Sample records for ice giants uranus

  1. Core to Atmosphere Exploration of Ice Giants: A Uranus Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Jensema, R. J.; Arias-Young, T. M.; Wilkins, A. N.; Ermakov, A.; Bennett, C.; Dietrich, A.; Hemingway, D.; Klein, V.; Mane, P.; Marr, K. D.; Masterson, J.; Siegel, V.; Stober, K. J.; Talpe, M.; Vines, S. K.; Wetteland, C. J.

    2014-12-01

    Ice giants remain largely unexplored, as their large distance from the Sun limits both Earth-based observations and spacecraft visits. The significant occurrence of ice giant-sized planets among detected exoplanets presents an impetus to study Uranus to understand planetary formation, dynamics, and evolution. In addition, Uranus is also uniquely interesting, given the large inclination of its rotation axis and magnetospheric configuration. In this work, we design a mission concept that aims to maximize scientific return by measuring Uranus' chemical composition, internal structure, and magnetosphere, the first two being primary indicators of ice giant formation mechanisms. For this study, we analyze the trade space for a Uranus mission constrained by a cost cap of $1B. We discuss the decision making processes behind our choices of the science priorities, instrument suite and orbital configuration. Trade space decisions include a strong onboard instrument suite in lieu of a descent probe, an orbiter instead of a flyby mission, and design constraints on the power and propulsion systems. The mission, CAELUS (Core and Atmospheric Evolution Laboratory for Uranus Science), is designed for an August 2023 launch. Following a 14-year cruise with multiple planetary gravity assists, the spacecraft would begin its science mission, which consists of a series of ten 30-day near-polar orbits around Uranus. The instrument suite would consist of a microwave radiometer, Doppler seismometer, magnetometer, and UV spectrometer. These four instruments, along with a high-gain antenna capable of gravity science, would provide a comprehensive science return that meets the bulk of the scientific objectives of the 2013 NRC Planetary Science Decadal Survey for ice giants, most notably those regarding the chemical composition, interior structure, and dynamo of Uranus. This mission concept was created as part of an educational exercise for the 2014 Planetary Science Summer School at the Jet

  2. Characterizing Uranus with an Ice giant Planetary Origins Probe (Ice-POP)

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Fortney, Jonathan; Nettelmann, Nadine; Zahnle, Kevin J.

    2013-01-01

    We now know from studies of planetary transits and microlensing that Neptune-mass planets are ubitquitous and may be the most common class of planets in the Galaxy. As such it is crucial that we understand the formation and evolution of the ice giant planets in our own solar system so that we can better understand planet formation throughout the galaxy. An entry probe mission to Uranus would help accomplish this goal. In fact the Planetary Decadal Survey recommended a Uranus orbiter with entry probe but did not explore in detail the specifications for the entry probe. NASA Ames is currently studying thermal protection system requirements for such a mission and this has led to questions regarding the minimum interesting science payload of such an entry probe. The single most important in-situ measurement for an ice giant entry probe is a measurement of atmospheric composition. For Uranus this would specifically include the methane and noble gas abundances. An in situ measurement of the methane abundance, from below the methane cloud, would constrain the atmospheric carbon abundance, which is believed to be roughly 30 to 50 times solar. There are hints from the transiting planets that extrasolar ice giants show comparable or even greater enhancements of heavy elements compared to their primary stars. However the origin of this carbon enhancement is controversial. Is Uranus a "failed core" of a larger gas giant or was the atmosphere enhanced by accretion of icy planetesimals' Constraining atmospheric abundances of C and perhaps S or even N from below 5 bars would provide badly needed data to address such issues. A measurement of the N abundance would provide clues on the origin of the planetesimals that formed Uranus. Low N-abundance indicates planetesimals from 'warmer' regions where N was mainly in form of NH3, whereas a strong enrichment could indicate planetesimals / cometary material from the colder outer regions of the nebula. Furthermore CO and HCN have been

  3. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  4. A Vision for Ice Giant Exploration

    NASA Technical Reports Server (NTRS)

    Hofstadter, M.; Simon, A.; Atreya, S.; Banfield, D.; Fortney, J.; Hayes, A.; Hedman, M.; Hospodarsky, G.; Mandt, K.; Masters, A.; hide

    2017-01-01

    From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality.

  5. Exploring the Ice Giants with JWST

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh; Hammel, Heidi B.; Melin, Henrik; Guerlet, Sandrine; Greathouse, Thomas K.; Irwin, Patrick GJ

    2017-06-01

    The Ice Giants Uranus and Neptune are among the least-explored environments in our Solar System, having been visited only once, by Voyager 2 in 1986 and 1989, respectively. Their bulk properties and composition, intermediate between the hydrogen-rich gas giants and the smaller terrestrial worlds, make them representative of a planetary class that may be commonplace in other planetary systems. Furthermore, their small angular diameter, low atmospheric temperatures, and dynamic and ever-changing atmospheres make them tantalising infrared targets for JWST. This presentation will reveal the scientific rationale and requirements for a long-term program of JWST spectroscopic mapping of these two worlds. Specifically, the MIRI instrument can be used to determine the 3-dimensional temperature structure to understand (i) seasonal atmospheric circulation from the equator to the poles, (ii) the relation between temperatures, visible atmospheric banding and storm phenomena; and (iii) to discover the unknown circulations and wave phenomena shaping their middle atmospheres. JWST spectra will also allow us to search for and map chemical species produced from photochemistry (e.g., hydrocarbons derived from methane photolysis), from vertical mixing (e.g., disequilibrium species), and from external sources (e.g., HCN and oxygen compounds delivered by comets, ring rain and interplanetary dust). Furthermore, near-infrared imaging and spectroscopy with NIRCAM and NIRSpec will provide detailed characterisations of ice-giant cloud and haze formation and their evolution with time, as well as revealing how auroral processes (observed via H3+ emission) influence the middle atmosphere. JWST will not only enable intercomparison of these atmospheric processes on two very different worlds (Uranus with its extreme tilt and sluggish mixing; Neptune with its powerful internal heat source), but also mature our understanding of how ice giant phenomena compare to both gas giant and terrestrial

  6. Magnetospheric Science at Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Hospodarsky, G. B.; Masters, A.; Soderlund, K. M.; Mandt, K. E.

    2017-12-01

    The magnetospheres of the Ice Giant planets Uranus and Neptune have only been sampled in-situ by the Voyager 2 spacecraft, which revealed a very complicated and dynamic system. In combination with the much weaker solar wind at these distances, the large diurnal and seasonal variability of the magnetospheres' orientation with respect to the solar wind, results in characteristics that are very different from the magnetospheres of Earth and the Gas Giants, Jupiter and Saturn. Studying these magnetospheres is important for furthering our understanding of fundamental physical and chemical processes in the Solar System, and may help in understanding the magnetic fields of exoplanets as well. A number of studies, proposals, and reports, including the recently completed "Ice Giants Pre-Decadal Survey Mission Study Report" have demonstrated the interest in a new mission to the Ice Giants. We will review the magnetospheric results from Voyager 2, summarize outstanding science questions, and discuss possible goals of a future mission to Uranus and/or Neptune.

  7. Simulation of an Ice Giant-style Dynamo

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Aurnou, J. M.

    2010-12-01

    The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.

  8. OCEANUS: A high science return Uranus orbiter with a low-cost instrument suite

    NASA Astrophysics Data System (ADS)

    Elder, C. M.; Bramson, A. M.; Blum, L. W.; Chilton, H. T.; Chopra, A.; Chu, C.; Das, A.; Davis, A. B.; Delgado, A.; Fulton, J.; Jozwiak, L. M.; Khayat, A.; Landis, M. E.; Molaro, J. L.; Slipski, M.; Valencia, S.; Watkins, J.; Young, C. L.; Budney, C. J.; Mitchell, K. L.

    2018-07-01

    Ice-giant-sized planets are the most common type of observed exoplanet, yet the two ice giants in our own solar system (Uranus and Neptune) are the least explored class of planet, having only been observed through ground-based observations and a single flyby each by Voyager 2 approximately 30 years ago. These single flybys were unable to characterize the spatial and temporal variability in ice giant magnetospheres, some of the most odd and intriguing magnetospheres in the solar system. They also offered only limited constraints on the internal structure of ice giants; understanding the internal structure of a planet is important for understanding its formation and evolution. The most recent planetary science Decadal Survey by the U.S. National Academy of Sciences, "Vision and Voyages for Planetary Science in the Decade 2013-2022," identified the ice giant Uranus as the third highest priority for a Flagship mission in the decade 2013-2022. However, in the event that NASA or another space agency is unable to fly a Flagship-class mission to an ice giant in the next decade, this paper presents a mission concept for a focused, lower cost Uranus orbiter called OCEANUS (Origins and Composition of the Exoplanet Analog Uranus System). OCEANUS would increase our understanding of the interior structure of Uranus, its magnetosphere, and how its magnetic field is generated. These goals could be achieved with just a magnetometer and the spacecraft's radio system. This study shows that several of the objectives outlined by the Decadal Survey, including one of the two identified as highest priority, are within reach for a New-Frontiers-class mission.

  9. Scientific rationale for Uranus and Neptune in situ explorations

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Cavalié, T.; Fletcher, L. N.; Amato, M. J.; Aslam, S.; Ferri, F.; Renard, J.-B.; Spilker, T.; Venkatapathy, E.; Wurz, P.; Aplin, K.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Fouchet, T.; Guillot, T.; Hartogh, P.; Hewagama, T.; Hofstadter, M. D.; Hue, V.; Hueso, R.; Lebreton, J.-P.; Lellouch, E.; Moses, J.; Orton, G. S.; Pearl, J. C.; Sánchez-Lavega, A.; Simon, A.; Venot, O.; Waite, J. H.; Achterberg, R. K.; Atreya, S.; Billebaud, F.; Blanc, M.; Borget, F.; Brugger, B.; Charnoz, S.; Chiavassa, T.; Cottini, V.; d'Hendecourt, L.; Danger, G.; Encrenaz, T.; Gorius, N. J. P.; Jorda, L.; Marty, B.; Moreno, R.; Morse, A.; Nixon, C.; Reh, K.; Ronnet, T.; Schmider, F.-X.; Sheridan, S.; Sotin, C.; Vernazza, P.; Villanueva, G. L.

    2018-06-01

    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.

  10. Resolving the inconsistency between the ice giants and cometary D/H ratios

    NASA Astrophysics Data System (ADS)

    Ali-Dib, M.; Mousis, O.; Petit, J.-M.; Lunine, J. I.

    2014-12-01

    The properties and chemical compositions of giant planets strongly depend on their formation locations. The formation mechanisms of the ice giants Uranus and Neptune, and their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation within a timescale consistent with the presence of the gaseous protoplanetary disk, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties observed in no other planets. Here we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide iceline location, namely the region where this gas condensates in the protosolar nebula. This outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water rich interiors originating mostly from transformed CO ices reconcile the D/H value observed in Uranus and Neptune with the cometary value.

  11. Formation of Ice Giant Satellites During Thommes Model Mirgration

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  12. Uranus and Neptune: internal heat flow

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Simon, A. A.; Banfield, D. J.; Fortney, J. J.; Hayes, A. G., Jr.; Hedman, M.; Hospodarsky, G. B.; Mandt, K.; Showalter, G. M.; Soderlund, K. M.; Turtle, E. P.; Hofstadter, M. D.; Sayanagi, K. M.; Simon, A. A.; Banfield, D. J.; Fortney, J. J.; Hayes, A.; Hedman, M.; Hospodarsky, G. B.; Mandt, K.; Showalter, G. M.; Soderlund, K. M.; Turtle, E. P.; Nettelmann, N.; Scheibe, L.; Redmer, R.

    2017-12-01

    Uranus and Neptune offer unique possibilities to study the behavior of gas-ice-rock mixtures at high pressures, the formation of planets, planetary magnetic field generation [1], and planetary atmospheres. While Uranus and Neptune interior models have been constructed that satisfy some of the observational constraints, so far there are no physically motivated models that are consistent with all of them. Especially the observed intrinsic heat fluxes pose challenges [2]. Here I present the thermal boundary layer approach [3] to explain both the extraordinary low heat flux of Uranus and the high heat flux of Neptune, and discuss implications. In particular, current models suggest miscibility of ices with rocks at P>1 Mbar and super-solar ice-to-rock ratios, for Uranus an irradiated exoplanet-like evolution in equilibrium with the stellar incident flux, and fully convective deep interiors. The Figure illustrates such an ice giant interior model.[1] Soderlund K.M., Heimpel, M.H., King E.M. Aurnou J.M. (2013), Icarus 224, 97 [2] Guillot T. (2005), Annu. Rev. Earth Planet. Sci. 33, 493 [3] Nettelmann N., Wang K., Fortney J.J. et al (2016), Icarus 275, 107

  13. MUSE - Mission to the Uranian system: Unveiling the evolution and formation of ice giants

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, Tatiana; Bracken, Colm; Costa Sitjà, Marc; Dirkx, Dominic; Gerth, Ingo; Konstantinidis, Kostas; Labrianidis, Christos; Laneuville, Matthieu; Luntzer, Armin; MacArthur, Jane L.; Maier, Andrea; Morschhauser, Achim; Nordheim, Tom A.; Sallantin, Renaud; Tlustos, Reinhard

    2015-05-01

    The planet Uranus, one of the two ice giants in the Solar System, has only been visited once by the Voyager 2 spacecraft in 1986. Ice giants represent a fundamental class of planets, and many known exoplanets fall within this category. Therefore, a dedicated mission to an ice giant is crucial to improve the understanding of the formation, evolution and current characteristics of such planets in order to extend the knowledge of both the Solar System and exoplanetary systems. In the study at hand, the rationale, selection, and conceptual design for a mission to investigate the Uranian system, as an archetype for ice giants, is presented. A structured analysis of science questions relating to the Uranian system is performed, categorized by the themes atmosphere, interior, moons and rings, and magnetosphere. In each theme, science questions are defined, with their relative importance in the theme quantified. Additionally, top-level weights for each theme are defined, with atmosphere and interior weighted the strongest, as they are more related to both exoplanetary systems and the Uranian system, than the other two themes (which are more specific for the planet itself). Several top level mission architecture aspects have been defined, from which the most promising concepts were generated using heuristic methods. A trade-off analysis of these concepts is presented, separately, for engineering aspects, such as cost, complexity, and risk, and for science aspects. The science score for each mission is generated from the capability of each mission concept to answer the science questions. The trade-off results in terms of relative science and engineering weight are presented, and competitive mission concepts are analyzed based on the preferred mission type. A mission design point for a typical flagship science mission is selected from the trade space. It consists of a Uranus orbiter with a dry mass of 2073 kg including 402 kg of payload and a Uranus entry probe, which is to

  14. Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.

    2017-12-01

    Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.

  15. Why is it so difficult to tilt Uranus?

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas

    2018-04-01

    The leading hypothesis for the origin of Uranus' large obliquity (98°) is a polar strike from an Earth sized object, but to tilt Saturn similarly would require an impactor roughly 10x as massive. A more likely cause for Saturn's tilt (27°) is a spin-orbit resonance with Neptune (Ward & Hamilton, 2004; Hamilton & Ward, 2004); might the same process work for Uranus? It initially seems unlikely, as at its current location Uranus' axial precession period is too long to resonate with any of the giant planets' orbital precession frequencies. If we place Uranus between Jupiter and Saturn, however, then Uranus' spin axis would precess much more quickly. Thommes et al. (1999, 2002, 2003) first postulated that Uranus and Neptune were formed between Jupiter and Saturn because the conditions there allow the ice giants to be built rapidly. A resonance for our closer Uranus still requires a distant planet, nevertheless, a condition that can be satisfied if Neptune is ejected from Jupiter and Saturn first with Uranus following significantly later. This scenario, while contrived, is consistent with at least some versions of the Nice model and allows us to fully test the resonance hypothesis. We discovered that even with these optimistic assumptions, i) a resonance capture requires a migration timescale on the order of 100 Myr, and ii) it is impossible to tilt Uranus past 90°. Increasing Neptune's migration speed precludes resonant capture, and instead results in a resonance kick. In the most favorable cases, a resonance kick could raise Uranus' obliquity by 40° on a time span of about 50 Myr. We conclude that even in our best scenario, a resonance cannot fully account for Uranus' tilt. We have investigated some scenarios that include both resonances and collisions, and will report on our findings.

  16. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Kenji; Ikoma, Masahiro, E-mail: kurosaki.k@nagoya-u.jp, E-mail: ikoma@eps.s.u-tokyo.ac.jp

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elementsmore » include condensable species such as H{sub 2}O, NH{sub 3}, and CH{sub 4}, which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.« less

  17. Scientific rationale and concepts for in situ probe exploration of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D.; Amato, M.; Aslam, S.; Atreya, S.; Blanc, M.; Brugger, B.; Calcutt, S.; Cavalié, T.; Charnoz, S.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Encrenaz, T.; Ferri, F.; Fletcher, L.; Guillot, T.; Hartogh, P.; Hofstadter, M.; Hueso, R.

    2017-09-01

    Uranus and Neptune, referred to as ice giants, are fundamentally different from the better-known gas giants (Jupiter and Saturn). Exploration of an ice giant system is a high-priority science objective, as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. The importance of the ice giants is reflected in NASA's 2011 Decadal Survey, comments from ESA's SSC in response to L2/L3 mission proposals and results of the 2017 NASA/ESA Ice Giants study. A crucial part of exploration of the ice giants is in situ sampling of the atmosphere via an atmospheric probe. A probe would bring insights in two broad themes: the formation history of our Solar System and the processes at play in planetary atmospheres. Here we summarize the science driver for in situ measurements at these two planets and discuss possible mission concepts that would be consistent with the constraints of ESA M-class missions.

  18. Uranus and Neptune: Refugees from the Jupiter-Saturn zone?

    NASA Astrophysics Data System (ADS)

    Thommes, E. W.; Duncan, M. J.; Levison, H. F.

    1999-09-01

    Plantesimal accretion models of planet formation have been quite successful at reproducing the terrestrial region of the Solar System. However, in the outer Solar System these models run into problems, and it becomes very difficult to grow bodies to the current mass of the ``ice giants," Uranus and Neptune. Here we present an alternative scenario to in-situ formation of the ice giants. In addition to the Jupiter and Saturn solid cores, several more bodies of mass ~ 10 MEarth or more are likely to have formed in the region between 4 and 10 AU. As Jupiter's core, and perhaps Saturn's, accreted nebular gas, the other nearby bodies must have been scattered outward. Dynamical friction with the trans-Saturnian part of the planetesimal disk would have acted to decouple these ``failed cores" from their scatterer, and to circularize their orbits. Numerical simulations presented here show that systems very similar to our outer Solar System (including Uranus, Neptune, the Kuiper belt, and the scattered disk) are a natural product of this process.

  19. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  20. Dynamical Upheaval in Ice Giant Formation: A Solution to the Fine-tuning Problem in the Formation Story

    NASA Astrophysics Data System (ADS)

    Frelikh, Renata; Murray-Clay, Ruth

    2018-04-01

    We report on our recent theoretical work, where we suggest that a protoplanetary disk dynamical instability may have played a crucial role in determining the atmospheric size of the solar system’s ice giants. In contrast to the gas giants, the intermediate-size ice giants never underwent runaway gas accretion in a full gas disk. However, as their substantial core masses are comparable to those of the gas giants, they would have gone runaway, given enough time. In the standard scenario, the ice giants stay at roughly their current size for most of the disk lifetime, undergoing period of slow gas accretion onto ~full-sized cores that formed early-on. The gas disk dissipates before the ice giants accumulate too much gas, but we believe this is fine tuned. A considerable amount of solids is observed in outer disks in mm-to-cm sized particles (pebbles). Assisted by gas drag, these pebbles rapidly accrete onto cores. This would cause the growing ice giants to exceed their current core masses, and quickly turn into gas giants. To resolve this problem, we propose that Uranus and Neptune stayed small for the bulk of the disk lifetime. They only finished their core and atmospheric growth in a short timeframe just as the disk gas dissipated, accreting most of their gas from a disk depleted to ~1% of its original mass. The ice giants have atmospheric mass fractions comparable to the disk gas-to-solid ratio of this depleted disk. This coincides with a disk dynamical upheaval onset by the depletion of gas. We propose that the cores started growing closer-in, where they were kept small by proximity to Jupiter and Saturn. As the gas cleared, the cores were kicked out by the gas giants. Then, they finished their core growth and accreted their atmospheres from the remaining, sparse gas at their current locations. We predict that the gas giants may play a key role in forming intermediate-size atmospheres in the outer disk.

  1. The ODINUS Mission Concept: a Mission to the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; Politi, Romolo; Peron, Roberto; Grassi, Davide; Plainaki, Christina; Barbieri, Mauro; Massimo Lucchesi, David; Magni, Gianfranco; Altieri, Francesca; Cottini, Valeria; Gorius, Nicolas; Gaulme, Patrick; Schmider, François-Xavier; Adriani, Alberto; Piccioni, Giuseppe

    2014-05-01

    We present the scientific case and the mission concept for the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of the ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, the ODINUS mission concept proposed the use of two twin spacecraft to be put in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that 'the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  2. Ices on the Satellites of Jupiter, Saturn, and Uranus

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Brown, Robert H.; Calvin, Wendy M.; Roush, Ted L.

    1995-01-01

    Three satellites of Jupiter, seven satellites of Saturn, and five satellites of Uranus show spectroscopic evidence of H2O ice on their surfaces, although other details of their surfaces are highly diverse. The icy surfaces contain contaminants of unknown composition in varying degrees of concentration, resulting in coloration and large differences in albedo. In addition to H2O, Europa has frozen SO2, and Ganymede has O2 in the surface; in both of these cases external causes are implicated in the deposition or formation of these trace components. Variations in ice exposure across the surfaces of the satellites are measured from the spectroscopic signatures. While H2O ice occurs on the surfaces of many satellites, the range of bulk densities of these bodies shows that its contribution to their overall compositions is highly variable from one object to another.

  3. The evolution of a Pluto-like system during the migration of the ice giants

    NASA Astrophysics Data System (ADS)

    Pires, Pryscilla; Giuliatti Winter, Silvia M.; Gomes, Rodney S.

    2015-01-01

    The planetary migration of the Solar System giant planets in the framework of the Nice model (Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435,459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469) creates a dynamical mechanism which can be used to explain the distribution of objects currently observed in the Kuiper belt (e.g., Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., Tsiganis, K. [2008]. Icarus 196, 258-273). Through this mechanism the planetesimals within the disk, heliocentric distance ranging from beyond Neptune's orbit to approximately 34 AU, are delivered to the belt after a temporary eccentric phase of Uranus and Neptune's orbits. We reproduced the mechanism proposed by Levison et al. to implant bodies into the Kuiper belt. The capture of Pluto into the external 3:2 mean motion resonance with Neptune is associated with this gravitational scattering model. We verified the existence of several close encounters between the ice giants and the planetesimals during their outward radial migration, then we believe that the analysis of the dynamical history of the plutonian satellites during this kind of migration is important, and would provide some constrains about their place of formation - within the primordial planetesimal disk or in situ. We performed N-body simulations and recorded the trajectories of the planetesimals during close approaches with Uranus and Neptune. Close encounters with Neptune are the most common, reaching approximately 1200 in total. A Pluto similarly sized body assumed the hyperbolic trajectories of the former primordial planetesimal with respect to those giant planets. We assumed the current mutual orbital configuration and sizes for Pluto's satellites, then we found that the rate of destruction of systems similar to that of Pluto with closest approaches to Uranus or Neptune

  4. A Voyager Perspective of Ice Giant Magnetospheres: What Next?

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Hospodarsky, G. B.

    2017-12-01

    Voyager 2 provided our only in situ observations of the magnetospheres of Uranus (in 1986) and Neptune (in 1989). And, given that Earth-based radio observations have not acquired auroral radio emissions from these planets, the only remote observations of magnetospheric phenomena at these planets are of their auroras. This paper provides an overview of the Voyager observations of these ice giant magnetospheres as a stepping off point for the possibility of missions launching to one or both of these planets in the next decade or so. Both of these magnetospheres are rich in phenomena found in other planetary magnetospheres including plasmas and energetic particles, currents, radio and plasma waves, auroras, and dust. Perhaps the thing that sets these magnetospheres off from those of Earth, Jupiter, and Saturn are the very large tilt of their magnetic moments with respect to their rotation axes. With such tilts, the magnetospheres can be reconfigured every rotation as the magnetic configuration with respect to the impinging solar wind continually changes. The Voyager flybys provided only hints of how these reconfigurations work. Certainly even another flyby mission would effectively double the range of states observed for them. But, a mission including an orbiter would provide an amazing opportunity to observe these dramatic changes through not only a cycle, but repeatedly. A suitably instrumented spacecraft could provide understanding for how these planets work as systems including satellites, rings, and magnetic fields tying them to the ice giant.

  5. The ODINUS Mission Concept: a Mission for the exploration the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Peron, Roberto

    We present the scientific case and the mission concept of a proposal for the the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, ODINUS foresees the use of two twin spacecraft to be placed in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that ``the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission'', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  6. The Composition and Chemistry of the Deep Tropospheres of Saturn and Uranus from Ground-Based Radio Observations

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.

    2017-12-01

    Ground-based radio observations of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the deep tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based observations remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the deep troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn observations were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published observations at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the

  7. Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Bhure, Sakhee; Sankar, Ramanakumar; Hadland, Nathan; Palotai, Csaba J.; Le Beau, Raymond P.; Koutas, Nikko

    2017-10-01

    Observations of ice giant planets in our Solar System have shown several large-scale dark spots with varying lifespans. Some of these features were directly observed, others were diagnosed from their orographic companion clouds. Historically, numerical simulations have been able to model certain characteristics of these storms such as the shape variability of the Neptune Great Dark Spot (GDS-89) (Deng and Le Beau, 2006), but have not been able to match observed drift rates and lifespans using the standard zonal wind profiles (Hammel et al. 2009). Common amongst these studies has been the lack of condensable species in the atmosphere and an explicit treatment of cloud microphysics. Yet, observations show that dark spots can affect neighboring cloud features, such as in the case of bright companion clouds or the “Berg” on Uranus. An analysis of the cloud structure is therefore required to gain a better understanding of the underlying atmospheric physics and dynamics of these vortices.For our simulations, we use the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al. 1998, 2006) and adapt its jovian cloud microphysics module which successfully reproduced the cloud structure of jovian storms, such as the Great Red Spot and the Oval BA (Palotai and Dowling 2008, Palotai et al. 2014). EPIC was recently updated to account for the condensation of methane and hydrogen sulfide (Palotai et al. 2016), which allows us to account for both the high-altitude methane ice-cloud and the deep atmosphere hydrogen sulfide ice-cloud layers.In this work, we simulate large-scale vortices on Uranus and Neptune with varying cloud microphysical parameters such as the deep abundance and the ambient supersaturation. We examine the effect of cloud formation on their lifespan and drift rates to better understand the underlying processes which drive these storms.

  8. Tilting Uranus without a Collision

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  9. Structure and evolution of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Macfarlane, J. J.

    1980-01-01

    Three-layer interior models of Uranus and Neptune with central rocky cores, mantles of water, methane, and ammonia (the 'ices'), and outer envelopes primarily composed of hydrogen and helium are presented. The models incorporate a new H2O equation of state based on experimental data which is considerably 'softer' than previous H2O equations of state. Corrections for interior temperatures approximately 5000 K are included in the models, and the thermal evolution of both planets is investigated using recent heat flow measurements. It is found that the evolutionary considerations are consistent with gravitational field data in supporting models with approximately solar abundances of 'ice' and 'rock'. Evolutionary considerations indicate that initial temperatures and luminosities for Uranus and Neptune were not substantially higher than the present value. Both planets apparently have relatively small approximately 1-2 earth masses) hydrogen-helium envelopes, with Neptune's envelope smaller than Uranus'. A monotonic trend is evident among the Jovian planets: all have central rock-ice cores of approximately 15 earth masses, but with hydrogen-helium envelopes which decrease in mass from Jupiter to Saturn to Uranus to Neptune.

  10. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    NASA Astrophysics Data System (ADS)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  11. The Linear Mixing Approximation for Planetary Ices

    NASA Astrophysics Data System (ADS)

    Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.

    2017-12-01

    We investigate the validity of the widely used linear mixing approximation for the equations of state (EOS) of planetary ices, which are thought to dominate the interior of the ice giant planets Uranus and Neptune. For that purpose we perform density functional theory molecular dynamics simulations using the VASP code.[1] In particular, we compute 1:1 binary mixtures of water, ammonia, and methane, as well as their 2:1:4 ternary mixture at pressure-temperature conditions typical for the interior of Uranus and Neptune.[2,3] In addition, a new ab initio EOS for methane is presented. The linear mixing approximation is verified for the conditions present inside Uranus ranging up to 10 Mbar based on the comprehensive EOS data set. We also calculate the diffusion coefficients for the ternary mixture along different Uranus interior profiles and compare them to the values of the pure compounds. We find that deviations of the linear mixing approximation from the real mixture are generally small; for the EOS they fall within about 4% uncertainty while the diffusion coefficients deviate up to 20% . The EOS of planetary ices are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is consistent with the gravity field data, in which case the planet becomes rather cold (T core ˜ 4000 K). [1] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). [2] R. Redmer, T.R. Mattsson, N. Nettelmann and M. French, Icarus 211, 798 (2011). [3] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli, M. Bethkenhagen and R. Redmer, Icarus 275, 107 (2016).

  12. Longevity of Compositionally Stratified Layers in Ice Giants

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  13. The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System.

    PubMed

    Thommes, E W; Duncan, M J; Levison, H F

    1999-12-09

    Planets are believed to have formed through the accumulation of a large number of small bodies. In the case of the gas-giant planets Jupiter and Saturn, they accreted a significant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5-15 Earth masses. Such models, however, have been unable to produce the smaller ice giants Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter-Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.

  14. An Assessment of Aerocapture and Applications to Future Missions to Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Spilker, T. R.

    2017-12-01

    Our investigation examined the current state of readiness of aerocapture at several destinations of interest, including Uranus and Neptune, to identify what technologies are needed, and to determine if a technology demonstration mission is required, prior to the first use of aerocapture for a science mission. The study team concluded that the current state of readiness is destination dependent, with aerocaptured missions feasible at Venus, Mars, and Titan with current technologies. The use of aerocapture for orbit insertion at the ice giant planets Uranus and Neptune requires at least additional study to assess the expected performance of new guidance, navigation, and control algorithms, and possible development of new hardware, such as a mid-L/D entry vehicle shape or new thermal protection system materials. A variety of near-term activities could contribute to risk reduction for missions proposing use of aerocapture, but a system-level technology demonstration mission is not deemed necessary before the use of aerocapture for a NASA science mission.

  15. It Takes a Village. Collaborative Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.

    2017-01-01

    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.

  16. The Tropospheres of Uranus and Neptune as seen at Microwave Wavelengths

    NASA Astrophysics Data System (ADS)

    Hofstadter, Mark D.; Butler, B. J.; Gurwell, M. A.; Hesman, B. E.; Devaraj, K.

    2008-09-01

    Brightness patterns seen at centimeter wavelengths are used to study the deep tropospheres of Uranus and Neptune (pressures from 1 to 50 bars). Early examples are Briggs and Andrew 1980 for Uranus (Icarus 41, 269-277) and Hofstadter et al. 1993 for Neptune (BAAS 25, 1077). We recently collected high-resolution Neptune data with the VLA at 1.3 and 2 cm under excellent conditions, allowing us to make a better comparison of the two ice-giants. As was known, the planets are grossly similar. The polar regions are the brightest (by tens of Kelvin, 20% brighter than the disk average), and both planets have less prominent, bright, mid-latitude bands. We can now say with confidence that Neptune's polar brightening covers a much smaller area than Uranus’ (at least in the south---Neptune's far north is not currently visible). Neptune's bright spot extends from -90 to about -75 degrees latitude, while Uranus’ extends down to -45 degrees at all times of the year. This, combined with Neptune's atmosphere being more opaque than Uranus', supports the idea that Neptune's deep troposphere is more convectively active. Convection brings absorbers (H2O, NH3, H2S) up to high altitudes, making some regions appear dim. Cloud formation in rising air depletes absorbers, changing the vertical opacity structure and making regions of subsidence absorber-free and bright. On Neptune, convective activity extends further towards the poles than it does on Uranus. We will discuss our results in light of recent observations of both planets at shorter wavelengths, and will present a re-analysis of older Neptune data in a search for temporal variability. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We acknowledge the support of NASA's Planetary Astronomy program, and of the VLA observatory.

  17. Alien aurorae spotted on Uranus by Hubble

    NASA Image and Video Library

    2017-12-08

    This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble — one for the ring and one for the auroras. Ever since Voyager 2 beamed home spectacular images of the planets in the 1980s, planet-lovers have been hooked on auroras on other planets. Auroras are caused by streams of charged particles like electrons that come from various origins such as solar winds, the planetary ionosphere, and moon volcanism. They become caught in powerful magnetic fields and are channeled into the upper atmosphere, where their interactions with gas particles, such as oxygen or nitrogen, set off spectacular bursts of light. The auroras on Jupiter and Saturn are well-studied, but not much is known about the auroras of the giant ice planet Uranus. In 2011, the NASA/ESA Hubble Space Telescope became the first Earth-based telescope to snap an image of the auroras on Uranus. In 2012 and 2014 a team led by an astronomer from Paris Observatory took a second look at the auroras using the ultraviolet capabilities of the Space Telescope Imaging Spectrograph (STIS) installed on Hubble. They tracked the interplanetary shocks caused by two powerful bursts of solar wind traveling from the sun to Uranus, then used Hubble to capture their effect on Uranus’ auroras — and found themselves observing the most intense auroras ever seen on the planet. By watching the auroras over time, they collected the first direct evidence that these powerful shimmering regions rotate with the planet. They also re-discovered Uranus’ long-lost magnetic poles, which were lost shortly after their discovery by Voyager 2 in 1986 due to uncertainties in measurements and the featureless planet surface. Credit: ESA/Hubble & NASA, L. Lamy / Observatoire de Paris NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  18. HUBBLE OBSERVES THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible. Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope. Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on. Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given

  19. Hubble Observes the Planet Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.

    Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.

    Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.

    Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.

    One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should

  20. The Voyager encounter with Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Miner, Ellis D.

    1986-01-01

    Voyager 2 approaches Uranus at a relative low phase angle and high southerly latitude. Only when the spacecraft is very close to Uranus does the geometry change appreciably. Most of the important observations occur within six hours of closest approach. Voyager flies through an Earth and solar occulation zone and leaves Uranus at a relatively high phase angle of about 145 degrees. There isn't much of an opportunity to look at the equatorial region of the planet. At Neptune, on the other hand, the approach is more nearly equatorial (about 35 deg S lat). Voyager 2 will come much closer to Nepture than to any of the other gas giants as it skims within about 2000 km of Neptune's cloudtops. It will pass through earth and solar occultation zones at both Neptune and its satellite, Triton. Again, Voyager 2 will leave Neptune at about 35 deg S latitude. Voyager operational instrument, interplanetary trajectories and planetary encounters are briefly discussed.

  1. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  2. Water-Ammonia Ionic Ocean on Uranus and Neptune-Clue from Tropospheric Hydrogen Sulfide Clouds

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.; Egeler, P. A.; Wong, A.

    2005-12-01

    Interior models of the ice-giants, Uranus and Neptune, predict a water-ammonia ionic ocean at tens of kilobar pressure [1,2]. If correct, its implication for planetary formation models is profound. In this presentation we demonstrate that the existence of an ionic ocean will manifest itself in the planets' tropospheric cloud structure, particularly in the form of a hydrogen sulfide, i.e. H2S-ice, cloud. In fact, an H2S cloud was introduced ad hoc in the 3-5 bar region to explain microwave absorption [3] and the methane [4] observations, but its presence cannot be proved in the absence of entry probes. Our equilibrium cloud condensation model (ECCM) shows that an H2S-ice cloud does not form when conventional enrichment factors (20-30× solar at Uranus, and 30-50× solar at Neptune) are employed for all heavy elements (mass >4) [5]. However, a deep ``cloud'' composed of a weak solution of ammonia and water forms, and its base is at 370 and 500 bars, respectively, for 30× solar and 50× solar enrichment factors. If an ionic ``ocean'' exists much deeper, water vapor, as well as ammonia dissolved in it, would be severely depleted at levels above this ocean. The consequences of such water vapor and ammonia depletions are that (1) clouds of water and ammonia, if present, are much less prominent; (2) only small amount of H2S vapor is removed by NH3, to form an NH4SH cloud; so that (3) a cloud of H2S-ice can now form; and (4) an H2O ``ocean'' in the 1-kilobar region [6] does not form. This scenario has important implications for the design of entry probe missions, as measurements to only 10-20 bars, rather than kilobar levels, will need to be made. The heavy elements, Ar, Kr, Xe, Ne, C, and S, as well as He, D/H, GeH4, AsH3, PH3, and CO can all be accessed at pressures less than 20 bars. These measurements are critical for constraining the formation models [5,7,8]. Measurement of water in the well-mixed region of Uranus and Neptune is technologically highly challenging

  3. Expectations for Particulate Contamination Relevant to in Situ Atmospheric Sampling for Compositional Analysis at Uranus

    NASA Astrophysics Data System (ADS)

    Wong, M. H.

    2017-12-01

    NASA and ESA are considering options for in situ science with atmospheric entry probes to the ice giants Uranus and Neptune. Nominal probe entry mass is in the 300-kg range, although a miniaturized secondary probe option is being studied in the 30-kg range. In all cases, compositional sampling would commence near the 100-mbar level at Uranus, after ejection of the heat shield and deployment of the descent parachute. In this presentation, I review existing literature on the composition, mass loading, and vertical distribution of condensed material that the probe may encounter. Sample inlets for measurement of the gas composition should be heated to avoid potential buildup of condensate, which would block the flow of atmospheric gas into composition sensors. Heating rate and temperature values -- sufficient to keep sample inlets clean under various assumptions -- will be presented. Three main types of condensed material will be considered: Stratospheric hydrocarbon ices: Solar UV photolyzes CH4, leading to the production of volatile hydrocarbons with higher C/H ratios. These species diffuse from their production regions into colder levels where the ices of C2H2, C2H6, and C4H2 condense. Some studies have also considered condensation of C3H8, C4H10, C6H6, and C6H2. Gunk: The hydrocarbon ices are thought to become polymerized due to irradiation from solar UV. The exact composition of the resulting gunk is not known. Solid-state photochemical processing may produce the traces of reddish (blue-absorbing) haze material, present in the troposphere at temperatures warm enough to sublimate the simple hydrocarbon ices. Tropospheric ices: In the region accessible to probes under study (P < 10 bar), much thicker condensation clouds may form from volatile gases CH4, NH3, and H2S. If large amounts of NH3 are sequestered in the deeper H2O liquid cloud, then the S/N ratio could exceed 1 in the probe-accessible region of the atmosphere, leading to NH4SH and H2S ices below the CH4

  4. Baroclinic instability in the interiors of the giant planets: A cooling history of Uranus?

    NASA Technical Reports Server (NTRS)

    Holme, Richard; Ingersoll, Andrew P.

    1994-01-01

    We propose a quasigeostrophic, baroclinic model for heat transport within the interior of a stably stratified Jovian planet, based on motion in thin cylindrical annuli. Density decreases from the center outward and is zero at the surface of the planet. In the homogeneous case (no core), we find instability for the poles hotter than the equator, but not for the reverse. If the motion is bounded by an impenetrable core, instability occurs for both cases. Much of the behavior can be explained by analogy to conventional baroclinic instability theory. Motivated by our results, we explore a possible connection between the highly inclined rotation axis of Uranus and its anomalously low surface heat flux. We assume that the planets formed hot. Our conjecture is that heat was efficiently convected outwards by baroclinic instability in Uranus (with the poles hotter than the equator), but not in the other three Jovian planets. The surface temperature was higher for the stably stratified case (Uranus), leading to a higher rate of infrared emission and faster cooling. Therefore, we propose that Uranus lost its internal heat sooner than Neptune because baroclinic motions, permitted by its inclination to the sun, were able to extract its internal heat while the surface was still warm.

  5. Giant planet magnetospheres

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran

    1992-01-01

    The classification of the giant planet magnetospheres into two varieties is examined: the large symmetric magnetospheres of Jupiter and Saturn and the smaller irregular ones of Uranus and Neptune. The characteristics of the plasma and the current understanding of the magnetospheric processes are considered for each planet. The energetic particle populations, radio emissions, and remote sensing of magnetospheric processes in the giant planet magneotospheres are discussed.

  6. Catching the Drift: Simulating Dark Spots and Bright Companions on the Ice Giants

    NASA Astrophysics Data System (ADS)

    LeBeau, R. P., Jr.; Koutas, N.; Palotai, C. J.; Bhure, S.; Hadland, N.; Sankar, R.

    2017-12-01

    Starting with the original Great Dark Spot (GDS-89) observed by Voyager 2, roughly a half-dozen large geophysical vortices have been observed on the Ice Giants, the most recent in 2015 on Neptune (Wong et al., 2016). While the presumption is that these Dark Spots are similar in structure to the large vortices on Jupiter, in some cases the Dark Spots exhibit dynamical motions such as the shape oscillations and latitudinal drift of GDS-89 (Smith et al., 1989) or the possible vortex drift underlying the "Berg" cloud feature on Uranus (de Pater et al., 2011). Others, like NGDS-1998, have remained largely stable across years of observation (Sromovsky et al., 2002). In addition, several of the vortices are linked with Bright Companion clouds which are presumed to be orographic features formed as the atmosphere rises over the vortex. The numerical simulation of these features has evolved with each new observation. Prior simulations have captured the forms if not all the specifics of observed Dark Spot dynamics (LeBeau and Dowling, 1998; LeBeau and Deng, 2006); likewise, numerical models have demonstrated the potential for orographic companion clouds (Stratman et al., 2001). However, as more knowledge of the Ice Giant atmospheres has been obtained, it has proven challenging to generate consistent dynamical models that capture the details of the Dark Spot variations and are physically consistent with known observations. In particular, current simulations indicate that the addition of a companion cloud can alter the vortex dynamics, both in terms of drift and oscillations. Given the impact of these clouds, a new parametric simulation study uses an updated microphysics model, implemented in the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al., 1998, 2006), to account for the condensation of methane and hydrogen sulfide (Palotai et al., 2016). Simulations of dark spots with varying sizes, strengths, and locations are conducted with

  7. The origin of CO in the stratosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Cavalié, Thibault; Moreno, R.; Lellouch, E.; Hartogh, P.; Venot, O.; Orton, G. S.; Jarchow, C.; Encrenaz, T.; Selsis, F.; Hersant, F.; Fletcher, L. N.

    2013-10-01

    Oxygen-rich deep interiors of the Giant Planets cannot explain the discovery of H2O and CO2 in the stratospheres of the Giant Planets by Feuchtgruber et al. (1997) because these species are trapped by condensation around their tropopause levels (except CO2 in Jupiter and Saturn). Therefore, several sources in the direct or far environment of the Giant Planets have been proposed: icy rings and/or satellites, interplanetary dust particles and large comet impacts. CO does not condense at the tropopauses of Giant Planets, so that oxygen-rich interiors are a valid source. An internal component has indeed been observed in the vertical profile of CO in Jupiter (Bézard et al., 2002) and in Neptune (Lellouch et al., 2005), while an upper limit has been set on its magnitude by for Saturn (Cavalié et al., 2009). In addition to interiors, large comets seem to be the dominant external source, as shown by various studies: Bézard et al. (2002) for Jupiter, Cavalié et al. (2010) for Saturn and Lellouch et al. (2005) for Neptune. The first detection of CO in Uranus was obtained by Encrenaz et al. (2004) from fluorescent emission at 4.7 microns. Assuming a uniform distribution, a mixing ratio of 2x10-8 was derived. Despite this first detection almost a decade ago, the situation has remained unclear ever since. In this paper, we will present the first submillimeter detection of CO in Uranus, carried out with Herschel in 2011-2012. Using a simple diffusion model, we review the various possible sources of CO (internal and external). We show that CO is mostly external. We also derive an upper limit for the internal source. And with the thermochemical model of Venot et al. (2012), adapted to the interior of Uranus, we derive an upper limit on its deep O/H ratio from it. Acknowledgments T. Cavalié acknowledges support from CNES and the European Research Council (Starting Grant 209622: E3ARTHs). References Bézard et al., 2002. Icarus, 159, 95-111. Cavalié et al., 2009. Icarus, 203

  8. Uranus Satellites

    NASA Image and Video Library

    1996-11-26

    On Jan. 18, 1986, NASA Voyager 2 discoverd three Uranus satellites. All three lie outside the orbits of Uranus nine known rings, the outermost of which, the epsilon ring, is seen at upper right. http://photojournal.jpl.nasa.gov/catalog/PIA00368

  9. Implications of the giant planets for the formation and evolution of planetary systems

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1989-01-01

    The giant planet region in the solar system appears to be bounded inside by the limit of water condensation, suggesting that the most abundant astrophysical condensate plays an important role in giant planet formation. Indeed, Jupiter and Saturn exhibit evidence for rock and/or ice cores or central concentrations that probably accumulated first, acting as nuclei for subsequent gas accumulation. This is a 'planetary' accumulation process, distinct from the stellar formation process, even though most of Jupiter has a similar composition to the primordial sun. Uranus and Neptune appear to exhibit evidence of an important role for giant impacts in their structure and evolution. No simple picture emerges for the temperature structure of the solar nebula from observations alone. However, it seems likely that Jupiter is the key to the planetary system, and a similar planet could be expected for other systems. The data and inferences from these data are summarized for the entire known solar system beyond the asteroid belt.

  10. Fast E-sail Uranus entry probe mission

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Lebreton, Jean-Pierre; Merikallio, Sini; Paton, Mark; Mengali, Giovanni; Quarta, Alessandro A.

    2014-12-01

    The electric solar wind sail is a novel propellantless space propulsion concept. According to numerical estimates, the electric solar wind sail can produce a large total impulse per propulsion system mass. Here we consider using a 0.5 N electric solar wind sail for boosting a 550 kg spacecraft to Uranus in less than 6 years. The spacecraft is a stack consisting of the electric solar wind sail module which is jettisoned roughly at Saturn distance, a carrier module and a probe for Uranus atmospheric entry. The carrier module has a chemical propulsion ability for orbital corrections and it uses its antenna for picking up the probe's data transmission and later relaying it to Earth. The scientific output of the mission is similar to what the Galileo Probe did at Jupiter. Measurements of the chemical and isotope composition of the Uranian atmosphere can give key constraints to different formation theories of the Solar System. A similar method could also be applied to other giant planets and Titan by using a fleet of more or less identical probes.

  11. To Uranus and beyond

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Voyager 2, a sophisticated robotic spacecraft that originally was to fly past Jupiter and Saturn and to last four years, was launched in 1977. Since then it has flown by Uranus and is headed towards Neptune, and still is in contact with spacecraft monitors. Features of Voyager 2, Uranus, its moons and rings, and details of the spacecraft's encounter with Uranus are described. Included is a brief history of Uranus' discovery and astronomers' observations.

  12. Detection of hydrogen sulfide above the clouds in Uranus's atmosphere

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno

    2018-04-01

    Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57-1.59 μm with a mole fraction of 0.4-0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4-5.0 times the solar value) in Uranus's bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of (1.0 -2.5 ) ×1 0-5. The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2-3-bar cloud is likely to be H2S ice.

  13. Detection of hydrogen sulfide above the clouds in Uranus's atmosphere

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno

    2018-05-01

    Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57-1.59 μm with a mole fraction of 0.4-0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4-5.0 times the solar value) in Uranus's bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of (1.0 -2.5 ) ×1 0-5. The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2-3-bar cloud is likely to be H2S ice.

  14. Hubble Observes the Moons and Rings of Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the four gas giant planets of our solar system, Uranus is largely featureless. HST does reveal a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84- year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus' atmosphere, which should be unusual given the planet's large tilt.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  15. Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io

    NASA Astrophysics Data System (ADS)

    Kleer, Katherine Rebecca de

    A central goal of planetary science is the creation of a framework within which the properties of each solar system body can be understood as the product of initial conditions acted on by fundamental physical processes. The solar system's extreme worlds -- those objects that lie at the far ends of the spectrum in terms of planetary environment -- bring to light our misconceptions and present us with opportunities to expand and generalize this framework. Unraveling the processes at work in diverse planetary environments contextualizes our understanding of Earth, and provides a basis for interpreting specific signatures from planets beyond our own solar system. Uranus and Io, with their unusual planetary environments, present two examples of such worlds in the outer solar system. Uranus, one of the outer solar system's ice giants, produces an anomalously low heat flow and orbits the sun on its side. Its relative lack of bright storm features and its bizarre multi-decadal seasons provide insight into the relative effects of internal heat flow and time- varying solar insolation on atmospheric dynamics, while its narrow rings composed of dark, macroscopic particles encode the history of bombardment and satellite disruption within the system. Jupiter's moon Io hosts the most extreme volcanic activity anywhere in the solar system. Its tidally-powered geological activity provides a window into this satellite's interior, permitting rare and valuable investigations into the exchange of heat and materials between interiors and surfaces. In particular, Io provides a laboratory for studying the process of tidal heating, which shapes planets and satellites in our solar system and beyond. A comparison between Earth and Io contextualizes the volcanism at work on our home planet, revealing the effects of planetary size, atmospheric density, and plate tectonics on the style and mechanisms of geological activity. This dissertation investigates the processes at work on these solar

  16. The rings of Uranus

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.; Mink, D.

    1977-01-01

    A description is given of the observation of five brief occultations of the star SAO 158687 which occurred both before and after its occultation by Uranus on March 10, 1977. The events were observed with a three-channel occultation photometer, attached to a 91-cm telescope. The observations indicate that at least five rings encircle the planet Uranus. Possible reasons for the narrowness of the Uranus rings are discussed.

  17. Statistical Study of the Early Solar System's Instability with 4, 5 and 6 Giant Planets

    NASA Astrophysics Data System (ADS)

    Nesvorny, David; Morbidelli, A.

    2012-10-01

    Several properties of the Solar System, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early Solar System evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly ten thousand numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of least one ice giant from the Solar System. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large, but we found that a massive disk would lead to excessive dynamical damping, and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the Solar System was assumed to have five giant planets initially and one ice giant, with the mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn. The range of possible outcomes is rather broad in this case, indicating that the present Solar System is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a few percent probability. The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five planet case.

  18. Gravity-Assist Trajectories to the Ice Giants: An Automated Method to Catalog Mass- Or Time-Optimal Solutions

    NASA Technical Reports Server (NTRS)

    Hughes, Kyle M.; Knittel, Jeremy M.; Englander, Jacob A.

    2017-01-01

    This work presents an automated method of calculating mass (or time) optimal gravity-assist trajectories without a priori knowledge of the flyby-body combination. Since gravity assists are particularly crucial for reaching the outer Solar System, we use the Ice Giants, Uranus and Neptune, as example destinations for this work. Catalogs are also provided that list the most attractive trajectories found over launch dates ranging from 2024 to 2038. The tool developed to implement this method, called the Python EMTG Automated Trade Study Application (PEATSA), iteratively runs the Evolutionary Mission Trajectory Generator (EMTG), a NASA Goddard Space Flight Center in-house trajectory optimization tool. EMTG finds gravity-assist trajectories with impulsive maneuvers using a multiple-shooting structure along with stochastic methods (such as monotonic basin hopping) and may be run with or without an initial guess provided. PEATSA runs instances of EMTG in parallel over a grid of launch dates. After each set of runs completes, the best results within a neighborhood of launch dates are used to seed all other cases in that neighborhood-allowing the solutions across the range of launch dates to improve over each iteration. The results here are compared against trajectories found using a grid-search technique, and PEATSA is found to outperform the grid-search results for most launch years considered.

  19. Gravity-Assist Trajectories to the Ice Giants: An Automated Method to Catalog Mass-or Time-Optimal Solutions

    NASA Technical Reports Server (NTRS)

    Hughes, Kyle M.; Knittel, Jeremy M.; Englander, Jacob A.

    2017-01-01

    This work presents an automated method of calculating mass (or time) optimal gravity-assist trajectories without a priori knowledge of the flyby-body combination. Since gravity assists are particularly crucial for reaching the outer Solar System, we use the Ice Giants, Uranus and Neptune, as example destinations for this work. Catalogs are also provided that list the most attractive trajectories found over launch dates ranging from 2024 to 2038. The tool developed to implement this method, called the Python EMTG Automated Trade Study Application (PEATSA), iteratively runs the Evolutionary Mission Trajectory Generator (EMTG), a NASA Goddard Space Flight Center in-house trajectory optimization tool. EMTG finds gravity-assist trajectories with impulsive maneuvers using a multiple-shooting structure along with stochastic methods (such as monotonic basin hopping) and may be run with or without an initial guess provided. PEATSA runs instances of EMTG in parallel over a grid of launch dates. After each set of runs completes, the best results within a neighborhood of launch dates are used to seed all other cases in that neighborhood---allowing the solutions across the range of launch dates to improve over each iteration. The results here are compared against trajectories found using a grid-search technique, and PEATSA is found to outperform the grid-search results for most launch years considered.

  20. Formation of the giant planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2006-01-01

    The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions

  1. Using collisions and resonances to tilting Uranus

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas

    2018-01-01

    Uranus’ large obliquity (98°) is widely thought to have occurred from a polar strike with an Earth sized object. Morbidelli et al. (2012) argue that two or more collisions are required in order to explain the prograde motion of Uranus’ satellites. These impactors could have been less massive by about a factor of ten, but multiple polar strikes are still improbable as even larger mass impactors would be needed for more equatorial collisions. Here we explore an alternative non-collisional model inspired by the explanation to Saturn’s significant tilt (27°). Ward and Hamilton (2004) & Hamilton and Ward (2004) argue that a secular resonance currently between Saturn’s spin axis and Neptune’s orbital pole is responsible for Saturn’s large obliquity. Unfortunately, Uranus’ axial precession frequency today is too long to match any of the current planets’ fundamental frequencies. Boué and Laskar (2010) explain that Uranus may have harbored an improbably large moon in the past which could have sped up the planet’s axial precession frequency enough to resonate with the regression of its own orbital pole. We explore another scenario which requires only the interactions between the giant planets.Thommes et al. (1999, 2002, 2003) argue that at least the cores of Uranus and Neptune were formed in between Jupiter and Saturn, as the density of the protoplanetary disk was greater there. If Neptune was scattered outward before Uranus, then a secular spin-orbit resonance between the two planets is possible. However, driving Uranus’ obliquity to near 90° with a resonance capture requires a timescale on the order of 100 Myr. If Neptune migrated out quicker or its orbital inclination was initially larger, then we find that the resulting resonance kick can tilt Uranus more than 40° in a reasonable timespan. This could replace one of the impactors required in the collisional scenario described by Morbidelli et al. (2012), but in most situations the effect of such a

  2. Origin of the orbital architecture of the giant planets of the Solar System.

    PubMed

    Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F

    2005-05-26

    Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

  3. HUBBLE OBSERVES THE MOONS AND RINGS OF THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    gas giant planets of our solar system, Uranus is largely featureless. HST does reveal a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus' atmosphere, which should be unusual given the planet's large tilt. Credit: Kenneth Seidelmann, U.S. Naval Observatory, and NASA These observations were conducted by a team led by Dr. Ken Seidelmann of the U.S. Naval Observatory as Principal Investigator. These images have been processed by Professor Douglas Currie and Mr. Dan Dowling in the Department of Physics at the University of Maryland. Other team members are Dr. Ben Zellner at Georgia Southern University, Dr. Dan Pascu and Mr. Jim Rhode at the U.S. Naval Observatory, and Dr. Ed Wells, Mr. Charles Kowal (Computer Science Corporation) and Dr. Alex Storrs of the Space Telescope Science Institute.

  4. Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Bergstralh, J. T. (Editor)

    1984-01-01

    A scientific framework within which to plan the Voyager encounters with Uranus and Neptune was sought. Specific objectives were: (1) to assess the current state of knowledge of Uranus and Neptune, their magnetospheres, and their respective systems of satellites and rings (if any), (2) to identify important scientific issues that can be addressed effectively by Voyager, and (3) to provide an opportunity for Voyager investigators to interact with other scientists knowledgeable in the field of physical studies of the Uranian and Neptunian systems.

  5. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed

    Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J

    2011-10-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.

  6. Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Morbidelli, Alessandro

    2012-10-01

    Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 104 numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M disk >~ 50 M Earth), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e 55 <~ 0.01 compared to present e 55 = 0.044, where e 55 is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M disk ~= 20 M Earth. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a sime5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

  7. In-situ formation of Uranian satellites from debris disk formed by Giant Impact

    NASA Astrophysics Data System (ADS)

    Ishizawa, Y.; Sasaki, T.; Hosono, N.

    2017-12-01

    Uranus has a 98° tilt of the rotational axis with respect to the plane of Solar System, whereas the regular satellites of Uranus orbit in the plane of its equator. Several scenarios have been proposed so far to explain the large tilt and the origin of the satellites respectively (e.g., Slattery et al., 1992; Canup & Ward, 2006; Crida & Charnoz, 2012). In this study, we adapt the so-called giant impact scenario, which could explain both the large tilt of Uranus and the formation of the regular satellites simultaneously. The hydrodynamic simulations of the giant impact have been carried out using the smoothed particle hydrodynamics (SPH) method (Slattery et al, 1992; Ueta et al., in prep.). They suggested that the giant impact of an Earth-sized protoplanet with proto-Uranus could tilt the rotational axis, and a circum-planetary debris disk would be produced throughout the current Uranian satellites orbits by the impact. However, it is still unknown whether the Uranian satellites can be actually formed from the debris disk. Here we perform N-body simulations to investigate the in-situ satellites formation from the debris disk. We used a 4th order Hermite scheme for the numerical integration, and considered the gravity, collision and merger between each particle (Kokubo et al., 2000). We found that satellites with the similar orbital radius and mass to the current satellite were formed from the debris disk as a preliminary result. We also found that orbital decays of the satellites due to the tidal torque of the planet would play a key role to explain the inner satellite distribution.

  8. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    NASA Astrophysics Data System (ADS)

    Lehmer, Owen R.; Catling, David C.; Zahnle, Kevin J.

    2017-04-01

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. At some planet-star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49-0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.

  9. HUBBLE CAPTURES DETAILED IMAGE OF URANUS' ATMOSPHERE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere. Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail. The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere. Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal. This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA

  10. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmer, Owen R.; Catling, David C.; Zahnle, Kevin J., E-mail: olehmer@gmail.com

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to themore » star. At some planet–star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49–0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.« less

  11. The Occurrence of Additional Giant Planets Inside the Water-Ice Line in Systems with Hot Jupiters: Evidence Against High-Eccentricity Migration

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.; Winn, Joshua N.

    2016-07-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly eccentric orbit, with apastron near the water-ice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P orb < 10 days are no more or less likely to have exterior Jupiter-mass companions than longer-period giant planets with P orb ≥ 10 days. This result holds for exterior companions both inside and outside of the approximate location of the water-ice line. These results are difficult to reconcile with the high-eccentricity migration scenario for hot Jupiter formation.

  12. Investigation of the small-scale structure and dynamics of Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.; Hinson, David P.

    1991-01-01

    This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.

  13. HUBBLE FINDS MANY BRIGHT CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A recent Hubble Space Telescope view reveals Uranus surrounded by its four major rings and by 10 of its 17 known satellites. This false-color image was generated by Erich Karkoschka using data taken on August 8, 1998, with Hubble's Near Infrared Camera and Multi-Object Spectrometer. Hubble recently found about 20 clouds - nearly as many clouds on Uranus as the previous total in the history of modern observations. The orange-colored clouds near the prominent bright band circle the planet at more than 300 mph (500 km/h), according to team member Heidi Hammel (MIT). One of the clouds on the right-hand side is brighter than any other cloud ever seen on Uranus. The colors in the image indicate altitude. Team member Mark Marley (New Mexico State University) reports that green and blue regions show where the atmosphere is clear and sunlight can penetrate deep into Uranus. In yellow and grey regions the sunlight reflects from a higher haze or cloud layer. Orange and red colors indicate very high clouds, such as cirrus clouds on Earth. The Hubble image is one of the first images revealing the precession of the brightest ring with respect to a previous image [LINK to PRC97-36a]. Precession makes the fainter part of the ring (currently on the upper right-hand side) slide around Uranus once every nine months. The fading is caused by ring particles crowding and hiding each other on one side of their eight-hour orbit around Uranus. The blue, green and red components of this false-color image correspond to exposures taken at near-infrared wavelengths of 0.9, 1.1, and 1.7 micrometers. Thus, regions on Uranus appearing blue, for example, reflect more sunlight at 0.9 micrometer than at the longer wavelengths. Apparent colors on Uranus are caused by absorption of methane gas in its atmosphere, an effect comparable to absorption in our atmosphere which can make distant clouds appear red. Credit: Erich Karkoschka (University of Arizona) and NASA

  14. Hubble Captures Detailed Image of Uranus Atmosphere

    NASA Image and Video Library

    1998-08-02

    NASA Hubble Space Telescope peered deep into Uranus atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus atmosphere.

  15. HUBBLE SPOTS NORTHERN HEMISPHERIC CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time. Uranus is sometimes called the 'sideways' planet, because its rotation axis is tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness). Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds. Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost

  16. Hubble Captures Detailed Image of Uranus' Atmosphere

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere.

    Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail.

    The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere.

    Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal.

    This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  17. Uranus in True and False Color

    NASA Image and Video Library

    1996-08-01

    These two pictures of Uranus -- one in true color (left) and the other in false color -- were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. The spacecraft was 9.1 million kilometers (5.7 million miles) from the planet, several days from closest approach. The picture at left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The picture is a composite of images taken through blue, green and orange filters. The darker shadings at the upper right of the disk correspond to the day-night boundary on the planet. Beyond this boundary lies the hidden northern hemisphere of Uranus, which currently remains in total darkness as the planet rotates. The blue-green color results from the absorption of red light by methane gas in Uranus' deep, cold and remarkably clear atmosphere. The picture at right uses false color and extreme contrast enhancement to bring out subtle details in the polar region of Uranus. Images obtained through ultraviolet, violet and orange filters were respectively converted to the same blue, green and red colors used to produce the picture at left. The very slight contrasts visible in true color are greatly exaggerated here. In this false-color picture, Uranus reveals a dark polar hood surrounded by a series of progressively lighter concentric bands. One possible explanation is that a brownish haze or smog, concentrated over the pole, is arranged into bands by zonal motions of the upper atmosphere. The bright orange and yellow strip at the lower edge of the planet's limb is an artifact of the image enhancement. In fact, the limb is dark and uniform in color around the planet. http://photojournal.jpl.nasa.gov/catalog/PIA00032

  18. Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Venot, O.; Selsis, F.; Hersant, F.; Hartogh, P.; Leconte, J.

    2017-07-01

    Thermochemical models have been used in the past to constrain the deep oxygen abundance in the gas and ice giant planets from tropospheric CO spectroscopic measurements. Knowing the oxygen abundance of these planets is a key to better understand their formation. These models have widely used dry and/or moist adiabats to extrapolate temperatures from the measured values in the upper troposphere down to the level where the thermochemical equilibrium between H2O and CO is established. The mean molecular mass gradient produced by the condensation of H2O stabilizes the atmosphere against convection and results in a vertical thermal profile and H2O distribution that departs significantly from previous estimates. We revisit O/H estimates using an atmospheric structure that accounts for the inhibition of the convection by condensation. We use a thermochemical network and the latest observations of CO in Uranus and Neptune to calculate the internal oxygen enrichment required to satisfy both these new estimates of the thermal profile and the observations. We also present the current limitations of such modeling.

  19. Instrumentation for Testing Whether the Icy Moons of the Gas and Ice Giants Are Inhabited.

    PubMed

    Chela-Flores, Julian

    2017-10-01

    Evidence of life beyond Earth may be closer than we think, given that the forthcoming missions to the jovian system will be equipped with instruments capable of probing Europa's icy surface for possible biosignatures, including chemical biomarkers, despite the strong radiation environment. Geochemical biomarkers may also exist beyond Europa on icy moons of the gas giants. Sulfur is proposed as a reliable geochemical biomarker for approved and forthcoming missions to the outer solar system. Key Words: JUICE mission-Clipper mission-Geochemical biomarkers-Europa-Moons of the ice giants-Geochemistry-Mass spectrometry. Astrobiology 17, 958-961.

  20. Uranus science planning. [considering Mariner Jupiter-Uranus mission

    NASA Technical Reports Server (NTRS)

    Moore, J.

    1974-01-01

    Recommendations for a 1979 Mariner Jupiter-Uranus mission are discussed with the possibility of launching the first outer planet atmospheric entry probe. Measurement categories considered for the mission include conducting imaging experiments, observations in both the IR and UV spectral range, experiments associated with magnetic fields, plasma, charged particles, and S- and X-band occultation measurements.

  1. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  2. Chaos in Kepler's Multiple Planet Systems and K2s Observations of the Atmospheres of Uranus Neptune

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2016-01-01

    More than one-third of the 4700 planet candidates found by NASA's Kepler spacecraft during its prime mission are associated with target stars that have more than one planet candidate, and such "multis" account for the vast majority of candidates that have been verified as true planets. The large number of multis tells us that flat multiplanet systems like our Solar System are common. Virtually all of the candidate planetary systems are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship, but some of the systems lie in chaotic regions close to instability. The characteristics of some of the most interesting confirmed Kepler multi-planet systems will be discussed. The Kepler spacecraft's 'second life' in theK2 mission has allowed it to obtain long time-series observations of Solar System targets, including the giant planets Uranus & Neptune. These observations show variability caused by the chaotic weather patterns on Uranus & Neptune.

  3. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  4. Working towards Simulating Gas Giant Entry Radiation in an Expansion Tube

    NASA Astrophysics Data System (ADS)

    James, C. M.; Gildfind, D. E.; Morgan, R. G.; McIntyre, T. J.

    Further exploration of the four gas giants in our solar system, Jupiter, Saturn,Uranus, and Neptune, is important for many reasons. The gas giants contain matter produced during the formation of the solar system that is thought to hold valuable clues about the origins of life [9]; Saturn's moon Titan is the only moon in our solar system with its own atmosphere (which the Huygens probe entered in 2005), and Jupiter's four Galilean moons, Io, Europa, Ganymede, and Callisto, are all worthy of exploration.

  5. Hubble Spots Northern Hemispheric Clouds on Uranus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time.

    Uranus is sometimes called the 'sideways' planet, because its rotation axis tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness).

    Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds.

    Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb

  6. Radio science with Voyager 2 at Uranus - Results on masses and densities of the planet and five principal satellites

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Campbell, J. K.; Jacobson, R. A.; Sweetnam, D. N.; Taylor, A. H.

    1987-01-01

    Phase-coherent Doppler data generated by the Deep Space Network with the radio communication system during the Voyager 2 encounter with Uranus in January 1986, optical navigation data generated by the Voyager Navigation Team with the Voyager 2 imaging system, and ground-based astrometric data obtained over an 8-yr period are compiled and analyzed to determine the masses and densities of Uranus and its principal satellites. The data-analysis procedures are explained in detail, and the results are presented in tables and graphs. The mean density of Uranus is found to be 1.285 + or - 0.001 g/cu cm, whereas the mean uncompressed mass of all five satellites is 1.48 + or - 0.06 g/cu cm, or 0.10 g/cu cm above the density expected for a homogeneous solar mix of rock, H2O and NH3 ice, and CH4 as clathrate hydrate. This difference is tentatively attributed to the presence of 15 mass percent of pure graphite, which would provide the thermal conductivity required to keep the satellites cold and undifferentiated.

  7. Uranus Tenth Ring

    NASA Image and Video Library

    1996-01-29

    On Jan. 23, 1986, NASA Voyager 2 discovered a tenth ring orbiting Uranus. The tenth ring is about midway between the bright, outermost epsilon ring and the next ring down, called delta. http://photojournal.jpl.nasa.gov/catalog/PIA00035

  8. Condensation of methane, ammonia, and water and the inhibition of convection in giant planets.

    PubMed

    Guillot, T

    1995-09-22

    The condensation of chemical species of high molecular mass such as methane, ammonia, and water can inhibit convection in the hydrogen-helium atmospheres of the giant planets. Convection is inhibited in Uranus and Neptune when methane reaches an abundance of about 15 times the solar value and in Jupiter and Saturn if the abundance of water is more than about five times the solar value. The temperature gradient consequently becomes superadiabatic, which is observed in temperature profiles inferred from radio-occultation measurements. The planetary heat flux is then likely to be transported by another mechanism, possibly radiation in Uranus, or diffusive convection.

  9. A redetermination of the Uranus rotation period

    NASA Technical Reports Server (NTRS)

    Trauger, J. T.; Roesler, F. L.; Muench, G.

    1978-01-01

    The rotation velocity of Uranus has been measured by a comparison of spectroscopic profiles for the 5281.8 A Fraunhofer line reflected from Uranus and the moon. This method yields a rotation velocity which is insensitive to atmospheric seeing conditions. Our value for the equatorial velocity is 3.5 + or - 0.4 km/sec.

  10. HST/WFC3 Observations of Uranus' 2014 Storm Clouds

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick Gerard Joseph; Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Toledo, Daniel

    2016-10-01

    In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and also Saturn from 2018) in several visible/near-IR wavelength filters. The Uranus 2014 OPAL observations were made on the 8 - 9th November at a time when a huge convective storm system, first observed by amateur astronomers, was present at 30 - 40°N. The entire visible atmosphere, including the storm system, was imaged in seven filters spanning 467 - 924 nm, capturing variations in the coloration of Uranus' clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code, in multiple-scattering mode, to determine the vertical cloud structure in and around the convective storm cloud system.The same storm system was also observed in the H-band (1.4 - 1.9 µm) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November (Irwin et al., 2016, 10.1016/j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30 - 40°N latitude band by simultaneously fitting: a) these HST/OPAL observations at a range of zenith angles; b) the VLT/SINFONI observations at a range of zenith angles; and c) IRTF/SpeX observations of this latitude band made in 2009 at a single zenith angle of 23°, spanning the wavelength range 0.8 - 1.8 µm (Irwin et al., 2015, 10.1016/j.icarus.2014.12.020).We find that the HST observations and the combined HST/VLT/IRTF observations are well modeled with a three-component cloud comprised of: 1) a thin 'deep' cloud at a pressure of ~2 bars; 2) a methane-ice cloud at the

  11. The upper atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Yelle, Roger V.; Shemansky, Donald E.; Atreya, Sushil K.

    1991-01-01

    Voyager measurements of the upper atmosphere of Uranus are analyzed and developed. The upper atmosphere of Uranus is predominantly H2, with at most 10 percent He by volume, and the dominant constituent of the exosphere is H. The thermosphere is warm, with an asymptotic isothermal temperature of about 800 K. Atomic hydrogen at this temperature forms an extensive thermal corona and creates gas drag that severely limits the lifetime of small ring particles. The upper atmosphere emits copious amounts of UV radiation from pressures greater than 0.01 microbar. The depth of this emission level imposes a powerful constraint on permissible emission mechanisms. Electron excitation from a thin layer near the exobase appears to violate this constraint. Solar fluorescence is consistent with the observed trend in solar zenith-angle variation of the emissions and is absent from the night side of the planet. On Uranus, it accounts for the observed Lyman beta to H2 bands intensity ratio and an important fraction of the observed intensity (about 55 percent).

  12. Reduced gas accretion on super-Earths and ice giants

    NASA Astrophysics Data System (ADS)

    Lambrechts, M.; Lega, E.

    2017-10-01

    A large fraction of giant planets have gaseous envelopes that are limited to about 10% of their total mass budget. Such planets are present in the solar system (Uranus, Neptune) and are frequently observed in short periods around other stars (the so-called super-Earths). In contrast to these observations, theoretical calculations based on the evolution of hydrostatic envelopes argue that such low-mass envelopes cannot be maintained around cores exceeding five Earth masses. Instead, under nominal disk conditions, these planets would acquire massive envelopes through runaway gas accretion within the lifetime of the protoplanetary disk. In this work we show that planetary envelopes are not in hydrostatic balance, which slows down envelope growth. A series of 3D global, radiative hydrodynamical simulations reveal a steady-state gas flow, which enters through the poles and exits in the disk midplane. Gas is pushed through the outer envelope in about ten orbital timescales. In regions of the disk that are not significantly dust-depleted, envelope accretion onto cores of about five Earth masses can get stalled as the gas flow enters the deep interior. Accreted solids sublimate deep in the convective interior, but small opacity-providing grains are trapped in the flow and do not settle, which further prevents rapid envelope accretion. The transition to runaway gas accretion can however be reached when cores grow larger than typical super-Earths, beyond 15 Earth masses, and preferably when disk opacities are below κ = 1 cm2/g. These findings offer an explanation for the typical low-mass envelopes around the cores of super-Earths.

  13. Planetary Ices and the Linear Mixing Approximation

    DOE PAGES

    Bethkenhagen, M.; Meyer, Edmund Richard; Hamel, S.; ...

    2017-10-10

    Here, the validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure–temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior (more » $${T}_{\\mathrm{core}}\\sim 4000$$ K).« less

  14. Giant planets: Clues on current and past organic chemistry in the outer solar system

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Atreya, Sushil K.

    1992-01-01

    The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed.

  15. New Radiative Transfer Capability in the EPIC Atmospheric Model with Application to Saturn and Uranus

    NASA Astrophysics Data System (ADS)

    Dowling, Timothy Edward; Greathouse, T. K.; Sussman, M. G.; Chanover, N. J.

    2010-10-01

    We have adapted radiative transfer (RT) schemes from the gas-giant seasonal models of Greathouse et al. (EGU 2010) and Sussman et al. (AGU 2009) into the EPIC atmospheric model, and applied them to Saturn and Uranus. These additions give EPIC a hierarchy of RT options to account for solar heating via CH4 absorption from 5 microns to the UV, and radiative cooling due to thermal emission of CH4, C2H2, C2H6, and collision-induced opacity between 0 and 1600 cm-1. We have written an IDL tool to calculate radiative-equilibrium T(p) profiles for model initialization. We have ported the versatile DISORT RT model (Stamnes et al. 1988) from Fortran to C, and are incorporating it into an IDL post-processing tool to allow us to create synthetic spectra from EPIC output that accounts for thermal emission, reflected solar light, and aerosol and Rayleigh scattering. We give an update of applications to simulations of middle-atmosphere temperatures for Saturn and zonal-wind spin-up experiments for Uranus. This research is supported by NASA Planetary Atmospheres grant NNX08AE64G and NSF Planetary Astronomy grant AST-0807989.

  16. HUBBLE TRACKS CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997. The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.) At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors. In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below. The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are almost as

  17. First plasma wave observations at uranus.

    PubMed

    Gurnett, D A; Kurth, W S; Scarf, F L; Poynter, R L

    1986-07-04

    Radio emissions from Uranus were detected by the Voyager 2 plasma wave instrument about 5 days before closest approach at frequencies of 31.1 and 56.2 kilohertz. About 10 hours before closest approach the bow shock was identified by an abrupt broadband burst of electrostatic turbulence at a radial distance of 23.5 Uranus radii. Once Voyager was inside the magnetosphere, strong whistler-mode hiss and chorus emissions were observed at radial distances less than about 8 Uranus radii, in the same region where the energetic particle instruments detected intense fluxes of energetic electrons. Various other plasma waves were also observed in this same region. At the ring plane crossing, the plasma wave instrument detected a large number of impulsive events that are interpreted as impacts of micrometer-sized dust particles on the spacecraft. The maximum impact rate was about 30 to 50 impacts per second, and the north-south thickness of the impact region was about 4000 kilometers.

  18. Uranus and Neptune orbiter missions via solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Brandenburg, R. K.

    1971-01-01

    The characteristics and capabilities of solar electric propulsion for performing orbiter missions at the planets Uranus and Neptune are described. An assessment of the scientific objectives and instrumentation requirements, their relation to orbit size selection, and parametric analysis of solar electric propulsion trajectory/payload performance are included. Utilizing the Titan 3D/Centaur launch vehicle, minimum flight times of about 3400 days to Uranus and 5300 days to Neptune are required to place the TOPS spacecraft into the nominal orbits. It has been shown that solar electric propulsion can be used effectively to accomplish elliptical orbiter missions at Uranus and Neptune. However, because of the very long flight time required, these mission profiles are not too attractive. Previous studies have shown that nuclear electric propulsion, if developed, would allow much faster trips; 5 years to Uranus and 8 years to Neptune.

  19. Uranus Ring System

    NASA Image and Video Library

    1996-01-29

    This image captured by NASA's Voyager 2 in 1986 revealed a continuous distribution of small particles throughout the Uranus ring system. This unique geometry, the highest phase angle at which Voyager imaged the rings, allowed us to see lanes of fine dust. http://photojournal.jpl.nasa.gov/catalog/PIA00142

  20. Hubble Tracks Clouds on Uranus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997.

    The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.)

    At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors.

    In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below.

    The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are

  1. Possible occulations by satellites of Uranus and Neptune - 1983-1985

    NASA Technical Reports Server (NTRS)

    Mink, D. J.; Klemola, A.

    1982-01-01

    Predictions are presented for 15 possible occulations by the satellites of Uranus and Neptune from 1983 through 1985. Umbriel, the third satellite of Uranus, might occult a 10.4-mag star (Hyd-20 deg 51699) on 25 March 1983 which will be occulted by Uranus 14 hr earlier. Uncertainties in star positions and ephemerides of planets and satellites are quite large in comparison to the size of these bodies, and these predictions are to be taken as possibilities only.

  2. Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Mommert, M.; Szakáts, R.; Müller, T.; Kiss, L. L.

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  3. Intense Ly-alpha emission from Uranus

    NASA Technical Reports Server (NTRS)

    Durrance, S. T.; Moos, H. W.

    1982-01-01

    The existence of intense atomic hydrogen Ly-alpha emission from Uranus is demonstrated here by utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer (IUE) spectrograph. Observations show increased emission in the vicinity of Uranus superimposed on the geocoronal/interplanetary background. If resonant scattering of solar Ly-alpha is the source of the 1.6 + or - 0.4 kR disk averaged brightness, then very high column densities of atomic H above the absorbing methane are required. Precipitation of trapped charged particles, i.e., aurora, could explain the emissions. This would imply a planetary magnetic field.

  4. FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2017-02-01

    Ices, including water ice, prefer to recondense on to preexisting nuclei rather than spontaneously forming grains from a cloud of vapour. Interestingly, different potential recondensation nuclei have very different propensities to actually nucleate water ice at the temperatures associated with freeze-out in protoplanetary discs. Therefore, if a region in a disc is warmed and then recooled, water vapour should not be expected to refreeze evenly on to all available grains. Instead, it will preferentially recondense on to the most favorable grains. When the recooling is slow enough, only the most favorable grains will nucleate ice, allowing them to recondense thick ice mantles. We quantify the conditions for preferential recondensation to rapidly create pebble-sized grains in protoplanetary discs and show that FU Orionis type outbursts have the appropriate cooling rates to drive pebble creation in a band about 5 au wide outside of the quiescent frost line from approximately Jupiter's orbit to Saturn's (about -10 au). Those pebbles could be of the appropriate size to proceed to planetesimal formation via the Streaming Instability, or to contribute to the growth of planetesimals through pebble accretion. We suggest that this phenomenon contributed to the formation of the gas giants in our own Solar system.

  5. Voyager 2 Uranus targeting strategy

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.; Gray, D. L.; Potts, C. L.; Francis, K.

    1986-01-01

    One of the major challenges involved in the Voyager 2 Uranus flyby is to deliver the spacecraft to an appropriate aimpoint at the optimum time, so as to maximize the science return of the mission, while yet keeping propellant expenditure low. An unusual targeting strategy has been devised to satisfy these requirements. Its complexity arises from the great distance of the planet Uranus and the limited performance capabilities of Voyager. This selected strategy is developed in relation to a set of candidate strategies, mission requirements and shifting science objectives. The analysis of these candidates is conducted via a Monte Carlo simulation, the results of which yield data for the comparative evaluation and eventual and selection of the actual targeting strategy to be employed.

  6. Aurora on Uranus - A Faraday disc dynamo mechanism

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Rassbach, M. E.; Dessler, A. J.

    1983-01-01

    A mechanism is proposed whereby the solar wind flowing past the magnetosphere of Uranus causes a Faraday disk dynamo topology to be established and power to be extracted from the kinetic energy of rotation of Uranus. An immediate consequence of this dynamo is the generation of Birkeland currents that flow in and out of the sunlit polar cap with the accompanying production of polar aurora. The power extracted from planetary rotation is calculated as a function of planetary dipole magnetic moment and the ionospheric conductivity of Uranus. For plausible values of ionospheric conductivity, the observed auroral power requires a magnetic moment corresponding to a surface equatorial field of the order of 4 Gauss, slightly larger than the value 1.8 Gauss given by the empirical 'magnetic Bodes law'.

  7. Uranus, towards the planet's pole of rotation.

    NASA Technical Reports Server (NTRS)

    1986-01-01

    These two pictures of Uranus were compiled from images recorded by Voyager 2 on Jan. 1O, 1986, when the NASA spacecraft was 18 million kilometers (11 million miles) from the planet. The images were obtained by Voyager's narrow-angle camera; the view is toward the planet's pole of rotation, which lies just left of center. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view -- including indications of what could be a polar haze of smog-like particles. The true-color picture was made by combining pictures taken through blue, green and orange filters. The dark shading of the upper right edge of the disk is the terminator, or day-night boundary. The blue-green appearance of Uranus results from methane in the atmosphere; this gas absorbs red wavelengths from the incoming sunlight, leaving the predominant bluish color seen here. The picture on the right uses false color and contrast enhancement to bring out subtle details in the polar region of the atmosphere. Images shuttered through different color filters were added and manipulated by computer, greatly enhancing the low-contrast details in the original images. Ultraviolet, violet- and orange-filtered images were displayed, respectively, as blue, green and red to produce this false-color picture. The planet reveals a dark polar hood surrounded by a series of progressively lighter convective bands. The banded structure is real, though exaggerated here. The brownish color near the center of the planet could be explained as being caused by a thin haze concentrated over the pole -- perhaps the product of chemical reactions powered by ultraviolet light from the Sun. One such reaction produces acetylene from methane -- acetylene has been detected on Uranus by an Earth-orbiting spacecraft -- and further reactions involving acetylene are known to

  8. A Compact, Multi-view Net Flux Radiometer for Future Uranus and Neptune Probes

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Amato, M.; Atkinson, D. H.; Hewagama, T.; Jennings, D. E.; Nixon, C. A.; Mousis, O.

    2017-01-01

    A Net Flux Radiometer (NFR) is presented that can be included in an atmospheric structure instrument suite for future probe missions to the icy giants Uranus and Neptune. The baseline design has two spectral channels i.e., a solar channel (0.4-to-3.5 m) and a thermal channel (4-to-300 m). The NFR is capable of viewing five distinct viewing angles during the descent. Non-imaging Winston cones with band-pass filters are used for each spectral channel and to define a 5 angular acceptance. Uncooled thermopile detectors are used in each spectral channel and are read out using a custom radiation hard application specific integrated circuit (ASIC). The baseline design can easily be changed to increase the number of detector channels from two to seven.

  9. Atmospheric Entry Studies for Uranus

    NASA Astrophysics Data System (ADS)

    Agrawal, P.; Allen, G. A.; Hwang, H. H.; Marley, M. S.; McGuire, M. K.; Garcia, J. A.; Sklyanskiy, E.; Huynh, L. C.; Moses, R. W.

    2014-06-01

    To better understand the technology requirements for a Uranus atmospheric entry probe, an internal NASA study funded by ISPT program was conducted. The talk describes two different approaches to the planet: 1) direct ballistic entry and 2) Aerocapture.

  10. External supply of oxygen to the atmospheres of the giant planets.

    PubMed

    Feuchtgruber, H; Lellouch, E; de Graauw, T; Bézard, B; Encrenaz, T; Griffin, M

    1997-09-11

    The atmospheres of the giant planets are reducing, being mainly composed of hydrogen, helium and methane. But the rings and icy satellites that surround these planets, together with the flux of interplanetary dust, could act as important sources of oxygen, which would be delivered to the atmospheres mainly in the form of water ice or silicate dust. Here we report the detection, by infrared spectroscopy, of gaseous H2O in the upper atmospheres of Saturn, Uranus and Neptune. The implied H2O column densities are 1.5 x 10(15), 9 x 10(13) and 3 x 10(14) molecules cm(-2) respectively. CO2 in comparable amounts was also detected in the atmospheres of Saturn and Neptune. These observations can be accounted for by external fluxes of 10(5)-10(7) H2O molecules cm(-2) s(-1) and subsequent chemical processing in the atmospheres. The presence of gaseous water and infalling dust will affect the photochemistry, energy budget and ionospheric properties of these atmospheres. Moreover, our findings may help to constrain the injection rate and possible activity of distant icy objects in the Solar System.

  11. Absolute spectrophotometry of Titan, Uranus, and Neptune 3500-10,500 A

    NASA Technical Reports Server (NTRS)

    Neff, J. S.; Humm, D. C.; Bergstralh, J. T.; Cochran, A. L.; Cochran, W. D.; Barker, E. S.; Tull, R. G.

    1984-01-01

    The present absolute measurements of Titan, Uranus and Neptune geometric albedo spectra in the 3500-10,500 A range have a resolution of about 7 A, together with high SNR, in virtue of the exceptional effeciency of the spectrograph and Reticon detector employed. The high precision and spectral resolution of the data, which are in excellent agreement with the Uranus albedo measurements of Lockwood et al. (1983), make possible quantitative measurements of the effects of Raman scattering by H2 in the Uranus and Neptune atmospheres.

  12. Seasonal stratospheric photochemistry on Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Fletcher, Leigh N.; Greathouse, Thomas K.; Orton, Glenn S.; Hue, Vincent

    2018-06-01

    A time-variable 1D photochemical model is used to study the distribution of stratospheric hydrocarbons as a function of altitude, latitude, and season on Uranus and Neptune. The results for Neptune indicate that in the absence of stratospheric circulation or other meridional transport processes, the hydrocarbon abundances exhibit strong seasonal and meridional variations in the upper stratosphere, but that these variations become increasingly damped with depth due to increasing dynamical and chemical time scales. At high altitudes, hydrocarbon mixing ratios are typically largest where the solar insolation is the greatest, leading to strong hemispheric dichotomies between the summer-to-fall hemisphere and winter-to-spring hemisphere. At mbar pressures and deeper, slower chemistry and diffusion lead to latitude variations that become more symmetric about the equator. On Uranus, the stagnant, poorly mixed stratosphere confines methane and its photochemical products to higher pressures, where chemistry and diffusion time scales remain large. Seasonal variations in hydrocarbons are therefore predicted to be more muted on Uranus, despite the planet's very large obliquity. Radiative-transfer simulations demonstrate that latitude variations in hydrocarbons on both planets are potentially observable with future JWST mid-infrared spectral imaging. Our seasonal model predictions for Neptune compare well with retrieved C2H2 and C2H6 abundances from spatially resolved ground-based observations (no such observations currently exist for Uranus), suggesting that stratospheric circulation - which was not included in these models - may have little influence on the large-scale meridional hydrocarbon distributions on Neptune, unlike the situation on Jupiter and Saturn.

  13. Hubble the Rotation of Uranus

    NASA Image and Video Library

    1998-08-02

    These three NASA Hubble Space Telescope images of the planet Uranus reveal the motion of a pair of bright clouds in the planet southern hemisphere, and a high altitude haze that forms a cap above the planet south pole.

  14. Giant seafloor craters formed by hydrate-controlled large-scale methane expulsion from the Arctic seafloor after ice sheet retreat

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.

    2017-12-01

    Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout

  15. Visible and Near-IR Imaging of Giant Planets: Outer Manifestations of Deeper Secrets

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.

    1996-09-01

    Visible and near-infrared imaging of the giant planets -- Jupiter, Saturn, Uranus, and Neptune -- probes the outermost layers of clouds in these gaseous atmospheres. Not only are the images beautiful and striking in their color and diversity of detail, they also provide quantitative clues to the dynamical and chemical processes taking place both at the cloud tops and deeper in the interior: zonal wind profiles can be extracted; wavelength-dependent center-to-limb brightness variations yield valuable data for modeling vertical aerosol structure; the presence of planetary-scale atmospheric waves can sometimes be deduced; variations of cloud color and brightness with latitude provide insight into the underlying mechanisms driving circulation; development and evolution of discrete atmospheric features trace both exogenic and endogenic events. During the 1980's, our understanding of the giant planets was revolutionized by detailed visible-wavelength images taken by the Voyager spacecraft of these planets' atmospheres. However, those images were static: brief snapshots in time of four complex and dynamic atmospheric systems. In short, those images no longer represent the current appearance of these planets. Recently, our knowledge of the atmospheres of the gas giant planets has undergone major new advances, due in part to the excellent imaging capability and longer-term temporal sampling of the Hubble Space Telescope (HST) and the Galileo Mission to Jupiter. In this talk, I provide an update on our current understanding of the gas giants based on recent visible and near-infrared imaging, highlighting results from the collision of Comet Shoemaker-Levy 9 with Jupiter, Saturn's White Spots, intriguing changes in the atmosphere of Uranus, and Neptune's peripatetic clouds.

  16. Uranus' southern circulation revealed by Voyager 2: Unique characteristics

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich

    2015-04-01

    Revised calibration and processing of 1600 images of Uranus by Voyager 2 revealed dozens of discrete features south of -45° latitude, where only a single feature was known from Voyager images and none has been seen since. Tracking of these features over five weeks defined the southern rotational profile of Uranus with high accuracy and no significant gap. The profile has kinks unlike previous profiles and is strongly asymmetric with respect to the northern profile by Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.A. [2012]. Icarus 220, 694-712). The asymmetry is larger than that of all previous data on jovian planets. A spot that included the South Pole off-center rotated with a period of 12.24 h, 2 h outside the range of all previous observations of Uranus. The region between -68° and -59° latitude rotated almost like a solid body, with a shear that was about 30 times smaller than typical shears on Uranus. At lower latitudes, features were sheared into tightly wound spirals as Voyager watched. The zone at -84° latitude was exceptionally bland; reflectivity variations were only 18 ppm, consistent with a signal-to-noise ratio estimated at 55,000. The low noise was achieved by smoothing over dozens of pixels per image and averaging 1600 images. The presented data set in eight filters contains rich information about temporal evolution and spectral characteristics of features on Uranus that will be the basis for further analysis.

  17. Uranus Rings and Two Moons

    NASA Image and Video Library

    1999-06-19

    Voyager 2 has discovered two hepherd satellites associated with the rings of Uranus. The two moons, designated 1986U7 and 1986U8, are seen here on either side of the bright epsilon ring; all nine of the known Uranian rings are visible.

  18. Voyager at Uranus: 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The voyager 2 spacecraft begins its initial observations of Uranus November 4, 1985, and makes its final observation February 25, 1996. The data from the infrared interfermometer spectrometer, photopolarimeters, plasma wave, plasma detecter, and ultraviolet spectrometer will be processed to add a large block of infermation to the small amount already known. The trajectory of Voyager 2 is also discussed.

  19. Ultraviolet spectrometer observations of Uranus

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Herbert, F.; Holberg, J. B.; Hunten, D. M.; Kumar, S.; Sandel, B. R.; Shemansky, D. E.; Dessler, A. J.; Linick, S.; Springer, R.

    1986-01-01

    The Voyager 2 UV spectrometer was used to scan the Uranus atmosphere at wavelengths from 500-1700 A with a field of view of 0.1 x 0.86 deg. The temperature and composition of the upper atmosphere were determined through occultations of light from gamma Pegasi, nu Geminorum and the sun. The data indicated a substantial gas density (100 million H atoms/cu cm) at about 28,000 km from the Uranus center, suggesting that gas drag plays a significant role in ring evolution. The distributions of CH4 and C2H2 in the lower atmosphere were also estimated. An electroglow emission was detected on the sunlit side, and attributed to emissions from atomic and molecular hydrogen excited by low energy electrons. An auroral glow was also observed, and exhibited evidence of an energy input equal to that of the electroglow. Finally, estimates of the C2H2 mixing ratio and the vertical column abundance of H2 are calculated.

  20. The rotation of the Uranian system

    NASA Technical Reports Server (NTRS)

    Podolak, M.

    1984-01-01

    The rotation of Uranus is examined for clues as to the origin of the Solar System. Both theories based on the formation of planets through the accretion of small planetesimals, and theories based on the formation of giant gaseous protoplanets through a gravitational instability in the primitive solar nebula allow for qualitative explanations of the large tilt of Uranus's equator to the orbital plane, and the fact that its satellites lie in the equatorial plane. Models of the planetary interior show that the mass ratio of ice-forming materials to rock in Uranus's interior must be more than about three if the rotation period is about 16 h. Such a large ratio seems to exclude those accretional theories that require most of the nebular gas to be heated to relatively high temperatures before being accreted into the planet.

  1. Remote sensing of the magnetic moment of uranus: predictions for voyager.

    PubMed

    Hill, T W; Dessler, A J

    1985-03-22

    Power is supplied to a planet's magnetosphere from the kinetic energy of planetary spin and the energy flux of the impinging solar wind. A fraction of this power is available to drive numerous observable phenomena, such as polar auroras and planetary radio emissions. In this report our present understanding of these power transfer mechanisms is applied to Uranus to make specific predictions of the detectability of radio and auroral emissions by the planetary radio astronomy (PRA) and ultraviolet spectrometer (UVS) instruments aboard the Voyager spacecraft before its encounter with Uranus at the end of January 1986. The power available for these two phenomena is (among other factors) a function of the magnetic moment of Uranus. The date of earliest detectability also depends on whether the predominant power source for the magnetosphere is planetary spin or solar wind. The magnetic moment of Uranus is derived for each power source as a function of the date of first detection of radio emissions by the PRA instrument or auroral emissions by the UVS instrument. If we accept the interpretation of ultraviolet observations now available from the Earth-orbiting International Ultraviolet Explorer satellite, Uranus has a surface magnetic field of at least 0.6 gauss, and more probably several gauss, making it the largest or second-largest planetary magnetic field in the solar system.

  2. The Atmosphere of Uranus as Imaged with Keck Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Hammel, H. B.; de Pater, I.; Gibbard, S. G.; Lockwood, G. W.; Rages, K.

    2004-12-01

    Adaptive optics imaging of Uranus was obtained with NIRC2 on the Keck II 10-meter telescope in October 2003 and July 2004 through J, H, and K' filters. Dozens of discrete features were detected in the atmosphere of Uranus. We report the first measurements of winds northward of +43 deg, the first direct measurement of equatorial winds, and the highest wind velocity seen yet on Uranus. At northern mid-latitudes, the winds may have accelerated when compared to earlier HST and Keck observations; southern wind speeds have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, with diffuse patches roughly every 30 degs in longitude. There is no sign of a northern "polar collar" as is seen in the south, but a number of discrete features seen at the "expected" latitudes may signal its early stages of development. The largest cloud features on Uranus show complex structure extending over tens of degrees. On 4 July 2004, we detected a southern hemispheric cloud feature on Uranus at K', the first detection of a southern feature at or longward of 2 microns. H images showed an extended structure whose condensed core was co-located with the K'-bright feature. The core exhibited marked brightness variation, fading within just a few days. The initial brightness at K' indicates that the core's scattering particles reached altitudes above the 1-bar level, with the extended H feature residing below 1.1 bars. The core's rapid disappearance at K' indicates dynamical processes in the local vertical aerosol structure. HBH acknowledges support from NASA grants NAG5-11961 and NAG5-10451. IdP acknowledges support from NSF and the Technology Center for Adaptive Optics, managed by UCSC under cooperative agreement No. AST-9876783. SGG's work was performed under the auspices of the U.S. DoE National Nuclear Security Administration by the UC, LLNL under contract No. W-7405-Eng-48.

  3. Uranus' and Neptune's Clouds as Revealed by UKIRT/UIST Observations

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Teanby, N. A.; Davis, G. R.

    2009-09-01

    In 2006, 2007 and 2008 observations of the near-infrared spectrum of Uranus were made with the UIST instrument of the UK Infrared Telescope, covering the period of Uranus’ Northern Spring Equinox. A significant change in the visible appearance of Uranus occurred during this time with the southern polar zone at 45°S fading, while a corresponding zone at 45°N began to form. In addition the visibility of the equatorial zone increased. The observed spectra were fitted using the NEMESIS optimal estimation retrieval model to determine the variation in the latitudinal and vertical cloud structure during this time. Retrievals were conducted using both the methane absorption coefficients used in our previous analyses and also a newly available revised set of methane coefficients and significant differences were seen, which will be reported. During the Uranus observations in 2007, corresponding observations were also made of Neptune's near-infrared spectrum, albeit with substantially less spatial resolution. The spectra were nevertheless sufficient to retrieve the gross variation in Neptune's latitudinal-vertical cloud structure using both sets of methane absorption coefficients. The retrieved vertical-latitudinal cloud structure on Uranus and Neptune, observed with identical instrument setups, are directly compared and the similarities and differences will be presented and discussed.

  4. Ocean-bearing planets near the ice line: How far does the water's edge go?

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Seager, S.; Gaudi, S.

    2008-12-01

    A leading theory for giant planet formation involves the accretion of a solid core, probably ice-rich, that in turn accretes a massive mantle of hydrogen-helium gas from a primordial disk. The relative timing of core formation and disappearance of nebular gas in a few millions of years is critical; the correlation between heavy element abundance in stellar photospheres and their propensity to host giant planets is cited as support for the theory. Conversely, systems that are relatively heavy element-poor or lose their gas earlier should contain either "failed" cores or a set of icy planetary embryos that did not accrete. Indeed, Uranus and Neptune may represent similar embryos that were scattered by Jupiter into the outer disk where they efficiently accreted planetesimals rich in volatiles with low condensation temperatures. We propose that a region straddling the "snowline" (3-5~AU for solar-mass stars) could frequently be inhabited by one or more water ice-rich, super-Earth-mass objects that accreted only a modest amount of nebular gas. We predict that metal-poor bulge and halo stars are more likely to host such objects. Current and future microlensing surveys will be able to determine the population of Earth-mass planets in this range of semimajor axes and test this hypothesis. If they are sufficiently frequent, the nearest examples will be detectable by the Space Interferometer Mission and perhaps a visible-light Terrestrial Planet Finder mission. We show that retention of a ~1~bar hydrogen-helium atmosphere is sufficient to maintain a surface water ocean, depending on semimajor axis and thermal history, and that sufficiently massive, "naked" ice planets can have interior oceans a la Europa. Planets with more substantial (>200~bar) atmospheres will be devoid of a liquid water phase at the surface. The existence of a surface water ocean could be inferred by the absence of highly soluble molecules such as NH3 or SO2 in the atmosphere. Objects with such oceans

  5. Dynamical Evolution of Planetesimals in the Outer Solar System. II. The Saturn/Uranus and Uranus/Neptune Zones

    NASA Astrophysics Data System (ADS)

    Grazier, Kevin R.; Newman, William I.; Varadi, Ferenc; Kaula, William M.; Hyman, James M.

    1999-08-01

    We report on numerical simulations exploring the dynamical stability of planetesimals in the gaps between the outer Solar System planets. We search for stable niches in the Saturn/Uranus and Uranus/Neptune zones by employing 10,000 massless particles-many more than previous studies in these two zones-using high-order optimized multistep integration schemes coupled with roundoff error minimizing methods. An additional feature of this study, differing from its predecessors, is the fact that our initial distributions contain particles on orbits which are both inclined and noncircular. These initial distributions were also Gaussian distributed such that the Gaussian peaks were at the midpoint between the neighboring perturbers. The simulations showed an initial transient phase where the bulk of the primordial planetesimal swarm was removed from the Solar System within 105 years. This is about 10 times longer than we observed in our previous Jupiter/Saturn studies. Next, there was a gravitational relaxation phase where the particles underwent a random walk in momentum space and were exponentially eliminated by random encounters with the planets. Unlike our previous Jupiter/Saturn simulation, the particles did not fully relax into a third Lagrangian niche phase where long-lived particles are at Lagrange points or stable niches. This is either because the Lagrangian niche phase never occurs or because these simulations did not have enough particles for this third phase to manifest. In these simulations, there was a general trend for the particles to migrate outward and eventually to be cleared out by the outermost planet in the zone. We confirmed that particles with higher eccentricities had shorter lifetimes and that the resonances between the jovian planets "pumped up" the eccentricities of the planetesimals with low-inclination orbits more than those with higher inclinations. We estimated the expected lifetime of particles using kinetic theory and even though the time

  6. Ice on waterfowl markers

    USGS Publications Warehouse

    Greenwood, R.J.; Bair, W.C.

    1974-01-01

    Wild and captive giant Canada geese (Branta canadensis maxima) and captive mallards (Anas platyrhynchos) accumulated ice on neck collars and/or nasal saddles during winter storm periods in 1971 and 1972. Weather conditions associated with icing were documented, and characteristics of icing are discussed. Severe marker icing occurred during subfreezing weather when the windchill reached approximately -37 deg.C. Birds appeared able to de-ice nasal saddles in most instances.

  7. The Moons of Uranus, Neptune and Pluto.

    ERIC Educational Resources Information Center

    Brown, Robert Hamilton; Cruikshank, Dale P.

    1985-01-01

    In preparation for the Voyager flybys in 1989, the pace of ground-based investigations of the moons of Uranus, Neptune, and Pluto has quickened considerably. Information derived from these investigations is presented. (JN)

  8. How did the rings of Uranus form?

    NASA Astrophysics Data System (ADS)

    Griv, E.

    2007-08-01

    Uranus is encircled by at least ten narrow, dense, and widely separated rings with a typical optical depth ∼ 0.3, the first nine of which (6, 5, 4, ?, ?, ?, , ?, and ? rings as seen going outward from Uranus) were discovered from the ground during observations of the planet's atmosphere in 1977. In this work, a fairly uniform, rapidly and differentially rotating disk of rarely colliding particles (when the frequency of interparticle collisions is much smaller than the local orbital frequency) in a planet- moon system is considered. A moon causes a number of orbital resonant effects in this continuous viscous (through ordinary collisions) disk. In the frame of hydrodynamical theory, the gravitational torques exerted by an exterior moon on particles at an inner Lindblad horizontal resonance and corresponding vertical resonance are estimated. It is shown that the torques are negative at these resonances, so gaps in the disk near each resonance may be created. The latter result can be used to provide a viable clue to solving of the puzzle of narrow, dense, and widely separated rings of Uranus. The model is advocated which suggests that the Uranian ring orbits have a close connection with small moons of the planet interior to the orbit of Miranda, from Cordelia to Mab discovered by VOYAGER 2 imaging observations in 1986. As angular momentum is transferred outward to the moon, material in the close vicinity of the resonances falls to the inner part of the system under study. On the other hand, in a collision disk the angular momentum is steadily concentrated onto a fraction of the mass which is spiraling away. In Uranus' system, this viscous radial spreading of the disk (and associated outward flow of angular momentum) may be terminated by the torque exerted by the moon via the low-order orbital resonance. This work was jointly supported by the Israel Science Foundation, the Binational U.S.-Israel Science Foundation, and the Israeli Ministry of Immigrant Absorption in

  9. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed Central

    Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.

    2011-01-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736

  10. Uranus occults SAO158687. [stellar occultation and planetary parametric observation

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.; Millis, R. L.

    1977-01-01

    Experience gained in obtaining atmospheric parameters, oblatenesses, and diameters of Jupiter and Mars from recent stellar occultations by these planets is used to predict what can be learned from the March 1977 occultation of the star SAO158687 by Uranus. The spectra of this star and Uranus are compared to indicate the relative instrument intensities of the two objects, the four passbands where the relative intensities are most nearly equal are listed, and expected photon fluxes from the star are computed on the assumption that it has UBVRI colors appropriate for a K5 main-sequence object. It is shown that low photon noise errors can be achieved by choosing appropriate passbands for observation, and the rms error expected for the Uranus temperature profiles obtained from the occultation light curves is calculated. It is suggested that observers of this occultation should record their data digitally for optimum time resolution.

  11. The International Outer Planets Watch atmospheres node database of giant-planet images

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Gómez-Forrellad, J. M.

    2011-10-01

    The Atmospheres Node of the International Outer Planets Watch (IOPW) is aimed to encourage the observations and study of the atmospheres of the Giant Planets. One of its main activities is to provide an interaction between the professional and amateur astronomical communities maintaining an online and fully searchable database of images of the giant planets obtained from amateur astronomers and available to both professional and amateurs [1]. The IOPW database contains about 13,000 image observations of Jupiter and Saturn obtained in the visible range with a few contributions of Uranus and Neptune. We describe the organization and structure of the database as posted in the Internet and in particular the PVOL software (Planetary Virtual Observatory & Laboratory) designed to manage the site and based in concepts from Virtual Observatory projects.

  12. First generation atmospheric probes (10-BARS) for Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Sullivan, R. J.; Waters, J. I.; Dunkin, J. H.

    1972-01-01

    The feasibility of atmospheric entry probe missions to Uranus and Neptune is studied, and preliminary estimates of missions parameters are presented. Most of the study results are applicable, with only minor modifications, to Uranus-Neptune entry probes included on any type of outer planet mission. Trajectory dynamics is discussed first because it imposes some important constraints upon the total time available for data transmission, which in turn determines the descent rate. This last quantity provides important information for the design of the scientific payload.

  13. Rings of Uranus at 1.44 kilometers

    NASA Image and Video Library

    1998-11-11

    The outer rings of Uranus are visible in this image, obtained by NASA Voyager 2 on Jan. 23, 1986. The outermost and brightest ring, called epsilon, is visible along with the fainter and narrower delta and gamma rings from left.

  14. HST WFC3 Observations of Uranus' 2014 Storm Clouds and Comparison with VLT/SINFONI and IRTF/Spex Observations

    NASA Technical Reports Server (NTRS)

    Irwin, Patrick G. J.; Wong, Michael H.; Simon, Amy A.; Orton, G. S.; Toledo, Daniel

    2017-01-01

    In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and will also map Saturn from 2018) in several visible near- infrared wavelength filters. The Uranus 2014 OPAL observations were made on the 89th November at a time when a huge cloud complex, first observed by de Pater et al. (2015) and subsequently tracked by professional and amateur astronomers (Sayanagi et al., 2016), was present at 30-40deg N. We imaged the entire visible atmosphere, including the storm system, in seven filters spanning 467924 nm, capturing variations in the coloration of Uranus clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption optical depth. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code in multiple-scattering mode to determine the vertical cloud structure in and around the storm cloud system. The same storm system was also observed in the H-band (1.4-1.8 micrometers) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November, reported by Irwin et al. (2016, 10.1016j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30-40deg N latitude band by simultaneously fitting: a) these HSTOPAL observations at a range of zenith angles; b) the VLTSINFONI observations at a range of zenith angles; and c) IRTFSpeX observations of this latitude band made in 2009 at a single zenith angle of 23deg, spanning the wavelength range 0.8-1.8 micrometers (Irwin et al., 2015, 10.1016j.icarus.2014.12.020). We find that the HST observations, and the combined HSTVLTIRTF observations at all locations are well

  15. HST/WFC3 observations of Uranus' 2014 storm clouds and comparison with VLT/SINFONI and IRTF/Spex observations

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Wong, Michael H.; Simon, Amy A.; Orton, G. S.; Toledo, Daniel

    2017-05-01

    In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and will also map Saturn from 2018) in several visible/near-infrared wavelength filters. The Uranus 2014 OPAL observations were made on the 8/9th November at a time when a huge cloud complex, first observed by de Pater et al. (2015) and subsequently tracked by professional and amateur astronomers (Sayanagi et al., 2016), was present at 30-40°N. We imaged the entire visible atmosphere, including the storm system, in seven filters spanning 467-924 nm, capturing variations in the coloration of Uranus' clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption optical depth. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code in multiple-scattering mode to determine the vertical cloud structure in and around the storm cloud system. The same storm system was also observed in the H-band (1.4-1.8 μm) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November, reported by Irwin et al. (2016, 10.1016/j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30-40°N latitude band by simultaneously fitting: a) these HST/OPAL observations at a range of zenith angles; b) the VLT/SINFONI observations at a range of zenith angles; and c) IRTF/SpeX observations of this latitude band made in 2009 at a single zenith angle of 23°, spanning the wavelength range 0.8-1.8 μm (Irwin et al., 2015, 10.1016/j.icarus.2014.12.020). We find that the HST observations, and the combined HST/VLT/IRTF observations at all locations are well modelled with

  16. Voyager flight engineering - Preparing for Uranus

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.; Wolff, D. M.

    1985-01-01

    Two Voyager spacecraft are currently engaged in exploration of the outer solar system with Voyager 2 scheduled to conduct the first close-up investigation of the planet Uranus during the period November 4, 1985 through March 3, 1986. Flight engineering for the Voyager project has the objectives of delivering a functioning spacecraft containing observing sequences to the right places at the right times. Due to the changing environment as the mission has progressed outward from Jupiter to Saturn to Uranus (and on to Neptune), this engineering task has included the development of significant new capabilities. The paper utilizes the case-study method to examine some new spacecraft capabilities in three subsystems: data, attitude and articulation control, and power. The implementation of a new navigational data-type, delta DOR, is also reviewed. An overview is given of the Voyager sequencing process for the cruise and encounter phases with a case study focusing on late updating of part of the near encounter sequence. The prospective mission to Neptune is previewed.

  17. Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; McAdams, James

    2011-01-01

    The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.

  18. Uranus: a rapid prototyping tool for FPGA embedded computer vision

    NASA Astrophysics Data System (ADS)

    Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

    2007-01-01

    The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

  19. Diurnal and Seasonal Variability of Uranus' Magnetopause under Different IMF

    NASA Astrophysics Data System (ADS)

    Cao, X.; Paty, C. S.

    2017-12-01

    In order to study the asymmetric structure of planetary magnetopause, we propose a quantitative form to measure the asymmetries of the magnetospheric boundaries. First, we use a numerical model to simulate the global magnetosphere of Uranus, which has an extreme dynamically asymmetric magnetosphere due to its large obliquity, its highly tilted and off centered dipole moment when interacting with the solar wind, under different IMF (interplanetary magnetic field) orientations. Based on the results of our model, we use the previous analytical model of planetary magnetopause to fit the magnetopause boundary of Uranus and analyze the characteristics of the magnetopause such as the variation of the flaring parameter and the cusp indentation, which give us an initial intuition of the asymmetric structure of the magnetopause. The result shows the asymmetry of the magnetopause is highly dependent on the seasons and the rotation of Uranus under different IMF orientations. The shape of the magnetopause also affected by the off-centered dipole moment. This study can be applicable for the prediction of the magnetopause boundary detection in future space missions.

  20. Continued observations of the H Ly alpha emission from Uranus

    NASA Technical Reports Server (NTRS)

    Clarke, J.; Durrance, S.; Moos, W.; Murthy, J.; Atreya, S.; Barnes, A.; Mihalov, J.; Belcher, J.; Festou, M.; Imhoff, C.

    1986-01-01

    Observations of Uranus obtained over four years with the IUE Observatory supports the initial identification of a bright H Ly alpha flux which varies independently of the solar H Ly alpha flux, implying a largely self-excited emission. An average brightness of 1400 Rayleighs is derived, and limits for the possible contribution by reflected solar H Ly alpha emission, estimated to be about 200 Rayleighs, suggest that the remaining self-excited emission is produced by an aurora. Based on comparison with solar wind measurements obtained in the vicinity of Uranus by Voyager 2 and Pioneer 11, no evidence for correlation between the solar wind density and the H Ly alpha brightness is found. The upper limit to H2 emission gives a lower limit to the ratio of H Ly alpha/H2 emissions of about 2.4, suggesting that the precipitating particles may be significantly less energetic on Uranus than those responsible for the aurora on Jupiter. The average power in precipitating particles is estimated to be of the order of 10 to the 12th W.

  1. Predicted occultations by Uranus - 1981-1984

    NASA Technical Reports Server (NTRS)

    Klemola, A. R.; Mink, D. J.; Elliot, J. L.

    1981-01-01

    Predictions are presented for 11 occultations by and appulses to Uranus and its ring system for ten stars from 1981 through 1984. The brightest stars are occulted on April 26, 1981 (BD - 19 deg 4222) and on April 22, 1982 (Hyd - 20 deg 51699). The ring system occults the same star twice during March 1983 (Hyd - 21 deg 64352).

  2. Compositional Trends on the Large Moons of Uranus: Evidence for System-Wide Modification

    NASA Astrophysics Data System (ADS)

    Cartwright, R.; Emery, J. P.

    2017-12-01

    Previous near-infrared (NIR) observations centered over southern latitudes ( 5 - 30°S) of the classical Uranian moons have detected H2Oww ice bands, mixed with a spectrally neutral and low albedo constituent. The strengths of the detected H2O bands are greater on the leading hemispheres of these moons compared to their trailing hemispheres, with a reduction in leading/trailing H2O band strengths with distance from Uranus. CO2 ice bands have been detected in spectra collected over the trailing hemispheres of the classical Uranian satellites, with stronger CO2 bands on the moons closest to Uranus. Our preferred hypotheses to explain the hemispherical and planetocentric trends in the distribution of CO2 and the strength of detected H2O bands are: bombardment by magnetospherically-embedded charged particles, primarily on the trailing hemispheres of these moons, and bombardment by dust particles, primarily on their leading hemispheres. To test these complementary hypotheses, we are constraining the distribution and spectral characteristics of surface constituents on the currently observable northern hemispheres (sub-observer lat. 20 - 35°N) of these moons with new NIR observations. Analysis of northern hemisphere data shows that CO2 is present on their trailing hemispheres, and H2O bands are strongest on their leading hemispheres, in agreement with the southern hemisphere data. This longitudinal distribution of constituents supports our preferred hypotheses. Tantalizing mysteries regarding the distribution of constituents on these moons remain. There has been no detection of CO2 on Miranda, and H2O bands are subtly stronger on its trailing hemisphere compared to its leading hemisphere, counter to the hemispherical trends displayed on the other classical satellites. Some Uranian satellite spectra display a subtle absorption feature near 2.2 µm, which could result from the presence of NH3-hydrates on these moons. The presence of this volatile constituent could indicate

  3. Constraints On The Distribution Of Methane In Uranus' Atmosphere

    NASA Astrophysics Data System (ADS)

    Norwood, James; Chanover, N.; Hammel, H.

    2006-09-01

    As Uranus approaches its December 2007 equinox, we are treated to a unique opportunity to observe an atmosphere that has become much more active since Voyager's flyby near solstice, as well as a favorable viewing geometry in which the lines of constant latitude as seen fom Earth are straight and parallel. Here we present analysis of newly obtained spectra of Uranus' visible and near-infrared methane bands. In September 2006, near-IR spectra of Uranus were taken using SpeX (R 1000-2000) at NASA's Infrared Telescope Facility (IRTF). We use these data to constrain the vertical abundance profile of methane, the most abundant component of the Uranian atmosphere following H2 and He. A spectral synthesis program developed at NASA/Goddard Space Flight Center for the analysis of infrared spectroscopy was employed to determine the properties of a model atmosphere that best reproduce the methane features observed. These spectra are supplemented by high-resolution visible spectra taken with the ARC echelle spectrograph (R = 37,500) on the 3.5-m telescope at Apache Point Observatory in Sunspot, New Mexico, in October 2005 and August 2006. The new activity seen in Uranus' atmosphere near equinox, such as the appearance of new cloud features (Hammel et al., Icarus 175, 284-288 [2005]), indicates that the Uranian atmosphere undergoes dramatic seasonal changes. The possibility of changes in the methane profile that have occurred since previous observations (Fink and Larson, ApJ 233, 1021-1040 [1979] and others) is discussed. We also take advantage of the unique observing geometry near Uranian equinox to examine any variations in the methane distribution with latitude. This work was supported by NASA through award number NNG05GB86G.

  4. Thermal balance of the atmospheres of Jupiter and Uranus

    NASA Technical Reports Server (NTRS)

    Friedson, A. J.; Ingersoll, A. P.

    1986-01-01

    Two-dimensional, radiative-convective-dynamical models of the visible atmospheres of Jupiter and Uranus are presented. Zonally-averaged temperatures and heat fluxes are calculated numerically as functions of pressure and latitude. In addition to radiative heat fluxes, the dynamical heat flux due to large-scale baroclinic eddies is included and is parametrized using a mixing length theory which gives heat fluxes similar to those of Stone. The results for Jupiter indicate that the internal heat flow is non-uniform in latitude and nearly balances the net radiative flux leaving the atmosphere. The thermal emission is found to be uniform in latitude in agreement with Pioneer and Voyager observations. Baroclinic eddies are calculated to transport only a small amount of the meridional heat flow necessary to account for the uniformity of thermal emission with latitude. The bulk of the meridional heat transfer is found to occur very deep in the stable interior of Jupiter as originally proposed by Ingersoll and Porco. The relative importance of baroclinic eddies vs. internal heat flow in the thermal balance of Uranus depends on the ratio of emitted thermal power to absorbed solar power. The thermal balance of Uranus is compared to that of Jupiter for different values of this ratio.

  5. Observations of Uranus' satellites: Bibliography and literature search

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.

    1985-01-01

    A literature search has yielded more than 10,000 observations of the satellites of Uranus made from 1787 to 1985. The type (photographic, micrometer) and the number of observations are tabulated in 5 year increments and a complete bibliography is provided.

  6. Uranus Rings in False Color

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This false-color view of the rings of Uranus was made from images taken by Voyager 2 on Jan. 21, 1986, from a distance of 4.17 million kilometers (2.59 million miles). All nine known rings are visible here; the somewhat fainter, pastel lines seen between them are contributed by the computer enhancement. Six 15-second narrow-angle images were used to extract color information from the extremely dark and faint rings. Two images each in the green, clear and violet filters were added together and averaged to find the proper color differences between the rings. The final image was made from these three color averages and represents an enhanced, false-color view. The image shows that the brightest, or epsilon, ring at top is neutral in color, with the fainter eight other rings showing color differences between them. Moving down, toward Uranus, we see the delta, gamma and eta rings in shades of blue and green; the beta and alpha rings in somewhat lighter tones; and then a final set of three, known simply as the 4, 5 and 6 rings, in faint off-white tones. Scientists will use this color information to try to understand the nature and origin of the ring material. The resolution of this image is approximately 40 km (25 mi). The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  7. Catching the whispers from Uranus

    NASA Technical Reports Server (NTRS)

    Bartok, C. D.

    1986-01-01

    Sophisticated telecommunications techniques are described that were used to acquire images of Uranus, its 14 moons and ten narrow rings darker than coal. The images, equal in quality to those transmitted from Saturn several years earlier despite the signal being weaker by 6 dB due to the increased distance, were received from Voyager 2 during its January 24, 1986 flyby of Uranus. Solutions to the problem of the weakening signal were found in modifications to Voyager's image processing system and NASA's ground tracking network. In April 1985, Voyager's prime flight data computer was reconfigured to accept only nonimaging science data, and its backup, only imaging data; the latter was reprogrammed to determine only arithmetic differences between adjacent pixel intensities rather than absolute intensities. By image compression, equivalent imaging information could be sent at lower bit rates. Instead of Golay coding, Reed-Solomon onboard encoding was used. These techniques gained the equivalent of 4-dB in imaging yield. Additional improvements were gained by using earth station antennas in pairs (the Parkes radio telescope and the Canberra ground station antenna). Moves under way to prepare for the Voyager encounter with Neptune in 1989 are described (using additional antennas and arrays, scaling up the Deep Space Network antennas from 64 m to 70 m, etc.) to assure almost Saturn-equivalent pictures despite a further 3.5-dB drop in signal strength.

  8. Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.

  9. Uranus - Beneath that bland exterior

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.; Miner, Ellis D.

    1989-01-01

    Findings made by the Voyager missions regarding the atmosphere, magnetic field, rings, and satellites of Uranus are reviewed. The reasons for the bland appearance of the planet are addressed, and the use of radio and infrared instruments to determine the rotational speeds of the planet and atmosphere, the equatorial radius, and the atmospheric temperature is discussed. The corkscrew magnetic field and the dark, almost dust-free rings are described. The most significant features of the largest Uranian moons are mentioned.

  10. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    NASA Astrophysics Data System (ADS)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  11. The magnetic field and magnetospheric configuration of Uranus

    NASA Technical Reports Server (NTRS)

    Ness, Norman F.; Connerney, John E. P.; Lepping, Ronald P.; Schulz, Michael; Voigt, Gerd-Hannes

    1991-01-01

    A significant and unique planetary magnetic field discovered by Voyager 2 is presented. A large tilt of 58.6 deg of the magnetic-dipole axis from the rotation axis was found. Combined with a large offset of 0.3 RU of the magnetic dipole from the center of the planet, the moment of 0.23 gauss-RU3 leads to field magnitudes at the surface which vary widely between 0.1 and 1.0 gauss. A simple diagram illustrating the offset tilted dipole of Uranus and some field lines is shown. A more exact and accurate spherical-harmonic model of the planetary field, which includes both dipole and quadrupole moments, is derived. There exists a well-developed bipolar magnetic tail on the night side of the planet which rotates daily about the extended planet-sunline with Uranus because of the large obliquity of the Uranian rotation axis.

  12. Monitoring Active Atmospheres on Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Rages, Kathy

    2009-07-01

    We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks and months, as we have been doing for the past seven years. Previous Hubble Space Telescope observations {including previous Snapshot programs 8634, 10170, 10534, and 11156}, together with near-IR images obtained using adaptive optics on the Keck Telescope, reveal both planets to be dynamic worlds which change on time scales ranging from hours to {terrestrial} years. Uranus equinox occurred in December 2007, and the northern hemisphere is becoming fully visible for the first time since the early 1960s. HST observations during the past several years {Hammel et al. 2005, Icarus 175, 284 and references therein} have revealed strongly wavelength-dependent latitudinal structure, the presence of numerous visible-wavelength cloud features in the northern hemisphere, at least one very long-lived discrete cloud in the southern hemisphere, and in 2006 the first clearly defined dark spot seen on Uranus. Long-term ground-based observations {Lockwood and Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus 186, 291} reveal seasonal brightness changes that seem to demand the appearance of a bright northern polar cap within the next few years. Recent HST and Keck observations of Neptune {Sromovsky et al. 2003, Icarus 163, 256 and references therein} show a general increase in activity at south temperate latitudes until 2004, when Neptune returned to a rather Voyager-like appearance with discrete bright spots rather than active latitude bands. Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features.

  13. Near-equinox spectro-imaging of Uranus aurorae sampling two planetary rotations

    NASA Astrophysics Data System (ADS)

    Lamy, Laurent

    2012-10-01

    A quarter of century after their discovery by Voyager 2 in 1986, HST sucessfully re-detected Uranus aurorae in 2011 {and also in 1998}, providing the first images of these emissions. Overall, they differ from other well-known planetary aurorae, and their characteristics vary at very different timescales, from minutes to decades. These results have provided the first insights on the poorly known Uranian magnetosphere in 26 years, and opened a rich field of investigation, together with a set of open questions. In addition, while solstice conditions prevailed in 1986, Uranus lay close to equinox in 2011, with the S and N magnetic poles alternately facing the Sun every half a rotation. This unique configuration of an asymmetric magnetosphere, extremely variable over a single rotation, had never been investigated before and deserved to be fully analyzed. New observations of the Uranian aurorae are therefore vital for our understanding of planetary magnetospheres, and HST is the only tool able to remotely investigate these emissions. We thus propose to re-observe Uranus with STIS spectro-imaging at next opposition {29 Sept. 2012} over two planetary rotations, in order to enlarge the set of positive detections and to sample the rotational dynamics of auroral processes and magnetosphere/solar wind interaction. To increase the probability of any possible auroral brightening triggered by magnetospheric compressions, observations will be scheduled in advance during active solar wind conditions at Uranus, near the maximum of solar cycle 24. Additional objectives will include the characterization of the extended neutral corona and the spectral response of atmospheric species.

  14. The radius and ellipticity of Uranus from its occultation of SAO 158687

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.; Mink, D. J.; Churms, J.

    1980-01-01

    From occultation timings obtained from the Kuiper Airborne Observatory and from Cape Town for Mar. 10, 1977 occultation of SAO 158687 by Uranus, the equatorial radius, Re, of the planet has been determined to be 26,228 + or - 30 km and its ellipticity epsilon = 1 - Rp/Re = 0.033 + or - 0.007. These values refer to the 1.0 x 10 to the 14th/cu cm number-density level, under the assumption that the upper atmosphere is composed of H2 and He with a mean molecular weight mu = 2.20. The dominant source of uncertainty is the position of the center of the ring system, which was used to define the center of Uranus in our analysis. A rotation rate of 12.8 + or - 1.7 hours for the planet is implied by our value for the ellipticity, under the assumption that Uranus is in hydrostatic equilibrium below the 1.0 x 10 to the 14th/cu cm number density level.

  15. Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Chandler, M. O.; Yelle, R. V.; Sandel, B. R.

    1987-01-01

    Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow.

  16. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A.

    1990-01-01

    The albedo, T(eff), and energy balance of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an energy balance of 1.06 + or - 0.08 for Uranus.

  17. The planets Uranus, Neptune, and Pluto (1971)

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1972-01-01

    Design criteria relating to spacecraft intended to investigate the planets of Uranus, Neptune, and Pluto are presented. Assessments were made of the potential effects of environmental properties on vehicle performance. Pertinent data on the mass, radius, shape, mean density, rotational pole location, and mean orbital elements for the three planets are given in graphs and tables.

  18. The Behavior of Regular Satellites during the Nice Model's Planetary Close Encounters

    NASA Astrophysics Data System (ADS)

    Nogueira, E. C.; Gomes, R. S.; Brasser, R.

    2014-10-01

    In order to explain the behavior of the regular satellites of the ice planets during the instability phase of the Nice model, we used numerical simulations to investigate the evolution of the satellite systems when these two planets experienced encounters with the gas giants. For the initial conditions we placed an ice planet in between Jupiter and Saturn, according to the evolution of Nice model simulations in a jumping Jupiter scenario (Brasser et al. 2009). We used the MERCURY integrator (Chambers 1999) and we obtained 101 successful runs which kept all planets, of which 24 were jumping Jupiter cases. Subsequently we performed additional numerical integrations in which the ice giant that encountered a gas giant was started on the same orbit but with its regular satellites included. This is done as follows: For each of the 101 basic runs, we save the orbital elements of all objects in the integration at all close encounter events. Then we performed a backward integration to start the system 100 years before the encounter and re-enacted the forward integration with the regular satellites around the ice giant. The final orbital elements of the satellites with respect to the ice planet were used to restart the integration for the next planetary encounter. If we assume that Uranus is the ice planet that had encounters with a gas giant, we considered the satellites Miranda, Ariel, Umbriel, Titania and Oberon with their present orbits. For Neptune we introduced Triton with an orbit with a 15% larger than the actual semi-major axis to account for the tidal decay from the LHB to present time. We also assume that Triton was captured through binary disruption (Agnor and Hamilton 2006, Nogueira et al. 2011) and its orbit was circularized by tides during the 500 million years before the LHB.

  19. First-Principles Computer Simulations of Dense Plasmas and Application to the Interiors of Giant Planets

    NASA Astrophysics Data System (ADS)

    Militzer, Burkhard

    2013-06-01

    This presentation will review three recent applications of first-principles computer simulation techniques to study matter at extreme temperature-pressure conditions that are of relevance to astrophysics. First we report a recent methodological advance in all-electron path integral Monte Carlo (PIMC) that allowed us to extend this method beyond hydrogen and helium to elements with core electrons [1]. We combine results from PIMC and with density functional molecular dynamics (DFT-MD) simulations and derive a coherent equation of state (EOS) for water and carbon plasmas in the regime from 1-50 Mbar and 104-109 K that can be compared to laboratory shock wave experiments. Second we apply DFT-MD simulations to characterize superionic water in the interiors of Uranus and Neptune. By adopting a thermodynamic integration technique, we derive the Gibbs free energy in order to demonstrate the existence of a phase transformation from body-centered cubic to face-centered cubic superionic water [2]. Finally we again use DFT-MD to study the interiors of gas giant planets. We determine the EOS for hydrogen-helium mixtures spanning density-temperature conditions in the deep interiors of giant planets, 0.2-9.0 g/cc and 1000-80000 K [3]. We compare the simulation results with the semi-analytical EOS model by Saumon and Chabrier. We present a revision to the mass-radius relationship which makes the hottest exoplanets increase in radius by ~0.2 Jupiter radii at fixed entropy and for masses greater than 0.5 Jupiter masses. This change is large enough to have possible implications for some discrepant inflated giant exoplanets. We conclude by demonstrating that all materials in the cores of giant planets, ices, MgO, SiO2, and iron, will all dissolve into metallic hydrogen. This implies the cores of Jupiter and Saturn have been at least partially eroded. [1] K. P. Driver, B. Militzer, Phys. Rev. Lett. 108 (2012) 115502. [2] H. F. Wilson, M. L. Wong, B. Militzer, http://arxiv.org/abs/1211

  20. High Pressure and High Temperature State of Oxygen Enriched Ice

    NASA Astrophysics Data System (ADS)

    LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.

  1. The aurorae of Uranus past equinox

    NASA Astrophysics Data System (ADS)

    Lamy, L.

    2017-12-01

    The aurorae of Uranus were recently detected in the far ultraviolet with the Hubble Space Telescope (HST) providing a new, so far unique, means to remotely study the asymmetric Uranian magnetosphere from Earth. We analyze here two new HST Uranus campaigns executed in September 2012 and November 2014 with different temporal coverage and under variable solar wind conditions numerically predicted by three different MHD codes. Overall, the HST images taken with the Space Telescope Imaging Spectrograph reveal auroral emissions in three pairs of successive images (one pair acquired in 2012 and two in 2014), hence 6 additional auroral detections in total, including the most intense Uranian aurorae ever seen with HST. The detected emissions occur close the expected arrival of interplanetary shocks. They appear as extended spots at southern latitudes, rotating with the planet. They radiate 5-24 kR and 1.3-8.8 GW of ultraviolet emission from H2, last for tens of minutes and vary on timescales down to a few seconds. Fitting the 2014 observations with model auroral ovals constrains the longitude of the southern (northern) magnetic pole to 104+/-26deg (284+/-26deg) in the Uranian Longitude System. We suggest that the Uranian near-equinoctial aurorae are pulsed cusp emissions possibly triggered by large-scale magnetospheric compressions.

  2. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks

    PubMed Central

    Fleming, Andrew; Sands, Chester J.; Quartino, Maria Liliana; Deregibus, Dolores

    2018-01-01

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km2 giant icebergs calve, we estimate that they generate approximately 106 tonnes of immobilized zoobenthic carbon per year (t C yr−1). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 104 t C yr−1. We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 106 t C yr−1 sequestration benefits as well as more widely known negative impacts. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’. PMID:29760118

  3. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks.

    PubMed

    Barnes, David K A; Fleming, Andrew; Sands, Chester J; Quartino, Maria Liliana; Deregibus, Dolores

    2018-06-28

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km 2 giant icebergs calve, we estimate that they generate approximately 10 6 tonnes of immobilized zoobenthic carbon per year (t C yr -1 ). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 10 4  t C yr -1 We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 10 6  t C yr -1 sequestration benefits as well as more widely known negative impacts.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.

  4. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of

  5. Gravity-assist trajectories to Venus, Mars, and the ice giants: Mission design with human and robotic applications

    NASA Astrophysics Data System (ADS)

    Hughes, Kyle M.

    Gravity-assist trajectories to Uranus and Neptune are found (with the allowance of impulsive maneuvers using chemical propulsion) for launch dates ranging from 2024 to 2038 for Uranus and 2020 to 2070 for Neptune. Solutions are found using a patched conic model with analytical ephemeris via the Satellite Tour Design Program (STOUR), originally developed at the Jet Propulsion Laboratory (JPL). Delivered payload mass is computed for all solutions for select launch vehicles, and attractive solutions are identified as those that deliver a specified amount of payload mass into orbit at the target body in minimum time. The best cases for each launch year are cataloged for orbiter missions to Uranus and Neptune. Solutions with sufficient delivered payload for a multi-planet mission (e.g. sending a probe to Saturn on the way to delivering an orbiter at Uranus) become available when the Space Launch System (SLS) launch vehicle is employed. A set of possible approach trajectories are modeled at the target planet to assess what (if any) adjustments are needed for ring avoidance, and to determine the probe entry conditions. Mars free-return trajectories are found with an emphasis on short flight times for application to near-term human flyby missions (similar to that of Inspiration Mars). Venus free-returns are also investigated and proposed as an alternative to a human Mars flyby mission. Attractive Earth-Mars free-return opportunities are identified that use an intermediate Venus flyby. One such opportunity, in 2021, has been adopted by the Inspiration Mars Foundation as a backup to the currently considered 2018 Mars free-return opportunity. Methods to establish spacecraft into Earth-Mars cycler trajectories are also investigated to reduce the propellant cost required to inject a 95-metric ton spacecraft into a cycler orbit. The establishment trajectories considered use either a V-infinity leveraging maneuver or low thrust. The V-infinity leveraging establishment

  6. Uranus moon - Titania

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The terminator region of Titania, one of Uranus' five large moons, was captured in this Voyager 2 image obtained in the early morning hours of Jan. 24, 1986. Voyager was about 500,000 kilometers (300,000 miles) from Titania and inbound toward closest approach. This clear-filter, narrow-angle view is along the terminator -- the line between the sunlit and darkened parts of the moon. The low-angle illumination shows the shape of the surface very clearly. Among the features visible are long linear valleys perhaps 50-100 km (30-60 mi) wide and several hundred km (or mi) long. At least two directions of faulting are visible, as are many circular impact craters attributed to cosmic debris. The resolution of this image is about 9 km (6 mi). The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  7. Unveiling Uranus' Clouds: New Observations From Gemini-North NIFS And NIRI

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Teanby, N. A.; Davis, G. R.; Fletcher, L. N.; Orton, G.; Tice, D.

    2010-10-01

    Observations of Uranus were made in September 2009 with the Gemini-North telescope in Hawaii, using both the NIFS and NIRI instruments. Adaptive optics were used to achieve a spatial resolution of approximately 0.1 arcsec. NIRI images were recorded with three spectral filters to constrain the overall appearance of the planet: J, H-continuum and CH4(long), and long slit spectra (1.49 to 1.79 microns) were obtained with the slit aligned on Uranus’ central meridian. In addition, the NIFS instrument was used to acquire spectra from other points on the planet, stepping the NIFS 3 x 3 arcsec field of view across Uranus’ disc. These observations were combined to yield complete images of Uranus at 2040 wavelengths between 1.476 and 1.803 microns with a spectral resolution of 5000. The observed spectra along Uranus central meridian were analyzed with the NEMESIS retrieval tool and used to infer the vertical/latitudinal variation in cloud optical depth. We find that the 2009 Gemini data perfectly complement our observations/conclusions from UKIRT/UIST observations made in 2006-2008 and show that the north polar zone at 45N has continued to steadily brighten while that at 45S has continued to fade. The improved spatial resolution of the Gemini observations compared with the non-AO UKIRT/UIST data remove many of the earlier ambiguities inherent in the previous analysis. Overall, Uranus appeared to be less convectively active in 2009 than in the previous 3 years, which suggests that now the equinox (which occurred in 2007) is over the atmosphere is settling back into the quiescent state seen by Voyager 2 in 1986. However, one discrete cloud was captured in the NIFS observations and was estimated to lie at a pressure level of 300-400 mbar.

  8. The aurorae of Uranus past equinox

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Prangé, R.; Hansen, K. C.; Tao, C.; Cowley, S. W. H.; Stallard, T. S.; Melin, H.; Achilleos, N.; Guio, P.; Badman, S. V.; Kim, T.; Pogorelov, N.

    2017-04-01

    The aurorae of Uranus were recently detected in the far ultraviolet with the Hubble Space Telescope (HST) providing a new, so far unique, means to remotely study the asymmetric Uranian magnetosphere from Earth. We analyze here two new HST Uranus campaigns executed in September 2012 and November 2014 with different temporal coverage and under variable solar wind conditions numerically predicted by three different MHD codes. Overall, the HST images taken with the Space Telescope Imaging Spectrograph reveal auroral emissions in three pairs of successive images (one pair acquired in 2012 and two in 2014), hence 6 additional auroral detections in total, including the most intense Uranian aurorae ever seen with HST. The detected emissions occur close the expected arrival of interplanetary shocks. They appear as extended spots at southern latitudes, rotating with the planet. They radiate 5-24 kR and 1.3-8.8 GW of ultraviolet emission from H2, last for tens of minutes and vary on timescales down to a few seconds. Fitting the 2014 observations with model auroral ovals constrains the longitude of the southern (northern) magnetic pole to 104 ± 26° (284 ± 26°) in the Uranian Longitude System. We suggest that the Uranian near-equinoctial aurorae are pulsed cusp emissions possibly triggered by large-scale magnetospheric compressions.

  9. Haze and cloud distribution in Uranus' atmosphere based on high-contrast spatially resolved polarization measurements

    NASA Astrophysics Data System (ADS)

    Kostogryz, Nadiia; Berdyugina, Svetlana; Gisler, Daniel; Berkefeld, Thomas

    2017-04-01

    In planetary atmospheres, main sources of opacity are molecular absorption and scattering on molecules, hazes and aerosols. Hence, light reflected from a planetary atmosphere can be linearly polarized. Polarization study of inner solar system planets and exoplanets is a powerful method to characterize their atmospheres, because of a wide range of observable phase angles. For outer solar system planets, observable phase angles are very limited. For instance, Uranus can only be observed up to 3.2 degrees away from conjunctions, and its disk-integrated polarization is close to zero due to the back-scattering geometry. However, resolving the disk of Uranus and measuring the center-to-limb polarization can help constraining the vertical atmospheric structure and the nature of scattering aerosols and particles. In October 2016, we carried out polarization measurements of Uranus in narrow-band filters centered at methane bands and the adjacent continuum using the GREGOR Planet Polarimeter (GPP). The GPP is a high-precision polarimeter and is mounted at the 1.5-m GREGOR solar telescope, which is suitable for observing at night. In order to reach a high spatial resolution, the instrument uses an adaptive-optics system of the telescope. To interpret our measurements, we solve the polarized radiative transfer problem taking into account different scattering and absorption opacities. We calculate the center-to-limb variation of polarization of Uranus' disk in the continuum spectrum and in methane bands. By varying the vertical distribution of haze and cloud layers, we derive the vertical structure of the best-fit Uranus atmosphere.

  10. The narrow rings of Jupiter, Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Murray, C. D.; Sinclair, A. T.

    1980-01-01

    The origin of the newly discovered narrow ring systems around Jupiter, Saturn and Uranus is considered. It is pointed out that both the Uranian and Jovian ring systems have mean orbital radii of 1.8 planetary radii and lie within the Roche zones of their respective planets, and it is suggested that the Jovian ring is the product of the disintegration of a satellite that entered the Roche zone, and that large numbers of small particles are now in horseshoe orbits about the Lagrangian equilibrium points of the remnant chunks. Analysis of the path of a ring particle in a horseshoe orbit is shown to result in ring structures in agreement with those observed for the circular rings of Jupiter and the highly eccentric ring of Uranus. The stability of these ring systems is then considered, and it is suggested that the F ring of Saturn, which lies outside the Roche zone, represents primordial matter not yet accreted by small satellites just inside the Mimas first-order resonances.

  11. Thermal Evolution of Charon and the Major Satellites of Uranus: Constraints on Early Differentiation

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Multhaup, K.

    2007-12-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and the satellites of Uranus Ariel, Umbriel, Titania, Oberon and Miranda. The model assumes homogeneously accreted satellites. To calculate the initial temperature profile we assume that infalling planetesimals deposit a fraction h of their kinetic energy as heat at the instantaneous surface of the growing satellites. The parameter h is varied between models. The model continuously checks for convectively unstable shells in the interior by updating the temperature profile and calculating the Rayleigh number and the temperature-dependent viscosity. The viscosity parameter values are taken as those of ice I although the satellites under consideration likely contain admixtures of lighter constituents. Their effects and those of rock on the viscosity are discussed. Convective heat transport is calculated assuming the stagnant lid model for strongly temperature dependent viscosity. In convectively stable regions heat transfer is by conduction with a temperature dependent thermal conductivity. Thermal evolution calculations considering radiogenic heating by the long-lived radiogenic isotopes of U, Th, and K suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. With short-lived isotopes -- if present in sizeable concentrations -- this time will move earlier. Results for Miranda -- the smallest satellite of Uranus -- indicate that it never convected or differentiated if heated by the said long-lived isotopes only. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as the decay of short-lived isotopes or early tidal heating.

  12. Impacts of the Larsen-C Ice Shelf calving event

    NASA Astrophysics Data System (ADS)

    Hogg, Anna E.; Gudmundsson, G. Hilmar

    2017-08-01

    A giant iceberg has calved off the Larsen-C Ice Shelf, the largest remaining ice shelf on the Antarctic Peninsula, reducing its total area by ~10%. Whilst calving events are a natural phenomenon and thus not necessarily indicative of changing environmental conditions, such events can impact ice-shelf stability.

  13. Origins of the rings of Uranus and Neptune. I - Statistics of satellite disruptions

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.; Esposito, Larry W.

    1992-01-01

    The origin of the rings of Uranus and Neptune is considered by performing two types of stochastic simulations of the collisional history of small moons: Monte Carlo simulations in which only the largest surviving fragments from each disruption is followed, and a Markov chain approach which makes it possible to follow the size distribution from each disruption to arbitrarily small sizes. Results indicate that the population of small satellites around Uranus and Neptune have evolved through catastrophic fragmentation since the end of planet and satellite formation 3 to 4 billion years ago.

  14. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  15. On the methane opacity for Uranus and Neptune.

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1972-01-01

    The contribution of methane to the thermal opacity in the atmospheres of Uranus and Neptune is shown to be negligible. The relevance of this finding lies in the importance of knowing all the sources of thermal opacity to include in models of these atmospheres, for only then may it be possible to deduce their atmospheric structure and composition correctly.

  16. Uranus and the shape of elliptical rings

    NASA Technical Reports Server (NTRS)

    Lucke, R. L.

    1978-01-01

    It is reported that when the star SAO158687 passed behind the Uranus system, its light was occulted twice by the epsilon (fifth) ring of the planet. The first part of the ring to occult was about 100 km wide and the second part was about 40 km wide. The variable width of the ring is accounted for by differences in the orbital eccentricities of the individual particles composing the ring.

  17. Main-belt Asteroids in the K2 Uranus Field

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Pál, A.; Sárneczky, K.; Szabó, R.; Vinkó, J.; Szabó, Gy. M.; Kiss, Cs.; Hanyecz, O.; Marton, G.; Kiss, L. L.

    2018-02-01

    We present the K2 light curves of a large sample of untargeted main-belt asteroids (MBAs) detected with the Kepler Space Telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with a low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility of obtaining precise, uninterrupted light curves of a large number of MBAs and thus determining unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations, indicating that the latter are biased toward shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.

  18. Shock Radiation Tests for Saturn and Uranus Entry Probes

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Bogdanoff, David W.

    2014-01-01

    This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen/Helium mixtures (89:11 by mole) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. No shock layer radiation is detected below 25 km/s, a finding consistent with predictions for Uranus entries. Between 25-30 km/s, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-alpha and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and distributions are demonstrated to be non-Boltzmann. Radiation data are compared to simulations of Decadal survey entries for Saturn and shown to be significantly lower than predicted with the Boltzmann radiation model.

  19. Deposition of a saline giant in the Mississippian Windsor Group, Nova Scotia, and the nascent Late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    MacNeil, Laura A.; Pufahl, Peir K.; James, Noel P.

    2018-01-01

    Saline giants are vast marine evaporite deposits that currently have no modern analogues and remain one of the most enigmatic of chemical sedimentary rocks. The Mississippian Windsor Group (ca. 345 Ma), Maritimes Basin, Atlantic Canada is a saline giant that consists of two evaporite-rich sedimentary sequences that are subdivided into five subzones. Sequence 1 is composed almost entirely of thick halite belonging to Subzone A (Osagean). Sequence 2 is in unconformable contact and comprised of stacked carbonate-evaporite peritidal cycles of Subzones B through E (Meramecian). Subzone B, the focus of research herein, documents the transition from wholly evaporitic to open marine conditions and thus, preserves an exceptional window into the processes forming saline giants. Lithofacies stacking patterns in Subzone B reveal that higher-order fluctuations in relative sea level produced nine stacked parasequences interpreted to reflect high frequency glacioeustatic oscillations during the onset of the Late Paleozoic Ice Age. Each parasequence reflects progradation of intertidal and sabkha sediments over subtidal carbonate and evaporite deposits. Dissimilarities in cycle composition between sub-basins imply the development of contrasting brine chemistries from differing recharge rates with the open ocean. What the Windsor Group shows is that evaporite type is ostensibly linked to the amplitude and frequency of sea level rise and fall during deposition. True saline giants, like the basinwide evaporites of Sequence 1, apparently require low amplitude, long frequency changes in sea level to promote the development of stable brine pools that are only periodically recharged with seawater. By contrast, the high amplitude, short frequency glacioeustatic variability in sea level that controlled the accumulation of peritidal evaporites in Subzone B produce smaller, subeconomic deposits with more complex facies relationships.

  20. Infrared radiometry of Uranus and Neptune at 21 and 32 microns

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Baines, Kelvin H.; Bergstralh, Jay T.; Brown, Robert H.; Caldwell, John

    1987-01-01

    Mauna Kea's NASA IRTF has been used to obtain 21- and 32-cm radiometric measurements of Uranus and Neptune; brightness temperatures of 54.1 + or - 0.3 K for Uranus and 58.1 + or 0.3 K for Neptune were obtained by calibrating the 21-cm data against Alpha Boo. A calibration of the 32-cm data against Callisto and Ganymede yielded respective temperatures of 51.8 + or - 1.5 K and 55.6 + or - 1.2 K. The general decrease of brightness temperatures with wavelength from 20 to 30 microns is confirmed. The two planets are noted to appear as bodies sufficiently different to depart from the hypothesis of smooth planetary bulk property variation as a function of heliocentric distance.

  1. Voyager 2 Uranus and Neptune targeting

    NASA Technical Reports Server (NTRS)

    Gray, D. L.; Cesarone, R. J.; Van Allen, R. E.

    1982-01-01

    Targeting strategies are developed for the Voyager 2 flybys of Uranus and Neptune/Triton. The need to maximize science return, conserve propellant, and maintain spacecraft safety presents a challenge, given the difficulty in estimating the spacecraft orbit relative to these outer planets. Expected propellant usage, science return, and targeting complexity are presented for each targeting strategy. For the dual encounter of Neptune and its satellite Triton, split targeting conditions are proposed to fix the most important conditions at each body, and thus minimize science losses resulting from Triton ephemeris uncertainties.

  2. The Behavior of Regular Satellites During the Planetary Migration

    NASA Astrophysics Data System (ADS)

    Nogueira, Erica Cristina; Gomes, R. S.; Brasser, R.

    2013-05-01

    Abstract (2,250 Maximum Characters): The behavior of the regular satellites of the giant planets during the instability phase of the Nice model needs to be better understood. In order to explain this behavior, we used numerical simulations to investigate the evolution of the regular satellite systems of the ice giants when these two planets experienced encounters with the gas giants. For the initial conditions we placed an ice planet in between Jupiter and Saturn, according to the evolution of Nice model simulations in a ‘jumping Jupiter’ scenario (Brasser et al. 2009). We used the MERCURY integrator (Chambers 1999) and cloned simulations by slightly modifying the Hybrid integrator changeover parameter. We obtained 101 successful runs which kept all planets, of which 24 were jumping Jupiter cases. Subsequently we performed additional numerical integrations in which the ice giant that encountered a gas giant was started on the same orbit but with its regular satellites included. This is done as follows: For each of the 101 basic runs, we save the orbital elements of all objects in the integration at all close encounter events. Then we performed a backward integration to start the system 100 years before the encounter and re-enacted the forward integration with the regular satellites around the ice giant. These integrations ran for 1000 years. The final orbital elements of the satellites with respect to the ice planet were used to restart the integration for the next planetary encounter (if any). If we assume that Uranus is the ice planet that had encounters with a gas giant, we considered the satellites Miranda, Ariel, Umbriel, Titania and Oberon with their present orbits around the planet. For Neptune we introduced Triton with an orbit with a 15% larger than the actual semi-major axis to account for the tidal decay from the LHB to present time. We also assume that Triton was captured through binary disruption (Agnor and Hamilton 2006, Nogueira et al. 2011) and

  3. Simulating Formation of Rifts on Saturn's and Uranus's Satellites versus Scarps on Mercury

    NASA Astrophysics Data System (ADS)

    Byrd, Gene G.

    The formation of scarps or "wrinkles" on Mercury is typically explained as being due to the shrinkage of an interior covered by a crust of stony material that does not shrink. A simple classroom simulation of Mercury is to inflate a small spherical balloon and put belts of frosted plastic tape around it at several angles. Putting the balloon in a cooler causes the air in the balloon to shrink like Mercury's interior. The tape, unable to shrink with the balloon, creates scarps. Conversely, many of the medium-sized satellites of Saturn and Uranus show rifts extending for long distances over their outer crusts, which we hypothesize to be due to an expanding "ice"-rich interior. We describe a classroom simulation of the interior expansion's effect on a nonexpanding rigid crust using eggs. The shell represents the cooled solidified surface, while the white represents the water-rich semifluid interior. The eggs are put into a plastic bag and then put into a freezer. Upon freezing, the water in the interior expands. Some of the resulting crack patterns look remarkably like those on the medium satellites of Saturn or Uranus. The interior "lava" occasionally is extruded. One example was long and straight, extending almost halfway around the egg. It resembled the recently discovered rift and ridge extending across one side of the satellite Iapetus. Inspired by this resemblance, we think that the crusts of Iapetus and other satellites with similar features have a global crustal structure weaker to tension 90° to the global lines. For an equatorial rift, assume that a satellite's solid crust formed in an elongated shape continuously pointed at Saturn as the satellite rotates synchronously with its orbital motion. If the synchronism is disturbed, equatorial fractures may form because the crust there is flexed from "high" and "low" tides as the satellite turns relative to the planet. This does not happen at the poles. Then, if the interior expands, one of the fractures could

  4. Uranus Cloud Layers As Constrained By HST STIS Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2007-10-01

    Space Telescope Imaging Spectrograph (STIS) observations of Uranus were obtained in 2002. We analyzed observations taken with the slit parallel to Uranus' spin axis and positioned on the central meridian, combining 430L and 750L grating observations to obtain a rectified spectrum spanning the wavelength range of 290 nm to 1050 nm. At the time of these observations the subearth planetocentric latitude was -20.5 degrees, making latitudes of 43 S and 7.6 N latitudes of approximately equal view angle. Comparing wavelengths that probe different depths of the Uranian atmosphere, controlled mainly by Rayleigh and Raman scattering at short wavelengths, and by Methane absorption at longer wavelengths, we are able to estimate the pressure levels at which cloud bands reside in the Uranus atmosphere and identify asymmetries in cloud and haze properties. At 399 nm we find that the southern hemisphere is darker than the northern hemispheres at comparable view angles, providing evidence of stratospheric haze absorption. At 467 nm there is nearly perfect symmetry about the center of the disk, with Rayleigh scattering obscuring views of deeper cloud bands. At 590 nm, which is more deeply penetrating, there appears a strong asymmetry in which the southern hemisphere is brighter than corresponding view angles in the northern hemisphere. Wavelengths of 725 nm and 789 nm imply that the bright band near seen at 45 S at 789 nm but not seen at 725 nm lies between about 1.7 bars and 3-4 bars. Quantitative radiation transfer models of these spectra are currently stymied by calibration issues identified by comparison of central disk spectra with central disk I/F values obtained from WFPC2 bandpass filter images. This research was supported by the Outer Planets Research Program.

  5. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  6. Quantitative analysis of the Dermott-Gold theory for Uranus's rings

    NASA Technical Reports Server (NTRS)

    Aksnes, K.

    1977-01-01

    A summary is presented of an investigation which supplements the largely qualitative analysis conducted by Dermott and Gold (1977). Dermott and Gold have attempted to explain the locations of Uranus's rings in terms of resonances between ring particles and pairs of satellites. An equation of motion, analogous to that of a pendulum, is derived, taking into account a study by Wilkens (1933) of possible three-body resonances involving one minor and two major planets. Dermott and Gold had concluded that the observed pattern is probably due primarily to the effect of Ariel-Titania and Ariel-Oberon pairs. However, on the basis of the values derived in the reported investigation it is seen that Miranda plays the key role rather than Ariel, in spite of the small mass of the former. It is concluded that a decisive test of the Dermott-Gold theory has to await further observational details concerning the Uranus's rings.

  7. Observations of Uranus and Neptune in Spanish Telescopes: Calar Alto/PlanetCam, WHT/Ingrid y GTC/Osiris

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.; Ordonez-Etxeberria, I.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.

    2017-03-01

    The astronomical observation of the atmospheres of Uranus and Neptune poses unique challenges. Both planets are relatively dimm objects (visual magnitude of +5.3 and +7.7) and have small angular sizes (3.7” and 2.4” at opposition). Both worlds have atmospheres that are very dynamic, specially Neptune. These atmospheres are dominated by intense zonal winds that reach 450 m/s and where seasonal evolution changes the band patterns present in these planets. Thanks to the atmospheric methane gas, when observing Uranus and Neptune in near infrared wavelengths their upper clouds become well contrasted and bright and observations at different methane absorption bands allow to sample the atmosphere at different vertical layers. Both worlds are subject to the development of bright cloud patterns, some times of convective origin and whose activity can extend over weeks to several months or years. In the last few years we have surveyed the atmospheric activity of Uranus and Neptune with instruments able to improve the spatial resolution of the images beyond the limits impose by the atmospheric seeing. We use the Lucky Imaging technique (fast observation of several short-exposure frames combined with automatic selection of best frames and coregistration for stacking). We present image observations of Uranus and Neptune obtained with the instruments: OSIRIS at Grantecan as well as the AstraLux and PlanetCam UPV/EHU cameras on the 2.2m telescope at Calar Alto observatory. These observations are compared with other observations acquired by amateur astronomers able to obtain resolve cloud features in Uranus and Neptune. We compare these observations with images acquired with Adaptive Optics instruments at the William Herschel with the NAOMI+Ingrid instruments and Keck II and with Hubble Space Telescope images. We show the importance of surveying the atmospheric activity of these planets with a variety of telescopes. Two science cases are presented: The study of convective

  8. Study of the adaptability of existing hardware designs to a Pioneer Saturn/Uranus probe

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The basic concept of designing a scientific entry probe for the expected range of environments at Saturn or Uranus and making the probe compatible with the interface constraints of the Pioneer spacecraft was investigated for launches in the early 1980's. It was found that the amount of hardware commonality between that used in the Pioneer Venus program and that for the Saturn/Uranus probe was approximately 85%. It is recommended that additional development studies be conducted to improve the hardware definitions of the probe design for the following: heat shield, battery, nose cap jettisoning, and thermal control insulation.

  9. Europa, tidally heated oceans, and habitable zones around giant planets

    NASA Astrophysics Data System (ADS)

    Reynolds, R. T.; McKay, C. P.; Kasting, J. F.

    Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.

  10. Europa, tidally heated oceans, and habitable zones around giant planets

    NASA Technical Reports Server (NTRS)

    Reynolds, Ray T.; Mckay, Christopher P.; Kasting, James F.

    1987-01-01

    Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.

  11. Europa, tidally heated oceans, and habitable zones around giant planets.

    PubMed

    Reynolds, R T; McKay, C P; Kasting, J F

    1987-01-01

    Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. In our own solar system, Europa, one of the Galilean satellites of Jupiter, could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of Aeons and in which life could perhaps evolve. We define a zone around a giant planet in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In our solar system, this radiatively-heated habitable zone contains the Earth.

  12. Monodeurated methane in the outer solar system. 2. Its detection on Uranus at 1.6 microns

    NASA Technical Reports Server (NTRS)

    Debergh, C.; Lutz, B. L.; Owen, T.; Brault, J.; Chauville, J.

    1985-01-01

    Deuterium in the atmosphere of Uranus has been studied only via measurements of the exceedingly weak dipole lines of hydrogen-deuteride (HD) seen in the visible region of the spectrum. The other sensitive indicator of deuterium in the outer solar system is monodeuterated methane (CH3D) but the two bands normally used ot study this molecule, NU sub 2 near 2200 1/cm and NU sub 6 near 1161 1/cm, have not been detected in Uranus.

  13. Tilting Styx and Nix but not Uranus with a Spin-Precession-Mean-motion resonance

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Chen, Yuan-Yuan; Noyelles, Benoît; Loane, Santiago

    2018-02-01

    A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet-planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet's obliquity to near 90° or 180° depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus's high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus's high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.

  14. Uranus' largest moon Oberon

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Uranus' outermost and largest moon, Oberon, is seen in this Voyager 2 image, obtained Jan. 22, 1986, from a distance of 2.77 million kilometers (1.72 million miles). The clear-filter image, shuttered by Voyager's narrow-angle camera, shows that Oberon displays several distinct highly reflective (high-albedo) patches with low-albedo centers. Some of the bright patches are suggestive of radial patterns that could represent impact craters excavated from an icy surface. On average, Oberon reflects about 20 percent of the incident sunlight. The moon is about 1,600 km (1,000 mi) in diameter; resolution of this image is 51 km (32 mi). It was taken two days before Voyager's closest approach to Oberon, at which point the spacecraft will be about 471,000 km (293,000 mi) away. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  15. Shock Radiation Tests for Saturn and Uranus Entry Probes

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Bogdanoff, David W.

    2017-01-01

    This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11 by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 kms. No shock layer radiation is detected within measurement limits below 25 kms, a finding consistent with predictions for Uranus entries. Between 25-30 kms, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-a and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and in many cases the state distributions are non-Boltzmann. Radiation data are compared to simulations of Decadal Survey entries for Saturn and shown to be as much as 8x lower than predicted with the Boltzmann radiation model. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length.

  16. Physical State of Ices in the Outer Solar System. Revised

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comparison of the identity and abundances of ices observed around protostars and those associated with comets clearly suggests that comets preserve the heritage of the interstellar materials that aggregated to form them. However, the ability to identify these same species on icy satellites in the outer solar system is a complex function of the composition of the original ices, their subsequent thermal histories, and their exposure to various radiation environments. Our ability to identify the ices currently present on objects in the outer solar system relies upon observational and laboratory, and theoretical efforts. To date there is ample observational evidence for crystalline water ice throughout the outer solar system. In addition, there is growing evidence that amorphous ice may be present on some bodies. More volatile ices, e.g. N2, CH4. CO, and other species, e.g. ammonia hydrate, are identified on objects lying at and beyond Uranus. Both photolysis and radiolysis play important roles in altering the original surfaces due to chemical reactions and erosion of the surface. Ultraviolet photolysis appears to dominate alteration of the upper few hundred Angstroms, although sputtering the surface can sometimes be a significantly competitative process; dominating on icy surfaces embedded in a strong planetary magnetospheric field. There is growing observational evidence that the by-products of photolysis and radiolysis, suggested on a theoretical basis, are present on icy surfaces.

  17. Medium-sized icy satellites in the outer solar system - differentiation due to radiogenic heating in Charon or the moons of Uranus?

    NASA Astrophysics Data System (ADS)

    Multhaup, K.; Spohn, T.

    2007-08-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and five satellites of Uranus. The model assumes stagnant lid convection in homogeneously accreted bodies either confined to a spherical shell or encompassing the whole interior below the immobile surface layer. We employ a simple model for accretion assuming that infalling planetesimals deposit a fraction of their kinetic energy as heat at the instantaneous surface of the growing moon. Rheology parameters are chosen to match those of ice I, although the satellites under consideration likely contain admixtures of lighter constituents. Consequences thereof are discussed. Thermal evolution calculations considering radiogenic heating by long-lived isotopes suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. Results for Miranda - the smallest satellite of Uranus - however, indicate that it never convected or differentiated. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as early tidal heating. Except for Miranda, our results lend support to differentiated icy satellite models. We also point out parallels to previously published results obtained for several of Saturn's icy satellites (Multhaup and Spohn, 2007). The predicted early histories of Ariel, Umbriel and Charon are evocative of Dione's and Rhea's, while Miranda's resembles that of Mimas.

  18. Equatorial waves in the stratosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  19. Vertical cloud structure of Uranus from UKIRT/UIST observations and changes seen during Northern Spring Equinox in 2007

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; Teanby, N. A.; Davis, G. R.

    2008-09-01

    Uranus has a very high obliquity of 98 degrees and a very small amount of residual internal heat left over from its formation. Hence, the circulation of its atmosphere is strongly affected by seasonal changes in solar irradiation. Uranus reached its northern spring equinox in December 2007 and at the planet's last equinox in 1965 there were indications of a substantial change in the planet's appearance. Ground-based instrumentation has improved dramatically since 1965 and thus there has been great international interest in monitoring the cloud structure of Uranus through this equinox period to monitor any rapid variations that may occur this time. New near-infrared spectra of Uranus were observed in August/September 2006 and in June 2007 using the UIST instrument on the United Kingdom Infrared Telescope (UKIRT). Spectra (in Long Slit mode) were recorded between 1 and 2.5 microns with the slit aligned with the planet's central meridian to determine any north-south variations of Uranus' cloud structure. In addition, context images were also recorded to note the position of discrete mid-latitude clouds to ensure that these were not confused with any general latitudinal variation (Fig. 1). We here present retrievals of the latitudinal variation of Uranus' vertical cloud structure from these data using an optimal estimation retrieval model, NEMESIS[1], together with new methane absorption coefficients[2] and a Matrix Operator multiple scattering model. Apart from some small storms at both southern and northern mid-latitudes, some reaching the 200 mbar pressure level, indicating vigorous convection, we find that the data are generally best fitted either with two cloud layers, one at ~2 - 3 bars and a second deeper cloud layer at ~8 bars, or alternatively by a single extended cloud spanning this pressure range (Fig. 2.). In the bright band at 45ºS we find that the opacity in the 2 -3 bar region is increased, while that deeper levels decreased slightly[3]. Comparing

  20. Uranus atmospheric dynamics and circulation

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  1. A novel integrase-containing element may interact with Laem-Singh virus (LSNV) to cause slow growth in giant tiger shrimp

    PubMed Central

    2011-01-01

    Background From 2001-2003 monodon slow growth syndrome (MSGS) caused severe economic losses for Thai shrimp farmers who cultivated the native, giant tiger shrimp, and this led them to adopt exotic stocks of the domesticated whiteleg shrimp as the species of cultivation choice, despite the higher value of giant tiger shrimp. In 2008, newly discovered Laem-Singh virus (LSNV) was proposed as a necessary but insufficient cause of MSGS, and this stimulated the search for the additional component cause(s) of MSGS in the hope that discovery would lead to preventative measures that could revive cultivation of the higher value native shrimp species. Results Using a universal shotgun cloning protocol, a novel RNA, integrase-containing element (ICE) was found in giant tiger shrimp from MSGS ponds (GenBank accession number FJ498866). In situ hybridization probes and RT-PCR tests revealed that ICE and Laem-Singh virus (LSNV) occurred together in lymphoid organs (LO) of shrimp from MSGS ponds but not in shrimp from normal ponds. Tissue homogenates of shrimp from MSGS ponds yielded a fraction that gave positive RT-PCR reactions for both ICE and LSNV and showed viral-like particles by transmission electron microscopy (TEM). Bioassays of this fraction with juvenile giant tiger shrimp resulted in retarded growth with gross signs of MSGS, and in situ hybridization assays revealed ICE and LSNV together in LO, eyes and gills. Viral-like particles similar to those seen in tissue extracts from natural infections were also seen by TEM. Conclusions ICE and LSNV were found together only in shrimp from MSGS ponds and only in shrimp showing gross signs of MSGS after injection with a preparation containing ICE and LSNV. ICE was never found in the absence of LSNV although LSNV was sometimes found in normal shrimp in the absence of ICE. The results suggest that ICE and LSNV may act together as component causes of MSGS, but this cannot be proven conclusively without single and combined bioassays

  2. Uranus - family portrait

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This 'family portrait' of Uranus' five largest moons was compiled from images sent back Jan. 20, 1986, by the Voyager 2 spacecraft. The pictures were taken through a clear filter from distances of 5.0 million to 6.1 million kilometers (3.1 million to 3.8 million miles). In this comparison, we see the relative sizes and relativities of the satellites. From left, in order of increasing distance from the planet, they are Miranda, Ariel, Umbriel, Titania and Oberon. The two largest, Oberon and Titania, are about half the size of Earth's Moon, or roughly, 1,600 kilometers (1,000 miles) in diameter. Miranda, smallest of the five, has about one-quarter to one-third the diameter. Even in these distant views, the satellites exhibit distinct differences in appearance. On average, Oberon and Titania reflect about 20 percent of the sunlight, Umbriel about 12 percent, Ariel and Miranda about 30 percent. Ariel shows the largest contrast on its surface, with the brightest areas about 25 percent. All five satellites show only slight color variations on their surfaces, with their average color being very nearly gray. The best views of the satellites will be obtained Jan. 24, the day of closest approach. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  3. Polarimetry Of Planetary Atmospheres: From The Solar System Gas Giants To Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Buenzli, Esther; Bazzon, A.; Schmid, H. M.

    2011-09-01

    The polarization of light reflected from a planet provides unique information on the atmosphere structure and scattering properties of particles in the upper atmosphere. The solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Polarimetry is also a promising differential technique to search for and characterize extra-solar planets, e.g. with the future VLT planet finder instrument SPHERE. For the preparation of the SPHERE planet search program we have made a suite of polarimetric observations and models for the solar system gas giants. The phase angles for the outer planets are small for Earth bound observations and the integrated polarization is essentially zero due to the symmetric backscattering situation. However, a second order scattering effect produces a measurable limb polarization for resolved planetary disks. We have made a detailed model for the spectropolarimetric signal of the limb polarization of Uranus between 520 and 935 nm to derive scattering properties of haze and cloud particles and to predict the polarization signal from an extra-solar point of view. We are also investigating imaging polarimetry of the thick haze layers on Titan and the poles of Jupiter. Additionally, we have calculated a large grid of intensity and polarization phase curves for simpler atmosphere models of extrasolar planets.

  4. Probing the vertical cloud structure of Uranus and Neptune with ground-based near-infrared observations at UKIRT, IRTF and Gemini-North

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Teanby, Nicholas N.; Davis, Gary R.; Orton, Glenn; Fletcher, Leigh; Tice, Dane; Hurley, Jane

    2010-05-01

    In 2006, 2007 and 2008 observations of the near-infrared spectrum of Uranus were made with the UIST instrument of the UK Infrared Telescope, covering the period of Uranus' Northern Spring Equinox in 2008. A significant change in the visible appearance of Uranus occurred during this time with the southern polar zone at 45°S fading, while a corresponding zone at 45°N began to form. In addition, the visibility of the equatorial zone and darker mid-latitude belts increased. The observed spectra were fitted (Irwin et al., Icarus 203, 287 - 302, 2009), using the NEMESIS optimal estimation retrieval model to determine the variation in the latitudinal and vertical cloud structure during this time. However, since publication, a new set of methane absorption data has become available (Karkoschka and Tomasko, 2009, Icarus, submitted), which appears to be more reliable at the cold temperatures and high pressures of Uranus' deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ~ 3-4 bars and ~ 6 bars in the J-band. In addition, we find that using the new methane coefficients it is much easier to fit simultaneously the 1.6, 1.3 and 1.1 μm peaks. During the Uranus observations in 2007, corresponding observations were also made of Neptune's near-infrared spectrum, albeit with substantially poorer spatial resolution. The spectra were nevertheless sufficient to retrieve the gross variation in Neptune's latitudinal-vertical cloud structure and, like previous studies, we find the main cloud deck to exist at similar pressure levels to the main Uranus cloud deck, but with considerably thicker overlying stratospheric haze. The retrieved vertical-latitudinal cloud structure on Uranus and Neptune, observed with identical instrument setups, will be presented

  5. Ionospheric dynamo theory for production of far ultraviolet emissions on Uranus

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Warren, J. A.; Clarke, J. T.

    1989-01-01

    A model is presented to explain diffuse FUV emissions from the outer planets, specifically Uranus, in excess of those diffuse emissions that are currently explainable by scattering of sunlight and/or excitation by photoelectrons. These electroglow emissions in H Ly-alpha and H2 bands, which occur in the sunlit hemisphere slightly above the homopause, appear to require particle excitation in the 10- to 50-eV range. An in situ mechanism for accelerating photoelectrons (and ions is proposed, involving neutral wind dynamo generation of field-aligned currents analogous to what occurs in the earth's equatorial E and F regions. Sufficiently strong field-aligned currents are found in the model calculation for Uranus to produce a potential drop of about 100 eV or greater between the F peak and homopause, concentrated at lower altitudes, and capable in principle of accelerating photoelectrons (and ions) to the 10- to 50-eV energies required to explain the observed emissions. The fact that the excitation and ionization cross sections are larger than elastic scattering cross sections in an H2 atmosphere at these energies makes in situ acceleration feasible for the production of UV on the outer planets.

  6. Atmospheres of the Giant Planets

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2002-01-01

    The giant planets, Jupiter, Saturn, Uranus, and Neptune, are fluid objects. They have no solid surfaces because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction between gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers arc only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are organized by winds, which are powered by heat derived from sunlight (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are distinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fascinating objects for study, providing clues about the origin and evolution of the planets and the formation of the solar system.

  7. HST and ground-based observations of bright storms on Uranus during 2014-2015.

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Sromovsky, L. A.; Fry, P. M.; De Pater, I.; Hammel, H. B.; Rages, K. A.; Baranec, C.; Delcroix, M.; Wesley, A.; Hueso, R.; Sanchez-Lavega, A.; Simon, A. A.; Wong, M. H.; Orton, G. S.; Irwin, P. G.

    2015-12-01

    We report the temporal evolution of bright, long-lived cloud features on Uranus. We observed and tracked the features between August 2014 and January 2015 with the Hubble Space Telescope, the Keck 2 10-m telescope, VLT, Gran Telescopio Canarias, Gemini, William Herschel Telescope, Robo-AO, Pic du Midi 1-m telescope, and multiple smaller telescopes operated by amateur astronomers. Surprisingly bright features were first revealed in the Keck adaptive-optics images in August; this initial set of observations motivated follow-up observations around the world. One of the storms (identified as "Feature F" in Sromovsky et al. 2015, and Feature 2 in de Pater et al. 2015), which was the deepest in that dataset, was bright enough that it was detected by multiple amateur observers, permitting us to trigger a Hubble Target of Opportunity (ToO) observation on October 14th, 2014. A complex of features at this latitude was also observed by Hubble as part of the Outer Planet Atmospheres Legacy (OPAL) program on November 8-9, 2014. We will present the temporal evolution of the cloud activities from August 2014 through January 2015, and analyze the vertical structure of the cloud features in the Hubble datasets. The Hubble images used in our study were collected with support of HST grants GO13712 to KMS and GO13937 to AAS. Sromovsky et al. 2015, "High S/N Keck and Gemini AO imaging of Uranus during 2012-2014: New cloud patterns, increasing activity, and improved wind measurements." Icarus 258, 192-223. de Pater et al. 2014, "Record-breaking storm activity on Uranus in 2014." Icarus 252, 121-128

  8. Triton: The Connection between Rosetta, New Horizons and a future Ice Giants Mission

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Luspay-Kuti, A.; Mousis, O.

    2017-12-01

    Several planetary missions have made observations intended to evaluate the origin and evolution of volatiles in solar system atmospheres. This is an important topic that connects how planets, moons and small bodies formed to the question of past or present habitability. Comet isotope observations have been ongoing and have played a crucial role in this research. Measurements of the D/H in cometary water and 14N/15N in NH3, in particular, have been critical for evaluating the origin of water and nitrogen in the terrestrial planet atmospheres and for that of Saturn's moon Titan. We have conducted comparative studies modeling the escape, photochemistry and evolution of the atmospheres of Titan and Pluto to try to understand whether the nitrogen in these atmospheres originated as N2 or NH3 in the protosolar nebula. The origin of Titan's nitrogen has been well constrained, but uncertainties about isotope processes in Pluto's atmosphere leave the origin of Pluto's nitrogen difficult to resolve. Because of their similarities, Triton is subject to the same uncertainties and is of particular interest for understanding the origin of Triton's and Pluto's volatiles as well as of Kuiper Belt Objects in general. We will discuss how Rosetta, New Horizons and a future Ice Giants mission will each contribute to understanding the origin of nitrogen in these atmospheres and to the origin of volatiles in atmospheres throughout outer solar system.

  9. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn

    NASA Technical Reports Server (NTRS)

    Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; hide

    2013-01-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.

  10. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2012-12-01

    Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  11. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2011-12-01

    Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  12. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah R.; Sing, David K.; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric; Tremblin, Pascal; Skalid Amundsen, David; Lewis, Nikole K.; Mandell, Avi; Fortney, Jonathan J.; Knutson, Heather; Benneke, Björn; Evans, Tom M.

    2017-01-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b’s atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  13. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah; Sing, David; Deming, Drake; Kataria, Tiffany; Lopez, Eric

    2016-10-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b's atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  14. Fault identification using multidisciplinary techniques at the Mars/Uranus Station antenna sites

    NASA Technical Reports Server (NTRS)

    Santo, D. S.; Schluter, M. B.; Shlemon, R. J.

    1992-01-01

    A fault investigation was performed at the Mars and Uranus antenna sites at the Goldstone Deep Space Communications Complex in the Mojave desert. The Mars/Uranus Station consists of two large-diameter reflector antennas used for communication and control of deep-space probes and other missions. The investigation included interpretation of Landsat thematic mapper scenes, side-looking airborne radar transparencies, and both color-infrared and black-and-white aerial photography. Four photolineaments suggestive of previously undocumented faults were identified. Three generally discrete morphostratigraphic alluvial-fan deposits were also recognized and dated using geomorphic and soil stratigraphic techniques. Fourteen trenches were excavated across the four lineaments; the trenches show that three of the photolineaments coincide with faults. The last displacement of two of the faults occurred between about 12,000 and 35,000 years ago. The third fault was judged to be older than 12,000 years before present (ybp), although uncertainty remains. None of the surface traces of the three faults crosses under existing antennas or structures; however, their potential activity necessitates appropriate seismic retrofit designs and loss-prevention measures to mitigate potential earthquake damage to facilities and structures.

  15. On the unique structure of the magnetic fields of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Dolginov, Sh. SH.

    1993-01-01

    The magnetic fields of Uranus and Neptune, which have comparable dipole, quadrupole, and octupole harmonics, are unique in the present-day solar system, but they resemble the geomagnetic field at the epochs of excursions and reversals known from paleomagnetic data. The precession dynamo model, in which the dominant role in the generation of the planetary magnetic fields is played by external gravitational forces, allows us to propose two scenarios for the formation of the unique topology of the magnetic fields of Uranus and Neptune. In the first case, tidal flows in the 'oceans' of these two planets extend down to the depths where the matter has a noticeable electric conductivity and velocity. A hydromagnetic interaction of the moving conducting fluid with the planetary magnetic field outside the generation region results in the deformation of the field and the deceleration of the motion under the action of the radial magnetic field. In the second case, the deformation of the field facilitates drastic changes in cyclonic cells within the generation region causing instabilities that result in a multi-polar field structure, excursions, and inversions. This paper considers this problem in greater detail by using the Neptune-Triton system as an example.

  16. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  17. Spectral analysis of Uranus' 2014 bright storm with VLT/SINFONI

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; Fletcher, L. N.; Read, P. L.; Tice, D.; de Pater, I.; Orton, G. S.; Teanby, N. A.; Davis, G. R.

    2016-01-01

    An extremely bright storm system observed in Uranus' atmosphere by amateur observers in September 2014 triggered an international campaign to observe this feature with many telescopes across the world. Observations of the storm system in the near infrared were acquired in October and November 2014 with SINFONI on ESO's Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning 64 × 64 pixel images with 2048 wavelengths and uses adaptive optics. Image cubes in the H-band (1.43-1.87 μm) were obtained at spatial resolutions of ∼ 0.1″ per pixel. The observations show that the centre of the storm feature shifts markedly with increasing altitude, moving in the retrograde direction and slightly poleward with increasing altitude. We also see a faint 'tail' of more reflective material to the immediate south of the storm, which again trails in the retrograde direction. The observed spectra were analysed with the radiative transfer and retrieval code, NEMESIS (Irwin et al. [2008]. J. Quant. Spec. Radiat. Transfer, 109, 1136-1150). We find that the storm is well-modelled using either two main cloud layers of a 5-layer aerosol model based on Sromovsky et al. (Sromovsky et al. [2011]. Icarus, 215, 292-312) or by the simpler two-cloud-layer model of Tice et al. (Tice et al. [2013]. Icarus, 223, 684-698). The deep component appears to be due to a brightening (i.e. an increase in reflectivity) and increase in altitude of the main tropospheric cloud deck at 2-3 bars for both models, while the upper component of the feature was modelled as being due to either a thickening of the tropospheric haze of the 2-layer model or a vertical extension of the upper tropospheric cloud of the 5-layer model, assumed to be composed of methane ice and based at the methane condensation level of our assumed vertical temperature and abundance profile at 1.23 bar. We also found this methane ice cloud to be responsible for the faint 'tail' seen to the feature

  18. The orbits of the uranian satellites and rings, the gravity field of the uranian system, and the orientation of the pole of Uranus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, R. A., E-mail: robert.jacobson@jpl.nasa.gov

    2014-11-01

    French et al. determined the orbits of the Uranian rings, the orientation of the pole of Uranus, and the gravity harmonics of Uranus from Earth-based and Voyager ring occultations. Jacobson et al. determined the orbits of the Uranian satellites and the masses of Uranus and its satellites from Earth-based astrometry and observations acquired with the Voyager 2 spacecraft; they used the gravity harmonics and pole from French et al. Jacobson and Rush reconstructed the Voyager 2 trajectory and redetermined the Uranian system gravity parameters, satellite orbits, and ring orbits in a combined analysis of the data used previously augmented withmore » additional Earth-based astrometry. Here we report on an extension of that work that incorporates additional astrometry and ring occultations together with improved data processing techniques.« less

  19. Carbon in the outer solar system

    NASA Technical Reports Server (NTRS)

    Simonelli, D. P.; Pollack, J. B.; Mckay, C. P.

    1990-01-01

    The satellites of Uranus, with densities between 1.3 and 1.7 g cm(-3) (from Voyager 2 observations) and the Pluto-Charon system, with a mean density of just above 1.8 g cm(-3) (from terrestrial observations of mutual eclipse events), are too dense to have a significant amount of methane ice in their interiors. However, the observed densities do not preclude contributions from such organic materials as the acid-insoluble residue in carbonaceous chondrites and laboratory-produced tholins, which have densities on the order of approximately 1.5 g cm(-3). These and other considerations have led researchers to investigate the carbon mass budget in the outer solar system, with an emphasis on understanding the contribution of organic materials. Modeling of the interiors of Pluto and Charon (being carried out by R. Reynolds and A. Summers of NASA/Ames), assuming rock and water ice as the only constituents, suggests a silicate mass fraction for this system on the order of 0.65 to 0.70. The present work includes the most recent estimates of the C/H enhancements and high z/low z ratios of the giant planets (Pollack and Bodenheimer, 1987), and involves a more careful estimation of the high z/low z mass ratio expected from solar abundances than was used in Pollack et al. (1986), including the influence of the fraction of C in CO on the amount of condensed water ice. These calculations indicate that for a particular fraction of C in CO and a given fraction of C-bearing planetesimals that dissolve in the envelope (most likely in the range 0.50 to 0.75), (1) Jupiter and Saturn require a larger fraction of C in condensed materials than Uranus and Neptune, but (2) the Jupiter and Saturn results are much less strongly constrained by the error bars on the observed C/H enhancements and high z/low z ratios than is the case for Uranus and Neptune. The clearest result is that in the region of the solar nebula near Uranus and Neptune, the minority of carbon that is not in gaseous CO (1

  20. Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation.

    PubMed

    Guillot, Bertrand; Guissani, Yves

    2004-03-01

    With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization. Copyright 2004 American Institute of Physics

  1. A numerical investigation into the dynamics of Uranus' mu-ring

    NASA Astrophysics Data System (ADS)

    Kumar, K.; De Pater, I.; Showalter, M.

    2017-12-01

    Showalter and Lissauer (2006) reported the discovery of the nu-ring and mu-ring, located beyond Uranus' main ring system. Both faint, dusty rings are located interior to the large classical moons and were observed by co-adding Hubble Space Telescope (HST) images. The peak radial brightness of the mu-ring coincides with the orbit of Mab, a small moon discovered in 2003 by Showalter and Lissauer. Observations of the Mab/mu-ring system indicate a highly dynamic environment. The motion of Mab was determined to be anomalous over short time scales, with large position deviations computed with respect to a fitted precessing Keplerian ellipse. Numerical simulations to survey the possible cause of this anomalous motion hint at the possibility of interactions with a distribution of tens of bodies, below the HST detection threshold, in the neighborhood of Mab (Kumar, et al., 2016). Analysis of the mu-ring data has led to the discovery of peculiar features, leading to open questions about dust dynamics in the associated region around Uranus. Observations obtained using the HST and Keck telescopes reveal that the μ-ring is blue, indicative of a pre-dominance of sub-micron-sized particles (de Pater, et al., 2006). The only other blue ring detected in the Solar System is Saturn's E-ring, generated by plumes on Enceladus' south pole. The origin of the mu-ring however remains an open area of research. Mab is thought to be the likely source of the material in the mu-ring, with micrometeoroid impacts releasing material into orbit around Uranus, much like Jupiter's faint rings are regenerated by companion (small) moons (Burns et al. 1999). The mu-ring's blue color suggests however that there is an unknown mechanism at play that hides or removes large particles from the expected size distribution. We present results from a numerical investigation into the effects of gravitational and non-gravitational forces on the evolution of mu-ring dust particles. Following on from previous

  2. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1994-01-01

    The magnetic field geometries of Uranus and Neptune are superficially similar, and are similarly unlike those of other planets: the field strengths are similar, and they contain extraordinarily large non-dipolar components. As a corollary, the best dipolar field models of each of the two planets comprises a dipole that is considerably offset from the planetary center and tilted away from the rotational axis. However, in other respects the best field models of the two planets are quite different. Uranus has a quadrupole model in which all the terms are well determined and in which none of the higher order terms is determined. To represent the magnetometer data acquired during Voyager's Neptune encounter requires a model of order 8 (instead of Uranus' order 2), yet many of the coefficients are poorly determined. A second model, an octupole model comprising the terms up to order three of the order 8 model, has been suggested by the magnetometer team as being useful; its use, however, is limited only to the region outside of about 2R(exp N), whereas planetary radio emissions have their sources well inside this surface. Computer code has been written that permits an analysis of the detailed motion of low energy charged particles moving in general planetary magnetic fields. At Uranus, this code reveals the existence of an isolated region of the inner magnetosphere above the day side in which particles may be trapped, separate from the more general magnetospheric trapping. An examination of the so-call ordinary mode uranian radio emissions leads us to believe that these emissions are in fact extraordinary mode emissions coming from particles trapped in this isolated region. A similar attempt to discover trapping regions at Neptune has proved, unfortunately, to be impossible. This arises from three factors: (1) the computation needed to track particles in an eighth order field is more than an order of magnitude greater than that needed to perform a similar calculation in a

  3. New Voyager radio spectrograms of Uranus

    NASA Technical Reports Server (NTRS)

    Calvert, W.; Tsintikidis, D.

    1990-01-01

    New, high-resolution spectrograms of the Voyager-2 radio observations at Uranus were produced from the original, six-second Planetary Radio Astronomy (PRA) data and these show a number of new features which were not obvious in previous versions. Among these new features are the detailed structure of the so-called broadband-bursty (b-bursty) emissions, unexpected sloping striations in the smooth high-frequency (SHF) component, and the overlap of these two components during the first rotation after closest approach. In addition, a slightly different planetary rotation rate from the b-bursty emissions, was found, and at the initial onset of the SHF component, what appears to be the shadow of a Uranian plasmasphere. These new spectrograms were prepared using a special dithering algorithm to show signal strengths as gray shadings, and the data were also manually cleaned to suppress noise and interference. This produced spectrograms of exceptional quality and certain details of their production on a stand-alone personal computer are also discussed.

  4. Saturn Uranus atmospheric entry probe mission spacecraft system definition study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The modifications required of the Pioneer F/G spacecraft design for it to deliver an atmospheric entry probe to the planets Saturn and Uranus are investigated. It is concluded that it is feasible to conduct such a mission within the constraints and interfaces defined. The spacecraft required to perform the mission is derived from the Pioneer F/G design, and the modifications required are generally routinely conceived and executed. The entry probe is necessarily a new design, although it draws on the technology of past, present, and imminent programs of planetary atmospheric investigations.

  5. MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soubiran, François; Militzer, Burkhard

    2015-06-20

    We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that amore » substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.« less

  6. Experimental evidence for superionic water ice using shock compression

    NASA Astrophysics Data System (ADS)

    Millot, Marius; Hamel, Sebastien; Rygg, J. Ryan; Celliers, Peter M.; Collins, Gilbert W.; Coppari, Federica; Fratanduono, Dayne E.; Jeanloz, Raymond; Swift, Damian C.; Eggert, Jon H.

    2018-03-01

    In stark contrast to common ice, Ih, water ice at planetary interior conditions has been predicted to become superionic with fast-diffusing (that is, liquid-like) hydrogen ions moving within a solid lattice of oxygen. Likely to constitute a large fraction of icy giant planets, this extraordinary phase has not been observed in the laboratory. Here, we report laser-driven shock-compression experiments on water ice VII. Using time-resolved optical pyrometry and laser velocimetry measurements as well as supporting density functional theory-molecular dynamics (DFT-MD) simulations, we document the shock equation of state of H2O to unprecedented extreme conditions and unravel thermodynamic signatures showing that ice melts near 5,000 K at 190 GPa. Optical reflectivity and absorption measurements also demonstrate the low electronic conductivity of ice, which, combined with previous measurements of the total electrical conductivity under reverberating shock compression, provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.

  7. Isotopic ratios D/H and 15N/14N in giant planets

    NASA Astrophysics Data System (ADS)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  8. Uranus - Disk structure within the 7300-A methane band

    NASA Technical Reports Server (NTRS)

    Price, M. J.; Franz, O. G.

    1979-01-01

    Orthogonal narrow-band (100 A) photoelectric slit scan photometry of Uranus has been used to infer the basic two-dimensional structure of the disk within the 7300-A methane band. Numerical image reconstruction and restoration techniques have been applied to quantitatively estimate the degrees of polar and limb brightening on the planet. Through partial removal of atmospheric smearing, an effective spatial resolution of approximately 0.9 arcsec has been achieved. Peak polar, limb, and central intensities on the disk are in the respective proportions 3:2:1. In addition, the bright polar feature is displaced from the geometric pole towards the equator of the planet.

  9. Source location of the smooth high-frequency radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Calvert, W.

    1989-01-01

    The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.

  10. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    PubMed Central

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models. PMID:25370190

  11. Disk evolution, element abundances and cloud properties of young gas giant planets.

    PubMed

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  12. Photographer : JPL Range : 312, 000 kilometers (195,000 miles) This photo of Ganymede (Ice Giant)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 312, 000 kilometers (195,000 miles) This photo of Ganymede (Ice Giant) was taken from Voyager 2 and shows features down to about 5 to 6 kilometers across. Different types of terrain common on Ganymede's surface are visible. The boundary of the largest region of dark ancient terrain on Ganymede can be seen to the east (right), revealing some of the light linear features which may be all that remains of a large ancient impact structure similar to the large ring structure on Callisto. The broad light regions running through the image are the typical grooved structures seen within another example of what might be evidence of large scale lateral motion in Ganymede's crust. The band of grooved terrain (about 100 kilometers wide) in this region appears to be offset by 50 kilometers or more on the left hand edge by a linear feature perpendicular to it. A feature similar to this one was previously discovered by Voyager 1. These are the first clear examples of strike-slip style faulting on any planet other than Earth. Many examples of craters of all ages can be seen in this image, ranging from fresh, bright ray craters to large, subdued circular markings thought to be the 'scars' of large ancient impacts that have been flatteded by glacier-like flows.

  13. Capture of irregular satellites at Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encountersmore » with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.« less

  14. Uranus' (3-0) H2 quadrupole line profiles

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1987-01-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  15. Satellite sweeping of electrons at Neptune and Uranus

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    1990-01-01

    Knowledge of satellite sweeping parameters at Neptune and Uranus, and of their functional dependences on particle energy and pitch angle, can be critical in the proper identification of parent absorbers for observed absorption signatures in regions where OTD (offset, tilted dipole) models are valid representations of the measured magnetic fields. In this paper, critical electron energies are calculated for longitudinal drift resonance, snowplow (i.e., strong) absorption, leapfrog, and corkscrew effects, using a reduced version of OTD that neglects nonaxial dipole offsets. Earlier analytic work on sweeping rates is extended to give the radial dependence of these rates within the minimum-L region and to set limits on diffusion of electrons with the simplifying approximation that leapfrog effects are ignored.

  16. A search for stellar occultations by Uranus, Neptune, Pluto, and their satellites: 1990-1999

    NASA Technical Reports Server (NTRS)

    Mink, Douglas J.

    1991-01-01

    A search for occultations of stars by Uranus, Neptune, and Pluto between 1990 and 1999 was carried out by combining ephemeris information and star positions using very accurate occultation modeling software. Stars from both the Space Telescope Guide Catalog and photographic plates taken by Arnold Klemola at Lick Observatory were compared with planet positions from the JPL DE-130 ephemeris, with local modifications for Pluto and Charon. Some 666 possible occultations by the Uranian ring, 143 possible occultations by Neptune, and 40 possible occultations by Pluto and/or Charon were found among stars with visual magnitudes as faint as 16. Before the star positions could be obtained, the occultation prediction software was used to aid many observers in observing the occultation of 28 Sagitarii by Saturn in July 1989. As a test on other outer solar system objects, 17 possible occultations were found in a search of the Guide Star Catalog for occultations by 2060 Chiron, and interesting object between Saturn and Uranus which shows both cometary and asteroidal properties.

  17. A search for stellar occultations by Uranus, Neptune, Pluto, and their satellites: 1990-1999

    NASA Astrophysics Data System (ADS)

    Mink, Douglas J.

    1991-03-01

    A search for occultations of stars by Uranus, Neptune, and Pluto between 1990 and 1999 was carried out by combining ephemeris information and star positions using very accurate occultation modeling software. Stars from both the Space Telescope Guide Catalog and photographic plates taken by Arnold Klemola at Lick Observatory were compared with planet positions from the JPL DE-130 ephemeris, with local modifications for Pluto and Charon. Some 666 possible occultations by the Uranian ring, 143 possible occultations by Neptune, and 40 possible occultations by Pluto and/or Charon were found among stars with visual magnitudes as faint as 16. Before the star positions could be obtained, the occultation prediction software was used to aid many observers in observing the occultation of 28 Sagitarii by Saturn in July 1989. As a test on other outer solar system objects, 17 possible occultations were found in a search of the Guide Star Catalog for occultations by 2060 Chiron, and interesting object between Saturn and Uranus which shows both cometary and asteroidal properties.

  18. C-smithing of Voyager 2 non-imaging instrument pointing information at Uranus

    NASA Technical Reports Server (NTRS)

    Wang, Tseng-Chan; Acton, Charles H.; Underwood, Ian M.; Synnott, Stephen P.

    1988-01-01

    The development of a family of techniques, collectively called C-smithing, for improving spacecraft nonimaging instrument pointing knowledge is discussed. C-smithing studies using data from the Voyager 2 Uranus Encounter show that significant improvements in pointing knowledge for nonimaging instruments can be achieved with these techniques. This improved pointing information can be used to regenerate instrument viewing geometry parameters for the encounter, which can then be made available to science investigators.

  19. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  20. Observation and Interpretation of Lunar Occultations. Ph.D. Thesis; [Uranus and beta Capricorni

    NASA Technical Reports Server (NTRS)

    Radick, R. R.

    1978-01-01

    The importance of timings and high resolution astrometry in occultation observations is discussed as well as the occultation process itself. The design and operation of the telescope, photodetector, and data acquisition systems are described. Methods are presented for data analysis and model fitting. Observations of beta Capricorni and Uranus occultations are examined. General conclusions concerning occultation observations are explored and future activities at Prairie Observatory are discussed.

  1. Uncovering a new Uranus ring-moon connection in 25 years of occultation data

    NASA Astrophysics Data System (ADS)

    Chancia, R. O.; Hedman, M. M.; French, R. G.

    2017-12-01

    The Uranus ring-moon system consists of 10 narrow and dense main rings, 3 broad diffuse and dusty rings, and 13 small inner moons. Nine of these moons, dubbed the `Portia group', orbit within a radial range of less than 20,000 km, making them the most tightly packed system of moons in our solar system. For the first time, we have constrained the mass of one of the inner moons by measuring its gravitational influence on the η ring. The η ring is one of the narrow rings of Uranus, consisting of a dense core that is 1-2 km wide and a diffuse outer sheet spanning about 40 km. Its dense core lies just exterior to the 3:2 Inner Lindblad Resonance of the small moon Cressida. We fit the η ring radius residuals and longitudes from a complete set of both ground-based and Voyager stellar and radio occultations of the Uranian rings spanning 1977-2002. We find variations in the radial position of the η ring that are likely generated by this resonance, and take the form of a 3-lobed structure rotating at an angular rate equal to the mean motion of the moon Cressida. The amplitude of these radial oscillations is 0.667 ± 0.113 km, which is consistent with the expected shape due to the perturbations of Cressida. The magnitude of these variations provides the first measurement of the mass and density of the moon Cressida or, indeed, any of Uranus' small inner moons. The system has previously been simulated over a wide range of presumed masses and is found to be dynamically unstable, with the next collision most likely occurring in less than a few million years. Two of the broad dusty rings orbit in range of the moons and may be evidence of collisions in the recent past. A better grasp of inner Uranian satellite masses will provide another clue to the composition, dynamical stability, and history of this tightly packed system of moons.

  2. PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapson, Valerie A.; Kastner, Joel H.; Millar-Blanchaer, Maxwell A.

    2015-12-20

    We present Gemini Planet Imager (GPI) adaptive optics near-infrared images of the giant-planet-forming regions of the protoplanetary disk orbiting the nearby (D = 54 pc), pre-main-sequence (classical T Tauri) star TW Hydrae. The GPI images, which were obtained in coronagraphic/polarimetric mode, exploit starlight scattered off small dust grains to elucidate the surface density structure of the TW Hya disk from ∼80 AU to within ∼10 AU of the star at ∼1.5 AU resolution. The GPI polarized intensity images unambiguously confirm the presence of a gap in the radial surface brightness distribution of the inner disk. The gap is centered near ∼23 AU,more » with a width of ∼5 AU and a depth of ∼50%. In the context of recent simulations of giant-planet formation in gaseous, dusty disks orbiting pre-main-sequence stars, these results indicate that at least one young planet with a mass ∼0.2 M{sub J} could be present in the TW Hya disk at an orbital semimajor axis similar to that of Uranus. If this (proto)planet is actively accreting gas from the disk, it may be readily detectable by GPI or a similarly sensitive, high-resolution infrared imaging system.« less

  3. The origin of carbon monoxide in Neptunes's atmosphere

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The CO abundance in the observable atmosphere of Neptune can be plausibly explained by rapid vertical mixing from the deeper atmosphere if Neptune has a greater complement of water than Uranus. Thermochemical equilibrium and kinetic calculations reveal that Neptune must and Uranus may have about 10 times more oxygen than carbon, whereas for Jupiter and Saturn equal enrichments of carbon and oxygen are satifactory to explain the observed CO abundances by deep vertical mixing. Relative to hydrogen and solar composition, the respective enrichment factors for carbon and oxygen are 41, 440 (Neptune); 32, less than or equal 260 (Uranus); 6.6, 6.6 (Saturn); and 2.8, 2.8 (Jupiter). Because water ice is the most refractory ice among the ices assumed to be present in the outer solar nebula, the most massive H2O enrichment is expected for the outermost planet of this group. Thus, Neptune can indeed be regarded as the 'god of the seas.'

  4. Neptune Polar Orbiter with Probes

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; hide

    2005-01-01

    The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time

  5. Methane photochemistry and methane production on Neptune

    NASA Technical Reports Server (NTRS)

    Romani, P. N.; Atreya, S. K.

    1988-01-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus.

  6. Examining Rotational Variability in the Upper Tropospheres and Lower Stratospheres of Uranus and Neptune from Herschel PACS OT1 Observations: Implications for the Stability of Temperature and Compositional Structure

    NASA Astrophysics Data System (ADS)

    Orton, G.; Feuchtgruber, H.; Fletcher, L.; Lellouch, E.; Moreno, R.; Billebaud, F.; Cavalie, T.; Decin, L.; Dobreijecvic, M.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Lara, L. M.; Liu, J.

    2012-04-01

    The power of high-resolution submillimeter spectroscopy of Uranus and Neptune was put to use to survey the rotational variability of stratospheric and tropospheric constituents of their atmospheres. These observations were motivated by the surprising discovery of as much as 12% rotational variability of emission from stratospheric constituents in the atmosphere of Uranus by the Spitzer Infrared Spectrometer and the detection of spatial variability in thermal images of Neptune's stratospheric emission (Orton et al. 2007, Astron. & Astrophys 473, L3). Our observing program consisted of three separate sequences of observations to look at the strongest lines of H2O in the high-resolution PACS spectra of both planets, whose upwelling radiance emerges from the same vertical region as the Spitzer IRS observations of Uranus and ground-based images of Neptune, and the strongest line of CH4 in the PACS spectrum of Neptune. We omitted measurements of CH4 lines in Uranus, which are almost non-detectable. We added the strongest HD line in Uranus to measure variability of tropospheric temperatures that could modulate stratospheric CH4 abundances through local cold-trapping and the strongest two HD lines in Neptune (Lellouch et al. 2010, Astron. & Astrophys. 518, L152) that determine both the tropopause temperature to limit local cold-trapping efficacy and the lower stratospheric temperature, to help differentiate between longitudinal variability of stratospheric H2O and CH4 abundances vs. temperatures. These were repeated over the 17-hour interval that is common to the equatorial rotation periods of both Uranus and Neptune. Although these lines had already been observed in Uranus and Neptune by PACS, no repeat measurements had ever been made to determine longitudinal variability. The observations were consistent with previous measurements, but no significant rotational variability was detected. It is possible that the absence of rotational variability in the HD and CH4 lines is

  7. H2 S3(1) and S4(1) transitions in the atmospheres of Neptune and Uranus - Observations and analysis

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Baines, Kevin H.

    1990-01-01

    The present observational results for Neptune's S3(1) and S4(1) H2 lines show the former line's measured equivalent width to be the same as for this feature in Uranus, repeating the equality already established between the two planets for the latter feature. It is also noted that the observed ratio of the H2 S3(0)/S3(1) lines for Neptune's atmosphere is reproduced by models belonging to the family of models created by Baines and Smith (1990); by comparison with the earlier Uranus models of Baines and Bergstrahl (1986), the greater continuum absorption of Neptune is responsible for the increased S3(0)/S3(1) line ratio near 0.82 microns.

  8. A radiometric Bode's Law: Predictions for Uranus

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1984-01-01

    The magnetospheres of three planets, Earth, Jupiter, and Saturn, are known to be sources of intense, nonthermal radio bursts. The emissions from these sources undergo pronounced long term intensity fluctuations that are caused by the solar wind interaction with the magnetosphere of each planet. Determinations by spacecraft of the low frequency radio spectra and radiation beam geometry now permit a reliable assessment of the overall efficiency of the solar wind in stimulating these emissions. Earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be revised greatly, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. The formulation of a radiometric Bode's Law from which a planet's magnetic moment is estimated from its radio emission output is presented. Applying the radiometric scaling law to Uranus, the low-frequency radio power is likely to be measured by the Voyager 2 spacecraft as it approaches this planet.

  9. The role of aqueous chemistry in determining the composition and cloud structure of the upper troposphere on Uranus

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Prather, Michael J.; Rossow, William B.

    1987-01-01

    Aqueous chemistry on Uranus affects the atmospheric abundances of NH3 and H2S below the methane cloud base. Here a complete thermochemical equilibrium model for the H2O-NH3-H2S system is presented. Inclusion of H2S increases the aqueous removal of NH3 to 20-30 percent, but aqueous chemistry alone cannot account for the depletion of NH3 in the 150-200-K region of the atmosphere required to fit microwave observations. Formation of NH4SH clouds can account for the observed depletion provided the H2S/NH3 ratio is enhanced by a factor of 4 relative to solar. Perturbations to the chemical balance between N and S, for example by the general circulation on Uranus, would then produce regions with either NH3 or H2S aloft.

  10. P - ρ - T data for H2O up to 260 GPa under laser-driven shock loading

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ozaki, N.; Sano, T.; Okuchi, T.; Shimizu, K.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Sakawa, Y.; Kodama, R.

    2014-12-01

    H2O is believed to be one of the most abundant compounds in ice giants including Neptune and Uranus1. Therefore, equation of state (EOS) for H2O is critical for understanding the formation and evolution of these planets. Various EOS models have been suggested for modeling the interior structure of the ice giants2-4. The recent shock experiments reported that their P - ρ data of H2O are in agreement with those of the QMD based EOS model5, indicating that this model is most suitable for modeling H2O in the ice giants. Whether H2O is in the solid or liquid state in the planetary interior has a great importance to understand their internal structures6. While the QMD model predicted that the solid H2O is present in deep interior of their planets above ~100 GPa4, the recent measurements revealed that H2O remains in the liquid state even at the deep interior conditions7. This discrepancy between experimental and theoretical studies suggests that the QMD based EOS model is disputable for modeling the planetary interior. Indeed, the comparison between data obtained from the shock experiments and the QMD based EOS did not cover the temperature5. We have obtained P - ρ - T data for H2O up to 260 GPa by using laser-driven shock compression technique. The diamond cell applied for the laser shock experiments was used as the sample container in order to achieve temperature conditions lower than the principal Hugoniot states. This shock technique combined with the cell can be used for an assessment the EOS models because it is possible to compare the states under the conditions that the contrast between the models clearly appears. Our data covering P - ρ - T on both the principal and the off Hugoniot curves agree with those of the QMD model, indicating this model to be adopted as the standard for modeling the interior structures of Neptune, Uranus, and exoplanets. References 1W. B. Hubbard et al., The interior of Neptune: Neptune and Triton(Univ. Arizona Press, Tucson, 1995) p

  11. Results from a survey of the dynamics shaping Uranus' Mab/μ-ring system

    NASA Astrophysics Data System (ADS)

    Kumar, Kartik; de Pater, Imke; Showalter, Mark R.

    2014-11-01

    Based on Hubble Space Telescope (HST) data, Showalter and Lissauer (2006) reported the discovery of two faint rings beyond Uranus’ main rings: the ν- and μ- rings. They constitute Uranus' outer ring system and are located beyond the ɛ-ring but interior to the large classical moons. After co-adding a series of HST images, Showalter and Lissauer (2006) obtained radial profiles for both new rings. They discovered that the peak radial intensity of the μ-ring aligns closely with the orbit of Mab. Along with numerous other observations, this points to the fact that the Mab/μ-ring system is highly coupled.The discovery of the μ-ring has led to open questions about dust dynamics beyond Uranus' main rings. Like Saturn's E-ring, observations reveal that the μ-ring is blue, indicative of a pre-dominance of sub-micron-sized particles (de Pater et al., 2006). The E-ring results from plumes on Enceladus' south pole, however the origin of the μ-ring remains a mystery. The latter is likely fed by ejecta from micro-meteorite impacts with Mab, much like Jupiter's faint rings are regenerated by companion (small) moons (Burns et al., 1999). The μ-ring's steep size-distribution suggests that there is an unknown mechanism at play that hides or removes large dust particles. We present results from an investigation into the forces shaping the μ-ring. To simulate the motion of dust in the Mab/μ-ring system, we developed a numerical toolbox (Dustsim; Kumar et al., 2015) that uses Tudat (Kumar et al., 2012). We performed integrations using Dustsim that included the effects of Uranus' gravity field, titled magnetic moment, solar radiation pressure, and collisions with a putative suite of large μ-ring bodies, hypothesized as the cause of Mab's anomalous orbital motion (Kumar et al., 2014). Following on from previous studies (e.g., Sfair and Giuliatti Winter, 2009; Sfair and Giuliatti Winter, 2012), we present a survey of the expected lifetime of μ-ring dust, as a function of

  12. Predictions for Uranus from a radiometric Bode's law. [planetary magnetic moment estimated from radio emission flux density

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1984-01-01

    Determinations by spacecraft of the low-frequency radio spectra and radiation beam geometry of the magnetospheres of earth, Jupiter, and Saturn now permit a reliable assessment of the overall efficiency of the solar wind in stimulating intense, nonthermal radio bursts from these magnetospheres. It is found that earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be greatly revised, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. A 'radimetric Bode's law' is formulated from which a planet's magnetic moment can be estimated from its radio emission output. This law is applied to estimate the low-frequency radio power likely to be measured for Uranus by Voyager 2. It is shown how measurements of Uranus's radio flux can be used to estimate the planetary magnetic moment and solar wind stand-off distance before the in situ measurements.

  13. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Fletcher, L. N.; Feuchtgruber, H.; Lellouch, E.; Moreno, R.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Swinyard, B.; Moses, J. I.; Burgdorf, M. J.; Hammel, H. B.; Line, M. R.; Sandell, G.; Dowell, C. D.

    2013-12-01

    Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of ';programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.

  14. Uranus moon - 1985U1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Several craters are seen on the surface of 1985U1, one of several small moons of Uranus discovered by Voyager 2. The spacecraft acquired this single image -- the only close-up it obtained of any of the new moons -- on Jan. 24, 1986. At the time, Voyager was at a distance of about 500,000 kilometers (300,000 miles) from 1985U1, yielding a resolution of about 10 km (6 mi) in this clear-filter, narrow-angle image. The moon was found Dec. 3O, 1985; it was the first and largest of nearly a dozen satellites discovered by the spacecraft cameras. This image shows 1985U1 to be a dark, nearly spherical object, with a diameter of about 150 km (90 mi); the dark surface reflects only 7 percent of the incident light. The picture was inserted into the Voyager encounter sequence late in its development. This image has had a complex history, having been recorded on the spacecraft tape recorder and first played back during the late afternoon of Jan. 24. An antenna-pointing problem at one of the Australian tracking stations led to loss of the data, so the image had to be transmitted a second time. It was successfully received shortly before 6 p.m. PST Jan. 26. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  15. Trapping of Methanol, Hydrogen Cyanide, and n-Hexane in Water Ice, above Its Transformation Temperature to the Crystalline Form

    NASA Astrophysics Data System (ADS)

    Notesco, G.; Bar-Nun, A.

    1997-04-01

    HCN and n-C 6H 14were found experimentally to be trapped in water ice, when codeposited with water vapor on a cold plate, at 140 K and CH 3OH even at 160 K. At these temperatures at least part of the water ice is cystalline. These three gases have relatively high sublimation temperatures, whereas the gases studied earlier, Ar, Kr, Xe, CO, CH 4, and N 2, which have lower sublimination temperatures, are trapped only in amorphous water ice, up to ˜100 K. It seems that the major factor determining the efficiency of gas trapping by water ice, during codeposition of a gas-water vapor mixture on a cold plate, is the sublimation temperatures of the gases to be trapped. Those with a high sublimation temperature remain, during codeposition, longer in the pores of the water ice which are open to the surface, until they are covered by additional ice layers. Only methanol seems to form a clathrate hydrate, in agreement with the experimental results of D. Blake et al.(1991), Science254, 548-551), which points to the importance of the interaction of the gas molecules with the water molecules in the ice. Consequently, comets and icy satellites that were formed in the Jupiter-Saturn region and their subnebulae could trap CH 3OH, HCN, and heavy hydrocarbons, whereas comets and icy satellites that were formed in the Uranus-Neptune region, at the outskirts of the Saturnian subnebulae (Titan), and beyond the planets in the Kuiper belt could trap also gases having lower sublimation temperatures.

  16. HST STIS Images of the H-Lyman Alpha Emission and Disk-Reflected FUV Sunlight from the Upper Atmosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.

    1998-09-01

    An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the

  17. The ionosphere of Uranus - A myriad of possibilities

    NASA Astrophysics Data System (ADS)

    Chandler, M. O.; Waite, J. H.

    1986-01-01

    A one-dimensional model has been used to study the effects of exospheric temperature, methane and water influx, ionospheric outflow, and electron precipitation on the composition and structure of the ionosphere of Uranus. Peak ion concentrations range from 1000 to 1 million per cu cm with a wide variation in peak altitude, which depends strongly on the exospheric temperature. In all the cases considered, H(+) is the major ion in the topside ionosphere. At altitudes near or below the peak, H3(+) and CH5(+) can dominate, depending on the magnitude of CH4 and H2O influx. Atomic hydrogen column depths above the methane absorbing layer exceed 10 to the 17th per sq cm and can produce large (400 R) emissions of resonantly scattered Lyman-alpha. In the sunlit polar cap, electron precipitation with energy fluxes of 0.6 to 1.0 erg/sq cm s results in direct production of Lyman-alpha emissions that exceed 1 kR.

  18. Water and Volatiles in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Grasset, O.; Castillo-Rogez, J.; Guillot, T.; Fletcher, L. N.; Tosi, F.

    2017-10-01

    Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our current understanding of the nature and distribution of water and water-rich materials from the water snow line to the Kuiper Belt. This synthesis is timely, since a thorough exploration of at least one object in each region of the outer solar system has now been achieved. Next steps, starting with the Juno mission now in orbit around Jupiter, will be more focused on understanding the processes at work than on describing the general characteristics of each giant planet systems. This review is organized in three parts. First, the nature and the distribution of water and volatiles in giant and intermediary planets are described from their inner core to their outer envelopes. A special focus is given to Jupiter and Saturn, which are much better understood than the two ice giants (Uranus and Neptune) thanks to the Galileo and Cassini missions. Second, the icy moons will be discussed. Space missions and ground-based observations have revealed the variety of icy surfaces in the outer system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billion years. Ice compositions found at these bodies are also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. A detailed review of the distribution of non-ice materials on the surfaces and in the tenuous atmospheres of the moons is proposed, followed by a more focused discussion on the nature and the characteristics of the liquid layers trapped below the cold icy crusts that have been suggested in the icy Galilean moons, and in Enceladus, Dione, and Titan at Saturn. Finally, the recent observations collected by Dawn at Ceres and New Horizons at Pluto, as well as the state of knowledge of other transneptunian objects

  19. Physical Conditions and Exobiology Potential of Icy Satellites of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.

    2017-05-01

    All giant planets of the Solar system have a big number of satellites. A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter's four large moons, Europa, Ganymede and Callisto have internal oceans. Formation of such satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. The most recent models of the icy satellites interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside. The putative internal water ocean provide some exobiological niches on these bodies. We can see all conditions needed for origin and evolution of biosphere - liquid water, complex organic chemistry and energy sources for support of biological processes - are on the moons. The existing of liquid water ocean within icy world can be consequences of the physical properties of water ice, and they neither require the addition of antifreeze substances nor any other special conditions. On Earth life exists in all niches where water exists in liquid form for at least a portion of the year. Possible metabolic processes, such as nitrate/nitrite reduction, sulfate reduction and methanogenesis could be suggested for internal oceans of Titan and Jovanian satellites. Excreted products of the primary chemoautotrophic organisms could serve as a source for other types of microorganisms (heterotrophes). Subglacial life may be widespread among such planetary bodies as satellites of extrasolar giant planets, detected in our Galaxy.

  20. Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity

    NASA Astrophysics Data System (ADS)

    Stanley, Sabine; Yunsheng Tian, Bob

    2017-10-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l <~ 0.1 produce dipolar dominated magnetic fields whereas dynamos with Ro_l >~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.

  1. Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine 'giant rosette' plants.

    PubMed

    Beck, E; Schulze, E D; Senser, M; Scheibe, R

    1984-09-01

    The water potentials of frozen leaves of Afroalpine plants were measured psychrometrically in the field. Comparison of these potentials with the osmotic potentials of an expressed cellular sap and the water potentials of ice indicated almost ideal freezing behaviour and suggested equilibrium freezing. On the basis of the osmotic potentials of expressed cellular sap, the fractions of frozen cellular water which correspond to the measured water potentials of the frozen leaves could be determined (e.g. 74% at -3.0° C). The freezing points of leaves were found to be in the range between 0° C and -0.5° C, rendering evidence for freezing of almost pure water and thus confirming the conclusions drawn from the water-potential measurements. The leaves proved to be frost resistant down to temperatures between -5° C and -15° C, as depending on the species. They tolerated short supercooling periods which were necessary in order to start ice nucleation. Extracellular ice caps and ice crystals in the intercellular space were observed when cross sections of frozen leaves were investigated microscopically at subfreezing temperatures.

  2. First Views of North Polar Clouds and Circulation on Uranus

    NASA Astrophysics Data System (ADS)

    Sromovsky, Lawrence A.; Fry, P. M.; Hammel, H. B.; de Pater, I.; Rages, K. A.

    2012-10-01

    Post-equinox high S/N imaging of Uranus, by HST in 2009-10 and by Keck and Gemini telescopes in 2011, provide the first detailed views of its high northern latitudes. These images reveal numerous small cloud features from which we were able to extend the zonal wind profile of Uranus into its north polar region and accurately characterize its 60° N 250-m/s prograde jet. We also found a large N-S asymmetry in the morphology of polar cloud features (Sromovsky et al. 2012, Icarus 220, 694-712). The variation of wind speed with latitude in the north polar region is consistent with solid body rotation at a rate of 4.3°/h relative to the interior. When new measurements are combined with measurements from 1997 onward, there remains a small but significant asymmetry at middle latitudes, peaking near 35°, where southern hemisphere winds are 20 m/s more westward than corresponding northern hemisphere winds. The discovery of polar discrete cloud features is significant because of their possible connection to large scale meridional mass flows. Analysis of 2002 HST STIS spectra shows that the southern high latitudes are depleted of methane in the upper troposphere (Karkoschka & Tomasko 2009 Icarus 202 287-309; Sromovsky et al. 2011, Icarus 215, 292-312), suggesting an upper tropospheric downwelling in the south polar region that would tend to depress convective cloud formation there. Indeed, no comparable features have ever been seen in high southern latitudes. On the other hand, the existence of numerous small, possibly convective, features at high northern latitudes suggests that the predominant meridional flow there is not downwelling and that CH4 may not yet be depleted there. New HST STIS observations are expected to resolve this issue. This research was supported by grants from NASA Planetary Atmospheres and Astronomy programs, and from the Space Telescope Science Institute.

  3. The origin of the eccentricities of the rings of Uranus

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Tremaine, S.

    1981-01-01

    The effect of gravitational perturbations from a nearby satellite on the eccentricity e of a narrow particulate ring is considered. The perturbations near a resonance in an eccentric ring may be divided into corotation and Lindblad terms. For small e, the corotation terms damp e, whereas the Lindblad terms excite e. In the absence of saturation the corotation terms win by a small margin, and e damps. However, if the perturbations open gaps at the strongest resonances, then the Lindblad terms win, and e grows. This result offers an explanation for the existence of both circular and eccentric rings around Uranus. It is also shown that eccentricity changes induced by circular rings on eccentric satellite orbits are similar to those induced by satellites with circular orbits on eccentric rings.

  4. Uncertainty Determination for Aeroheating in Uranus and Saturn Probe Entries by the Monte Carlo Method

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Prabhu, Dinesh; Cruden, Brett A.

    2013-01-01

    The 2013-2022 Decaedal survey for planetary exploration has identified probe missions to Uranus and Saturn as high priorities. This work endeavors to examine the uncertainty for determining aeroheating in such entry environments. Representative entry trajectories are constructed using the TRAJ software. Flowfields at selected points on the trajectories are then computed using the Data Parallel Line Relaxation (DPLR) Computational Fluid Dynamics Code. A Monte Carlo study is performed on the DPLR input parameters to determine the uncertainty in the predicted aeroheating, and correlation coefficients are examined to identify which input parameters show the most influence on the uncertainty. A review of the present best practices for input parameters (e.g. transport coefficient and vibrational relaxation time) is also conducted. It is found that the 2(sigma) - uncertainty for heating on Uranus entry is no more than 2.1%, assuming an equilibrium catalytic wall, with the uncertainty being determined primarily by diffusion and H(sub 2) recombination rate within the boundary layer. However, if the wall is assumed to be partially or non-catalytic, this uncertainty may increase to as large as 18%. The catalytic wall model can contribute over 3x change in heat flux and a 20% variation in film coefficient. Therefore, coupled material response/fluid dynamic models are recommended for this problem. It was also found that much of this variability is artificially suppressed when a constant Schmidt number approach is implemented. Because the boundary layer is reacting, it is necessary to employ self-consistent effective binary diffusion to obtain a correct thermal transport solution. For Saturn entries, the 2(sigma) - uncertainty for convective heating was less than 3.7%. The major uncertainty driver was dependent on shock temperature/velocity, changing from boundary layer thermal conductivity to diffusivity and then to shock layer ionization rate as velocity increases. While

  5. Giant Planets in Open Clusters and Binaries: Observational Constraints on Migration

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Russel J.; Latham, David W.; Buchhave, Lars A.; Torres, Guillermo

    2016-01-01

    Some giant planets migrate from their birthplace beyond the ice line to short-period orbits just a fraction of an AU from their host stars. Though many theories have been proposed, it is not yet clear which mechanism is most important for migration, and by extension, in which types of planetary system we can expect a greater prevalence of disruptive gas giant migration. One way to constrain this process is to observe the orbital properties of migrating planets, which are expected to be shaped according to the mode of migration: in general, interaction with the gas disk should produce circular, coplanar orbits, while multi-body processes stir up eccentricities and inclinations. Unfortunately, tidal and magnetic interactions between hot Jupiters and their host stars can obscure these differences by damping eccentricities and inclinations over time, so the most direct constraints will come from difficult-to-observe young systems. Additional constraints on migration can be obtained by observing the architectures of systems containing short-period giant planets: if an outer companion is often responsible for driving migration, there should be a higher incidence of massive companions on wide orbits in hot Jupiter systems than in systems not hosting a short-period giant planet. Further, the properties of these outer companions can help differentiate between multi-body migration mechanisms. We describe two complementary surveys that we have carried out to address these problems. The first, a precise radial-velocity survey in nearby adolescent (100-600 Myr) open clusters, characterizes the orbits of giant planets soon after migration. The second, an adaptive optics imaging survey of hot Jupiter host stars, constrains the population of wide companions in hot Jupiter systems. We present the results from these two surveys and discuss the orbital properties and system architectures of our discoveries in the context of giant planet migration.

  6. The composition and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    Burns, J. A.

    1985-01-01

    The properties of planetary ring systems are summarized herein; emphasis is given to the available evidence on their compositions and to their dynamical attributes. Somewhat contaminated water ice makes up the vast expanse of Saturn's rings. Modified methane ice may comprise Uranus' rings while silicates are the likely material of the Jovian ring. Saturn's rings form an elaborate system whose characteristics are still being documented and whose nature is being unravelled following the Voyager flybys. Uranus' nine narrow bands display an intriguing dynamical structure thought to be caused by unseen shephard satellites. Jupiter's ring system is a mere wisp, probably derived as ejecta off hidden parent bodies.

  7. A model of the spatial and temporal variation of the Uranus thermal structure

    NASA Technical Reports Server (NTRS)

    Bezard, B.; Gautier, D.

    1986-01-01

    Seasonal variability of the temperature structure of Uranus is modeled for all latitudes in the .0004 to 2 bar pressure range in anticipation of the Voyager encounter in January 1986. Atmospheric heating in the model results on the one hand from an internal heat source and, on the other hand, from absorption of solar energy by methane and by non-conservative aerosols located between the 0.5 and 2 bar levels. Various cases for the behavior of the internal heat flux are investigated, such as constant with latitude or constrained to yield a time-averaged thermal emission independent of latitude. Meridional transport of heat in the stably stratified atmosphere is not taken into account. The results indicate that the Voyager encounter time, very small north-south temperature asymmetry should be expected. Moreover, the northern hemisphere, although not illuminated, should emit as much energy (within one percent) as the southern hemisphere at this date. At a given latitude, extreme temperatures are reached at the equinoxes. At the poles, seasonal amplitudes of about 10 K in the upper stratosphere and 6 K at the 0.6 bar level are predicted, and the variation with time of the emission to space is found to be at most 20 percent. The atmosphere of Uranus appears to be characterized by very long radiative response times (mainly due to its cold temperature) which inhibit the large seasonal variations that one could otherwise expect in view of the high obliquity of the planet and its long orbital period.

  8. A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates

    NASA Astrophysics Data System (ADS)

    Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H.; Juricke, Stephan; Jung, Thomas

    2017-04-01

    We present a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤2.2 km), "small-to-medium-sized" (≤10 km), and small-to-giant icebergs (including icebergs >10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.

  9. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates

    NASA Astrophysics Data System (ADS)

    Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H.; Juricke, Stephan; Jung, Thomas

    2017-04-01

    We present a simulation of Antarctic iceberg drift and melting that includes small (<2.2 km), medium-sized, and giant tabular icebergs with lengths of more than 10km. The model is initialized with a realistic size distribution obtained from satellite observations. Our study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. Taking iceberg modeling a step further, we simulate drift and melting using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's keel. The climatology estimates of Antarctic iceberg melting based on simulations of small, 'small-to-medium'-sized, and small-to-giant icebergs (including icebergs > 10km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.

  10. Formation of Large Regular Satellites of Giant Planets in an Extended Gaseous Nebula: Subnebula Model and Accretion of Satellites

    NASA Technical Reports Server (NTRS)

    Mosqueira, I.; Estrada, P. R.

    2000-01-01

    We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.

  11. Evolution of the Uranus-neptune Planetesimal Swarm: Consequences for the Earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Wolfe, R. F.

    1984-01-01

    The evolution of planetesimals in the outer Solar System were evaluated, both stellar and planetary encounters. About 20% of the Uranus-Neptune planetesimals (UNP's) enter the comet cloud and are stored primarily in the region inside the observational limits of the Oort cloud. Half of the comets have suruived to the present time; the cloud now has a mass of the order of Jupiter's mass. Most UNP's are ejected from the Solar system, and about half of the planetesimal swarm is passed to the control of Jupiter prior to ejection. Jupiter's perturbations drive a large flux of these planetesimals into Earth-crossing orbits, and it now appears highly probable that UNP's account for most of the heavy bombardment of the Moon and Earth.

  12. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphael; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy; Hofstadter, Mark; Sandell, Goran; Dowell, Charles

    2014-05-01

    Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the atmosphere the homopause is much higher pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 10 μbar being H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of 'programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.

  13. Rocky core solubility in Jupiter and giant exoplanets.

    PubMed

    Wilson, Hugh F; Militzer, Burkhard

    2012-03-16

    Gas giants are believed to form by the accretion of hydrogen-helium gas around an initial protocore of rock and ice. The question of whether the rocky parts of the core dissolve into the fluid H-He layers following formation has significant implications for planetary structure and evolution. Here we use ab initio calculations to study rock solubility in fluid hydrogen, choosing MgO as a representative example of planetary rocky materials, and find MgO to be highly soluble in H for temperatures in excess of approximately 10,000 K, implying the potential for significant redistribution of rocky core material in Jupiter and larger exoplanets.

  14. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial.

    PubMed

    Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit

    2017-08-29

    Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea ice was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.

  15. Photometry of occultation candidate stars. I - Uranus 1985 and Saturn 1985-1991

    NASA Technical Reports Server (NTRS)

    French, L. M.; Morales, G.; Dalton, A. S.; Klavetter, J. J.; Conner, S. R.

    1985-01-01

    Photometric observations of five stars to be occulted by the rings around Uranus are presented. The four stars to be occulted by Saturn or its rings during the period 1985-1991 were also observed. The observations were carried out with a CCD detector attached to the Kitt Peak McGraw-Hill 1.30-m telescope. Landolt standards of widely ranging V-I color indices were used to determine the extinction coefficients, transformation coefficients, and zero points of the stars. Mean extinction coefficients are given for each night of observation. K magnitudes for each star were estimated on the basis of the results of Johnson (1967). The complete photometric data set is given in a series of tables.

  16. Uranus rings and two moons

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Voyager 2 has discovered two 'shepherd' satellites associated with the rings of Uranus. The two moons -- designated 1986U7 and 1986U8 -- are seen here on either side of the bright epsilon ring; all nine of the known Uranian rings are visible. The image was taken Jan. 21, 1986, at a distance of 4.1 million kilometers (2.5 million miles) and resolution of about 36 km (22 mi). The image was processed to enhance narrow features. The epsilon ring appears surrounded by a dark halo as a result of this processing; occasional blips seen on the ring are also artifacts. Lying inward from the epsilon ring are the delta, gamma and eta rings; then the beta and alpha rings; and finally the barely visible 4, 5 and 6 rings. The rings have been studied since their discovery in 1977, through observations of how they diminish the light of stars they pass in front of. This image is the first direct observation of all nine rings in reflected sunlight. They range in width from about 100 km (60 mi) at the widest part of the epsilon ring to only a few kilometers for most of the others. The discovery of the two ring moons 1986U7 and 1986U8 is a major advance in our understanding of the structure of the Uranian rings and is in good agreement with theoretical predictions of how these narrow rings are kept from spreading out. Based on likely surface brightness properties, the moons are of roughly 2O- and 3O-km diameter, respectively. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  17. Hydrogen Dimers in Giant-planet Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Gustafsson, Magnus; Orton, Glenn S.

    2018-03-01

    Despite being one of the weakest dimers in nature, low-spectral-resolution Voyager/IRIS observations revealed the presence of (H2)2 dimers on Jupiter and Saturn in the 1980s. However, the collision-induced H2–H2 opacity databases widely used in planetary science have thus far only included free-to-free transitions and have neglected the contributions of dimers. Dimer spectra have both fine-scale structure near the S(0) and S(1) quadrupole lines (354 and 587 cm‑1, respectively), and broad continuum absorption contributions up to ±50 cm‑1 from the line centers. We develop a new ab initio model for the free-to-bound, bound-to-free, and bound-to-bound transitions of the hydrogen dimer for a range of temperatures (40–400 K) and para-hydrogen fractions (0.25–1.0). The model is validated against low-temperature laboratory experiments, and used to simulate the spectra of the giant planets. The new collision-induced opacity database permits high-resolution (0.5–1.0 cm‑1) spectral modeling of dimer spectra near S(0) and S(1) in both Cassini Composite Infrared Spectrometer observations of Jupiter and Saturn, and in Spitzer Infrared Spectrometer (IRS) observations of Uranus and Neptune for the first time. Furthermore, the model reproduces the dimer signatures observed in Voyager/IRIS data near S(0) on Jupiter and Saturn, and generally lowers the amount of para-H2 (and the extent of disequilibrium) required to reproduce IRIS observations.

  18. Vertical mixing and methane photochemistry in the atmosphere of Uranus: Analysis of Voyager UVS occultation experiments

    NASA Technical Reports Server (NTRS)

    Bishop, James

    1991-01-01

    Extensive capabilities were developed in the analysis of ultraviolet spectrometer (UVS) absorptive lightcurves. The application of these capabilities to the Voyager UVS data sets from Uranus and Neptune has provided significant findings regarding the stratospheres of these planets. In particular, the direct comparison between photochemical models and UVS measurements accomplished by these efforts is unique, and it helps to guarantee that the information returned by the Voyager 2 spacecraft is being used to the fullest extent possible.

  19. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  20. Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.

    PubMed

    Ling, S S; Zhu, Y; Lan, D; Li, D S; Pang, H Z; Wang, Y; Li, D Y; Wei, R P; Zhang, H M; Wang, C D; Hu, Y D

    2017-01-23

    The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.

  1. The abundances of methane and ortho/para hydrogen on Uranus and Neptune: Implications of New Laboratory 4-0 H2 quadrupole line parameters

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Mickelson, M. E.; Larson, Lee E.; Ferguson, David W.

    1995-01-01

    The tropospheric methane molar fraction (f(sub CH4, t) and the ortho/para hydrogen ratio are derived for Uranus and Neptune based on new determinations of spectroscopic parameters for key hydrogen features as reported by D. W./ Ferguson et al. (1993). For each planet, the relatively weak laboratory linestrengths (approximately 30 and 15% less than the theoretical 4-0 S(0) and S(1) linestrengths, respectively) results, when compared to analyses adopting theroetical values, in a approximately 30% decrease in the tropospheric methane ratio and a comparable increase in the pressure level of the optically thick cloudtop marking the bottom of the visible atmosphere (P(sub c/d)). The increase in the ratio of S(1)/S(0) linestrengths from 4.4 (theoretical) to approximately 5.9 (measured) results in a decrease in the range of viable ortho/para ratios; an equilibrium hydrogen distribution is now the best fit for both planets. The methane mixing ratios reported here are in agreement with the value of 0.023 derived by the Voyager Radio Occultation Experiment (G. F. Lindal, 1992) for Neptune, but slightly lower than the Voyager Uranus measurement of 0.023 reported by G. F. LIndel et al. (1987). The relative carbon-to-hydrogen abundances for Uranus and Neptune support planetary formation mechanisms involving the dissolution of carbon-bearing planetesimals in the atmospheres of both planets during their early stages of formation (e.g., J. B. Pollack et al., 1986).

  2. Effects of dispersed particulates on the rheology of water ice at planetary conditions

    NASA Technical Reports Server (NTRS)

    Durham, William B.; Kirby, Stephen H.; Stern, Laura A.

    1992-01-01

    Effects of the initial grain size and the hard particulate impurities on the transient and the steady state flows of water ice I were investigated under laboratory conditions selected as appropriate for simulating those of the surfaces and interiors of large moons. The samples were molded with particulate volume fraction, phi, of 0.001 to 0.56 and particle sizes of 1 to 150 microns; deformation experiments were conducted at constant shortening rates of 4.4 x 10 exp -7 to 4.9 x 10 exp -4 per sec at pressures of 50 and 100 MPa and temperatures 77 to 223 K. The results obtained suggest that viscous drag occurs in the ice as it flows around hard particulates. Mixed-phase ice was found to be tougher than pure ice, extending the range of bulk plastic deformation vs. faulting to lower temperatures and higher strain rates. It is suggested that bulk planetary compositions of ice + rock (phi = 0.4-0.5) are roughly 2 orders of magnitude more viscous than pure ice, leading to thermal instability inside giant icy moons and possibly explaining the retention of crater topography on icy planetary surfaces.

  3. Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.

    2016-10-01

    Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (<1200 K) giant exoplanets at 3.6 and 4.5 microns using the Spitzer Space Telescope, which allow us to constrain their relative abundances of CH4 and CO and corresponding atmospheric metallicities. We discuss the implications of our results for the proposed correlation between planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.

  4. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  5. Microstrip antenna study for Pioneer Saturn/Uranus atmosphere entry probe

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1974-01-01

    The design parameters of a microstrip antenna were studied to determine its performance characteristics as affected by an atmospheric entry probe environment. The technical literature was reviewed to identify the known design and performance characteristics. These data were used to evaluate the expected effects of mission environments on the microstrip antenna design proposed for the Saturn/Uranus Atmospheric Entry Probe (SAEP). Radiation patterns and VSWR measurements were made to evaluate the performance in the SAEP thermal environment. Results of the literature search and pattern tests confirm that the microstrip antenna is a good choice as a transmitting antenna on the SAEP. The microstrip antenna is efficient, compact, and well suited to a space environment. The pattern can be controlled with a minimum beamwidth of 60 degrees (air substrate; e.g., honeycomb structure) and a maximum on the order of 100 degrees with higher dielectric constant substrates. The power handling capacity is good and can be improved by covering the antenna with a dielectric cover.

  6. Dust impacts detected by Voyager-2 at Saturn and Uranus: A post-Halley view

    NASA Astrophysics Data System (ADS)

    Oberc, P.

    1994-09-01

    A new approach to the Voyager-2 dust impact observations near the ring plane of Saturn and Uranus is proposed in the paper, based on the experience from analyses of simulataneous dust and electric field observations by Vega-2 at Halley. Taking into account the impact geometry and the ambient plasma parameters, the possible responses of the two instruments, PRA (planetary radio astronomy) and PWS (plasma wave science), utilizing the same Voyager antenna, are evaluated as functions of the impact-induced charge. It is shown that the PRA instrument, which used the antenna elements as monopoles, responded mostly to pulses of the spacecraft potential, while the PWS instrument, working in dipole configuration, responded mostly to charge-separation electric fields. Due to the negative floating potential during both ring plane crossings the effect of charging the antenna was weak. The dust mass spectra near both ring planes are derived from the apparent impact rates and the V(rms) voltages, observed simultaneously by the PWS instrument. At Saturn's ring plane at 2.86 RS the obtained peak number density of particles bigger than 2 x 10-7g is 3.7 x 10-3/cu m, while the integral mass spectrum index alpha is about 1.5 at this mass magnitude and decreases toward lower masses down to values less than 1. In the ring plane region of Uranus at 4.51 RU the maximum number density for the limiting mass of 3.5 x 10-10g is found to be 4.4 x 10-4/cu m, while the index alpha at this mass is about 1.

  7. Allometry indicates giant eyes of giant squid are not exceptional.

    PubMed

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  8. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³

    DOE PAGES

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; ...

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less

  9. Stabilization of ammonia-rich hydrate inside icy planets.

    PubMed

    Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas

    2017-08-22

    The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H 2 O)(NH 3 ) 2 , is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O 2- ([Formula: see text]) 2 , where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.

  10. Uranus' cloud structure and scattering particle properties from IRTF SpeX observations

    NASA Astrophysics Data System (ADS)

    Tice, D. S.; Irwin, P. G. J.; Fletcher, L. N.; Teanby, N. A.; Orton, G. S.; Davis, G. R.

    2011-10-01

    Observations of Uranus were made in August 2009 with the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). Analysed spectra range from 0.8 to 1.8 μm at a spatial resolution of 0.5" and a spectral resolution of R = 1,200. Spectra from 0.818 to 0.834 μm, a region characterised by both strong hydrogen quadrupole and methane absorptions are considered to determine methane content. Evidence indicates that methane abundance varies with latitude. NEMESIS, an optimal estimation retrieval code with full-scattering capability, is employed to analyse the full range of data. Cloud and haze properties in the upper troposphere and stratosphere are characterised, and are consistent with other current literature. New information on single scattering albedos and particle size distributions are inferred.

  11. Laboratory experiments of crater formation on ice-rock mixture targets

    NASA Astrophysics Data System (ADS)

    Hiraoka, K.; Arakawa, M.; Yoshikawa, K.; Nakamura, A. M.

    Surfaces of ice-rock mixture are common among planetary bodies in outer solar system, such as the satellites of the giant planets, comet nuclei, and so on. In order to study the effect of the presence of volatiles in crater formation on these bodies, we performed impact experiments using a two-stage light-gas gun and a gas gun at Hokkaido University. The targets were ice-rock mixtures (diameter = 10 or 30cm, height = 5cm) with 0 wt.% to 50 wt.% rock. Projectiles were ice cylinders (diameter = 15mm, height = 10mm) or corn-shaped nylon ones and the impact velocities were varied from about 300m/s to 3500m/s. We will show an anti-correlation between the crater volume and the rock content, and will make a comparison with previous works (Lange and Ahrens 1982; Koschny and Grun 2001). Ejecta size and velocity measured on high-speed video images will be presented and will be discussed by a comparison with a spallation model (Melosh 1984).

  12. A common mass scaling for satellite systems of gaseous planets.

    PubMed

    Canup, Robin M; Ward, William R

    2006-06-15

    The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.

  13. The upper atmosphere of Uranus - Mean temperature and temperature variations

    NASA Technical Reports Server (NTRS)

    Dunham, E.; Elliot, J. L.; Gierasch, P. J.

    1980-01-01

    The number-density, pressure, and temperature profiles of the Uranian atmosphere in the pressure interval from 0.3 to 30 dynes/sq cm are derived from observations of the occultation of SAO 158687 by Uranus on 1977 March 10, observations made from the Kuiper Airborne Observatory and the Cape Town station of the South African Astronomical Observatory. The mean temperature is found to be about 95 K, but peak-to-peak variations from 10 K to 20 K or more exist on a scale of 150 km or 3 scale heights. The existence of a thermal inversion is established, but the inversion is much weaker than the analogous inversion on Neptune. The mean temperature can be explained by solar heating in the 3.3 micron methane band with a methane mixing ratio of 4 x 10 to the -6th combined with the cooling effect of ethane with a mixing ratio of not greater than 4 x 10 to the -6th. The temperature variations are probably due to a photochemical process that has formed a Chapman layer.

  14. Formation Of the Giant Planets By Concurrent Accretion Of Solids And Gas

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Hubickyj, Olenka; Bodenheimer, Peter; Lissauer, Jack J.; Podolak, Morris; Greenzweig, Yuval; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    -Z masses of the giant planets lead to estimates of the initial surface density (sigma(sub init)) of planetesimals in the outer region of the solar nebula. The results show sigma(sub init) approx. = 10 g/sq cm near Jupiter's orbit and that sigma(sub init) proportional to alpha(sup -2), where alpha is the distance from the Sun. These values are a factor of 3 - 4 times as high as that of the "minimum mass" solar nebula at Jupiter's distance and a factor of 2 - 3 times as high it Saturn's distance. Our estimates for the formation time of Jupiter and Saturn are 1 - 10 million years while those for Uranus fall in the range of 2 - 16 million years. These estimates follow from the properties of our Solar System and do not necessarily apply to giant planets in other planetary systems.

  15. Solubility of sodium chloride in superionic water ice

    NASA Astrophysics Data System (ADS)

    Hernandez, Jean-Alexis; Caracas, Razvan

    2017-04-01

    In icy planets, complex interactions are expected to occur at the interface between the rocky core and the icy mantle composed of mixtures based on water, methane, and ammonia [1, 2]. The hydration of the silicate layer produces salts (MgSO4, NaCl, KCl) that could mix with the ice, and change considerably its properties [3]. Here, we used first-principles molecular dynamics to investigate the stability and the properties of the binary system NaCl-H2O at the relevant thermodynamic conditions for planetary interiors up to ice giants. In these conditions, pure water ice undergoes several transitions that affect considerably its ionic conductivity and its elastic properties [4]. We calculated the Gibbs free energy of mixing along the NaCl-H2O binary by applying Boltzmann statistics to account for energy differences between configurations. We evaluated vibrational entropy from the vibrational spectra of the nuclei motion using the recently developed two phases thermodynamic memory function (2PT-MF) model for multicomponent systems [5, 6]. We show that the solubility of NaCl in water ice at 1600 K is less than 0.78 mol%. We find that salty ices present an extended superionic domain toward high pressures in comparison to pure water ice. Finally, we predict that the complete symmetrization of the hydrogen bonds (i.e. transition to ice X) occurs at higher pressure than in pure water ice, as observed in LiCl doped water ice at ambient temperature [7]. References: [1] M. R. Frank, C. E. Runge, H. P. Scott, S. J. Maglio, J. Olson, V. B. Prakapenka, G. Shen, PEPI 155 (2006) 152-162 [2] B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Icarus 226 (2013) 355-363 [3] S. Klotz, L. E. Bove, T. Strässle, T. C. Hansen, A. M. Saitta, Nature Materials 8 (2009) 405-409 [4] J. -A. Hernandez, R. Caracas, Phys. Rev. Lett. 117 (2016) 135503 [5] M. P. Desjarlais, Phys. Rev. E 88 (2013) 062145 [6] M. French, M. P. Desjarlais, R. Redmer, Phys. Rev. E 93 (2016) 022140 [7] L. E. Bove

  16. Planetary radio astronomy: Earth, giant planets, and beyond

    NASA Astrophysics Data System (ADS)

    Rucker, H. O.; Panchenko, M.; Weber, C.

    2014-11-01

    The magnetospheric phenomenon of non-thermal radio emission is known since the serendipitous discovery of Jupiter as radio planet in 1955, opening the new field of "Planetary Radio Astronomy". Continuous ground-based observations and, in particular, space-borne measurements have meanwhile produced a comprehensive picture of a fascinating research area. Space missions as the Voyagers to the Giant Planets, specifically Voyager 2 further to Uranus and Neptune, Galileo orbiting Jupiter, and now Cassini in orbit around Saturn since July 2004, provide a huge amount of radio data, well embedded in other experiments monitoring space plasmas and magnetic fields. The present paper as a condensation of a presentation at the Kleinheubacher Tagung 2013 in honour of the 100th anniversary of Prof. Karl Rawer, provides an introduction into the generation mechanism of non-thermal planetary radio waves and highlights some new features of planetary radio emission detected in the recent past. As one of the most sophisticated spacecraft, Cassini, now in space for more than 16 years and still in excellent health, enabled for the first time a seasonal overview of the magnetospheric variations and their implications for the generation of radio emission. Presently most puzzling is the seasonally variable rotational modulation of Saturn kilometric radio emission (SKR) as seen by Cassini, compared with early Voyager observations. The cyclotron maser instability is the fundamental mechanism under which generation and sufficient amplification of non-thermal radio emission is most likely. Considering these physical processes, further theoretical investigations have been started to investigate the conditions and possibilities of non-thermal radio emission from exoplanets, from potential radio planets in extrasolar systems.

  17. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating thatmore » the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.« less

  18. Selective enrichment of volatiles confirmed

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2018-04-01

    Hydrogen sulfide gas is detected above Uranus's main cloud deck, confirming the prevalence of H2S ice particles as the main cloud component and a strongly unbalanced nitrogen/sulfur ratio in the planet's deep atmosphere.

  19. Selective enrichment of volatiles confirmed

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2018-05-01

    Hydrogen sulfide gas is detected above Uranus's main cloud deck, confirming the prevalence of H2S ice particles as the main cloud component and a strongly unbalanced nitrogen/sulfur ratio in the planet's deep atmosphere.

  20. X makes nine: a distant ice giant in the solar system.

    PubMed

    van den Berg, Hugo A

    2016-06-01

    Ever since Pluto lost its status as one of the main planets of our solar system and was demoted to just another frozen denizen of the Kuiper belt, we have had to make do with eight, albeit in a pleasing symmetry, with four rocky ones this side of the asteroid belt and four giants on the far side. Now it looks like number nine is back on the slate: the existence of a large planet, about ten times as massive as Earth and hundreds of times more distant from the Sun than Earth itself, has been postulated to explain the curiously bunched-up orbits of several small celestial bodies, far beyond the orbit of Neptune. To date, we have only "proof by simulation" and we are yet to observe this massive planet in the backyard of our solar system by more direct means. However, powerful new telescopes should provide visual evidence within the next few decades.

  1. The atmosphere of Uranus - Results of radio occultation measurements with Voyager 2

    NASA Technical Reports Server (NTRS)

    Lindal, G. F.; Lyons, J. R.; Sweetnam, D. N.; Eshleman, V. R.; Hinson, D. P.

    1987-01-01

    The Uranian atmosphere is investigated on the basis of S-band and X-band occultation observations (including measurements of Doppler frequency perturbations) obtained during the Voyager 2 encounter with Uranus in January 1986. The data are presented in extensive tables and graphs and characterized in detail. The atmosphere is assumed to have an H2/He abundance ratio of about 85/15, but also to contain small amounts of CH4 at above-cloud relative humidity 30 percent, cloud-base relative humidity 78 percent, and below-cloud mixing ratio 2.3 percent by number density. Other parameters estimated include magnetic-field rotation period 17.24 h, 1-bar equatorial radius 25,559 + or - 4 km, polar radius 24,973 + or - 20 km, equatorial acceleration of gravity 8.69 + or - 0.01 m/sec sq, and atmospheric temperature 76 + or - 2 K (assuming 85 + or - 3 percent H2).

  2. Environmental Catastrophes in the Earth's History Due to Solar Systems Encounters with Giant Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Pavlov, Alexander A.

    2011-01-01

    In its motion through the Milky Way galaxy, the solar system encounters an average density (>=330 H atoms/cubic cm) giant molecular cloud (GMC) approximately every 108 years, a dense (approx 2 x 103 H atoms/cubic cm) GMC every approx 109 years and will inevitably encounter them in the future. However, there have been no studies linking such events with severe (snowball) glaciations in Earth history. Here we show that dramatic climate change can be caused by interstellar dust accumulating in Earth's atmosphere during the solar system's immersion into a dense (approx ,2 x 103 H atoms/cubic cm) GMC. The stratospheric dust layer from such interstellar particles could provide enough radiative forcing to trigger the runaway ice-albedo feedback that results in global snowball glaciations. We also demonstrate that more frequent collisions with less dense GMCs could cause moderate ice ages.

  3. Giant Steps in Cefalù

    NASA Astrophysics Data System (ADS)

    Jeffery, David J.; Mazzali, Paolo A.

    2007-08-01

    Giant steps is a technique to accelerate Monte Carlo radiative transfer in optically-thick cells (which are isotropic and homogeneous in matter properties and into which astrophysical atmospheres are divided) by greatly reducing the number of Monte Carlo steps needed to propagate photon packets through such cells. In an optically-thick cell, packets starting from any point (which can be regarded a point source) well away from the cell wall act essentially as packets diffusing from the point source in an infinite, isotropic, homogeneous atmosphere. One can replace many ordinary Monte Carlo steps that a packet diffusing from the point source takes by a randomly directed giant step whose length is slightly less than the distance to the nearest cell wall point from the point source. The giant step is assigned a time duration equal to the time for the RMS radius for a burst of packets diffusing from the point source to have reached the giant step length. We call assigning giant-step time durations this way RMS-radius (RMSR) synchronization. Propagating packets by series of giant steps in giant-steps random walks in the interiors of optically-thick cells constitutes the technique of giant steps. Giant steps effectively replaces the exact diffusion treatment of ordinary Monte Carlo radiative transfer in optically-thick cells by an approximate diffusion treatment. In this paper, we describe the basic idea of giant steps and report demonstration giant-steps flux calculations for the grey atmosphere. Speed-up factors of order 100 are obtained relative to ordinary Monte Carlo radiative transfer. In practical applications, speed-up factors of order ten and perhaps more are possible. The speed-up factor is likely to be significantly application-dependent and there is a trade-off between speed-up and accuracy. This paper and past work suggest that giant-steps error can probably be kept to a few percent by using sufficiently large boundary-layer optical depths while still

  4. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    NASA Astrophysics Data System (ADS)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  5. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  6. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  7. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  8. The Giant Planet Satellite Exospheres

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  9. Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Durisen, R. H.; Lissauer, J. J.

    2010-12-01

    Gas giant planets play a fundamental role in shaping the orbital architecture of planetary systems and in affecting the delivery of volatile materials to terrestrial planets in the habitable zones. Current theories of gas giant planet formation rely on either of two mechanisms: the core accretion model and the disk instability model. In this chapter, we describe the essential principles upon which these models are built and discuss the successes and limitations of each model in explaining observational data of giant planets orbiting the Sun and other stars.

  10. Constraining Methane Abundance and Cloud Properties from the Reflected Light Spectra of Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Marley, M. S.; Lewis, N. K.

    2015-12-01

    We have assembled an atmospheric retrieval package for the reflected light spectra of gas- and ice- giants in order to inform the design and estimate the scientific return of future space-based coronagraph instruments. Such instruments will have a working bandpass of ~0.4-1 μm and a resolving power R~70, and will enable the characterization of tens of exoplanets in the Solar neighborhood. The targets will be chosen form known RV giants, with estimated effective temperatures of ~100-600 K and masses between 0.3 and 20 MJupiter. In this regime, both methane and clouds will have the largest effects on the observed spectra. Our retrieval code is the first to include cloud properties in the core set of parameters, along with methane abundance and surface gravity. We consider three possible cloud structure scenarios, with 0, 1 or 2 cloud layers, respectively. The best-fit parameters for a given model are determined using a Monte Carlo Markov Chain ensemble sampler, and the most favored cloud structure is chosen by calculating the Bayes factors between different models. We present the performance of our retrieval technique applied to a set of representative model spectra, covering a SNR range form 5 to 20 and including possible noise correlations over a 25 or 100 nanometer scale. Further, we apply the technique to more realistic cases, namely simulated observations of Jupiter, Saturn, Uranus, and the gas-giant HD99492c. In each case, we determine the confidence levels associated with the methane and cloud detections, as a function of SNR and noise properties.

  11. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  12. What made discy galaxies giant?

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.

    2018-01-01

    I studied giant discy galaxies with optical radii more than 30 kpc. The comparison of these systems with discy galaxies of moderate sizes revealed that they tend to have higher rotation velocities, B-band luminosities, H I masses and dark-to-luminous mass ratios. The giant discs follow the trend log (M_{H I})(R_{25}) found for normal sized galaxies. It indicates the absence of the peculiarities of evolution of star formation in these galaxies. The H I mass-to-luminosity ratio of giant galaxies appears not to differ from that of normal-sized galaxies, giving evidence in favour of similar star formation efficiency. I also found that the bars and rings occur more frequently among giant discs. I performed mass modelling of the subsample of 18 giant galaxies with available rotation curves and surface photometry data and constructed χ2 maps for the parameters of their dark matter haloes. These estimates indicate that giant discs tend to be formed in larger more massive and rarified dark haloes in comparison to moderate-sized galaxies. However, giant galaxies do not deviate significantly from the relations between the optical sizes and dark halo parameters for moderate-sized galaxies. These findings can rule out the catastrophic scenario of the formation of at least most of giant discs, since they follow the same relations as normal discy galaxies. The giant sizes of the discs can be due to the high radial scale of the dark matter haloes in which they were formed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethkenhagen, M.; Meyer, Edmund Richard; Hamel, S.

    Here, the validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure–temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior (more » $${T}_{\\mathrm{core}}\\sim 4000$$ K).« less

  14. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  15. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  16. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  17. Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa

    NASA Astrophysics Data System (ADS)

    Kuriakose, Maju; Raetz, Samuel; Hu, Qing Miao; Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Lomonosov, Alexey; Djemia, Philippe; Gusev, Vitalyi E.; Zerr, Andreas

    2017-10-01

    Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal structure of the giant planets and moons of the solar system as well as H2O -rich exoplanets. We investigated experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy, allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Ci j(P ) of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X occurs at much higher pressures than proposed earlier, probably above 80 GPa.

  18. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    Observational data on CNO abundance ratios in red giants and the interstellar medium (ISM) are analyzed for the implications for the production and distribution of CNO nuclides. The data included isotope abundance measurements for the atmospheres and recent ejecta of cool giants, e.g., carbon stars, S-type stars, red supergiants and oxygen-rich giants beginning an ascent of the giant branch. The contribution of intermediate-mass stars to galactic nuclear evolution is discussed after comparing red giant abundances with ISM abundances, particularly the isotopes O-16, -17 and -18. The O-12/O-18 ratios of red giants are distinctly different from those in interstellar molecular clouds. The CNO values also vary widely from the values found in the solar system.

  19. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  20. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  1. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  2. Small Next-Generation Atmospheric Probe (SNAP) Concept

    NASA Technical Reports Server (NTRS)

    Sayanagi, K. M.; Dillman, R. A.; Simon, A. A.; Atkinson, D. H.; Wong, M. H.; Spilker, T. R.; Saikia, S.; Li, J.; Hope, D.

    2017-01-01

    We present the Small Next-Generation Atmospheric Probe (SNAP) as a secondary payload concept for future missions to giant planets. As a case study, we examine the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flag-ship mission; in combination with the missions main probe, SNAP would perform atmospheric in-situ measurements at a second location.

  3. Expression of CD34 and CD68 in peripheral giant cell granuloma and central giant cell granuloma: An immunohistochemical analysis.

    PubMed

    Vk, Varsha; Hallikeri, Kaveri; Girish, H C; Murgod, Sanjay

    2014-01-01

    Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior.

  4. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  5. Infill of tunnel valleys associated with landward-flowing ice sheets: The missing Middle Pleistocene record of the NW European rivers?

    NASA Astrophysics Data System (ADS)

    Moreau, Julien; Huuse, Mads

    2014-01-01

    The southern termination of the Middle and Late Pleistocene Scandinavian ice sheets was repeatedly located in the southern North Sea (sNS) and adjacent, north-sloping land areas. Giant meltwater-excavated valleys (tunnel valleys) formed at the southern termination of the ice sheets and contain a hitherto enigmatic succession of northward prograding clinoforms, comprising 1000s km3 of sediment. This study analyses 3D seismic data, covering the entire sNS, and demonstrates for the first time that the formation of these tunnel valleys was separate from their infill. The infill constitutes the postglacial record of the NW European river deltas, which had so far been considered missing.

  6. Expression of CD34 and CD68 in peripheral giant cell granuloma and central giant cell granuloma: An immunohistochemical analysis

    PubMed Central

    VK, Varsha; Hallikeri, Kaveri; Girish, HC; Murgod, Sanjay

    2014-01-01

    Background: Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. Objective: To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Materials and Methods: Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Results: Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Conclusion: Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior. PMID:25948986

  7. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  8. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  9. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  10. Multiple Giant Coronary Artery Aneurysms

    PubMed Central

    Marla, Rammohan; Ebel, Rachel; Crosby, Marcus; Almassi, G. Hossein

    2009-01-01

    Coronary artery aneurysms are rare, and giant coronary artery aneurysms are even rarer. We describe a patient who had giant coronary aneurysms of the right, left circumflex, and left anterior descending coronary arteries. The aneurysms were successfully treated with surgical intervention. To the best of our knowledge, ours is the 1st report of giant aneurysms involving all 3 major coronary arteries. PMID:19568397

  11. Satellites of giant planets — possible sites for origin and existence of biospheres

    NASA Astrophysics Data System (ADS)

    Simakov, Michael B.

    All giant planets of the Solar system have a big number of satellites (61 of Jupiter, 52 of Saturn, known in 2003). A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Some from them have an atmosphere. E.g., the mass of a column of the Titan’s atmosphere exceeds 15 times the mass of the Earth atmosphere column. Formation (or capture) of satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. As an example, we can see on Titan, the largest satellite of Saturn, which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance. The most recent models of the Titan’s interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside Titan. The putative internal water ocean along with complex atmospheric photochemistry provide some exobiological niches on this body: (1) an upper layer of the internal water ocean; (2) pores, veins, channels and pockets filled with brines inside of the lowest part of the icy layer; (3) the places of cryogenic volcanism; (4) set of caves in icy layer connecting with cryovolcanic processes; (5) the brine-filled cracks in icy crust caused by tidal forces; (6) liquid water pools on the surface originated from meteoritic strikes; (7) the sites of hydrothermal activity on the bottom of the ocean. We can see all conditions needed for origin and evolution of biosphere — liquid water, complex organic chemistry and energy sources for support of biological processes — are on the Saturnian moon. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter’s four large moons, Europa, Ganymede and Callisto have such oceans also. The existing of liquid water ocean within icy world can be consequences of the physical

  12. Sodium in weak G-band giants

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Lambert, David L.

    1994-01-01

    Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.

  13. Unusual Giant Prostatic Urethral Calculus

    PubMed Central

    Bello, A.; Maitama, H. Y.; Mbibu, N. H.; Kalayi, G. D.; Ahmed, A.

    2010-01-01

    Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and bladder outlet obstruction. The clinical presentation, management, and outcome of the giant prostatic urethral calculus are reviewed. PMID:22091328

  14. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  15. The clouds and winds of Neptune

    NASA Astrophysics Data System (ADS)

    Beebe, R.

    1992-04-01

    The atmospheric features of Neptune are described based on the images from Voyager 2 with comparisons made to the atmosphere of Uranus. Specific attention is given to the clear atmosphere's methane content and lack of the smog associated with Uranus. Neptune absorbs only a small amount of energy from sunlight and radiates about 2.7 times as much as it absorbs. The mechanisms that keep Neptune's atmosphere free of smog are thought to be upwelling enhanced by an outward heat flow and melting ice. The Voyager photographs show streaks of white clouds indicating strong winds and probably white ice in the upper atmosphere. The Great Dark Spot and a small triangular cloud are described in terms of their periods of rotation, and the wind speed is discussed in terms of cloud variations. The Great Dark Spot drifted equatorward during the observational period, and the drift yields some important clues regarding the nature of the Neptunian atmosphere and climate.

  16. Palaeoglaciology of the Central European Uplands - a link between the former ice masses over the Alps and Scandinavia

    NASA Astrophysics Data System (ADS)

    Hauzenberger, B.; Fickert, T.

    2009-04-01

    The Central European Uplands are located northeast of the Alps along the western edge of the Czech border. A horseshoe shaped range of low mountains contains the Bavarian Forest Mountains, the Fichtel Mountains, the Erz Mountains and the Giant Mountains, with highest summit altitudes ranging from 1051 m a.s.l. (Fichtel Mountains) to 1603 m a.s.l. (Giant Mountains). The location north of the Alps makes these mountains highly interesting as a possible link between the Scandinavian ice sheet and the Alps. Although the glacial traces of the Central European Uplands have been investigated for more than 100 years, the glacial history is still elusive. While the highest mountains (the Bavarian Forest and the Giant Mountains) hold evidence of valley glaciers, the lower mountains (the Fichtel and the Erz Mountains) lack unambiguous glacial traces. As a first step towards a palaeoglaciological reconstruction for the Central European Uplands, we present a digital map of glacier termini with elevation data from the SRTM elevation model, compiled from previous investigations of the area. The glacial map of the Central European Uplands presents the pattern of glacial traces over an extensive area in central Europe and forms the basis for reconstructing the extent of former glaciers. We compare the glacial evidence with modern day climate data (from the high resolution WorldClim database), from which we can estimate the climate change needed to produce Central European Upland glaciers. The glacial traces of the Central European Uplands hold information on past climate of the region and this may be a key to link the glacial record of the Alps with the Scandinavian ice sheet.

  17. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    PubMed

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  19. Oceans, Ice Shells, and Life on Europa

    NASA Technical Reports Server (NTRS)

    Schenk, Paul

    2002-01-01

    The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic

  20. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  1. ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Yerra Bharat; Reddy, Bacham E.; Lambert, David L.

    In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low-mass (M {<=} 3 M{sub sun}) giants spanning the luminosity range from below to above the luminosity of the clump. Fifteen new Li-rich giants including four super Li-rich K giants (log {epsilon}(Li) {>=}3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and abovemore » the red giant branch (RGB) bump and clump locations in the H-R diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of {sup 3}He via {sup 7}Be to {sup 7}Li by the Cameron-Fowler mechanism but the location for the onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the RGB and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.« less

  2. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  3. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  5. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  6. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  7. Giant star seismology

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  8. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  9. Cloud structure on Uranus as constrained by near IR 1.1-1.8 micron spectra.

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.

    2005-08-01

    Three uranian cloud layers were identified by West et al. (Uranus, Univ. Arizona Press, 1991): an optically thin stratospheric haze, an optically thicker methane haze (0.4 < τ < 1) primarily in the 1.2-1.3 bar region, and a cloud of unknown composition near 3 bars. Using improved methane band models of Irwin et al. (BAAS, this issue) we were able to test this paradigm using near-IR spectra covering 1.1-1.8 μ m, a range well suited for distinguishing the main cloud levels. We assumed a 2-cloud model in which the lower cloud is opaque and the upper cloud consists of broken opaque elements. The pressure and fractional coverage of the upper cloud and the pressure and albedo of the lower cloud were adjusted to fit the 1975 geometric albedo spectrum of Fink and Larsen (ApJ 233, 1021-40, 1979), with the following results (first two rows): Fit Range & Upper & Upper & Lower & Lower & (μ m) & P (bars) & Fraction(%) & P (bars) & Albedo (%) & χ2 1.175-1.34 & 2.2±0.15 & 2.8±0.4 & 6.6+1.2-0.7 & 6.5±0.8 & 206 1.450-1.70 & 1.8±0.10 & 2.2±0.3 & 5.2+0.8-0.4 & 3.3±0.3& 223 1.175-1.34 & 1.25 (fixed) & 0.15±0.08 & 3.1 (fixed) & 6.6±0.8 & 296 1.450-1.70 & 1.25 (fixed) & 0.66±0.05 & 3.1 (fixed) & 4.4±0.1 & 281 Fixing clouds at paradigm pressures of 1.25 bars and 3.1 bars yields a significant reduction in fit quality and a very small upper cloud contribution (last two rows). The paradigm-violating best-fit results are consistent with an analysis of seven-band Keck AO imaging observations (Sromovsky and Fry, in preparation), which concludes that the 1.2-bar cloud is at best a minor contributor to Uranus' reflectivity and that latitudinal variations in brightness are mainly controlled by deeper clouds. How prior results can be explained in the context of these new results remains to be determined. This research was supported by a grant from NASA's Planetary Astronomy Program.

  10. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?

    PubMed

    Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D

    2016-12-01

    Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often

  11. Giant congenital melanocytic nevus*

    PubMed Central

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion. PMID:24474093

  12. Exploration Strategy for the Ice Dwarf Planets 2013-2022

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; McKinnon, W. B.

    2009-12-01

    The past decade saw the discovery of many ice dwarf planets, a new category distinct from terrestrial and giant planets. Future ice dwarf missions depend on increasing our knowledge of these objects as a class. Competing needs to broaden the sample and to explore individual objects in greater detail must be balanced so that neither is excluded. A balance also needs to be struck between development of enabling technologies and making use of those available today. We propose this strategy for dwarf planet investigation during 2013-2022: 1. NASA should encourage and support ground- and space-based observations along with associated theoretical and laboratory work to investigate the ice dwarfs as a population, to motivate missions to individual objects and to provide context for mission results. Access to a range of telescope capabilities is essential to complete the inventory of ice dwarfs, determine their gross characteristics, and monitor their seasonal behavior. NASA's best course of action is to ensure adequate community access to facilities such as HST, Keck, VLT, Herschel, etc., to work for access to and ensure moving target tracking capabilities in future projects such as JWST, ALMA, SIM, and future large aperture ground-based telescopes still on the drawing board, and to support improvements to the IRTF. Funding support is needed for observational, laboratory, and theoretical studies to ensure availability of researchers to undertake needed work and to inform mission development activities, independent of whether or not there is a new mission start for ice dwarfs. Additional increments are also needed for thorough analysis of New Horizons and Dawn data. 2. A New Frontiers class mission using existing, proven technology to an unexplored ice dwarf should be a candidate for NASA AOs during the next decade. The Haumea system could be a particularly compelling target, as it could significantly advance understanding of the diversity and the role of collisions in ice

  13. Precision flux density measurements of the giant planets at 8420 MHz

    NASA Technical Reports Server (NTRS)

    Turegano, J. A.; Klein, M. J.

    1981-01-01

    Precision measurements of the 3.56 cm flux densities of Jupiter, Saturn, Uranus, and Neptune are reported. The results are compared with previously published measurements as a means of: (1) remotely sensing long-term changes in the microwave emission from the atmospheres of these planets; (2) measuring the effects of Saturn's rings on the disk temperature as observed from earth at different ring inclination angles.

  14. Precision flux density measurements of the giant planets at 8420 MHz

    NASA Technical Reports Server (NTRS)

    Turegano, J. A.; Klein, M. J.

    1981-01-01

    Precision measurements of the 3.56 cm flux densities of Jupiter, Saturn, Uranus, and Neptune are reported. The results are compared with previously published measurements as a means of: remotely sensing long-term changes in the microwave emission from the atmospheres of these planets and measuring the effects of Saturn's rings on the disk temperature as observed from earth at different ring inclination angles.

  15. Giant Planets: Good Neighbors for Habitable Worlds?

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  16. Composition and Morphology of Major Particle Types from Airborne Measurements during ICE-T and PRADACS Field Studies

    NASA Astrophysics Data System (ADS)

    Venero, I. M.; Mayol-Bracero, O. L.; Anderson, J. R.

    2012-12-01

    As part of the Puerto Rican African Dust and Cloud Study (PRADACS) and the Ice in Clouds Experiment - Tropical (ICE-T), we sampled giant airborne particles to study their elemental composition, morphology, and size distributions. Samples were collected in July 2011 during field measurements performed by NCAR's C-130 aircraft based on St Croix, U.S Virgin Island. The results presented here correspond to the measurements done during research flight #8 (RF8). Aerosol particles with Dp > 1 um were sampled with the Giant Nuclei Impactor and particles with Dp < 1 um were collected with the Wyoming Inlet. Collected particles were later analyzed using an automated scanning electron microscope (SEM) and manual observation by field emission SEM. We identified the chemical composition and morphology of major particle types in filter samples collected at different altitudes (e.g., 300 ft, 1000 ft, and 4500ft). Results from the flight upwind of Puerto Rico show that particles in the giant nuclei size range are dominated by sea salt. Samples collected at altitudes 300 ft and 1000 ft showed the highest number of sea salt particles and the samples collected at higher altitudes (> 4000 ft) showed the highest concentrations of clay material. HYSPLIT back trajectories for all samples showed that the low altitude samples initiated in the free troposphere in the Atlantic Ocean, which may account for the high sea salt content and that the source of the high altitude samples was closer to the Saharan - Sahel desert region and, therefore, these samples possibly had the influence of African dust. Size distribution results for quartz and unreacted sea-salt aerosols collected on the Giant Nuclei Impactor showed that sample RF08 - 12:05 UTM (300 ft) had the largest size value (mean = 2.936 μm) than all the other samples. Additional information was also obtained from the Wyoming Inlet present at the C - 130 aircraft which showed that size distribution results for all particles were smaller in

  17. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  18. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China.

    PubMed

    Ma, Ben; Lei, Shuo; Qing, Qin; Wen, Yali

    2018-05-03

    The International Union for Conservation of Nature (IUCN) reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.

  19. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  20. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  1. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  2. Tests of the Giant Impact Hypothesis

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  3. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh N.; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphel; Encrenaz, Therese; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Cavalie, Thibault; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy K.; Hofstadter, Mark; Sandell, Goran H.; Dowell, C. Darren; Pantin, Eric; Fujiyoshi, Takuya

    2014-11-01

    Photometric and spectroscopic observations of Uranus in the thermal infrared were combined to create self-consistent models of its global-mean temperature profile and vertical distribution of gases. These were derived from a suite of observations from Spitzer and Herschel, together with ground-based observations from UKIRT, CSO, Gemini, VLT and Subaru. Observations of the collision-induced absorption and quadrupoles of H2 have constrained the temperature structure for pressures of nearly 2 bars down to 0.1 millibars. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in such a way to be consistent with the mixing ratios of hydrocarbons. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the homopause is at much higher atmospheric pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 30 µbar being H2O and CO2. The ratio of the oxygen-bearing molecules is consistent with exogenic origins in KBOs or comets. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. This model is of ‘programmatic’ interest because it serves as a standard calibration source; the cross-comparison of its spectrum with model spectra for Mars and Neptune shows consistency to within 3%. Near equinox, the IRS spectra at different longitudes showed rotationally variable stratospheric emission that is consistent with a temperature anomaly ≤10 K near ~0.1-0.2 mbar. Spatial variability of tropospheric temperatures observed in ground-based observations from 2006 to 2011 is generally consistent with Voyager infrared (IRIS) results.

  4. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  5. Chromospheres of two red giants in NGC 6752

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, L.; Harper, G. M.; Jordan, Carole; Rodgers, A. W.

    1990-01-01

    Two red giant stars, A31 and A59, in the globular cluster NGC 6752 exhibit Mg II (2800 A) emission with surface fluxes comparable to those observed among metal-deficient halo field giants, and among low-activity Population I giants. Optical echelle spectra of these cluster giants reveal emission in the core of the Ca II K (3933.7 A) line, and in the wing of the H-alpha (6562.8 A) profile. Asymmetries exist both in the emission profiles and the line cores. These observations demonstrate unequivocally the existence of chromospheres among old halo population giants, and the presence of mass outflow in their atmospheres. Maintenance of a relatively constant level of chromospheric activity on the red giant branch contrasts with the decay of magnetic dynamo activity exhibited by dwarf stars and younger giants. A purely hydrodynamic phenomenon may be responsible for heating the outer atmospheres of these stars, enhancing chromospheric emission, thus extending the atmospheres and facilitating mass loss.

  6. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  7. Evolutionary dynamics of giant viruses and their virophages.

    PubMed

    Wodarz, Dominik

    2013-07-01

    Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested.

  8. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  9. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  10. An explanation for both the large inclination and eccentricity of the dipole-like field of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Lee, L.-H.; Saito, T.

    1991-01-01

    It is shown that the offset tilted dipole model of Uranus and Neptune, deduced from the spherical harmonic analysis of the Voyager magnetic field observation, can be represented fairly well by the combined field of an axial and an auxiliary dipole; the latter is roughly oriented in the east-west direction and is located near the surface of the core in low latitude. The present dynamo theories of planetary magnetism consider an axial dipolar field as an essential element, since the planetary rotation plays a vital role in the dynamo process. On the other hand, the auxiliary dipoles may be a result of leakage of the toroidal field, like a pair of sunspots on the photosphere, which is also an essential part of the dynamo process.

  11. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  12. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  13. Innate predator recognition in giant pandas.

    PubMed

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.

  14. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  15. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  16. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  17. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, D.; Vorberger, J.; Pak, A.

    The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phasemore » separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C 8H 8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.« less

  18. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions

    DOE PAGES

    Kraus, D.; Vorberger, J.; Pak, A.; ...

    2017-08-21

    The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phasemore » separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C 8H 8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.« less

  19. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  20. Discovery of a transiting planet near the snow-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σmore » confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.« less

  1. [Prevalence and clinicopathological characteristics of giant cell tumors].

    PubMed

    Estrada-Villaseñor, E G; Linares-González, L M; Delgado-Cedillo, E A; González-Guzmán, R; Rico-Martínez, G

    2015-01-01

    The frequency of giant cell tumors reported in the literature is very variable. Considering that our population has its own features, which distinguish it from the Anglo-Saxon and Asian populations, we think that both the frequency and the clinical characteristics of giant cell tumors in our population are different. The major aim of this paper was to determine the frequency and clinicopathological characteristics of giant cell tumors of the bone. A cross-sectional descriptive study was conducted of the cases diagnosed at our service as giant cell tumors of the bone from January to December 2013. The electronic clinical records, radiologic records and histologic slides from each case were reviewed. Giant cell tumors represented 17% of total bone tumors and 28% of benign tumors. Patients included 13 females and 18 males. The most frequent locations of giant cell tumors were: the proximal tibia, 9 cases (29%), and the distal femur, 6 cases (19%). Forty-five percent of giant cell tumors were associated with aneurysmal bone cyst (ABC) (14 cases) and one case (3%) was malignant. The frequency of giant cell tumors in this case series was intermediate, that is, higher than the one reported in Anglo-Saxon countries (usually low), but without reaching the frequency rates reported in Asian countries (high).

  2. Evolutionary dynamics of giant viruses and their virophages

    PubMed Central

    Wodarz, Dominik

    2013-01-01

    Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested. PMID:23919155

  3. Voyager Uranus encounter 0.2lbf T/VA short pulse test report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The attitude control thrusters on the Voyager spacecraft were tested for operation at electrical pulse widths of less than the current 10-millisecond minimum to reduce impulse bit and, therefore, reduce image smear of pictures taken during the Uranus encounter. Thrusters with the identical configuration of the units on the spacecraft were fired in an altitude chamber to characterize impulse bit and impulse bit variations as a function of electrical pulse widths and to determine if the short pulses decreased thruster life. Pulse widths of 4.0 milliseconds provide approximately 45 percent of the impulse provided by a 10-ms pulse, and thruster-to-thruster and pulse-to-pulse variation is approximately plus or minus 10 percent. Pulse widths shorter than 4 ms showed wide variation, and no pulse was obtained at 3 ms. Three thrusters were each subjected to 75,000 short pulses of 4 ms or less without performance degradation. A fourth thruster exhibited partial flow blockage after 13,000 short pulses, but this was attributed to prevous test history and not short pulse exposure. The Voyager attitude control thrusters should be considered flight qualified for short pulse operation at pulse widths of 4.0 ms or more.

  4. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  5. Chromospheric activity of cool giant stars

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, T. Y.

    1986-01-01

    During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.

  6. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  7. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  8. Validation and Interpretation of a new sea ice GlobIce dataset using buoys and the CICE sea ice model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2012-04-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  9. Characterization of Ice Roughness From Simulated Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Shin, Jaiwon

    1997-01-01

    Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.

  10. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  11. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  12. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  13. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  14. Biomass yield comparisons of giant miscanthus, giant reed, and miscane grown under irrigated and rainfed conditions

    USDA-ARS?s Scientific Manuscript database

    The U.S. Department of Energy has initiated efforts to decrease the nation’s dependence on imported oil by developing domestic renewable sources of cellulosic-derived bioenergy. In this study, giant miscanthus (Miscanthus x giganteus), sugarcane (complex hybrid of Saccharum spp.), and giant reed (Ar...

  15. Giant cell arteritis mimicking a testicular tumour.

    PubMed

    Sundaram, S; Smith, D H

    2001-07-01

    Giant cell arteritis involving the testis was identified incidentally upon orchidectomy of a right testicular mass. The mass looked like a malignant process on ultrasound. The patient also had generalised disease and was treated appropriately. Giant cell arteritis involving the bladder, prostate, uterus, and adnexa have been described before. To our knowledge, this is the first described case of giant cell arteritis affecting the testis.

  16. Microbiological quality of ice and ice machines used in food establishments.

    PubMed

    Hampikyan, Hamparsun; Bingol, Enver Baris; Cetin, Omer; Colak, Hilal

    2017-06-01

    The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. Escherichia coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas E. coli was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

  17. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  18. Role of nature reserves in giant panda protection.

    PubMed

    Kang, Dongwei; Li, Junqing

    2018-02-01

    Giant panda (Ailuropoda melanoleuca) is a flagship species in nature conservation of the world; to protect this species, 67 nature reserves have been established in China. To evaluate the protection effect of giant panda nature reserves, we analyzed the variation of giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province based on the national survey data released by State Forestry Administration and Sichuan Forestry Department. Results showed that from the third national survey to the fourth, giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province failed to realize the significant increase. Furthermore, we found that the total population growth rate of 23 nature reserves in the last 12 years was lower than those of the province total of Sichuan and the national total of China, and the total habitat area of the 23 nature reserves was decreasing in the last 12 years, but the province total and national total were all increasing. We propose that giant panda protection should pay more attention to how to improve the protective effects of nature reserves.

  19. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  20. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  1. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  2. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  3. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  4. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  5. Vertical cloud structure of Uranus from UKIRT/UIST observations and changes seen during Uranus’ northern spring equinox from 2006 to 2008

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; Teanby, N. A.; Davis, G. R.

    2009-09-01

    Long-slit spectroscopy observations of Uranus by the United Kingdom Infrared Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus' vertical and latitudinal cloud structure through the planet's northern spring equinox in December 2007. The observed reflectance spectra in the Long J (1.17-1.31 μm) and H (1.45-1.65 μm) bands, obtained with the slit aligned along Uranus' central meridian, have been fitted with an optimal estimation retrieval model to determine the vertical cloud profile from 0.1 to 6-8 bar over a wide range of latitudes. Context images in a number of spectral bands were used to discriminate general zonal cloud structural changes from passing discrete clouds. From 2006 to 2007 reflection from deep clouds at pressures between 2 and 6-8 bar increased at all latitudes, although there is some systematic uncertainty in the absolute pressure levels resulting from extrapolating the methane coefficients of Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Teanby, N.A., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006] Icarus, 181, 309-319) at pressures greater than 1 bar, as noted by Tomasko et al. and Karkoschka and Tomasko (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. [2008] Planet. Space Sci., 56, 624-647; Karkoschka, E., Tomasko, M. [2009] Icarus). However, from 2007 to 2008 reflection from these clouds throughout the southern hemisphere and from both northern and southern mid-latitudes (30° N,S) diminished. As a result, the southern polar collar at 45°S has diminished in brightness relative to mid-latitudes, a similar collar at 45°N has become more prominent (e.g. Rages, K.A., Hammel, H.B., Sromovsky, L. [2007] Bull. Am. Astron. Soc., 39, 425; Sromovsky, L.A., Fry, P.M., Ahue, W.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M.A. [2008] vol. 40 of AAS/Division for Planetary Sciences Meeting Abstracts, pp. 488-489; Sromovsky, L.A., Ahue, W

  6. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  7. Mechanical sea-ice strength parameterized as a function of ice temperature

    NASA Astrophysics Data System (ADS)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  8. Energizing the Discussion of Ice-Ocean World Habitability

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    2014-04-01

    The outer solar system boasts a wide range of worlds with oceans - moons orbiting the gas giants as well as putative ocean worlds in the Kuiper Belt. These objects span sizes from a few hundred kilometers to larger than Mercury. How do we understand these bodies as a class as well as evaluate the habitability of individual environments? Recognizing that there is more to habitability than a set of ingredients, "Follow the Energy' has become an important mantra. Earth's biosphere is strongly coupled to its geologic activity that maintains a sort of stable chemical disequilibria that is employed by life. From this perspective, we can think of geologic activity as a planetary proxy for energy, setting up redox environments of which life can take advantage. With this as a backdrop, we will explore two of the most intriguing bodies: Europa and Enceladus. With an icy outer shell hiding a global ocean, Europa (r=1565 km) exists in a dynamic environment, where immense tides from Jupiter potentially power an active deeper interior. Intense irradiation and impacts bathe the top of the ice shell. These processes are sources of energy that could sustain a biosphere. In the past few decades the debate about habitability of Europa has been focused strongly on the thickness of its ice shell. However an arguably more critical question is: how does the ice shell really work? Galileo data indicated that Europa has undergone recent resurfacing, and implied that near-surface water was likely involved. Now the detection of potential water ice plumes, subduction-like behavior as well as shallow subsurface "lakes" within the past few years implies that rapid ice shell recycling could create a conveyor belt between the ice and ocean. Mediated by processes at the ice-ocean interface, exchange between Europa's surface and subsurface could allow ocean material to one day be detected or sampled by spacecraft. At least at this level, Europa passes the energy test. But the question remains: is

  9. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  10. Giant aneurysms: A gender-specific complication of Kawasaki disease?

    PubMed

    Dietz, Sanne M; Kuipers, Irene M; Tacke, Carline E A; Koole, Jeffrey C D; Hutten, Barbara A; Kuijpers, Taco W

    2017-10-01

    Kawasaki disease (KD) is a pediatric vasculitis of unknown origin. Its main complication is the development of coronary artery aneurysms (CAA) with giant CAA at the end of the spectrum. In this cohort study, we evaluated the association between patient characteristics and the development of giant CAA based on z-scores. Multivariable, multinomial logistic regression analysis was used to identify variables associated with giant CAA. A total of 301 KD patients, comprising 216 patients without enlargement, 45 with small-sized, 19 with medium-sized, and 21 with giant CAA with all echocardiographies at our center were retrospectively included. Remarkably, 95% of patients with giant CAA were boys. In addition to 'no/late intravenous immunoglobulin (IVIG) treatment', 'male gender' (OR 16.23, 95% CI 1.88-140.13), 'age<1 year' (OR 7.49, 95% CI 2.29-24.46), and 'IVIG re-treatment (9.79, 95% CI 2.79-34.37)' were significantly associated with an increased risk of giant CAA, with patients without enlargement as reference. Compared to patients with medium-sized CAA, 'IVIG re-treatment' was significantly associated with giant CAA. The majority of giant CAA continued to increase in size during the first 40 days. We identified risk factors associated with an increased risk of giant CAA. The difference in variables between the giant CAA group and the other CAA subgroups suggests a separation between patients with the treatment-resistant giant CAA and the other IVIG-responsive patients, in which gender may be factored as a most relevant genetic trait. The increase in size during the first 2 months indicates the need for repeated echocardiography. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. Late-type giants with infrared excess. I. Lithium abundances

    NASA Astrophysics Data System (ADS)

    Jasniewicz, G.; Parthasarathy, M.; de Laverny, P.; Thévenin, F.

    1999-02-01

    de la Reza et al. (1997) suggested that all K giants become Li-rich for a short time. During this period the giants are associated with an expanding thin circumstellar shell supposedly triggered by an abrupt internal mixing mechanism resulting in the surface Li enrichment. In order to test this hypothesis twenty nine late-type giants with far-infrared excess from the list of Zuckerman et al. (1995) were observed in the Li-region to study the connection between the circumstellar shells and Li abundance. Eight giants have been found to have log epsilon (Li) > 1.0. In the remaining giants the Li abundance is found to be much lower. HD 219025 is found to be a rapidly rotating (projected rotational velocity of 23 +/-3 km s(-1) ), dusty and Li-rich (log epsilon (Li) = 3.0+/-0.2) K giant. Absolute magnitude derived from the Hipparcos parallax reveals that it is a giant and not a pre-main-sequence star. The evolutionary status of HD 219025 seems to be similar to that of HDE 233517 which is also a rapidly rotating, dusty and Li-rich K giant. The Hipparcos parallaxes of all the well studied Li-rich K giants show that most of them are brighter than the ``clump" giants. Their position in the H-R diagram indicates that they have gone through mixing and the initial abundance of Li is not preserved. There seems to be no correlations between Li abundances, rotational velocities and carbon isotope ratios. The only satisfactory explanation for the overabundance of lithium in these giants is the creation of Li by the extra deep mixing and the associated ``cool bottom processing". Based on observations obtained at the European Southern Observatory, La Silla, Chile, and at the Observatoire de Haute Provence, France.

  12. Electrophysiological Recordings from the Giant Fiber System

    PubMed Central

    Allen, Marcus J

    2010-01-01

    The giant fiber system (GFS) of Drosophila is a well-characterized neuronal circuit that mediates the escape response in the fly. It is one of the few adult neural circuits from which electrophysiological recordings can be made routinely. This article describes a simple procedure for stimulating the giant fiber neurons directly in the brain of the adult fly and obtaining recordings from the output muscles of the giant fiber system. PMID:20647357

  13. DSS 43 antenna gain analysis for Voyager Uranus encounter: 8.45-GHz radio science data correction

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Imbriale, W. A.

    1987-01-01

    A malfunction of the Deep Space Network (DSN) 64-meter antenna in Australia forced the antenna to operate with a mispositioned subreflector during the Voyager Uranus encounter period (January 24, 1986). Because of changing main reflector shape and quadripod position as a function of elevation angle, the antenna gain and pointing were not as expected, and the 8.45 GHz received signal level changed during the pass. The study described here used the Geometrical Theory of Diffraction (GTD) analysis to determine actual antenna gain and pointing during that period in an attempt to reconstruct the radio science data. It is found that the 1.4 dB of signal variation can be accounted for by antenna geometry changes and pointing error. Suggested modifications to the values measured during the pass are presented. Additionally, an extremely useful tool for the analysis of gravity deformed reflectors was developed for use in future antenna design and analysis projects.

  14. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  15. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  16. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  17. Lithium in giant stars in NGC 752 and M67

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine; Saha, A.; Hobbs, L. M.

    1988-04-01

    Spectra of giant stars in the intermediate-age galactic cluster NGC 752 and in the old cluster M67 have been examined for the presence of Li I λ6707. The lithium feature is not present in any of the M67 giants observed, leading to upper-limit abundances of log ɛ(Li) ≤ -1.0 to 0.3. While lithium is not present in most NGC 752 giants, the feature is strong in two giants, Heinemann 77 and 208, log ɛ(Li) = +1.1 and +1.4, respectively. In the remaining giants in NGC 752, log ɛ(Li) < 0.5. The absence of lithium in M67 giants may be because these giants evolve from progenitors in the region of the main-sequence lithium dip.

  18. Vibration analysis and experiment of giant magnetostrictive force sensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwen; Liu, Fang; Zhu, Xingqiao; Wang, Haibo; Xu, Jia

    2017-12-01

    In this paper, a kind of giant magnetostrictive force sensor is proposed, ans its magneto-mechanical coupled model is developed. The relationship between output voltage of giant magnetostrictive force sensor and input excitation force is obtained. The phenomena of accuracy aggravation in high frequency and delay of giant magnetostrictive sensor are explained. The experimental results show that the model can describe the actual response of giant magnetostrictive force sensor. The new model of giant magnetostrictive sensor has simple form and is easy to be analyzed in theory, which is helpful to be applied in measuring and control fields.

  19. Reactor vibration reduction based on giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  20. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  1. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  2. Should the Endangered Status of the Giant Panda Really Be Reduced? The Case of Giant Panda Conservation in Sichuan, China

    PubMed Central

    Ma, Ben; Lei, Shuo; Qing, Qin; Wen, Yali

    2018-01-01

    Simple Summary This study evaluates the effect of local, regional, and global factors on the recovery of giant panda populations and their habitat, questioning the recent downgrading in the conservation status of this iconic species. We highlight the actions taken over the last decade, which were primarily local scale changes and efforts for protecting pandas. Broader regional development and global climate change are expected to negatively affect current population trends in the long-term; this phenomenon has been documented in other wildlife populations also showing a recent recovery. Thus, we call for a revision of the assessments stipulated by the International Union for Conservation of Nature to incorporate broader potential impacts in predicting the future survival of threatened populations, thereby, ensuring that appropriate and objective protection measures are implemented well in advance. Abstract The International Union for Conservation of Nature (IUCN) reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this

  3. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form

    NASA Astrophysics Data System (ADS)

    Qiao, Hai; Hu, Na; Bai, Jin; Ren, Lili; Liu, Qing; Fang, Liaoqiong; Wang, Zhibiao

    2017-12-01

    Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.

  4. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Kepler Giant Planet Variability Team, Spitzer Ice Giant Variability Team

    2016-10-01

    Over the past several years a number of of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigan et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015). Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of ˜60○, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and exoplanet

  5. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and

  6. Icing Cloud Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.; Oldenburg, John R.

    2001-01-01

    The icing research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the icing clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and compared to the FAA icing certification criteria. The capabilities of the IRT to produce large droplet icing clouds is also detailed.

  7. Interaction of ice binding proteins with ice, water and ions.

    PubMed

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-19

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.

  8. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  9. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  10. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  11. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistentmore » with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.« less

  12. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably

  13. Ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.

    1994-01-01

    Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.

  14. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  15. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  16. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  17. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  18. Analytical ice shape predictions for flight in natural icing conditions

    NASA Technical Reports Server (NTRS)

    Berkowitz, Brian M.; Riley, James T.

    1988-01-01

    LEWICE is an analytical ice prediction code that has been evaluated against icing tunnel data, but on a more limited basis against flight data. Ice shapes predicted by LEWICE is compared with experimental ice shapes accreted on the NASA Lewis Icing Research Aircraft. The flight data selected for comparison includes liquid water content recorded using a hot wire device and droplet distribution data from a laser spectrometer; the ice shape is recorded using stereo photography. The main findings are as follows: (1) An equivalent sand grain roughness correlation different from that used for LEWICE tunnel comparisons must be employed to obtain satisfactory results for flight; (2) Using this correlation and making no other changes in the code, the comparisons to ice shapes accreted in flight are in general as good as the comparisons to ice shapes accreted in the tunnel (as in the case of tunnel ice shapes, agreement is least reliable for large glaze ice shapes at high angles of attack); (3) In some cases comparisons can be somewhat improved by utilizing the code so as to take account of the variation of parameters such as liquid water content, which may vary significantly in flight.

  19. Giant cell arteritis of fallopian tube.

    PubMed

    Azzena, A; Altavilla, G; Salmaso, R; Vasoin, F; Pellizzari, P; Doria, A

    1994-01-01

    One case of giant cells arteritis involving tubaric arteries in a postmenopausal woman is described. The patient was 59 years old and presented with asthenia, anemia, fever, weight loss, an abdominal palpable mass and elevated erythrocyte sedimentation rate. Exploratory laparotomy revealed a large ovarian cyst of 14 cm in diameter. Extensive giant cell arteritis, Horton's type, of the small-sizes arteries was found unexpectedly in the fallopian tube of the patient who had had a prior ovariectomy. Giant cell arteritis of the female genital tract is a rare finding in elderly women and may occur as an isolated finding or as part of generalised arteritis.

  20. Large Ice Discharge From the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.

  1. Lithium Abundance in M3 Red Giant

    NASA Astrophysics Data System (ADS)

    Givens, Rashad; Pilachowski, Catherine A.

    2015-01-01

    We present the abundance of lithium in the red giant star vZ 1050 (SK 291) in the globular cluster M3. A previous survey of giants in the cluster showed that like IV-101, vZ 1050 displays a prominent Li I 6707 Å feature. vZ 1050 lies on the blue side of the red giant branch about 1.3 magnitudes above the level of the horizontal branch, and may be an asymptotic giant branch star. A high resolution spectrum of M3 vZ1050 was obtained with the ARC 3.5m telescope and the ARC Echelle Spectrograph (ARCES). Atmospheric parameters were determined using Fe I and Fe II lines from the spectrum using the MOOG spectral analysis program, and the lithium abundance was determined using spectrum synthesis.

  2. Giant Cell Arteritis Presenting as Scalp Necrosis

    PubMed Central

    Maidana, Daniel E.; Muñoz, Silvia; Acebes, Xènia; Llatjós, Roger; Jucglà, Anna; Álvarez, Alba

    2011-01-01

    The differential of scalp ulceration in older patients should include several causes, such as herpes zoster, irritant contact dermatitis, ulcerated skin tumors, postirradiation ulcers, microbial infections, pyoderma gangrenosum, and giant cell arteritis. Scalp necrosis associated with giant cell arteritis was first described in the 1940s. The presence of this dermatological sign within giant cell arteritis represents a severity marker of this disease, with a higher mean age at diagnosis, an elevated risk of vision loss and tongue gangrene, as well as overall higher mortality rates, in comparison to patients not presenting this manifestation. Even though scalp necrosis due to giant cell arteritis is exceptional, a high level of suspicion must be held for this clinical finding, in order to initiate prompt and proper treatment and avoid blindness. PMID:21789466

  3. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  4. Broken ice

    NASA Image and Video Library

    2017-12-08

    An area of broken glacier ice seen from the IceBridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  6. Evolution and history of Giant Sequoia

    Treesearch

    H. Thomas Harvey

    1986-01-01

    Ancient ancestors of the giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) were widespread throughout much of the Northern Hemisphere during the late Mesozoic Period. Climatic conditions changed, forcing the more recent ancestors of present giant sequoia into the southwestern United States. The native range is now restricted to the west slope of the Sierra...

  7. An Examination of the Sea Ice Rheology for Seasonal Ice Zones Based on Ice Drift and Thickness Observations

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kimura, Noriaki

    2018-02-01

    The validity of the sea ice rheological model formulated by Hibler (1979), which is widely used in present numerical sea ice models, is examined for the Sea of Okhotsk as an example of the seasonal ice zone (SIZ), based on satellite-derived sea ice velocity, concentration and thickness. Our focus was the formulation of the yield curve, the shape of which can be estimated from ice drift pattern based on the energy equation of deformation, while the strength of the ice cover that determines its magnitude was evaluated using ice concentration and thickness data. Ice drift was obtained with a grid spacing of 37.5 km from the AMSR-E 89 GHz brightness temperature using a maximum cross-correlation method. The ice thickness was obtained with a spatial resolution of 100 m from a regression of the PALSAR backscatter coefficients with ice thickness. To assess scale dependence, the ice drift data derived from a coastal radar covering a 70 km range in the southernmost Sea of Okhotsk were similarly analyzed. The results obtained were mostly consistent with Hibler's formulation that was based on the Arctic Ocean on both scales with no dependence on a time scale, and justify the treatment of sea ice as a plastic material, with an elliptical shaped yield curve to some extent. However, it also highlights the difficulty in parameterizing sub-grid scale ridging in the model because grid scale ice velocities reduce the deformation magnitude by half due to the large variation of the deformation field in the SIZ.

  8. Preliminary Evaluation of Altitude Scaling for Turbofan Engine Ice Crystal Icing

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2017-01-01

    Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.

  9. The fates of Solar system analogues with one additional distant planet

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri

    2016-12-01

    The potential existence of a distant planet (`Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here, I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

  10. How Planet Nine could change the fate of the Solar system

    NASA Astrophysics Data System (ADS)

    Veras, D.

    2017-09-01

    The potential existence of a distant planet ('Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

  11. Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2016-01-01

    Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.

  12. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  13. Metastatic giant basal cell carcinoma: a case report.

    PubMed

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  14. Imaging Active Giants and Comparisons to Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael

    2018-04-01

    In the outer layers of cool, giant stars, stellar magnetism stifles convection creating localized starspots, analogous to sunspots. Because they frequently cover much larger regions of the stellar surface than sunspots, starspots of giant stars have been imaged using a variety of techniques to understand, for example, stellar magnetism, differential rotation, and spot evolution. Active giants have been imaged using photometric, spectroscopic, and, only recently, interferometric observations. Interferometry has provided a way to unambiguously see stellar surfaces without the degeneracies experienced by other methods. The only facility presently capable of obtaining the sub-milliarcsecond resolution necessary to not only resolve some giant stars, but also features on their surfaces is the Center for High-Angular Resolution Astronomy (CHARA) Array. Here, an overview will be given of the results of imaging active giants and details on the recent comparisons of simultaneous interferometric and Doppler images.

  15. IceCube

    Science.gov Websites

    Press and Public Interest IceCube Acronym Dictionary Articles about IceCube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public Interest A New Window on the Universe Ice

  16. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  17. Mixed Phase Modeling in GlennICE with Application to Engine Icing

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Jorgenson, Philip C. E.; Veres, Joseph P.

    2011-01-01

    A capability for modeling ice crystals and mixed phase icing has been added to GlennICE. Modifications have been made to the particle trajectory algorithm and energy balance to model this behavior. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to four mixed phase ice accretions performed in the Cox icing tunnel in order to calibrate an ice erosion model. A sample ice ingestion case was performed using the Energy Efficient Engine (E3) model in order to illustrate current capabilities. Engine performance characteristics were supplied using the Numerical Propulsion System Simulation (NPSS) model for this test case.

  18. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  19. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    PubMed

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  20. Giant cell arteritis: a review.

    PubMed

    Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar

    2013-01-01

    Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis.

  1. A new research project on the interaction of the solid Earth and the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Nishijima, J.; Kazama, T.; Nakamura, K.; Doi, K.; Suganuma, Y.; Okuno, J.; Araya, A.; Kaneda, H.; Aoyama, Y.

    2017-12-01

    A new research project of "Grant-in-Aid for Scientific Research on Innovative Areas" funded by JSPS (Japan Society for the Promotion of Science) has recently been launched. The title of the project is "Giant reservoirs of heat/water/material: Global environmental changes driven by Southern Ocean and Antarctic Ice Sheet", and as a five years project, is aiming to establish a new research area for Antarctic environmental system science. The project consists of 7 research topics, including Antarctic ice sheet and Southern ocean sciences, new observation methodology, modeling and other interdisciplinary topics, and we are involved in the topic A02-2, "Interaction of the solid Earth and the Antarctic Ice Sheet". The Antarctic ice sheet, which relates to the global climate changes through the sea level rise and ocean circulation, is an essential element of the Earth system for predicting the future environment changes. Thus many studies of the ice sheet changes have been conducted by means of geomorphological, geological, geodetic surveys, as well as satellite gravimetry and satellite altimetry. For these studies, one of the largest uncertainties is the effects of GIA. Therefore, GIA as a key to investigate the interaction between the solid Earth and the ice sheet changes, we plan to conduct geomorphological, geological and geodetic surveys in the inland mountain areas and the coastal areas including the surrounding areas of a Japanese station Syowa in East Antarctica, where the in-situ data for constraining GIA models are very few. Combining these new observations with other in-site data, various satellite data and numerical modeling, we aim to estimating a precise GIA model, constructing a reliable ice melting history after the last glacial maximum and obtaining the viscoelastic structure of the Earth's interior. In the presentation, we also show the five years research plans as well. This study was partially supported by JSPS KAKENHI Grant No. 17H06321.

  2. The Lithium Abundances of a Large Sample of Red Giants

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Tan, K. F.; Wang, L.; Zhao, G.; Sato, Bun'ei; Takeda, Y.; Li, H. N.

    2014-04-01

    The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s-1. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4 km s-1). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M ⊙) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.

  3. The lithium abundances of a large sample of red giants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y. J.; Tan, K. F.; Wang, L.

    2014-04-20

    The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s{sup –1}. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4more » km s{sup –1}). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M {sub ☉}) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.« less

  4. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  6. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  7. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-02-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.

  8. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    PubMed Central

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-01-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236

  9. Globally intertwined evolutionary history of giant barrel sponges

    NASA Astrophysics Data System (ADS)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  10. Blood Lead Levels in Captive Giant Pandas.

    PubMed

    Wintle, Nathan J P; Martin-Wintle, Meghan S; Zhou, Xiaoping; Zhang, Hemin

    2018-01-01

    Fifteen giant pandas (Ailuropoda melanoleuca) from the Chinese Conservation and Research Center for the Giant Panda (CCRCGP) in Bifengxia, Sichuan, China were analyzed for blood lead concentrations (Pb-B) during the 2017 breeding season. Thirteen of the 15 bears showed Pb-B below the method detection limit (MDL) of 3.3 µg/dL. The two remaining bears, although above the MDL, contained very low concentrations of lead of 3.9 and 4.5 µg/dL. All 15 giant pandas in this analysis had Pb-B concentrations that were within normal background concentrations for mammals in uncontaminated environments. For a threatened species, whose native country is plagued by reports of extremely high air pollution, our findings suggest that giant pandas at the CCRCGP are not absorbing lead at concentrations that would adversely affect their health.

  11. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  12. Fatal canine distemper virus infection of giant pandas in China.

    PubMed

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-06-16

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species.

  13. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  14. Giants among larges: how gigantism impacts giant virus entry into amoebae.

    PubMed

    Rodrigues, Rodrigo Araújo Lima; Abrahão, Jônatas Santos; Drumond, Betânia Paiva; Kroon, Erna Geessien

    2016-06-01

    The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Modern Airfoil Ice Accretions

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

    1997-01-01

    This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

  16. Giant Olfactory Meningiomas

    PubMed Central

    d'Avella, Domenico; Salpietro, Francesco M.; Alafaci, Cetty; Tomasello, Francesco

    1999-01-01

    Olfactory groove meningiomas may attain surprisingly large size. The subfrontal approach is currently the route preferred by most neurosurgeons for their excision. The pterional-transsylvian route represents an alternate exposure for microsurgery of frontobasal tumors. Although this approach has been already described for olfactory meningiomas, tumors of giant size were not specifically addressed in the literature. We report the application of the pterional-transsylvian approach in six patients with giant olfactory meningiomas. This series is unique because it includes only patients with tumors exceeding 6 cm in diameter with bilateral symmetrical development. A radical removal was achieved in all patients and all of them made a full recovery. To investigate the relevance of the pterional-transsylvian approach for minimizing surgical morbidity, a magnetic resonance imaging protocol was designed to characterize even subtle postoperative frontal lobe structural changes. These changes, limited to the frontal lobe ipsilateral to exposure and localized in specific anatomical domains of the prefrontal area, included cystic degenerative alterations, parenchymal gliosis, and associated persistent white matter edema. Results from the present series strengthen the usefulness of the pterional-transsylvian approach as a safe surgical route for lesions affecting the anterior skull base, even with huge bilateral symmetrical expansion, such as giant olfactory meningiomas. ImagesFigure 1Figure 2Figure 3p26-bFigure 4p27-bFigure 5Figure 6Figure 7 PMID:17171078

  17. Giant cell arteritis: a review

    PubMed Central

    Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar

    2013-01-01

    Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis. PMID:28539785

  18. Blue Beaufort Sea Ice from Operation IceBridge

    NASA Image and Video Library

    2017-12-08

    Mosaic image of sea ice in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the IceBridge P-3B. The dark area in the middle of the image is open water seen through a lead, or opening, in the ice. Light blue areas are thick sea ice and dark blue areas are thinner ice formed as water in the lead refreezes. Leads are formed when cracks develop in sea ice as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Literature review of giant gartersnake (Thamnophis gigas) biology and conservation

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2015-08-03

    This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes.  Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California.  The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats.  Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened.  Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range.  The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss.  This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation.  This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking.  Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.

  20. Giant cell phlebitis: a potentially lethal clinical entity.

    PubMed

    Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi

    2012-08-01

    An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity.

  1. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  2. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  3. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1975-01-01

    The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.

  4. Arctic Sea Ice Predictability and the Sea Ice Prediction Network

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Stroeve, J. C.

    2014-12-01

    Drastic reductions in Arctic sea ice cover have increased the demand for Arctic sea ice predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-ice prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea Ice Outlook (SIO; http://www.arcus.org/sipn/sea-ice-outlook) and the Sea Ice for Walrus Outlook have provided a forum for the international sea-ice prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea Ice Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea ice prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea ice cover in September and the first day each location becomes ice-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea ice from dynamic-thermodynamic sea ice models. Half of the models included fully-coupled (atmosphere, ice, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data

  5. State of Arctic Sea Ice North of Svalbard during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Rösel, Anja; King, Jennifer; Gerland, Sebastian

    2016-04-01

    The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The

  6. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during

  7. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  8. Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian

    2018-02-01

    The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.

  9. Formation of Giant Planets and Brown Dwarves

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2003-01-01

    According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models predict that rocky planets should form in orbit about most stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. Ongoing theoretical modeling of accretion of giant planet atmospheres, as well as observations of protoplanetary disks, will help decide this issue. Observations of extrasolar planets around main sequence stars can only provide a lower limit on giant planet formation frequency . This is because after giant planets form, gravitational interactions with material within the protoplanetary disk may cause them to migrat inwards and be lost to the central star. The core instability model can only produce planets greater than a few jovian masses within protoplanetary disks that are more viscous than most such disks are believed to be. Thus, few brown dwarves (objects massive enough to undergo substantial deuterium fusion, estimated to occur above approximately 13 jovian masses) are likely to be formed in this manner. Most brown dwarves, as well as an unknown number of free-floating objects of planetary mass, are probably formed as are stars, by the collapse of extended gas/dust clouds into more compact objects.

  10. Comparison of NASA Team2 and AES-York Ice Concentration Algorithms Against Operational Ice Charts From the Canadian Ice Service

    NASA Technical Reports Server (NTRS)

    Shokr, Mohammed; Markus, Thorsten

    2006-01-01

    Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.

  11. Identifying Li-rich giants from low-resolution spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Kumar, Yerra Bharat; Reddy, Bacham Eswar; Zhao, Gang

    2018-04-01

    In this paper we discuss our choice of a large unbiased sample used for the survey of red giant branch stars for finding Li-rich K giants, and the method used for identifying Li-rich candidates using low-resolution spectra. The sample has 2000 giants within a mass range of 0.8 to 3.0it{M}_{⊙}. Sample stars were selected from the Hipparcos catalogue with colour (B-V) and luminosity (it{L}/it{L}_{⊙}) in such way that the sample covers RGB evolution from its base towards RGB tip passing through first dredge-up and luminosity bump. Low-resolution (R ≈ 2000, 3500, 5000) spectra were obtained for all sample stars. Using core strength ratios of lines at Li I 6707 Å and its adjacent line Ca I 6717 Å we successfully identified 15 K giants with A(Li) > 1.5 dex, which are defined as Li-rich K giants. The results demonstrate the usefulness of low-resolution spectra to measure Li abundance and identify Li-rich giants from a large sample of stars in relatively shorter time periods.

  12. Tropospheric characteristics over sea ice during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  13. Scattering V-type asteroids during the giant planet instability: a step for Jupiter, a leap for basalt

    NASA Astrophysics Data System (ADS)

    Brasil, P. I. O.; Roig, F.; Nesvorný, D.; Carruba, V.

    2017-06-01

    V-type asteroids are a taxonomic class whose surface is associated with a basaltic composition. The only known source of V-type asteroids in the Main Asteroid Belt is (4) Vesta, which is located in the inner part of the Main Belt. However, many V-type asteroids cannot be dynamically linked to Vesta, in particular, those asteroids located in the middle and outer parts of the Main Belt. Previous works have failed to find mechanisms to transport V-type asteroids from the inner to the middle and outer belts. In this work, we propose a dynamical mechanism that could have acted on primordial asteroid families. We consider a model of the giant planet migration known as the jumping Jupiter model with five planets. Our study is focused on the period of 10 Myr that encompasses the instability phase of the giant planets. We show that, for different hypothetical Vesta-like paleo-families in the inner belt, the perturbations caused by the ice giant that is scattered into the asteroid belt before being ejected from the Solar system are able to scatter V-type asteroids to the middle and outer belts. Based on the orbital distribution of V-type candidates identified from the Sloan Digital Sky Survey and the VISTA Survey colours, we show that this mechanism is efficient enough provided that the hypothetical paleo-family originated from a 100 to 500 km crater excavated on the surface of (4) Vesta. This mechanism is able to explain the currently observed V-type asteroids in the middle and outer belts, with the exception of (1459) Magnya.

  14. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  15. Fatal canine distemper virus infection of giant pandas in China

    PubMed Central

    Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722

  16. An Overview of NASA Engine Ice-Crystal Icing Research

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Veres, Joseph P.

    2011-01-01

    Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

  17. Giant cell phlebitis: a potentially lethal clinical entity

    PubMed Central

    Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi

    2012-01-01

    An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity. PMID:22859384

  18. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  19. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.

    2017-12-01

    The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is

  20. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.