flow patterns in mountainous topography: Implications for valley bottom water replenishment and for defining groundwater flow boundaries

    NASA Astrophysics Data System (ADS)

    Welch, L. A.; Allen, D. M.

    2012-05-01

    Topographic influences on groundwater flow processes that contribute to baseflow and mountain block recharge (MBR) are conceptually investigated using three-dimensional numerical models of saturated groundwater flow. Model domains for conceptual and real topographies are developed as "mountain groundwatershed units" (MGUs) to represent regional-scale watershed systems. Results indicate regularity in groundwater flow patterns that reflect consistency of prominent topographic features, providing a basis for conceptualizing three-dimensional groundwater flow. Baseflow is generated mainly from recharge within the watershed area. MBR is produced primarily from recharge that is focused across triangular facets near the mountain front (˜73%-97% of total MBR), with additional contributions originating within the watershed (up to ˜27% of MBR). MBR contributions originating from recharge near the highest-elevation watershed boundaries are minimal but are greater for topography with less stream incision. With orographic influences, more MBR originates within the watershed. MBR rates are relatively consistent between models because of similarities in mountain front topography, while baseflow is variable. Gains and losses to systems via cross-watershed groundwater flux, generated because of topographic differences between adjacent watersheds, cause baseflow to vary by up to ˜10% but do not significantly influence MBR. In data-sparse regions such as mountains, a basic numerical modeling approach, using the MGU concept with topography data and mapped watershed boundaries, can be used to develop site-specific conceptual models to constrain water budgets, to delineate recharge areas, and to guide further investigation and data collection.

  8. Impact of the winter North Atlantic Oscillation (NAO) on the Western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO

    NASA Astrophysics Data System (ADS)

    Tachibana, Yoshihiro; Oshika, Miki; Nakamura, Tetsu

    2015-04-01

    This study tested the hypothe