Science.gov

Sample records for ice latent heat

  1. Impact of Ridge Induced Latent Heat Advection on Sea Ice Global Heat Budget.

    NASA Astrophysics Data System (ADS)

    Hudier, E.; Gosselin, J.

    2008-12-01

    The effects of permeability on ice keel induced latent heat fluxes are examined using pressure ridge density statistics computed from SAR images and a prognostic simulation of forced brine advection through the bottom ice layer. Under pressure gradients generated in the wake of an ice keel sea water is pushed into and brine pumped out of the bottom ice layer. This in turn causes a new thermodynamic equilibrium to be reached. At spring when the ice permeability increases, brine export combined with sea water import translates into an advective heat flow that is balanced by the latent heat absorbed by volume melting of brine channel walls. Sea ice within the sheltered areas behind keels is modelled as an anisotropic heteregeneous mushy layer. The non-linear equation system within each cell is implemented on a finite volume grid and include volume melt of the brine channels from which porosity, water density, temperature and salinity are computed. Outputs from these simulations are then combined with ridge distribution statistics to evaluate the global impact of latent heat absorbed due to volume melting in the wake of ridges. As anticipated, results are highly dependent on permeability, nevertheless, they show that pressure ridge induced melting within the ice is a significant component of the heat budget when compared with melting at the ice water interface. This work underlines needs for further researches to improve our understanding of ice permeability changes during the melt season, it also calls for better tools to extract pressure ridge characteristics from satellite images.

  2. Measurement of Latent Heat of Melting of Thermal Storage Materials for Dynamic Type Ice Thermal Storage

    NASA Astrophysics Data System (ADS)

    Sawada, Hisashi; Okada, Masashi; Nakagawa, Shinji

    In order to measure the latent heat of melting of ice slurries with various solute concentrations, an adiabatic calorimeter was constructed. Ice slurries were made from each aqueous solution of ethanol, ethylene glycol and silane coupling agent. The latent heat of melting of ice made from tap water was measured with the present calorimeter and the uncertainty of the result was one percent. Ice slurries were made both by mixing ice particles made from water with each aqueous solution and by freezing each aqueous solution with stirring in a vessel. The latent heat of melting of these ice slurries was measured with various concentrations of solution. The latent heat of melting decreased as the solute concentration or the freezing point depression increased. The latent heat of ice slurries made from ethanol or ethylene glycol aqueous solution agreed with that of ice made from pure water known already. The latent heat of melting of ice slurries made from silane coupling agent aqueous solution got smaller than that of ice made from pure water as the freezing point depression increased.

  3. The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Chun, C. K. W.

    2000-01-01

    Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)

  4. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene

    2015-07-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.

  5. The Contribution of Englacial Latent Heat Transfer to Seaward Ice Flux from Regions of Convergent and Divergent Ice Flow in Western Greenland

    NASA Astrophysics Data System (ADS)

    Poinar, K.; Joughin, I. R.

    2014-12-01

    Glacial meltwater can refreeze within firn and crevasses, warming the ice through latent heat transfer. The consequent softening of the ice has been identified as a potential destabilization mechanism for the Greenland Ice Sheet, which would flow more quickly seaward with lower viscosity. We calculate the effect of meltwater refreezing within firn and englacial features on ice temperature and viscosity in two contrasting areas of western Greenland: Jakobshavn Isbrae, a convergent, fast-flowing outlet glacier, and the Pakitsoq area (Swiss Camp) directly to its north, a "dead zone" experiencing slow, divergent flow because of its location between two outlet glaciers. We explore how much refreezing affects the seaward velocity of ice in each location by comparing our modeled temperature profiles to borehole data. Pakitsoq ice shows significant englacial latent heat transfer, or cryo-hydrologic warming, while the ice in Jakobshavn has warmed largely due to percolation within the firn. We find that the Pakitsoq region is rather unique in western Greenland because of the long residence time of the ice in the ablation zone (800 years) there; ice flowing through Jakobshavn, by contrast, spends only 20 years in the ablation zone, not enough time for deep, diffusive englacial warming to occur. Examination of the velocity field of the ice sheet indicates that 70% of the ice flux through western Greenland spends insufficient time (200 years or less) in the ablation zone to produce significant englacial warming. Thus, the effects of englacial latent heat transfer may be fairly limited to regions of divergent flow such as Pakitsoq. Ice loss in these regions, which tend to be land-terminating, is dominated by surface melt rather than seaward ice motion, further suggesting that englacial heat transfer may have a lesser effect on the stability of the ice sheet than previously supposed.

  6. Understanding Latent Heat of Vaporization.

    ERIC Educational Resources Information Center

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  7. Latent heat of vehicular motion

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan

    2016-11-01

    We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.

  8. Latent Heating from TRMM Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Tao, W.; Takayabu, Y. N.; Shige, S.; Lang, S. E.; Olson, W. S.

    2012-12-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has been developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generated from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  9. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E.; Olson, W.

    2005-01-01

    Rainfall production is a fundamental process within the Earth;s hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations with the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional amount of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the spacetime structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has and continues to be developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generate from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  10. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  11. Retrieved Latent Heating from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, Eric A.; Houze Jr, Robert

    2008-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for three-fourths of the total heat energy available to the Earth's atmosphere. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to meso-synoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations in environmental prediction models. The status of retrieved TRMM LH products, TRMM LH inter-comparison and validation project, current TRMM LH applications and critic issues/action items (based on previous five TRMM LH workshops) is presented in this article.

  12. Dish-mounted latent heat buffer storage

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  13. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  14. Latent heating and cloud processes in warm fronts

    NASA Astrophysics Data System (ADS)

    Igel, Adele

    The results of two studies are presented in this thesis. In the first, an extratropical cyclone that crossed the United States on April 9-11 2009 was successfully simulated at high resolution (3km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To our knowledge, no study has examined the indirect effects of aerosols on warm fronts. First the budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming and the melting of ice produced ˜75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation was relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed phase region lead to both an enhanced Bergeron process and decreased riming efficiencies with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front. The second study addresses the role of latent heating associated with the warm front by assessing the relative contributions of individual cloud processes to latent heating and frontogenesis in both the horizontal and vertical directions. Condensation and cloud droplet nucleation are the

  15. Latent Work and Latent Heat of the Liquid/Vapor Transformation

    DTIC Science & Technology

    2014-08-01

    latent heat and latent work of liquid/vapor phase transformation for variously constrained thermodynamic processes . thermodynamics, phase...1. Introduction 1 2. Latent Heat and Work of Thermodynamic Process 3 3. Equations of Phase Equilibrium 5 4. Vaporization/Condensation under Fixed...between the phase in the process of vaporization/condensation. Thermodynamical identities allow one to express p, T, and µ in terms of the derivatives of

  16. Determination of the Latent Heats and Triple Point of Perfluorocyclobutane

    ERIC Educational Resources Information Center

    Briggs, A. G.; Strachan, A. N.

    1977-01-01

    Proposes the use of Perfluorocyclobutane in physical chemistry courses to conduct experiments on latent heat, triple point temperatures and pressures, boiling points, and entropy of vaporization. (SL)

  17. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  18. Solar Thermoelectricity via Advanced Latent Heat Storage

    SciTech Connect

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, Azure D.; Bobela, David; Bonner, R.; Weigand, R.; Campo, D.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermal valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  19. The effective latent heat of aqueous nanofluids

    NASA Astrophysics Data System (ADS)

    Lee, Soochan; Taylor, Robert A.; Dai, Lenore; Prasher, Ravi; Phelan, Patrick E.

    2015-06-01

    Nanoparticle suspensions, popularly termed ‘nanofluids’, have been extensively investigated for their thermal and radiative properties (Eastman et al 1996 Mater. Res. Soc. Proc. 457; Keblinski et al 2005 Mater. Today 8 36-44 Barber et al 2011 Nanoscale Res. Lett. 6 1-13 Thomas and Sobhan 2011 Nanoscale Res. Lett. 6 1-21 Taylor et al 2011 Nanoscale Res. Lett. 6 1-11 Fang et al 2013 Nano Lett. 13 1736-42 Otanicar et al 2010 J. Renew. Sustainable Energy 2 03310201-13 Prasher et al 2006 ASME J. Heat Transfer 128 588-95 Shin and Banerjee 2011 ASME J. Heat Transfer 133 1-4 Taylor and Phelan 2009 Int. J. Heat Mass Transfer 52 5339-48 Ameen et al 2010 Int. J. Thermophys. 31 1131-44 Lee et al 2014 Appl. Phys. Lett. 104 1-4). Such work has generated great controversy, although it is (arguably) generally accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the specific heat of molten salt-based nanofluids reported by Shin and Banerjee (2011 ASME J. Heat Transfer 133 1-4) and the critical heat flux mentioned by Taylor and Phelan (2009 Int. J. Heat Mass Transfer 52 5339-48). Another largely overlooked example is the reported effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids, as reported by Ameen et al (2010 Int. J. Thermophys. 31 1131-44). Through molecular dynamics (MD) modeling supplemented with limited experimental data they found that hfg increases with increasing nanoparticle concentration, for Pt nanoparticles (MD) and Al2O3 nanoparticles (experiments). Here, we extend those exploratory experiments in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased by the addition of graphite or silver nanoparticles. Our results to date indicate that, yes, hfg can be substantially impacted, by

  20. Power generation by exchange of latent heats of phase transition

    SciTech Connect

    Ehrlich, S.; Levenson, W.L.

    1981-08-11

    A power system is provided that uses the latent heat of fusion of water to raise the potential energy of a working fluid to a level that upon release generates power, preferably electrical power. The system is self-sustaining except for the energy that is supplied in water entering the system. The inlet water can be at any temperature within its liquid range under atmospheric or super atmospheric pressure, can advantageously contain the sensible waste heat typical of effluent from fossil fuel or nuclear power plants, can be relatively pure or be contaminated as with sewage or be the medium of a colloidal suspension, or consist of marine or other saline waters. In every case, purification of the water by freezing, for example, desalination, is accomplished without additional power consumption. A selected working fluid that boils at a temperature substantially below the freezing point of water is brought in the liquid state into contact with the water or other aqueous medium, causing the water to freeze and the working fluid to vaporize under pressure; the produced ice is removed; a portion of the so-produced ice is admixed with a eutectic forming salt to create a cooling medium at a temperature below the condensation temperature of the cooling fluid; the working-fluid vapors are preferably superheated by inlet aqueous medium and are released from autogenic elevated pressure to drive a turbine. Working fluid vapors are condensed by said cooling medium and returned by pumping into contact with inlet aqueous medium.

  1. Retrieval of Latent Heating from TRMM Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R. F.; Hou, A. Y.; Meneghini, R.; Simpson, J.; Haddad, Z. S.; Iguchi, T.; Satoh, S.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C. D.; Lang, S.; Nakamura, K.; Nakazawa, T.; Okamoto, K.; Shige, S.; Olson, W. S.; Takayabu, Y.; Tripoli, G. J.; Yang, S.

    2006-01-01

    Precipitation, in driving the global hydrological cycle, strongly influences the behavior of the Earth's weather and climate systems and is central to their variability. Two-thirds of the global rainfall occurs over the Tropics, which leads to its profound effect on the general circulation of the atmosphere. This is because its energetic equivalent, latent heating (LH), is the tropical convective heat engine's primary fuel source as originally emphasized by Riehl and Malkus (1958). At low latitudes, LH stemming from extended bands of rainfall modulates large-scale zonal and meridional circulations and their consequent mass overturnings (e.g., Hartmann et al. 1984; Hack and Schubert 1990). Also, LH is the principal energy source in the creation, growth, vertical structure, and propagation of long-lived tropical waves (e.g., Puri 1987; Lau and Chan 1988). Moreover, the distinct vertical distribution properties of convective and stratiform LH profiles help influence climatic outcomes via their tight control on large-scale circulations (Lau and Peng 1987; Nakazawa 1988; Sui and Lau 1988; Emanuel et al. 1994; Yanai et al. 2000; Sumi and Nakazawa 2002; Schumacher et al. 2004). The purpose of this paper is to describe how LH profiles are being derived from satellite precipitation rate retrievals, focusing on those being made with Tropical Rainfall Measuring Mission (TRMM) satellite measurements.

  2. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  3. Sensible and latent heat flux estimates in Antarctica

    NASA Technical Reports Server (NTRS)

    Stearns, Charles R.; Weidner, George A.

    1993-01-01

    The assumption has been made that the net annual contribution of water by the processes of deposition and sublimation to the Antarctic Ice Sheet is zero. The U.S. Antarctic Program started installing reliable automatic weather stations on the Antarctic Continent in 1980. The initial units were equipped to measure wind speed, wind direction, air pressure, and air temperature. During the 1983-1984 field season in Antarctica, three units were installed that measured a vertical air temperature difference between the nominal heights of 0.5 m and 3.0 m and relative humidity at a nominal height of 3 m. The measurements of the vertical air temperature difference and the relative humidity are the minimum required to estimate the sensible and latent heat fluxes to the air, while not exceeding the available energy requirements for the weather stations. The estimates of the net annual sublimation and deposition on the Ross Ice Shelf amount to 20 to 80 percent of the annual accumulation. We conclude that the assumption that annual sublimation and deposition are zero is not valid under Antarctic conditions.

  4. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  5. High temperature active heat exchanger research for latent heat storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1982-02-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCL o 24.5NaCL o 55.MgCl2% by wt.), with a nominal melting point of 385 C. Various active heat exchange concepts were given a technical and economic comparison to a passive tube shell design for a reference application (300 MW sub t for 6 hours). Test hardware was then built for the most promising concept: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counter flowing stream of liquid metal carrier fluid (lead/Bismuth).

  6. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2011-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  7. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  8. Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases.

    PubMed

    West, John B

    2014-06-15

    The discovery of carbon dioxide by Joseph Black (1728-1799) marked a new era of research on the respiratory gases. His initial interest was in alkalis such as limewater that were thought to be useful in the treatment of renal stone. When he studied magnesium carbonate, he found that when this was heated or exposed to acid, a gas was evolved that he called "fixed air" because it had been combined with a solid material. He showed that the new gas extinguished a flame, that it could not support life, and that it was present in gas exhaled from the lung. Within a few years of his discovery, hydrogen, nitrogen, and oxygen were also isolated. Thus arguably Black's work started the avalanche of research on the respiratory gases carried out by Priestley, Scheele, Lavoisier, and Cavendish. Black then turned his attention to heat and he was the first person to describe latent heat, that is the heat added or lost when a liquid changes its state, for example when water changes to ice or steam. Latent heat is a key concept in thermal physiology because of the heat lost when sweat evaporates. Black was a friend of the young James Watt (1736-1819) who was responsible for the development of early steam engines. Watt was puzzled why so much cooling was necessary to condense steam into water, and Black realized that the answer was the latent heat. The resulting improvements in steam engines ushered in the Industrial Revolution.

  9. Design and simulation of latent heat storage units

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. )

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  10. Design and simulation of latent heat storage units. Final report

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C.

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  11. Latent heating and mixing due to entrainment in tropical deep convection

    NASA Astrophysics Data System (ADS)

    McGee, Clayton J.

    Recent studies have noted the role of latent heating above the freezing level in reconciling Riehl and Malkus' Hot Tower Hypothesis (HTH) with evidence of diluted tropical deep convective cores. This study evaluates recent modifications to the HTH through Lagrangian trajectory analysis of deep convective cores in an idealized, high-resolution cloud-resolving model (CRM) simulation. A line of tropical convective cells develops within a high-resolution nested grid whose boundary conditions are obtained from a large-domain CRM simulation approaching radiative-convective equilibrium (RCE). Microphysical impacts on latent heating and equivalent potential temperature are analyzed along trajectories ascending within convective regions of the high-resolution nested grid. Changes in equivalent potential temperature along backward trajectories are partitioned into contributions from latent heating due to ice processes and a residual term. This residual term is composed of radiation and mixing. Due to the small magnitude of radiative heating rates in the convective inflow regions and updrafts examined here, the residual term is treated as an approximate representation of mixing within these regions. The simulations demonstrate that mixing with dry air decreases equivalent potential temperature along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase equivalent potential temperature above the freezing level. The latent heating contributions along trajectories from cloud nucleation, condensation, evaporation, freezing, deposition, and sublimation are also quantified. Finally, the source regions of trajectories reaching the upper troposphere are identified; it is found that two-thirds of backward trajectories with starting points within strong updrafts or downdrafts above 10 km have their origin at levels higher than 2 km AGL. The importance of both boundary layer and mid-level inflow in moist environments is

  12. Filled Carbon Nanotubes: Superior Latent Heat Storage Enhancers

    SciTech Connect

    2009-04-01

    This factsheet describes a rstudy whose technical objective is to demonstrate the feasibility of filled carbon nanotubes (CNT) as latent heat storage enhancers, with potential applications as next generation thermal management fluids in diverse applications in industries ranging from high-demand microelectronic cooling, manufacturing, power generation, transportation, to solar energy storage.

  13. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  14. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  15. The study of latent heat transport characteristics by solid particles and saccharide solution mixtures

    NASA Astrophysics Data System (ADS)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Inaba, Hideo

    2011-06-01

    The purpose of this study is the development of latent heat transport system by using the mixture of the minute latent heat storage materials and the saccharine solution as medium. The experimental studies are carried out by the evaluation of viscosity and pressure loss in a pipe. Polyethylene (P.E.) is selected as the dispersed minute material that has closeness density (920kg/m3) of ice (917kg/m3). D-sorbitol and D-xylose solutions are picked as continuum phase of the test mixture. The concentration of D-sorbitol solution is set 48mass% from measured results of saturation solubility and the melting point. 40mass% solution of D-xylose is selected as the other test continuum phase. The non-ion surfactant, EA157 Dai-ichiseiyaku CO. Ltd, is used in order to prevent of dispersed P.E. powder cohere. The pressure loss of test mixture is measured by the straight circular pipe that has smooth inner surface. The measuring length for pressure loss is 1000 mm, and the inner diameter of pipe is 15mm. The accuracy of experiment apparatus for measuring pressure loss is within ±5%. The pressure loss data is estimated by the relationship between the heat transport ratio and the required pump power. It is clarified that the optimum range of mixing ratio exists over 10mass% of latent heat storage material.

  16. Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2003-01-01

    A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.

  17. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions

    NASA Astrophysics Data System (ADS)

    Mottaghy, Darius; Rath, Volker

    2006-01-01

    In cold regions the thermal regime is strongly affected by freezing or melting processes, consuming or releasing large amounts of latent heat. This changes enthalpy by orders of magnitude. We present a numerical approach for the implementation of these effects into a 3-D finite-difference heat transport model. The latent heat effect can be handled by substituting an apparent heat capacity for the volumetric heat capacity of unfrozen soil in the heat transfer equation. The model is verified by the analytical solution of the heat transport equation including phase change. We found significant deviations of temperature profiles when applying the latent heat effect on forward calculations of deep temperature logs. Ground surface temperature histories derived from synthetic data and field data from NE Poland underline the importance of considering freezing processes. In spite of its limitations, the proposed method is appropriate for the study of long-period climatic changes.

  18. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  19. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  20. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    NASA Technical Reports Server (NTRS)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  1. Passive ice freezing-releasing heat pipe

    DOEpatents

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  2. MJO Signals in Latent Heating: Results from TRMM Retrievals

    NASA Technical Reports Server (NTRS)

    Zhang, Chidong; Ling, Jian; Hagos, Samson; Tao, Wei-Kuo; Lang, Steve; Takayabu, Yukari N.; Shige, Shoichi; Katsumata, Masaki; Olson, William S.; L'Ecuyer, Tristan

    2010-01-01

    The Madden-Julian Oscillation (MJO) is the dominant intraseasonal signal in the global tropical atmosphere. Almost all numerical climate models have difficulty to simulate realistic MJO. Four TRMM datasets of latent heating were diagnosed for signals in the MJO. In all four datasets, vertical structures of latent heating are dominated by two components, one deep with its peak above the melting level and one shallow with its peak below. Profiles of the two components are nearly ubiquitous in longitude, allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered. All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at period of 50 days and zonal wavenumber 1, well distinguished from lower- and higher-frequency power and much stronger than the corresponding westward power. The shallow component shows similar but slightly less robust MJO spectral peaks. MJO signals were further extracted from a combination of band-pass (30 - 90 day) filtered deep and shallow components. Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans. There is a local minimum in the deep components over the Maritime Continent. The shallow components of the MJO differ substantially among the four TRMM datasets in their detailed zonal distributions in the eastern hemisphere. In composites of the heating evolution through the life cycle of the MJO, the shallow components lead the deep ones in some datasets and at certain longitudes. In many respects, the four TRMM datasets agree well in their deep components, but not in their shallow components and the phase relations between the deep and shallow components. These results indicate that caution must be exercised in applications of these latent heating data.

  3. Sensible and latent heating of the atmosphere as inferred from DST-6 data

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Schubert, S. D.; Johnson, W. T.

    1979-01-01

    The average distribution of convective latent heating, boundary layer sensible heat flux, and vertical velocity are determined for the winter 1976 DST period from GLAS model diagnostics. Key features are the regions of intense latent heating over Brazil, Central Africa, and Indonesia; and the regions of strong sensible heating due to air mass modification over the North Atlantic and North Pacific Oceans.

  4. Ice rheology and tidal heating of Enceladus

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Hussmann, H.; Kurita, K.; Sohl, F.

    2013-09-01

    For the saturnian satellite Enceladus, the possible existence of a global ocean is a major issue. For the stability of an internal ocean, tidal heating is suggested as an effective heat source. However, assuming Maxwell rheology ice, it has been shown that a global scale ocean on Enceladus cannot be maintained (Roberts, J.F., Nimmo, F. [2008]. Icarus 194, 675-689). Here, we analyze tidal heating and the stability of a global ocean from the aspect of anelastic behavior. The Maxwell model is the most typical and widely used viscoelastic model. However, in the tidal frequency domain, energy is also dissipated by the anelastic response involving time-dependent or transient creep mechanisms, which is different from the viscoelastic response caused by steady-state creep. The Maxwell model cannot adequately address anelasticity, which has a large effect in the high viscosity range. Burgers and Andrade models are suggested as suitable models for the creep behavior of ice in the frequency domain. We calculate tidal heating in the ice layer and compare it with the radiated heat assuming both convection and conduction of the ice layer. Though anelastic behavior increases the heating rate, it is insufficient to maintain a global subsurface ocean if the ice layer is convecting, even though a wide parameter range is taken into account. One possibility to maintain a global ocean is that Enceladus’ ice shell is conductive and its tidal response is similar to that of the Burgers body with comparatively small transient shear modulus and viscosity. If the surface ice with large viscosity is dissipative by anelastic response, the heat produced in the ice layer would supersede the cooling rate and a subsurface ocean could be maintained without freezing.

  5. Flat plate solar air heater with latent heat storage

    NASA Astrophysics Data System (ADS)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  6. Transient heat conduction through a substrate of brine-spongy ice

    NASA Astrophysics Data System (ADS)

    Dehghani, S. R.; Naterer, G. F.; Muzychka, Y. S.

    2017-03-01

    An analytical model for heat conduction through brine-spongy ice is developed. This model fills a gap in knowledge related to transient heat conduction to a two-phase substrate which is crucial for modeling transient icing and deicing of cold surfaces in contact with salt water. The core of the model is based on the phase change of pure ice and brine pockets trapped in the structure of spongy ice. Freezing of brine pockets causes the release of the latent heat of fusion that is considered as the source of heat generation distributed throughout the brine-spongy ice. A nonlinear partial differential equation and a number of equations of state for ice, brine, and brine-spongy ice create governing equations of heat transfer through brine-spongy ice. A standard numerical scheme solves the set of equations in various initial conditions. The variation of temperature, volume fraction of brine and salinity of brine pockets are calculated numerically. Experimental samples of brine-spongy ice are examined under transient conditions and their surface temperatures are captured using an infrared thermal camera. The numerical results, which are for various overall salinities, are closely aligned with the measured surface temperatures.

  7. Latent heat storage technology and application workshop. Summary report: Session 6

    NASA Astrophysics Data System (ADS)

    Martin, J. F.

    Latent heat storage technology and application were studied. The economics of short term latent heat storage for application and system configuration were analyzed. Subjects discussed included: state of the art, solar energy stores, residential heating and cooling, and industrial and utility applications.

  8. Ice-maker heat pump development

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.

    1980-09-01

    Four test unit ice maker heat pumps (IMHPs) were tested under the annual cycle energy system (ACES) program. Performance results on the effects of harvesting scheme, plate loading, and cycling operation were compared. The ice packing density of IMHPs was also studied and compared with that of ice manufactured by commerical ice makers and brine chiller ACES. Three harvesting schemes were tested: hot gas, stored refrigerant, and dual fluid, off cycle. The hot gas scheme tended to penalize excessively the heating output of the system. Stored refrigerant schemes eliminated that problem but caused compressor failures due to flood-back and oil dilution. The dual fluid schemes exhibited no such problems and demonstrated an ability to harvest during compressor off cycles. Therefore, it was concluded that dual fluid, off cycle schemes are the best for use with IMPHs. Plate loading tests in which compressor speed and evaporator size are varied clearly showed that evaporator plate loading should be as low as possible.

  9. Wallboard with Latent Heat Storage for Passive Solar Applications

    SciTech Connect

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.

  10. Relating Convective and Stratiform Rain to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2010-01-01

    The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in

  11. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  12. Method of testing active latent-heat storage devices based on thermal performance. (ASHRAE standard)

    SciTech Connect

    1985-01-26

    The purpose of this standard is to provide a standard procedure for determining the thermal performance of latent heat thermal energy storage devices used in heating, air-conditioning, and service hot water systems.

  13. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar

  14. Effect of Melt Superheating Treatment on the Latent Heat Release of Sn

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Dang, Bo; Fan, Dandan; Jian, Zengyun

    2016-12-01

    The accuracy of the baseline evaluation is of importance for calculating the transition enthalpy such as the latent heat of the crystallization. This study demonstrates the modified method of the equivalent non-latent heat baseline, by which the transition enthalpy can be measured accurately according to the transition peak in differential scanning calorimetric curve. With this method, the effect of melt superheating treatment time on the latent heat release upon the solidification of tin is investigated. The results show that the latent heat increases by increasing the treatment time, and is close to a constant when the treatment time is large enough, indicating the homogeneous system. And then, a simple model is established to describe the changes of the crystallization latent heat with the treatment time, which is confirmed by the experimental data of Sn.

  15. Effect of Melt Superheating Treatment on the Latent Heat Release of Sn

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Dang, Bo; Fan, Dandan; Jian, Zengyun

    2017-03-01

    The accuracy of the baseline evaluation is of importance for calculating the transition enthalpy such as the latent heat of the crystallization. This study demonstrates the modified method of the equivalent non-latent heat baseline, by which the transition enthalpy can be measured accurately according to the transition peak in differential scanning calorimetric curve. With this method, the effect of melt superheating treatment time on the latent heat release upon the solidification of tin is investigated. The results show that the latent heat increases by increasing the treatment time, and is close to a constant when the treatment time is large enough, indicating the homogeneous system. And then, a simple model is established to describe the changes of the crystallization latent heat with the treatment time, which is confirmed by the experimental data of Sn.

  16. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  17. The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs

    NASA Astrophysics Data System (ADS)

    Marinescu, P. J.; Heever, S. C.; Saleeby, S. M.; Kreidenweis, S. M.

    2016-07-01

    The shapes and magnitudes of latent heating profiles have been shown to be different within the convective and stratiform regions of mesoscale convective systems (MCSs). Properly representing these distinctions has significant implications for the atmospheric responses to latent heating on various scales. This study details (1) the microphysical process contributions to latent heating profiles within MCS convective, stratiform, and anvil regions and (2) the time evolution of these profiles throughout the MCS lifetime, using cloud-resolving model simulations. Simulations of two MCS events that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E) are conducted. Several features of the simulated MCSs are compared to a suite of observations obtained during the MC3E field campaign, and it is concluded that the simulations reasonably reproduce the MCS events. The simulations show that condensation and deposition are the primary contributors to MCS latent warming, as compared to riming and nucleation processes. In terms of MCS latent cooling, sublimation, melting, and evaporation all play significant roles. It is evident that throughout the MCS lifecycle, convective regions demonstrate an approximately linear decrease in the magnitudes of latent heating rates, while latent heating within stratiform regions is associated with transitions between MCS flow regimes. Such information regarding the temporal evolution of latent heating within convective and stratiform MCS regions could be useful in developing parameterizations representing convective organization.

  18. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  19. Satellite-observed latent heat release in a tropical cyclone

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Rodgers, E. B.

    1976-01-01

    Data from the Nimbus 5 electrically scanning microwave radiometer (ESMR) are used to make calculations of the latent heat release (L.H.R.) and the distribution of rainfall rate in a tropical cyclone as it grows from a tropical disturbance to a typhoon. The L.H.R. (calculated over a circular area of 4 deg latitude radius) increases during the development and intensification of the storm from a magnitude of 2.7 X 10 to the 21st power ergs/s (in the disturbance stage) to 8.8 X 10 to the 21st power ergs (typhoon stage). The latter value corresponds to a mean rainfall rate of 2.0 mm hr/s. The more intense the cyclone and the greater the L.H.R., the greater the percentage contribution of the larger rainfall rates to the L.H.R. In the disturbance stage the percentage contribution of rainfall rates less than or minus 6 mm hr/s is typically 8%; for the typhoon stage, the value is 38%. The distribution of rainfall rate as a function of radial distance from the center indicates that as the cyclone intensifies, the higher rainfall rates tend to concentrate toward the center of the circulation.

  20. Preparation of fine powdered composite for latent heat storage

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pomaleski, Marina; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  1. A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features

    SciTech Connect

    Ahmed, Fiaz; Schumacher, Courtney; Feng, Zhe; Hagos, Samson

    2016-09-01

    Traditionally, radar-based latent heating retrievals use rainfall to estimate the total column-integrated latent heating and then distribute that heating in the vertical using a model-based look-up table (LUT). In this study, we develop a new method that uses size characteristics of radar-observed precipitating echo (i.e., area and mean echo-top height) to estimate the vertical structure of latent heating. This technique (named the Convective-Stratiform Area [CSA] algorithm) builds on the fact that the shape and magnitude of latent heating profiles are dependent on the organization of convective systems and aims to avoid some of the pitfalls involved in retrieving accurate rainfall amounts and microphysical information from radars and models. The CSA LUTs are based on a high-resolution Weather Research and Forecasting model (WRF) simulation whose domain spans much of the near-equatorial Indian Ocean. When applied to S-PolKa radar observations collected during the DYNAMO/CINDY2011/AMIE field campaign, the CSA retrieval compares well to heating profiles from a sounding-based budget analysis and improves upon a simple rain-based latent heating retrieval. The CSA LUTs also highlight the fact that convective latent heating increases in magnitude and height as cluster area and echo-top heights grow, with a notable congestus signature of cooling at mid levels. Stratiform latent heating is less dependent on echo-top height, but is strongly linked to area. Unrealistic latent heating profiles in the stratiform LUT, viz., a low-level heating spike, an elevated melting layer, and net column cooling were identified and corrected for. These issues highlight the need for improvement in model parameterizations, particularly in linking microphysical phase changes to larger mesoscale processes.

  2. The role of latent heat in kinetic energy conversions of South Pacific cyclones

    NASA Technical Reports Server (NTRS)

    Kann, Deirdre M.; Vincent, Dayton G.

    1986-01-01

    The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.

  3. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  4. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  5. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2009-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation.

  6. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  7. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  8. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, S.; Meneghini, R.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. Present largescale weather and climate models can simulate latent heat release only crudely, thus reducing their confidence in predictions on both global and regional scales. This paper represents the first attempt to use NASA Tropical Rainfall Measuring Mission (TRMM) rainfall information to estimate the four-dimensional structure of global monthly latent heating profiles over the global tropics from December 1997 to October 2000. The Goddard Convective-Stratiform. Heating (CSH) algorithm and TRMM precipitation radar data are used for this study. We will examine and compare the latent heating structures between 1997-1998 (winter) ENSO and 1998-2000 (non-ENSO). We will also examine over the tropics. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental; Indian oceans vs west Pacific; Africa vs S. America) will be also examined and compared. In addition, we will examine the relationship between latent heating (max heating level) and SST. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  9. Latent heat exchange in the boreal and arctic biomes.

    PubMed

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need

  10. A Simple Scheme for Estimating Turbulent Heat Flux over Landfast Arctic Sea Ice from Dry Snow to Advanced Melt

    NASA Astrophysics Data System (ADS)

    Raddatz, R. L.; Papakyriakou, T. N.; Else, B. G.; Swystun, K.; Barber, D. G.

    2015-05-01

    We describe a dynamic-parameter aggregation scheme to estimate hourly turbulent heat fluxes over landfast sea ice during the transition from winter to spring. Hourly albedo measurements are used to track the morphology of the surface as it evolved from a fairly smooth homogeneous dry snow surface to a rougher heterogeneous surface with spatially differential melting and melt ponds. The estimates of turbulent heat fluxes for 928 h are compared with eddy-covariance measurements. The model performance metrics (W m) for sensible heat flux were found to be: mean bias , root-mean-square error 6 and absolute accuracy 4, and for latent heat flux near zero, 3 and 2, respectively. The correlation coefficient between modelled and measured sensible heat fluxes was 0.82, and for latent heat fluxes 0.88. The turbulent heat fluxes were estimated more accurately without adjustments than with adjustments for atmospheric stability based on the bulk Richardson number. Overall, and across all metrics for both sensible and latent heat fluxes, the dynamic-parameter aggregation scheme outperformed the static Community Ice (C-ICE) scheme, part of the Community Climate System model, applied to the same winter-to-spring transition period.

  11. Active heat exchange: System development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1981-03-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide, and nitrate families, based on high storage capacity, good corrosion characteristics, and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCl, 24.5NaCl, 55.0MgCl2 percent by wt.), with a nominal melting point of 385 C.

  12. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  13. Thermodynamics of latent heat storage in parallel or in series with a heat engine

    NASA Astrophysics Data System (ADS)

    Charach, Chaim; Conti, Massimo

    1995-08-01

    The thermodynamics of a latent heat storage element, connected to a heat source, periodically varying in time, and to a heat engine, is addressed. Two typical modes of operation, referred to as the series and the parallel setups, are considered. They differ with regard to the active phase of the heat source. For the series mode the entire amount of heat transfer fluid (HTF), coming from the source, is first passed through the thermal storage element (TSE) before entering the engine. For the parallel setup only a fraction of the HTF, supplied by the heat source, is delivered directly to the engine, whereas the remaining fraction of HTF is pumped into the TSE to facilitate the exergy storage. The optimal selection of the freezing point of the phase-change material (PCM), the stability of operation of the engine, and the entropy production in the TSE during the heat storage-discharge cycle are considered. The parallel and the series modes of operation are compared for some simplified TSE models. For these models the series setup yields a higher efficiency and stability than the parallel scheme.

  14. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Meneghini, B.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Goddard Convective-Stratiform Heating (CSH) algorithm is used to retrieve profiles of latent heating over the global tropics for a period of several months using TRMM precipitation radar data. The seasonal variation of heating over the tropics is then examined. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  15. Sensible and latent heat forced divergent circulations in the West African Monsoon System

    NASA Astrophysics Data System (ADS)

    Hagos, S.; Zhang, C.

    2008-12-01

    Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.

  16. Environmental Forcing of Super Typhoon Paka's (1997) Latent Heat Structure

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Olson, William; Halverson, Jeff; Simpson, Joanne; Pierce, Harold

    1999-01-01

    The distribution and intensity of total (i.e., combined stratified and convective processes) rainrate/latent heat release (LHR) were derived for tropical cyclone Paka during the period 9-21 December, 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave/Imager and the Tropical Rain Measurement Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner core convective bursts that preceded periods of rapid intensification and a convective rainband (CRB) cycle. During these periods of convective bursts, satellite sensors revealed that the rainrates/LHR: 1) increased within the inner eye wall region; 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inwards; 4) extended upwards within the middle and upper-troposphere, and 5) became electrically charged. These factors may have caused the eye wall region to become more buoyant within the middle and upper-troposphere, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system. Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Center for Medium Range Forecast analyses were used to examine the necessary and sufficient condition for initiating and maintaining these inner core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics (i.e., cold tropopause temperatures, moist troposphere, and warm SSTs [greater than 26 deg]) suggested that the atmosphere was ideal for Paka's maximum potential intensity (MPI) to approach super-typhoon strength. Further, Paka encountered weak vertical wind shear (less than 15 m/s ) before interacting with the westerlies on 21 December. The sufficient conditions, on the other hand, appeared to have some influence on Paka's convective burst, but the horizontal moisture flux convergence values in the outer core were weaker than

  17. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    PubMed

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  18. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  19. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects.

    PubMed

    Havenith, George; Richards, Mark G; Wang, Xiaoxin; Bröde, Peter; Candas, Victor; den Hartog, Emiel; Holmér, Ingvar; Kuklane, Kalev; Meinander, Harriet; Nocker, Wolfgang

    2008-01-01

    Investigating claims that a clothed person's mass loss does not always represent their evaporative heat loss (EVAP), a thermal manikin study was performed measuring heat balance components in more detail than human studies would permit. Using clothing with different levels of vapor permeability and measuring heat losses from skin controlled at 34 degrees C in ambient temperatures of 10, 20, and 34 degrees C with constant vapor pressure (1 kPa), additional heat losses from wet skin compared with dry skin were analyzed. EVAP based on mass loss (E(mass)) measurement and direct measurement of the extra heat loss by the manikin due to wet skin (E(app)) were compared. A clear discrepancy was observed. E(mass) overestimated E(app) in warm environments, and both under and overestimations were observed in cool environments, depending on the clothing vapor permeability. At 34 degrees C, apparent latent heat (lambda(app)) of pure evaporative cooling was lower than the physical value (lambda; 2,430 J/g) and reduced with increasing vapor resistance up to 45%. At lower temperatures, lambda(app) increases due to additional skin heat loss via evaporation of moisture that condenses inside the clothing, analogous to a heat pipe. For impermeable clothing, lambda(app) even exceeds lambda by four times that value at 10 degrees C. These findings demonstrate that the traditional way of calculating evaporative heat loss of a clothed person can lead to substantial errors, especially for clothing with low permeability, which can be positive or negative, depending on the climate and clothing type. The model presented explains human subject data on EVAP that previously seemed contradictive.

  20. [Dynamics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia].

    PubMed

    Zhang, Guo; Zhou, Guang-Sheng; Yang, Fu-Lin

    2010-03-01

    This paper studied the diurnal and seasonal characteristics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia, based on the 2008 observation data from eddy covariance tower. The diurnal patterns of sensible and latent heat fluxes over the ecosystem were both single kurtosis, with the maximum value being 319.01 W x m(-2) (on May 30th, 2008) and 425.37 W x m(-2) (on Jun 2nd, 2008), respectively, and occurred at about 12:00-13:30 (local time), which was similar to the diurnal pattern of net radiation but lagged about one hour of the maximum net radiation. The maximum diurnal variations of monthly mean sensible and latent heat fluxes occurred in May and June, and their minimum diurnal variations occurred in January and November, respectively. There was a closer relationship between soil moisture content and precipitation. Surface soil moisture content was most sensitive to precipitation, while the moisture content in deeper soil layers had a lagged response to precipitation. The seasonal dynamics of sensible and latent heat fluxes was similar to that of net radiation, and affected by precipitation. Sensible heat flux was obviously affected by net radiation, but latent heat flux was more sensitive to precipitation and mainly controlled by soil moisture content.

  1. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  2. A Flight Investigation of Exhaust-heat De-icing

    NASA Technical Reports Server (NTRS)

    Jones, Alun R; Rodert, Lewis A

    1940-01-01

    The National Advisory Committee for Aeronautics conducted exhaust-heat de-icing tests in flight to provide data needed in the application of this method. The capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing removed 30 to 35 percent of the heat from exhaust gas entering the wing. Data are given from which the heat required for ice prevention can be calculated. Sample calculations have been made on the basis of existing engine power/wing area ratios to show that sufficient heating can be obtained for ice protection on modern transportation airplanes, provided that uniform distribution of the heat can be secured.

  3. Latent heat in uniaxially stressed KMnF3 ferroelastic crystal

    NASA Astrophysics Data System (ADS)

    Romero, F. J.; Gallardo, M. C.; Jimenez, J.; del Cerro, J.; Salje, E. K. H.

    2000-05-01

    The influence of weak uniaxial stress on both the latent heat and the coexistence interval of the ferroelastic phase transition of KMnF3 has been measured using a sensitive conduction calorimeter. The latent heat of the sample without stress is 0.129 J g-1 and, in the range of \\mbox{0-12} bar, it increases weakly with the stress. The width of the interval where the latent heat appears increases with stress, with an apparently larger coexistence interval. Heating and cooling processes show different kinetic behaviours. On cooling, the maximum of the differential thermal analysis traces splits into two peaks when a uniaxial stress is applied, which is related to the formation of ferroelastic domain patterns.

  4. Numerical study of finned heat pipe-assisted latent heat thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2014-11-01

    In the present study the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers as well as the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. Furthermore, it is showed that the number of fins does not affect the performance of the system considerably.

  5. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    SciTech Connect

    Lee, Soochan; Phelan, Patrick E. Dai, Lenore; Prasher, Ravi; Gunawan, Andrey; Taylor, Robert A.

    2014-04-14

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids. That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.

  6. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    NASA Astrophysics Data System (ADS)

    Lee, Soochan; Phelan, Patrick E.; Dai, Lenore; Prasher, Ravi; Gunawan, Andrey; Taylor, Robert A.

    2014-04-01

    This paper reports an experimental investigation of the latent heat of vaporization (hfg) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured hfg values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the hfg of nanofluids. That is, graphite nanofluid exhibits an increased hfg and silver nanofluid shows a decrease in hfg compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in hfg.

  7. Non-joule heating of ice in an electric field.

    PubMed

    Petrenko, Victor F; Ryzhkin, Ivan A

    2011-06-16

    We theoretically predict and calculate non-Joule heating/cooling caused by a direct electric current in ordinary crystalline ice Ih. The cause of this effect is related to partial ordering/disordering occurring in the proton subsystem of ice when protons either drift or diffuse in the ice. Depending on relative directions of the electric current and the configuration vector of ice, the non-Joule effect can be either positive, that is, heat generation, or negative, that is, heat absorption, and its absolute magnitude is usually comparable with that of normal Joule heating. The magnitude of this phenomenon is also approximately inversely proportional to the ice temperature and, thus, is more pronounced at low temperatures.

  8. Latent heat and cyclone activity in the South Pacific, 10-18 January 1979

    NASA Technical Reports Server (NTRS)

    Miller, B. L.; Vincent, D. G.; Kann, D. M.; Robertson, Franklin R.

    1986-01-01

    This paper examines the heat budget of the tropical South Pacific for the period of January 10-18, 1979 and compares precipitation estimates obtained from the budget equation with those derived from GOES-IR satellite imagery, using data that were part of the total FGGE package. In addition, the relationship between latent heat release and the baroclinic energy conversion is examined for the life cycles of two cyclones which propagated along the South Pacific Convection Zone in that period. It is shown that latent heat plays an important role in the baroclinic energy conversion between potential and kinetic energy through diabatically-induced vertical circulations. For a cyclone where latent heat stays at a high level both spacially and with regard to intensity, there appears to be ample fuel for its intensification. On the other hand, for a filling cyclone, the latent heat impact decreased and the baroclinic conversion fell off rapidly, due to the lack of both potential energy generation and diabatically-induced thermally-direct circulations.

  9. Simulation and evaluation of latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Sigmon, T. W.

    1980-01-01

    The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.

  10. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  11. Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2017-02-01

    The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle of silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east–west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.

  12. Daily evapotranspiration estimates by scaling instantaneous latent heat flux derived from a two-source model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radiometric brightness temperature can be used in energy balance models that estimate sensible and latent heat fluxes of the land surface. However, brightness temperature is usually available only at one time of day when acquired from aircraft, fine-scale satellite platforms, or infrared thermometer...

  13. Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface models (LSMs) are often applied to predict the one-way coupling strength between surface soil moisture (SM) and surface latent heat (LH) flux. However, the ability of LSMs to accurately represent such coupling has not been adequately established. Likewise, the estimation of one-way SM/L...

  14. Effect of latent heating on mesoscale vortex development during extreme precipitation: Colorado, September 2013

    NASA Astrophysics Data System (ADS)

    Morales, Annareli

    From 9-16 September 2013, a slow-moving cut-off low in the southwestern U.S. funneled unseasonal amounts of moisture to the Colorado Front Range, resulting in extreme precipitation and flooding. The heaviest precipitation during the September 2013 event occurred over the northern Colorado Front Range, producing a 7-day total of over 380 mm of rain. The flash flooding caused over $3 billion in damage to property and infrastructure and resulted in eight fatalities. This study will focus on the precipitation and mesoscale features during 11-12 September 2013 in Boulder, CO. During the evening of 11 September, Boulder experienced flash flooding as a result of high rain rates accumulating over 180 mm of rain in 6 hours. From 0400-0700 UTC 12 September, a mesoscale vortex (mesovortex) was observed to travel northwestward towards Boulder. This circulation enhanced upslope flow and was associated with localized deep convection. The mesovortex originated in an area common for the development of a lee vortex known as the Denver Cyclone. We hypothesize that this mesoscale vortex is not associated with lee vortex formation, such as the Denver Cyclone, but developed through the release of latent heat from microphysical process. The Advanced Research Weather Research and Forecast (ARW) model was used to 1) produce a control simulation that properly represented the evolution and processes of interest during the event and 2) test the importance of latent heating to the development and evolution of the mesovortex. The results from various latent heating experiments suggested that the mesovortex did not develop through lee vortex formation and the latent heat released just before and during the mesovortex event was important to its development. Results also showed latent heating affected the flow field, resulting in a positive feedback between the circulation, associated low-level jet, and convection leading to further upslope flow and precipitation development. Further experiments

  15. Passive ice freezing-releasing heat pipe. [Patent application

    DOEpatents

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  16. The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions

    NASA Technical Reports Server (NTRS)

    Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.

    1947-01-01

    Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.

  17. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  18. The role of individual cyclones for atmospheric latent and sensible heat transport into the European Arctic

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Stohl, A.

    2010-12-01

    The bulk of the atmospheric latent heat transport induced by extratropical cyclones is organized in the warm conveyor belt, also known as atmospheric rivers. In order to enhance the process understanding of atmospheric sensible and latent heat transport with these structures into the European Arctic, the magnitude and variability of the energy flux from individual cyclones in this region was studied. We applied a moisture source tracking algorithm embedded in the limited-area numerical weather prediction model (NWP) Climate High-Resolution Model (CHRM) to trace the evaporation sources and transport of water vapour from different latitude bands of the North Atlantic Ocean. September 2002 and December 2006 were chosen as initial analysis periods, since a particularly large number of cyclones (including former hurricanes) traveled within the North Atlantic storm track during these months. The main findings are that latent heat (LH) from more southerly source regions is transported at higher altitudes. Stronger storms draw latent heat from a larger area (further south), and the ensuing precipitation will hence on average originate from further south as well. Most long-range transport of LH occurs in the cold frontal bands. Individual cyclones are the main source of sub-monthly LH flux variability, and can cause up to 4-sigma variation of the mean flux. LH flux is almost permanently net positive (northward), unlike for sensible heat (SH) and other energy fluxes. Most LH that is "permanently" transferred to north of 60°N in the Atlantic storm track originates from directly south of that latitude, implying on average short atmospheric moisture lifetimes, and hence a fast energy turnover. We compare these findings to results from a Lagrangian moisture tracking method based on the FLEXPART model. Remarks with regard to differences in the transport conditions of latent head in such structures along the North American West Coast and the Norwegian West Coast will be made.

  19. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment.

    PubMed

    Maia, A S C; daSilva, R G; Battiston Loureiro, C M

    2005-09-01

    The general principles of the mechanisms of heat transfer are well known, but knowledge of the transition between evaporative and non-evaporative heat loss by Holstein cows in field conditions must be improved, especially for low-latitude environments. With this aim 15 Holstein cows managed in open pasture were observed in a tropical region. The latent heat loss from the body surface of the animals was measured by means of a ventilated capsule, while convective heat transfer was estimated by the theory of convection from a horizontal cylinder and by the long-wave radiation exchange based on the Stefan-Boltzmann law. When the air temperature was between 10 and 36 degrees C the sensible heat transfer varied from 160 to -30 W m(-2), while the latent heat loss by cutaneous evaporation increased from 30 to 350 W m(-2). Heat loss by cutaneous evaporation accounted for 20-30% of the total heat loss when air temperatures ranged from 10 to 20 degrees C. At air temperatures >30 degrees C cutaneous evaporation becomes the main avenue of heat loss, accounting for approximately 85% of the total heat loss, while the rest is lost by respiratory evaporation.

  20. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  1. The influence of viscous and latent heating on crystal-rich magma flow in a conduit

    NASA Astrophysics Data System (ADS)

    Hale, Alina J.; Wadge, Geoff; Mühlhaus, Hans B.

    2007-12-01

    The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufrière Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufrière Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that

  2. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  3. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  4. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  5. Comparison of Several Methods of Cyclic De-Icing of a Gas-Heated Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.; Bowden, Dean T.

    1953-01-01

    Several methods of cyclic de-icing of a gas-heated airfoil were investigated to determine ice-removal characteristics and heating requirements. The cyclic de-icing system with a spanwise ice-free parting strip in the stagnation region and a constant-temperature gas-supply duct gave the quickest and most reliable ice removal. Heating requirements for the several methods of cyclic de-icing are compared, and the savings over continuous ice prevention are shown. Data are presented to show the relation of surface temperature, rate of surface heating, and heating time to the removal of ice.

  6. Aircraft measured atmospheric momentum, heat and radiation fluxes over Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Hartmann, Jörg; Kottmeier, Christoph; Wamser, Christian; Augstein, Ernst

    The vertical turbulent momentum, sensible and latent heat fluxes and the surface radiation balance are derived from measurements of low level flights (<50 m height) with a highly instrumented aircraft over Fram Strait in September/October 1991. High resolution information on the sea ice cover is obtained with a digital line scan camera. It is found that the drag coefficient for neutral static stability at 10 m height can be composed of a skin drag (cdns = 1.1 . 10-3), which coincides with the open water value, and a form drag which linearly increases with the mean ice area perpendicular to the surface wind vector per unit surface area. The ratio of the generally small sensible and latent heat fluxes (both ≤ 20 Wm-2) is close to unity for near neutral atmospheric stratification and no dependence of these fluxes on sea ice concentration can be detected, at least for the encountered ice concentrations larger than 50%. Measurements at about 40 m height are not sufficient to study cases with stable stratification since the flight level seems to be fully decoupled from the surface processes. In this autumn measurements 50% to 90% of the net energy flux at the surface is made up by the radiation balance. Therefore, radiative fluxes form important components in polar air-sea exchange processes. The long wave downward radiation can be parameterised using the ɛσT4 law with the near surface air temperature and the empirically determined values for the emissivity ɛ = 0.71 and ɛ = 0.90 for clear and cloudy skies, respectively. The standard deviations of our measurements from this parameterisation are 4.6 Wm-2 for clear and 8.6 Wm-2 for cloudy skies. These values fall into the range ofthe instrumental uncertainty.

  7. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  8. A neural network to retrieve the mesoscale instantaneous latent heat flux over oceans from SSM/I observations

    NASA Technical Reports Server (NTRS)

    Bourras, D.; Eymard, L.; Liu, W. T.

    2000-01-01

    The turbulent latent and sensible heat fluxes are necessary to study heat budget of the upper ocean or initialize ocean general circulation models. In order to retrieve the latent heat flux from satellite observations authors mostly use a bulk approximation of the flux whose parameters are derived from different instrument. In this paper, an approach based on artificial neural networks is proposed and compared to the bulk method on a global data set and 3 local data sets.

  9. Copper-Silicon-Magnesium Alloys for Latent Heat Storage

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-12-01

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  10. Copper-silicon-magnesium alloys for latent heat storage

    SciTech Connect

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  11. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  12. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  13. Spectral Retrieval of Latent Heating Profiles from TRMM PR Data: Comparison of Look-Up Tables

    NASA Technical Reports Server (NTRS)

    Shige, Shoichi; Takayabu, Yukari N.; Tao, Wei-Kuo; Johnson, Daniel E.; Shie, Chung-Lin

    2003-01-01

    The primary goal of the Tropical Rainfall Measuring Mission (TRMM) is to use the information about distributions of precipitation to determine the four dimensional (i.e., temporal and spatial) patterns of latent heating over the whole tropical region. The Spectral Latent Heating (SLH) algorithm has been developed to estimate latent heating profiles for the TRMM Precipitation Radar (PR) with a cloud- resolving model (CRM). The method uses CRM- generated heating profile look-up tables for the three rain types; convective, shallow stratiform, and anvil rain (deep stratiform with a melting level). For convective and shallow stratiform regions, the look-up table refers to the precipitation top height (PTH). For anvil region, on the other hand, the look- up table refers to the precipitation rate at the melting level instead of PTH. For global applications, it is necessary to examine the universality of the look-up table. In this paper, we compare the look-up tables produced from the numerical simulations of cloud ensembles forced with the Tropical Ocean Global Atmosphere (TOGA) Coupled Atmosphere-Ocean Response Experiment (COARE) data and the GARP Atlantic Tropical Experiment (GATE) data. There are some notable differences between the TOGA-COARE table and the GATE table, especially for the convective heating. First, there is larger number of deepest convective profiles in the TOGA-COARE table than in the GATE table, mainly due to the differences in SST. Second, shallow convective heating is stronger in the TOGA COARE table than in the GATE table. This might be attributable to the difference in the strength of the low-level inversions. Third, altitudes of convective heating maxima are larger in the TOGA COARE table than in the GATE table. Levels of convective heating maxima are located just below the melting level, because warm-rain processes are prevalent in tropical oceanic convective systems. Differences in levels of convective heating maxima probably reflect

  14. Uncertainty in Tropical Ocean Latent Heat Flux Variability During the Last 25 Years

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.; Bosilovich, M. G.; Miller, T. L.

    2007-01-01

    When averaged over the tropical oceans (30deg N/S), latent heat flux anomalies derived from passive microwave satellite measurements as well as reanalyses and climate models driven with specified seal-surface temperatures show considerable disagreement in their decadal trends. These estimates range from virtually no trend to values over 8.4 W/sq m decade. Satellite estimates also tend to have a larger interannual signal related to El Nino/Southern Oscillation (ENSO) events than do reanalyses or model simulations. An analysis of wind speed and humidity going into bulk aerodynamic calculations used to derive these fluxes reveals several error sources. Among these are apparent remaining intercalibration issues affecting passive microwave satellite 10 m wind speeds and systematic biases in retrieval of near-surface humidity. Likewise, reanalyses suffer from discontinuities in availability of assimilated data that affect near surface meteorological variables. The results strongly suggest that current latent heat flux trends are overestimated.

  15. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  16. Latent Heat and Sensible Heat Fluxes Simulation in Maize Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Safa, B.

    2015-12-01

    Latent Heat (LE) and Sensible Heat (H) flux are two major components of the energy balance at the earth's surface which play important roles in the water cycle and global warming. There are various methods for their estimation or measurement. Eddy covariance is a direct and accurate technique for their measurement. Some limitations lead to prevention of the extensive use of the eddy covariance technique. Therefore, simulation approaches can be utilized for their estimation. ANNs are the information processing systems, which can inspect the empirical data and investigate the relations (hidden rules) among them, and then make the network structure. In this study, multi-layer perceptron neural network trained by the steepest descent Back-Propagation (BP) algorithm was tested to simulate LE and H flux above two maize sites (rain-fed & irrigated) near Mead, Nebraska. Network training and testing was fulfilled using hourly data of including year, local time of day (DTime), leaf area index (LAI), soil water content (SWC) in 10 and 25 cm depths, soil temperature (Ts) in 10 cm depth, air temperature (Ta), vapor pressure deficit (VPD), wind speed (WS), irrigation and precipitation (P), net radiation (Rn), and the fraction of incoming Photosynthetically Active Radiation (PAR) absorbed by the canopy (fPAR), which were selected from days of year (DOY) 169 to 222 for 2001, 2003, 2005, 2007, and 2009. The results showed high correlation between actual and estimated data; the R² values for LE flux in irrigated and rain-fed sites were 0.9576, and 0.9642; and for H flux 0.8001, and 0.8478, respectively. Furthermore, the RMSE values ranged from 0.0580 to 0.0721 W/m² for LE flux and from 0.0824 to 0.0863 W/m² for H flux. In addition, the sensitivity of the fluxes with respect to each input was analyzed over the growth stages. Thus, the most powerful effects among the inputs for LE flux were identified net radiation, leaf area index, vapor pressure deficit, wind speed, and for H

  17. Effect of Latent Heat of Freezing on Crustal Generation at Ultraslow Spreading Rates

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.; Warren, J. M.

    2013-12-01

    The transition between slow and ultraslow ridge axes occurs at the spreading rate below which steady state molten rock cannot exist above the normal Moho depth of ca. 6 km. The latent heat of basaltic magma freezing within the mantle and the kinematics of the seafloor spreading play significant roles in this transition. Using thermal models, we show that freezing of melt at mantle depths buffers temperature due to latent heat of freezing. This allows steady state crustal magma at lower spreading rates than when all the melt freezes at shallow crustal depths. Two quasi-stable seafloor-spreading patterns are possible: (1) basaltic magma along a narrow axial zone, maintaining a hot, weak axial lid that favors this extension pattern; (2) extension in simple shear over a broad zone with isotherms that are horizontal within the cool lid, favoring extension in simple shear. The statistics of basalt, gabbro, melt-impregnated peridotite, and peridotite dredged from transitional ridge axes indicates that the mode of crustal generation is extremely variable at ultraslow spreading rates. Portions of the easternmost Southwest Indian Ridge (SWIR) are spreading at 14 mm per year and consist of 90 percent peridotite, whereas the SWIR Oblique Segment has the same spreading rate but only 37 percent peridotite. Overall, the dredge statistics indicate that some, but not all, the latent heat of ascending magmas is released at mantle depth, that both quasi-stable seafloor-spreading geometries occur, and that magma ascent focuses locally along the strike of transitional ridge axes.

  18. Experimental analysis of regularly structured composite latent heat storages for temporary cooling of electronic components

    NASA Astrophysics Data System (ADS)

    Lohse, Ekkehard; Schmitz, Gerhard

    2013-11-01

    This study presents the experimental investigation of regularly structured Composite Latent Heat Storages. Solid-liquid Phase Change Materials have a low thermal conductivity, resulting in high temperature differences. This drawback is compensated by the combination with specially designed frame-structures made of aluminum to enhance the transport of thermal energy. A prototype is investigated experimentally on a test rig, where the heat load and temperatures are measured while the phase change process is observed optically, and compared to a solid block Phase Change Material.

  19. Influence of latent heat and thermal diffusion on the growth of nematic liquid crystal nuclei.

    PubMed

    Huisman, B A H; Fasolino, A

    2007-08-01

    The growth of nematic liquid crystal nuclei from an isotropic melt follows a power law behavior with exponent n found experimentally to vary between 1/2 for low quench depths, up to 1 for high quench depths. This behavior has been attributed to the competition between curvature and free energy. We show that curvature cannot account for the low quench depth behavior of the nucleus growth, and attribute this behavior to the diffusion of latent heat. We use a multiscale approach to solve the Landau-Ginzburg order parameter evolution equation coupled to a diffusive heat equation, and discuss this behavior for material parameters experimentally measured for the liquid crystal 8CB.

  20. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  1. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  2. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  3. Including latent and sensible heat fluxes from sea spray in global weather and climate models

    NASA Astrophysics Data System (ADS)

    Copsey, Dan

    2016-04-01

    Most standard weather and climate models calculate interfacial latent (evaporation) and sensible heat fluxes over the ocean based on parameterisations of atmospheric turbulence, using the wave state only in the calculation of surface roughness length. They ignore latent and sensible heat fluxes generated by sea spray, which is an acceptable assumption at low wind speeds. However at high wind speeds (> 15 m/s) a significant amount of sea spray is generated from the sea surface which, while airborne, cools to an equilibrium temperature, absorbs heat and releases moisture before re-impacting the sea surface. This could impact, for example, the total heat loss from the Southern Ocean (which is anomalously warm in Met Office coupled models) or the accuracy of tropical cyclone forecasts. A modified version of the Fairall sea spray parameterisation scheme has been tested in the Met Office Unified Model including the JULES surface exchange model in both climate and NWP mode. The fast part of the scheme models the temperature change of the droplets to an equilibrium temperature and the slow part of the scheme models the evaporation and heat absorption while the droplets remain airborne. Including this scheme in the model cools and moistens the near surface layers of the atmosphere during high wind events, including tropical cyclones. Sea spray goes on to increase the convection intensity and precipitation near the high wind events in the model.

  4. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  5. Eddy covariance measurement of carbon, latent and sensible heat fluxes from western Lake Erie

    NASA Astrophysics Data System (ADS)

    Shao, C.; Chen, J.; Stepien, C.; Bridgeman, T.; Czajkowski, K. P.; Becker, R.; Chu, H.; yang, Z.

    2013-12-01

    Long-term measurements of sensible and latent heat and carbon dioxide fluxes were performed over a boreal lake in northern American using the direct micrometeorological eddy covariance (EC) technique. Two permanent EC flux stations in western Lake Erie - Crib (41.7167N, 83.2667W, nearest distance from shore is 4.5 km) and Light (41.8314N, 83.2006W, nearest distance from shore > 12 km) sites have been operating since September, 2011. In 2012, in both sites, the sensible heat flux had its minimum in the afternoon (15:00-17:00) and peaked in the early morning (7:00-9:00) in August-November, varied from -4 W m-2 to +30 W m-2. The diurnal amplitude of H was largest in spring and in early fall (30 W m-2 in September) whereas it was smaller in July and August (20 W m-2). The latent heat flux had obvious seasonal pattern in both sites with higher values in the summer, while it did not show obvious daily courses, even did not have the day and night variation in both sites, only one trend from June to October was higher at night than during the daytime in Light site. The maximum latent heat of ~180 W m-2 in summer whereas the minimum -10 W m-2 in winter were observed. The latent heat flux dominated clearly over the sensible heat in spring and summer; that is, the Bowen ratio was less than 1 and most of the energy absorbed by the water was consumed in terms of evapotranspiration. A lookup table method was performed data gap-filling in our aquatic ecosystems in order to obtain the continuously daily, monthly and yearly carbon and water budgets. In 2012, for the annual cumulative total, the evapotranspiration was 820 and 700 mm (about 2000 and 1700 MJ m-2) in Crib and Light sites, respectively, comparing with the annual rainfall of 700 mm. The annual sensible heat was 480 and 300 MJ m-2 in Crib and Light sites, respectively. And there were four and five CO2 uptake months in Crib and Light sites, respectively. The maximum CO2 uptake month was in July in both sites, with -28 and

  6. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  7. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment.

  8. Ocean Heat Delivery Mechanisms Beneath Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Stern, Alon

    Ocean currents around Antarctica are responsible for transporting heat under the Antarctic ice shelves and exporting cold melt-water out into the open ocean. These ocean currents are important for the determining the melt rates beneath the Antarctica ice shelves. This thesis explores the three modes of melting beneath Antarctic ice shelves using laboratory experiments, analysis of field observations, and both of complex and simple numerical models. In Chapter 1, we construct a laboratory experiment to simulate the density driven circulation under an idealized Antarctic ice shelf (mode 1). Results confirm that the ice front can act as a dynamic barrier that partially inhibits fluid from entering or exiting the ice shelf cavity, away from two wall-trapped boundary currents. The strength of the dynamic barrier is sensitive to changes in the ice shelf geometry and changes in the buoyancy fluxes which drive the flow. Chapter 2 explores how instabilities in topographically steered jets could be responsible for the exchange of warm Circumpolar Deep Water across the continental shelf break in West Antarctica (mode 2). Results show that the majority of mixing occurs in discrete mixing events which coincide with the shelf break jet becoming baroclinically unstable. The largest instability events display a intermittent low frequency variability with instabilities occurring up to 50 years apart. Chapter 3 uses observational data to study the summer intrusion of surface waters below McMurdo Ice Shelf (mode 3). A six month temperature record collected below the ice shelf in 2011-2012 shows the temporal and spatial structure of the summertime warm water signal that penetrates beneath the ice shelf. A Ross Sea numerical model demonstrates a seasonal warm water pathway leading from the west side of the Ross Sea Polynya (RSP) towards McMurdo Sound.

  9. A portable direct-PV thermoelectric vaccine refrigerator with ice storage through heat pipes

    NASA Astrophysics Data System (ADS)

    Jiajitsawat, Somchai

    The objective of this research work was to develop a portable solar refrigeration system capable of maintaining vaccine temperatures between 2 °C and 8 °C. The main system under this study consisted of thermoelectric modules as cooling generators with latent heat energy storage (LHES) using water as cooling backup along with heat pipes as passive temperature controllers to avoid freezing the vaccines. The system was fabricated and tested. The results showed that the system can maintain the vaccine storage temperature at 2 °C and 8 °C under ambient temperature up to 30 °C with minimum power consumption of 30 Watt. The proposed heat pipes to maintain the vaccine storage temperature satisfied the design criteria. However, the energy consumption of the TEM was higher than anticipated. A small vapor compressor system was tested and shows promise to replace the TEM for cooling. Inserting the aluminum matrix in the ice chamber not only decreased the charging time but also decreased the discharging time since less phase change material was available for energy storage. Three models of the system were developed under different assumptions. The lumped model was adequate to predict the system performance during charging process. The other distributed models were able to predict the melting and cooling time more accurately than that of the lumped model and provided more detailed on the temperature distribution and change of the water phase in the ice chamber.

  10. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  11. Ice slurry on outdoor running performance in heat.

    PubMed

    Yeo, Z W; Fan, P W P; Nio, A Q X; Byrne, C; Lee, J K W

    2012-11-01

    The efficacy of ingestion of ice slurry on actual outdoor endurance performance is unknown. This study aimed to investigate ice slurry ingestion as a cooling intervention before a 10 km outdoor running time-trial. Twelve participants ingested 8 g · kg (- 1) of either ice slurry ( - 1.4°C; ICE) or ambient temperature drink (30.9°C; CON) and performed a 15-min warm-up prior to a 10 km outdoor running time-trial (Wet Bulb Globe Temperature: 28.2 ± 0.8°C). Mean performance time was faster with ICE (2 715 ± 396 s) than CON (2 730 ± 385 s; P=0.023). Gastrointestinal temperature (Tgi) reduced by 0.5 ± 0.2°C after ICE ingestion compared with 0.1 ± 0.1°C (P<0.001) with CON. During the run, the rate of rise in Tgi was greater (P=0.01) with ICE than with CON for the first 15 min. At the end of time-trial, Tgi was higher with ICE (40.2 ± 0.6°C) than CON (39.8 ± 0.4°C, P=0.005). Ratings of thermal sensation were lower during the cooling phase and for the first kilometre of the run ( - 1.2 ± 0.8; P<0.001). Although ingestion of ice slurry resulted in a transient increase in heat strain following a warm up routine, it is a practical and effective pre-competition cooling manoeuvre to improve performance in warm and humid environments.

  12. Computational modeling of latent-heat-storage in PCM modified interior plaster

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  13. Heat flux at the base of lake ice cover estimated from fine structure of the ice-water boundary layer

    NASA Astrophysics Data System (ADS)

    Kirillin, Georgiy; Aslamov, Ilya; Kozlov, Vladimir; Granin, Nikolay; Engelhardt, Christof; Förster, Josephine

    2016-04-01

    Seasonal lake ice is a highly changeable part of the cryosphere undergoing remarkable impact by global warming. Vertical heat transport across the boundary layer under ice affects strongly the growth and melting of lake ice cover. The existing models of ice cover dynamics focus basically on the dependence of the ice thickness on the air temperature with implicit account of the snow cover effects. The heat flux at the water-ice boundary, in turn, is usually neglected or parameterized in a very simplistic form. However, neglecting of the basal ice melting due to heat flux at the ice-water interface produces appreciable errors in the modeled ice cover duration. We utilize fine-structure observations taken during 2009-2015 in ice-water boundary layers of Lake Baikal and arctic Lake Kilpisjärvi to reveal the major physical drivers of the heat exchange at the ice bottom and to explain the high geographical, spatial, and temporal variability in the heat flux magnitudes. The methods provide first detailed estimations of the heat exchange beneath the ice cover, available previously only from bulk estimations. The fluxes in Lake Baikal have magnitudes of 101 W m-2 and vary strongly between different parts of the lake being influenced by large-scale horizontal circulation with current velocities amounting at up to 7 cm s-1. The shallow lake fluxes, while an order of magnitude weaker, are highly non-stationary, being affected by the turbulence due to oscillating currents under ice. Our results demonstrate the role played by the boundary layer mixing in the ice growth and melting, as well as characterize the physical processes responsible for the vertical heat exchange and provide a basis for an improved parameterization of ice cover in coupled lake-atmosphere models.

  14. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.

  15. High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites

    NASA Astrophysics Data System (ADS)

    Gilpin, Matthew R.

    Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling

  16. Sensitivity of hydrometeor profiles and satellite brightness temperatures to model microphysics for MCSs over land and ocean: Model comparison using EOF analysis and implications for rain and latent heat retrievals

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Kyoung

    The impact of model microphysics on the relationships between microphysical variables and derived satellite microwave brightness temperatures (T B's) and on the retrievals of microphysical variables was using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate two mesoscale convective systems, one over land and one over ocean. Four microphysical schemes (each employing 3-ice bulk parameterizations) were compared in both convective and stratiform precipitation using Empirical Orthogonal Function analysis. The validity of the microphysical schemes suggests that over land the model microphysical schemes produce too much reflectivity aloft and too rapid a decrease in reflectivity from the melting level to the surface, and over ocean the simulations produced more graupel and not enough rain. Model microphysics had a noticeable impact on the relations between the hydrometeor structure and TB's. Classified in terms of TB 's, the microphysical schemes produce significantly different mean vertical profiles of cloud water, cloud ice, snow, vertical velocity, and latent heating, especially in stratiform clouds. Vertical velocity and latent heating in simulated stratiform clouds were not well correlated with TB's for any of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) frequencies. Differences in the amount of supercooled cloud water produced in the various schemes accounted for much of the variation in TB relations. The uncertainty in retrieving hydrometeor and latent heating profiles for passive microwave measurements has been examined quantitatively. The four microphysical schemes exhibited analogous uncertainties in retrieving rain and graupel, but very different uncertainties in retrieving cloud water, cloud ice, and snow. The uncertainty in retrieving latent heating appears to be related to the insensitivity of TMI frequencies to cloud water, cloud ice, and snow. Structural differences in hydrometeor and latent heating

  17. Effects of latent heating on driving atmospheric circulation of brown dwarfs and directly imaged giant planets

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2015-12-01

    Growing observations of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs), such as brightness variability and surface maps have provided evidence for strong atmospheric circulation on these worlds. Previous studies that serve to understand the atmospheric circulation of BDs include modeling of convection from the interior and its interactions with stably stratified atmospheres. These models show that such interactions can drive an atmospheric circulation, forming zonal jets and/or vortices. However, these models are dry, not including condensation of various chemical species. Latent heating from condensation of water has previously been shown to play an important role on driving the zonal jets on four giant planets in our solar system. As such, condensation cycles of various chemical species are believed to be an important source in driving the atmospheric circulation of BDs and directly imaged EGPs. Here we present results from three-dimensional simulations for the atmospheres of BDs and EGPs based on a general circulation model that includes the effect of a condensate cycle. Large-scale latent heating and molecular weight effect due to condensation of a single species are treated explicitly. We examine the circulation patterns caused by large-scale latent heating which results from condensation of silicate vapor in hot dwarfs and water vapor in the cold dwarfs. By varying the abundance of condensable vapor and the radiative timescale, we conclude that under normal atmospheric conditions of BDs (hot and thus with relatively short radiative timescale), latent heating alone by silicate vapor is unable to drive a global circulation, leaving a quiescent atmosphere, because of the suppression to moist instability by downward transport of dry air. Models with relatively long radiative timescale, which may be the case for cooler bodies, tend to maintain an active hydrological cycle and develop zonal jets. Once condensation happens, storms driven by

  18. Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Sato, Noriaki; Kawaji, Masahiro; Kawanami, Tsuyoshi; Inamura, Takao

    2014-10-01

    The primary objective of this study was to investigate the fundamental phase change characteristics of a nanoemulsion using differential scanning calorimetry (DSC). Tetradecane, which has a slightly higher melting point than water, was utilized as the phase change material for the nanoemulsion. The melting point of the nanoemulsion, the melting peak temperature, and latent heat were examined in detail. Regarding the fundamental phase change characteristics of the nanoemulsion, it was found that its phase change characteristics were strongly affected by the temperature-scanning rate of the DSC. Moreover, it was confirmed that the phase change behavior does not change with repeated solidification and melting.

  19. A methodology for mapping forest latent heat flux densities using remote sensing

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Congalton, Russell G.

    1988-01-01

    Surface temperatures and reflectances of an upper elevation Sierran mixed conifer forest were monitored using the Thematic Mapper Simulator sensor during the summer of 1985 in order to explore the possibility of using remote sensing to determine the distribution of solar energy on forested watersheds. The results show that the method is capable of quantifying the relative energy allocation relationships between the two cover types defined in the study. It is noted that the method also has the potential to map forest latent heat flux densities.

  20. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  1. A Latent Heat Retrieval and its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations.

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.

    2011-01-01

    The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.

  2. The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on precipitation in organized deep convective systems

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-06-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updrafts/downdrafts in the middle/lower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  3. Ice melting properties of steel fiber modified asphalt mixtures with induction heating

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Sun, Yihan; Liu, Quantao; Li, Bin; Wu, Shaopeng; Tang, Jin

    2017-03-01

    In this paper, the ice melting performance of asphalt concrete with steel fibers was studied. Steel fiber modified asphalt mixtures were prepared, five different fiber amount of steel fiber modified asphalt mixtures were mixed to study their induction heating rate. The samples covered with different thickness of ice were heated with induction heating to study their ice melting efficency. It was proved that the induction heating of steel fiber modified asphalt mixtures could significantly improve their ice melting efficency compared with the natural condition. And it was found that the thickness of the ice had little influence on the induction heating rate of the asphalt concrete.

  4. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  5. TRMM Latent Heating Retrieval and Comparisons with Field Campaigns and Large-Scale Analyses

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Takayabu, Yukuri; Lang, S.; Shige, S.; Olson, W.; Hou, A.; Jiang, X.; Zhang, C.; Lau, W.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, P. E.; Johnson, R. H.; Houze, R.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, S.; Oki, R.; Bhardwaj, A.

    2012-01-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the

  6. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions

  7. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  8. Conceptual design of a latent heat thermal energy storage subsystem for a saturated steam solar receiver and load

    NASA Astrophysics Data System (ADS)

    Dilauro, G. F.; Rice, R. E.

    1982-02-01

    The conceptual design of a tube intensive latent heat thermal energy storage (TES) subsystem which utilized a eutectic mixture of sodium hydroxide and sodium nitrate as the phase change material (PCM) was developed. The charging and discharging of the unit is accomplished by the same serpentine tube bundle heat exchanger in which heat transfer is augmented by aluminum channels acting as fins. Every tenth channel is made of steel to provide tube support.

  9. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  10. Materials compatibility in Dish-Stirling solar generators using Cu-Si-Mg eutectic for latent heat storage

    NASA Astrophysics Data System (ADS)

    Kruizenga, A. M.; Withey, E. A.; Andraka, C. E.; Gibbs, P. J.

    2016-05-01

    Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.

  11. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  12. Novel functional materials from renewable lipids: Amphiphilic antimicrobial polymers and latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Floros, Michael Christopher

    Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit

  13. Sensible heat balance estimates of transient soil ice contents for freezing and thawing conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil ice content is an important component for winter soil hydrology. The sensible heat balance (SHB) method using measurements from heat pulse probes (HPP) is a possible way to determine transient soil ice content. In a previous study, in situ soil ice contents estimates with the SHB method were in...

  14. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  15. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lefrois, R. T.; Mathur, A. K.

    1980-04-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  16. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  17. A Numerical Study of a Double Pipe Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tabassum, Tonny

    Solar energy is an intermittent supply source of energy. To efficiently utilize this free renewable energy source some form of thermal energy storage devices are necessary. Phase change materials (PCMs), because of their high energy density storage capacity and near isothermal phase change characteristics, have proven to be promising candidates for latent heat thermal energy storage (LHTES) devices. Among the various LHTES devices for low temperature residential heating and cooling applications, the shell-and-tube type heat exchanging devices are the most simple to operate and can be easily fabricated. This work numerically investigates the buoyancy driven heat transfer process during melting (charging) of a commercial paraffin wax as PCM filling the annulus of a horizontal double pipe heat exchanger. The heated working fluid (water) is passing through the central tube of the annulus at a sufficiently high flow-rate and thereby maintaining an almost isothermal wall temperature at the inner pipe which is higher than the melting temperature of the PCM. The transient, two-dimensional coupled laminar momentum and energy equations for the model are suitably non-dimensionalized and are solved numerically using the enthalpy-porosity approach. Time-wise evolutions of the flow patterns and temperature distributions are presented through velocity vector fields and isotherm plots. In this study, two types of PCM filled annuli, a plain annulus and a strategically placed longitudinal finned annulus, are studied. The total energy stored, the total liquid fraction and the energy efficiency at different melting times are evaluated for three different operating conditions and the results are compared between the plain and finned annuli. The present study will provide guidelines for system thermal performance and design optimization of the shell-and-tube LHTES devices. .

  18. Study of the Melting Latent Heat of Semicrystalline PVDF applied to High Gamma Dose Dosimetry

    SciTech Connect

    Batista, Adriana S.M.; Gual, Maritza R.; Faria, Luiz O.; Lima, Claubia P.B.

    2015-07-01

    Poly(vinylidene fluoride) homopolymers [PVDF] homopolymers were irradiated with gamma doses ranging from 0.5 to 2.75 MGy. Differential scanning calorimetry (DSC) and FTIR spectrometry were used in order to study the effects of gamma radiation in the amorphous and crystalline polymer structures. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. The melting latent heat (LM) measured by DSC was used to construct an unambiguous relationship with the delivered dose. Regression analyses revealed that the best mathematical function that fits the experimental calibration curve is a 4-degree polynomial function, with an adjusted Rsquare of 0.99817. (authors)

  19. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  20. Development of latent fingerprints on thermal paper by the controlled application of heat.

    PubMed

    Bond, John W

    2013-05-01

    Apparatus to produce a spatially and temporally uniform heat source is described and this is used to visualize latent fingerprints deposited onto thermal paper by raising the temperature of the paper. Results show an improvement over previous research when fingerprint deposits are aged or the developed fingerprints faint; visualization being enhanced by the use of a blue LED light source of 465 nm peak wavelength. An investigation of the components in fingerprint sweat likely to affect the solubility and hence color change of the dye present in the thermal paper has shown that polar protic solvents able to donate a proton are favored and a polar amino acid found commonly in eccrine fingerprint sweat (lysine) has been shown able to produce the desired color change. Aged fingerprint deposits on thermal paper from a variety of sources up to 4 years old have been visualized with this technique.

  1. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.

    1980-01-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  2. Steady-state performance characteristics of latent heat TES/heat pump systems

    NASA Astrophysics Data System (ADS)

    Sigmon, T. W.

    1982-03-01

    Two projects are currently being completed that wholly or in part address various technical issues involved in the implementation of heat pump systems combined with thermal energy storage (TES). The first of these involves the determination of steady state performance characteristics for six generic TES/heat pump configurations and the comparison of the operational performance of these systems with other space heating and cooling TES technologies. Of these latter systems four are commercial or near commerical air conditioner or heat pump coupled TES systems. Steady state performance has been established for all systems. Operational performance and system life cycle cost has been determined for the six generic designs for a limited set of application conditions. The intent of the second project is to establish a reliable method of estimating seasonal energy use by TES/heat pump systems, to utilize this methodology to evaluate a large number of possible system designs, identify a small number of systems that merit more detailed analysis, and, to the extent possible, conduct these detailed studies.

  3. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lefrois, R. T.

    1980-03-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  4. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  5. A Flight Investigation of Exhaust-Heat De-Icing, Special Report

    NASA Technical Reports Server (NTRS)

    Rodert, Lewis A.; Jones, Alun R.

    1940-01-01

    The National Advisory Committee for Aeronautics has conducted exhaust-heat de-icing tests inflight t o provide data needed in the application of this method of ice prevention. Thc capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing will make available for de-icing purposes between 30 and 35 percent of the exhaust-gas heat. Data are given by which the heat required for ice prevention can be calculated. Sample calculations have been made, on a basis of existing engine power over wing area ratios, to show that sufficient heating can be obtained for ice protection on modern transport airplanes,

  6. Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part II: Uncertainty in Rain, Hydrometeor Structure, and Latent Heating Retrievals

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Kyoung; Biggerstaff, Michael I.

    2006-07-01

    The impact of model microphysics on the retrieval of cloud properties based on passive microwave observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class liquid and three-class ice parameterizations, were used to simulate storms with differing amounts of supercooled cloud water typical of both the tropical oceanic environment, in which there is little supercooled cloud water, and midlatitude continental environments in which supercooled cloud water is more plentiful. For convective surface-level rain rates, the uncertainty varied between 20% and 60% depending on which combination of passive and active microwave observations was used in the retrieval. The uncertainty in surface rain rate did not depend on the microphysical scheme or the parameter settings except for retrievals over stratiform regions based on 85-GHz brightness temperatures TB alone or 85-GHz TB and radar reflectivity combined. In contrast, systematic differences in the treatment of the production of cloud water, cloud ice, and snow between the parameterization schemes coupled with the low correlation between those properties and the passive microwave TB examined here led to significant differences in the uncertainty in retrievals of those cloud properties and latent heating. The variability in uncertainty of hydrometeor structure and latent heating associated with the different microphysical parameterizations exceeded the inherent variability in TB cloud property relations. This was true at the finescales of the cloud model as well as at scales consistent with satellite footprints in which the inherent variability in TB cloud property relations are reduced by area averaging.

  7. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  8. The impact of vertical measurement depth on the information content of soil moisture for latent heat flux estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using ground-based soil moisture and latent/sensible heat fluxes observations acquired from the Ameriflux Network, we calculate the mutual information (MI) content between multiple soil moisture variables and evaporative fraction (EF) to examine the existence of information in vertically-integrated ...

  9. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  10. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  11. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Robert, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  12. Numerical treatment of nonlinear latent heat boundary conditions at moving interfaces in genuine two dimensional solidification problems

    NASA Technical Reports Server (NTRS)

    Beckett, P. M.

    1981-01-01

    The proposed method for the treatment of two dimensional solidification problems is based on quasilinearization of the transformed heat conduction equation and latent heat condition at the interface and an iterative sequence in which these are solved simultaneously. Modern algorithms for solving such sparse systems mean that most of the storage advantage of other methods are reduced and the speed of solution can be improved.

  13. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  14. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1980-03-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  15. Shear Faulting and Adiabatic Heating: Experimental Results from Ice

    NASA Astrophysics Data System (ADS)

    Golding, N.; Schulson, E. M.; Renshaw, C. E.

    2011-12-01

    Ice exhibits two distinct modes of shear faulting (Golding et al. Acta Materialia, 2010;58:5043), namely frictional or Coulombic (C) faulting under moderate levels of confinement and non-frictional or plastic (P) faulting under high levels of confinement. The mechanisms governing C-faulting have previously been discussed in connection with the comb-crack model (Renshaw & Schulson Nature, 2001;412:897). Here we examine the physical process[es] that trigger P-faulting. Systematic experiments on laboratory grown granular and columnar polycrystalline ice loaded triaxially under a high degree of confinement at -10 oC to -40 oC at applied strain rates 10-5 s-1 to 10-1 s-1 trace the micro-mechanical evolution of P-faulting. Terminal failure is characterized by a sudden brittle-like loss in load bearing capacity, the development of a narrow shear band, comprised of recrystallized grains and oriented on a plane of maximum shear, and localized heating. Possible mechanisms considered to account for the localization include: 1) adiabatic heating, 2) localized material softening through a reduction in dislocation density caused by dynamic recrystallization and 3) a transition from power-law creep to grain-size-dependent diffusional creep as a result of grain refinement caused by dynamic recrystallization. Our results indicate that, although recrystallization develops dynamically during loading, microstructural development does not significantly affect shear localization in ice. Nor does it affect the character of the fault. The minimum levels of deformation required to generate faulting are found to be consistent with those predicted for adiabatic shear instability. The present observations suggest that under specific conditions adiabatic heating, rather than dynamic recrystallization, may lead to material instability and shear faulting.

  16. Thickness of ice on perennially frozen lakes

    USGS Publications Warehouse

    McKay, C.P.; Clow, G.D.; Wharton, R.A.; Squyres, S. W.

    1985-01-01

    The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties 1-3. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent1, ranging from 3.5 to 6m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice-water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr-1, which can explain the observed ice thickness. ?? 1985 Nature Publishing Group.

  17. TRMM Latent Heating Retrieval: Applications and Comparisons with Field Campaigns and Large-Scale Analyses

    SciTech Connect

    Tao, Wei-Kuo; Takayabu, Yukari N.; Lang, Steve; Shige, Shoichi; Olson, William S.; Hou, Arthur; Skofronick-Jackson, Gail; Jiang, Xining; Zhang, Chidong; Lau, William K.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, Paul; Johnson, Richard; Houze, Robert A.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, Samson M.; Oki, R.; Bhardwaj, A.

    2016-05-05

    Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Latent heating (LH) is one of the most dominant terms in Q1. Yanai’s paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables in Tropical Rainfall Measuring Mission (TRMM) LH algorithms. A set of algorithms developed for retrieving LH profiles from TRMM-based rainfall profiles are described and evaluated, including details concerning their intrinsic space-time resolutions. Included in the paper are results from a variety of validation analyses that define the uncertainty of the LH profile estimates. Also, examples of how TRMM-retrieved LH profiles have been used to understand the lifecycle of the MJO and improve the predictions of global weather and climate models as well as comparisons with large-scale analyses are provided. Areas for further improvement of the TRMM products are discussed.

  18. The application of satellite data to study the effects of latent heat release on cyclones

    NASA Technical Reports Server (NTRS)

    Clark, J. H. E.

    1984-01-01

    Generalized energetics were studied for nonlinear inviscid symmetric instability (SI). It was found that the linear theory fails to predict the stability in certain cases where the basic state is transitional between stability and instability. The initial growth of the SI perturbations can be fairly well approximated by linear theory, but the long time nonlinear evaluations will be bonded energetically if the SI region is finite. However, a further extension of the energetics to conditional symmetric instability (CSI) shows that the nonlinear evolution of circulation will energetically depend much more on the precipitation in a complicated way. By treating the latent heat as a source which is implicitly related to the motion field, the existence, uniqueness and stability of steady viscous (CSI) circulations are studied. Viscous CSI circulations are proved to be unique and asymptotically stable when the heat sources are weak and less sensitive to the motion perturbations. By considering the fact that moist updrafts are narrow and using eddy viscosity of 0(1,000 m squared/s) the stability criterion suggests that some frontal rainbands were probably dominated by the CSI mechanism even in their mature quasi-steady stage.

  19. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  20. A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.

    2003-01-01

    To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux

  1. Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matt; Dacre, Helen; Forbes, Richard; Hodges, Kevin; Shaffrey, Len; Stein, Thorwald

    2016-06-01

    Extratropical cyclones are a key feature of the weather in the extratropics, which climate models need to represent in order to provide reliable projections of future climate. Extratropical cyclones produce significant precipitation and the associated latent heat release can play a major role in their development. This study evaluates the ability of a climate model, HiGEM, to represent latent heating in extratropical cyclones. Remote sensing data is used to investigate the ability of both the climate model and ERA-Interim (ERAI) reanalysis to represent extratropical cyclone cloud features before latent heating itself is assessed. An offline radiance simulator, COSP, and the ISCCP and CloudSat datasets are used to evaluate comparable fields from HiGEM and ERAI. HiGEM is found to exhibit biases in the cloud structure of extratropical cyclones, with too much high cloud produced in the warm conveyor belt region compared to ISCCP. Significant latent heating occurs in this region, derived primarily from HiGEM's convection scheme. ERAI is also found to exhibit biases in cloud structure, with more clouds at lower altitudes than those observed in ISCCP in the warm conveyor belt region. As a result, latent heat release in ERAI is concentrated at lower altitudes. CloudSat indicates that much precipitation may be produced at too low an altitude in both HiGEM and ERAI, particularly ERAI, and neither capture observed variability in precipitation intensity. The potential vorticity structure in composite extratropical cyclones in HiGEM and ERAI is also compared. A more pronounced tropopause ridge evolves in HiGEM on the leading edge of the composite as compared to ERAI. One future area of research to be addressed is what impact these biases in the representation of latent heating have on climate projections produced by HiGEM. The biases found in ERAI indicate caution is required when using reanalyses to study cloud features and precipitation processes in extratropical cyclones or

  2. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  3. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  4. Measurements of local convective heat transfer coefficients on ice accretion shapes

    NASA Technical Reports Server (NTRS)

    Arimilli, R. V.; Keshock, E. G.; Smith, M. E.

    1984-01-01

    The thin-skin heat rate technique was used to determine local convective heat transfer coefficients for four representative ice accretion shapes. The shapes represented three stages of glaze ice formation and one rime ice formation; the ice models had varying degrees of surface roughness. In general, convective heat transfer was higher in regions where the model's surfaces were convex and lower in regions where the surfaces were concave. The effect of roughness was different for the glaze and rime ice shapes. On the glaze ice shapes, roughness increased the maximum Nu by 80 percent, but the other Nu values were virtually unchanged. On the rime ice shape, the Nu numbers near the stagnation point were unchanged. The maximum Nu value increased by 45 percent, and the Nu number downstream of the peak increased by approximately 150 percent.

  5. Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set

    NASA Technical Reports Server (NTRS)

    Gao, Si; Chiu, Long S.; Shie, Chung-Lin

    2013-01-01

    Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.

  6. A comparison of small and larger mesoscale latent heat and radiative fluxes: December 6 case study

    NASA Technical Reports Server (NTRS)

    Gultepe, I.; Starr, David; Heymsfield, A. J.

    1993-01-01

    Because of the small amounts of water vapor, the potential for rapid changes, and the very cold temperatures in the upper troposphere, moisture measuring instruments face several problems related to calibration and response. Calculations of eddy moisture fluxes are, therefore, subject to significant uncertainty. The purpose of this study is to examine the importance of latent heat (moisture) fluxes due to small and larger mesoscale circulations in comparison to radiative fluxes within cirrus. Scale separation is made at about 1 km because of significant changes in the structures within cirrus. Only observations at warmer than -40 C are used in this study. The EG&G hygrometer that is used for measuring dewpoint temperature (Td) is believed to be fairly accurate down to -40 C. On the other hand, Lyman-Alpha (L-alpha) hygrometer measurements of moisture may include large drift errors. In order to compensate for these drift errors, the L-alpha hygrometer is often calibrated against the EG&G hygrometer. However, large errors ensue for Td measurements at temperatures less than -40 C. The cryogenic hygrometer frost point measurements may be used to calibrate L-alpha measurements at temperatures less than -40 C. In this study, however, measurements obtained by EG&G hygrometer and L-alpha measurements are used for the flux calculations.

  7. Advanced latent heat storage media for high-temperature industrial applications

    NASA Astrophysics Data System (ADS)

    Olszewski, M.

    1984-03-01

    Several advanced thermal energy storage (TES) media are being developed for high temperature industrial applications. One of the concepts involves a composite medium consisting of a phase-change carbonate salt supported and immobilized within a submicro sized capillary structure of a particulate ceramic matrix or porous sintered ceramic. Immobilization of the molten salt within the ceramic structure permits operation of the composite pellets, bricks, or other shapes in direct contact with compatible fluids. Energy storage occurs in both sensible and latent forms with the composite providing higher energy storage densities than standard sensible heat storage systems. The second concept centers on the development of a self-encapsulating metallic eutectic. This work focuses on metallic eutectics containing silicon. Starting with a silicon-rich mixture, it is feasible to develop a self-encapsulating pellet by cooling the liquid drops at a controlled rate. A solid of nearly pure silicon will form on the exterior of the pellet leaving a eutectic, phase change media in the interior. The concept are described and information concerning current development activities is presented.

  8. Thickness of tropical ice and photosynthesis on a snowball Earth

    NASA Technical Reports Server (NTRS)

    McKay, C. P.

    2000-01-01

    On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.

  9. An Analytical Study of Heat Requirements for Icing Protection of Radomes

    NASA Technical Reports Server (NTRS)

    Lewis, James P

    1953-01-01

    The heat requirements for the icing protection of two radome configurations have been studied over a range of design icing conditions. Both the protection limits of a typical thermal protection system and the relative effects of the various icing variables have been determined. For full evaporation of all impinging water, an effective heat density of 14 watts per square inch was required. When a combination of the evaporation and running wet surface systems was employed, a heat requirement of 5 watts per square inch provided protection at severe icing and operating conditions.

  10. Conditions for bubble elongation in cold ice-sheet ice

    USGS Publications Warehouse

    Alley, R.B.; Fitzpatrick, J.J.

    1999-01-01

    Highly elongated bubbles are sometimes observed in ice-sheet ice. Elongation is favored by rapid ice deformation, and opposed by diffusive processes. We use simple models to show that vapor transport dominates diffusion except possibly very close to the melting point, and that latent-heat effects are insignificant. Elongation is favored by larger bubbles at pore close-off, but is nearly independent of bubble compression below close-off. The simple presence of highly elongated bubbles indicates only that a critical ice-strain rate has been exceeded for significant time, and provides no information on possible disruption of stratigraphic continuity by ice deformation.

  11. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  12. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin

    NASA Astrophysics Data System (ADS)

    Zeng, Yujin; Xie, Zhenghui; Liu, Shuang

    2017-02-01

    Irrigation, which constitutes ˜ 70 % of the total amount of freshwater consumed by the human population, is significantly impacting land-atmosphere fluxes. In this study, using the improved Community Land Model version 4.5 (CLM4.5) with an active crop model, two high-resolution (˜ 1 km) simulations investigating the effects of irrigation on latent heat (LH), sensible heat (SH), and carbon fluxes (or net ecosystem exchange, NEE) from land to atmosphere in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The model output and measurements from remote sensing demonstrated the capacity of the developed models to reproduce ecological and hydrological processes. The results revealed that the effects of irrigation on LH and SH are strongest during summer, with a LH increase of ˜ 100 W m-2 and a SH decrease of ˜ 60 W m-2 over intensely irrigated areas. However, the reactions are much weaker during spring and autumn when there is much less irrigation. When the irrigation rate is below 5 mm day-1, the LH generally increases, whereas the SH decreases with growing irrigation rates. However, when the irrigation threshold is in excess of 5 mm day-1, there is no accrued effect of irrigation on the LH and SH. Irrigation produces opposite effects to the NEE during spring and summer. During the spring, irrigation yields more discharged carbon from the land to the atmosphere, increasing the NEE value by 0.4-0.8 gC m-2 day-1, while the summer irrigation favors crop fixing of carbon from atmospheric CO2, decreasing the NEE value by ˜ 0.8 gC m-2 day-1. The repercussions of irrigation on land-atmosphere fluxes are not solely linked to the irrigation amount, and other parameters (especially the temperature) also control the effects of irrigation on LH, SH, and NEE.

  13. Thermal history of comets during residence in the Oort cloud - Effect of radiogenic heating in combination with the very low thermal conductivity of amorphous ice

    NASA Technical Reports Server (NTRS)

    Haruyama, Jun'ichi; Yamamoto, Tetsuo; Mizutani, Hitoshi; Greenberg, J. M.

    1993-01-01

    The thermal history of long-period comets initially composed of amorphous ice is studied. It is shown that such comets with a small nucleus thermal conductivity (kappa) experience a runaway increase in the internal temperature during residence in the Oort cloud. The temperature increase is a result of rapid release of the latent heat at crystallization triggered by gradual heating due to decay of radioactive nuclides. The time of the runaway temperature increase is about ten to a hundred million years after the formation of the nucleus depending on the fraction of refractory grains which contain radioactive nuclides. Most of the amorphous ice in the nuclides except just beneath the surface transforms into crystalline ice due to the runaway temperature increase. This implies that the ice in short-period comets is crystalline from the initial time when the long-period comet becomes a short-period one. In comets with large kappa the temperature does not rise much compared to the small kappa case and the initial amorphous ice is preserved. A criterion for the crystallization of the nucleus ice is derived.

  14. Ice melting properties of steel slag asphalt concrete with microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bin; Sun, Yihan; Liu, Quantao; Fang, Hao; Wu, Shaopeng; Tang, Jin; Ye, Qunshan

    2017-03-01

    The ice on the surface of asphalt pavement in winter significantly influences the road transportation safety. This paper aims at the improvement of the ice melting efficiency on the surface of asphalt pavement. The steel slag asphalt concrete was prepared and the high ice melting efficiency was achieved with the microwave heating. A series of experiments were conducted to evaluate the ice melting performance of steel slag asphalt concrete, including the heating test, ice melting test, thermal conductivity test and so on. The results indicated that the microwave heating of steel slag concrete can improve the efficiency of deicing, mainly because the heating rates of steel slag asphalt mixture are much better than traditional limestone asphalt mixture. According to different thickness lever of ice, the final temperatures of each sample were very close to each other at the end of melting test. It is believed the thickness of the ice has a limited impact on the ice melting efficiency. According to the heating tests results, the bonding of ice and asphalt concrete is defined failure at the moment when the surface temperature of the ice reached 3 °C.

  15. Effect of Atmospheric Forcing Resolution on Delivery of Ocean Heat to the Antarctic Floating Ice Shelves

    NASA Astrophysics Data System (ADS)

    Klinck, J. M., II; Dinniman, M. S.; Bromwich, D. H.; Holland, D. M.

    2014-12-01

    Oceanic melting of the base of the floating Antarctic ice shelves is now thought to be a more significant cause of mass loss for the Antarctic ice sheet than iceberg calving. In this study, we use a 10 km horizontal resolution circum-Antarctic ocean/sea ice/ice shelf model (based on ROMS) to study the delivery of ocean heat to the base of the ice shelves. The atmospheric forcing comes from the ERA-Interim reanalysis (~80 km resolution) and from simulations using the Polar-optimized WRF model (30 km resolution) where the upper atmosphere was relaxed to the ERA-Interim reanalysis. Total basal ice shelf melt increases by 14% with the higher resolution winds but only 3% with both the higher resolution winds and atmospheric surface temperatures. The higher resolution winds lead to more heat being delivered to the ice shelf cavities from the adjacent ocean and an increase in the efficiency of heat transfer between the water and the ice. The higher resolution winds also lead to changes in the heat delivered from the open ocean to the continental shelves as well as changes in the heat lost to the atmosphere over the shelves and the sign of these changes varies regionally. Addition of the higher resolution temperatures to the winds results in lowering, primarily during summer, the wind driven increase in heat advected into the ice shelf cavities due to colder summer air temperatures near the coast.

  16. Re-examining the roles of surface heat flux and latent heat release in a "hurricane-like" polar low over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kolstad, Erik W.; Bracegirdle, Thomas J.; Zahn, Matthias

    2016-07-01

    Polar lows are intense mesoscale cyclones that occur at high latitudes in both hemispheres during winter. Their sometimes evidently convective nature, fueled by strong surface fluxes and with cloud-free centers, have led to some polar lows being referred to as "arctic hurricanes." Idealized studies have shown that intensification by hurricane development mechanisms is theoretically possible in polar winter atmospheres, but the lack of observations and realistic simulations of actual polar lows have made it difficult to ascertain if this occurs in reality. Here the roles of surface heat fluxes and latent heat release in the development of a Barents Sea polar low, which in its cloud structures showed some similarities to hurricanes, are studied with an ensemble of sensitivity experiments, where latent heating and/or surface fluxes of sensible and latent heat were switched off before the polar low peaked in intensity. To ensure that the polar lows in the sensitivity runs did not track too far away from the actual environmental conditions, a technique known as spectral nudging was applied. This was shown to be crucial for enabling comparisons between the different model runs. The results presented here show that (1) no intensification occurred during the mature, postbaroclinic stage of the simulated polar low; (2) surface heat fluxes, i.e., air-sea interaction, were crucial processes both in order to attain the polar low's peak intensity during the baroclinic stage and to maintain its strength in the mature stage; and (3) latent heat release played a less important role than surface fluxes in both stages.

  17. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    NASA Astrophysics Data System (ADS)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-11-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  18. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  19. The Estimation Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.

    1999-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased high by about 30 W/sq m. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  20. The Estimation of Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Miller, David O.; Schwemmer, Geary

    2000-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method uses aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement with an rms error and bias of about 50 and 25 W per square meters, respectively. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  1. Development of approximate method to analyze the characteristics of latent heat thermal energy storage system

    SciTech Connect

    Saitoh, T.S.; Hoshi, Akira

    1999-07-01

    Third Conference of the Parties to the U.N. Framework Convention on Climate Change (COP3) held in last December in Kyoto urged the industrialized nation to reduce carbon dioxide (CO{sub 2}) emissions by 5.2 percent (on the average) below 1990 level until the period between 2008 and 2012 (Kyoto protocol). This implies that even for the most advanced countries like the US, Japan, and EU implementation of drastic policies and overcoming many barriers in market should be necessary. One idea which leads to a path of low carbon intensity is to adopt an energy storage concept. One of the reasons that the efficiency of the conventional energy systems has been relatively low is ascribed to lacking of energy storage subsystem. Most of the past energy systems, for example, air-conditioning system, do not have energy storage part and the system usually operates with low energy efficiency. Firstly, the effect of reducing CO{sub 2} emissions was also examined if the LHTES subsystems were incorporated in all the residential and building air-conditioning systems. Another field of application of the LHTES is of course transportation. Future vehicle will be electric or hybrid vehicle. However, these vehicles will need considerable energy for air-conditioning. The LHTES system will provide enough energy for this purpose by storing nighttime electricity or rejected heat from the radiator or motor. Melting and solidification of phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and also reduce carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid (melt) region. Close-contact melting processes for a single enclosure have been solved using several

  2. A Theory for the Scalar Roughness and the Scalar Transfer Coefficients over Snow and Sea Ice,

    DTIC Science & Technology

    1986-09-01

    and camphor ... 7 4. Model predictions for an aerodynamically rough surface compared with the ex- perimental data of Dipprey and Sabersky (1963...stability 4.,. Ls Latent heat of sublimation of ice , . Pr v/D, Prandtl number Q Water vapor density Qr Water vapor density at an arbitrary reference height...specific heat of air at constant pressure L, = latent heat of sublimation of ice. Equations 1-3 define the roughness lengths. z0 is the familiar

  3. Preliminary Results of Cyclical De-Icing of a Gas-Heated Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Bowden, D. T.; VonGlahn, U.

    1952-01-01

    An NACA 65(sub 1)-212 airfoil of 8-foot chord was provided with a gas-heated leading edge for investigations of cyclical de-icing. De-icing was accomplished with intermittent heating of airfoil segments that supplied hot gas to chordwise passages in a double-skin construction. Ice removal was facilitated by a spanwise leading-edge parting strip which was continuously heated from the gas-supply duct. Preliminary results demonstrate that satisfactory cyclical ice removal occurs with ratios of cycle time to heat-on period (cycle ratio) from 10 to 26. For minimum runback, efficient ice removal, and minimum total heat input, short heat-on periods of about 15 seconds with heat-off periods of 260 seconds gave the best results. In the range of conditions investigated, the prime variables in the determination of the required heat input for cyclical ice removal were the air temperature and the cycle ratio; heat-off period, liquid water content, airspeed, and angle of attack had only secondary effects on heat input rate.

  4. A preliminary evaluation of surface latent heat flux as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, J.; Wang, W.; Ren, H.; Chen, L.; Yan, G.

    2013-06-01

    The relationship between variations in surface latent heat flux (SLHF) and marine earthquakes has been a popular subject of recent seismological studies. So far, there are two key problems: how to identify the abnormal SLHF variations from complicated background signals, and how to ensure that the anomaly results from earthquake. In this paper, we proposed four adjustable parameters for identification, classified the relationship and analyze SLHF changes several months before six marine earthquakes by employing daily SLHF data. Besides, we also quantitatively evaluate the long-term relationship between earthquakes and SLHF anomalies for the six study areas over a 20 yr period preceding each earthquake. The results suggest: (1) before the South Sandwich Islands, Papua, Samoa and Haiti earthquakes, the SLHF variations above their individual background levels have relatively low amplitudes and are difficult to be considered as precursory anomalies; (2) after removing the clustering effect, most of the anomalies prior to these six earthquakes are not temporally related to any earthquake in each study area in time sequence; (3) for each case, apart from Haiti, more than half of studied earthquakes which were moderate even devastating earthquakes (larger than Mw = 5.3) had no precursory variations in SLHF; and (4) the correlation between SLHF and seismic activity depends largely on data accuracy and parameter settings. Before any application of SLHF data on earthquake prediction, we suggest that anomaly-identifying standards should be established based on long-term regional analysis to eliminate subjectivity. Furthermore, other factors which may result in SLHF variations also should be carefully considered.

  5. A preliminary evaluation of surface latent heat flux as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, J.; Wang, W.; Ren, H.; Chen, L.; Yan, G.

    2013-10-01

    The relationship between variations in surface latent heat flux (SLHF) and marine earthquakes has been a popular subject of recent seismological studies. So far, there are two key problems: how to identify the abnormal SLHF variations from complicated background signals, and how to ensure that the anomaly results from an earthquake. In this paper, we proposed four adjustable parameters for identification, classified the relationship and analyzed SLHF changes several months before six marine earthquakes by employing daily SLHF data. Additionally, we also quantitatively evaluate the long-term relationship between earthquakes and SLHF anomalies for the six study areas over a 20 yr period preceding each earthquake. The results suggest the following: (1) before the South Sandwich Islands, Papua, Samoa and Haiti earthquakes, the SLHF variations above their individual background levels have relatively low amplitudes and are difficult to be considered as precursory anomalies; (2) after removing the clustering effect, most of the anomalies prior to these six earthquakes are not temporally related to any earthquake in each study area in time sequence; (3) for each case, apart from Haiti, more than half of the studied earthquakes, which were moderate and even devastating earthquakes (larger than Mw = 5.3), had no precursory variations in SLHF; and (4) the correlation between SLHF and seismic activity depends largely on data accuracy and parameter settings. Before any application of SLHF data on earthquake prediction, we suggest that anomaly-identifying standards should be established based on long-term regional analysis to eliminate subjectivity. Furthermore, other factors that may result in SLHF variations should also be carefully considered.

  6. Surface renewal performance to independently estimate sensible and latent heat fluxes in heterogeneous crop surfaces

    NASA Astrophysics Data System (ADS)

    Suvočarev, K.; Shapland, T. M.; Snyder, R. L.; Martínez-Cob, A.

    2014-02-01

    Surface renewal (SR) analysis is an interesting alternative to eddy covariance (EC) flux measurements. We have applied two recent SR approaches, with different theoretical background, that from Castellví (2004), SRCas, and that from Shapland et al. (2012a,b), SRShap. We have applied both models for sensible (H) and latent (LE) heat flux estimation over heterogeneous crop surfaces. For this, EC equipments, including a sonic anemometer CSAT3 and a krypton hygrometer KH20, were located in two zones of drip irrigated orchards of late and early maturing peaches. The measurement period was June-September 2009. The SRCas is based on similarity concepts for independent estimation of the calibration factor (α), which varies with respect to the atmospheric stability. The SRShap is based on analysis of different ramp dimensions, separating the ones that are flux-bearing from the others that are isotropic. According to the results obtained here, there was a high agreement between the 30-min turbulent fluxes independently derived by EC and SRCas. The SRShap agreement with EC was slightly lower. Estimation of fluxes determined by SRCas resulted in higher values (around 11% for LE) with respect to EC, similarly to previously published works over homogeneous canopies. In terms of evapotranspiration, the root mean square error (RMSE) between EC and SR was only 0.07 mm h-1 (for SRCas) and 0.11 mm h-1 (for SRShap) for both measuring spots. According to the energy balance closure, the SRCas method was as reliable as the EC in estimating the turbulent fluxes related to irrigated agriculture and watershed distribution management, even when applied in heterogeneous cropping systems.

  7. Modeling Subducting Slabs: Structural Variations due to Thermal Models, Latent Heat Feedback, and Thermal Parameter

    NASA Astrophysics Data System (ADS)

    Marton, F. C.

    2001-12-01

    The thermal, mineralogical, and buoyancy structures of thermal-kinetic models of subducting slabs are highly dependent upon a number of parameters, especially if the metastable persistence of olivine in the transition zone is investigated. The choice of starting thermal model for the lithosphere, whether a cooling halfspace (HS) or plate model, can have a significant effect, resulting in metastable wedges of olivine that differ in size by up to two to three times for high values of the thermal parameter (ǎrphi). Moreover, as ǎrphi is the product of the age of the lithosphere at the trench, convergence rate, and dip angle, slabs with similar ǎrphis can show great variations in structures as these constituents change. This is especially true for old lithosphere, as the lithosphere continually cools and thickens with age for HS models, but plate models, with parameters from Parson and Sclater [1977] (PS) or Stein and Stein [1992] (GDH1), achieve a thermal steady-state and constant thickness in about 70 My. In addition, the latent heats (q) of the phase transformations of the Mg2SiO4 polymorphs can also have significant effects in the slabs. Including q feedback in models raises the temperature and reduces the extent of metastable olivine, causing the sizes of the metastable wedges to vary by factors of up to two times. The effects of the choice of thermal model, inclusion and non-inclusion of q feedback, and variations in the constituents of ǎrphi are investigated for several model slabs.

  8. Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2004-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  9. Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.

  10. Assessments of surface latent heat flux associated with the Madden-Julian Oscillation in reanalyses

    NASA Astrophysics Data System (ADS)

    Gao, Yingxia; Hsu, Pang-Chi; Hsu, Huang-Hsiung

    2016-09-01

    To understand the accuracy and uncertainty of surface latent heat flux (LHF) associated with the Madden-Julian Oscillation (MJO), the LHF from each of the six global reanalysis datasets is compared with LHF based on in situ data and the objectively analyzed air-sea flux (OAFlux), in terms of tropical intraseasonal variability. The reanalysis products used in this study include the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), three generations of reanalysis from the National Center for Environmental Prediction (NCEP R1, R2 and CFSR), and the twentieth century reanalysis (20CR). We find that the intraseasonal LHF of the reanalysis products agrees well with the OAFlux over the tropical oceans in terms of patterns, but there is a significant spread in amplitude among the reanalysis products. Both ERA-I and MERRA show smaller biases in the power spectral analysis, while the other reanalysis products (NCEP R1, NCEP R2, CFSR, and 20CR) tend to overestimate the intraseasonal LHF when compared with the TAO buoy products and OAFlux. The role of anomalous LHF in supporting the MJO convection identified by previous TAO buoy data studies is confirmed by the long-term global reanalyses. The feature of increasing LHF accompanied by growing MJO observed in the recent MJO field campaign in the central Indian Ocean (DYNAMO/CINDY2011) is also well captured by the reanalysis products. Among the reanalysis datasets, MERRA has the smallest bias in temporal variability of LHF during the DYNAMO/CINDY2011 period.

  11. Observation of oceanic heat flux to the sea ice using ice-tethered moorings: Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ha, Ho Kyung; Yae Son, Eun; Park, Jae Hun; Cole, Sylvia; Park, Keyhong; Sul La, Hyoung

    2016-04-01

    It is important to figure out the physical mechanisms (e.g. shear, turbulence) below the sea ice, because of its direct influence on oceanic heat flux that is closely related to sea ice melt. A short-term (3.5 days) mooring was conducted in August 2014 to measure the vertical profiles of velocity, salinity and temperature within the sea-ice boundary layer. The mooring package consisted of an acoustic Doppler current profiler (ADCP) and 3 MicroCats. A long-term mooring of an ice-tethered profiler with modular acoustic velocity sensor (MAVS) was conducted to acquire vertical profiles of salinity, temperature, pressure and velocity in the marginal ice zone. The mooring data was analyzed to examine the role of the Pacific Summer Water (PSW) as a heat source, which can provide oceanic heat to the overlying layer. The ADCP data showed distinctive upper-velocity fields induced by entrainment of the sea ice. It appeared up to about 15 m depth during the entire observation period. Periodical components of MAVS data were extracted through wavelet transform. Since sea ice extent is relatively low in summer, the wind forcing could be effectively delivered in the form of a near 12 hours period oscillation to the 60 m depth where the PSW was occupying. Even in winter, while the sea surface was fully covered with the sea ice, near 12 hours period oscillation was appeared at 60 m depth. In September and January, strong 12 hours period oscillation appeared up to a deeper layer, which is deeper than 150 m depth where the wind forcing is hard to reach. The relationship between the heat flux and the oscillation strength will be discussed during the presentation.

  12. Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf

    NASA Astrophysics Data System (ADS)

    Melling, Humfrey; Haas, Christian; Brossier, Eric

    2015-02-01

    Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.

  13. Heterogeneous Heat Flow and Groundwater Effects on East Antarctic Ice Sheet Dynamics

    NASA Astrophysics Data System (ADS)

    Gooch, B. T.; Soderlund, K. M.; Young, D. A.; Blankenship, D. D.

    2015-12-01

    We present the results numerical models describing the potential contributions groundwater and heterogeneous heat sources might have on ice dynamics. A two-phase, 1D hydrothermal model demonstrates the importance of groundwater flow in heat flux advection near the ice-bed interface. Typical, conservative vertical groundwater volume fluxes on the order of +/- 1-10 mm/yr can alter vertical heat flux by +/- 50-500 mW/m2 that could produce considerable volumes of meltwater depending on basin geometry and geothermal heat production. A 1D hydromechanical model demonstrates that during ice advance groundwater is mainly recharged into saturated sedimentary aquifers and during retreat groundwater discharges into the ice-bed interface, potentially contributing to subglacial water budgets on the order of 0.1-1 mm/yr during ice retreat. A map of most-likely elevated heat production provinces, estimated sedimentary basin depths, and radar-derived bed roughness are compared together to delineate areas of greatest potential to ice sheet instability in East Antarctica. Finally, a 2D numerical model of crustal fluid and heat flow typical to recently estimated sedimentary basins under the East Antarctic Ice Sheet is coupled to a 2.5D Full Stokes ice sheet model (with simple basal hydrology) to test for the sensitivity of hydrodynamic processes on ice sheet dynamics. Preliminary results show that the enhanced fluid flow can dramatically alter the basal heating of the ice and its temperature profile, as well as, the sliding rate, which heavily alter ice dynamics.

  14. Assessment of the performance of the drag and bulk transfer method in estimating sensible and latent heat fluxes in a tropical station

    NASA Astrophysics Data System (ADS)

    Adeniyi, Mojisola Oluwayemisi; Ogunsola, Oluseyi E.

    2012-02-01

    The performance of the general bulk formulation in estimating sensible heat flux at Nigerian Micrometeorological Experimental site was assessed. Reliable sensible heat flux was estimated with the use of accurate diurnal values of transfer coefficient of sensible heat. The performances of one α, two β and a modified α formulations in the estimation of latent heat flux were also assessed at the station. The Lee and Pielke ( β), modified Kondo ( α), Jacquemin and Noilhan ( α) and Noilhan and Planton ( β) parameterizations gave good estimation of latent heat flux. The coefficient of determination ( R 2) of the models between measured and estimated values were greater than 0.7. Low diurnal mean absolute error and root mean squared error values were found between measured and estimated fluxes. All the parameterizations gave reliable latent heat flux when diurnal values of transfer coefficients of moisture were used.

  15. Effect of fetch length on latent heat flux data accuracy calculated by Bowen ratio energy balance method

    NASA Astrophysics Data System (ADS)

    Pozníková, Gabriela; Fischer, Milan; Trnka, Miroslav; Orság, Matěj; Kučera, Jiří; Žalud, Zdeněk

    2013-04-01

    Bowen ratio energy balance (BREB) is one of the most widely used indirect methods for deriving latent heat (LE) and sensible heat fluxes. The BREB technique relies on net radiation, ground heat flux, and air temperature and humidity gradients measurements. Whilst the first two mentioned can be practically considered as point measurements, the source area of temperature and humidity gradients is at least one order of magnitudes larger. Therefore, the horizontal, homogeneous and extensive area is necessary prerequisite for correct flux determination by BREB method. An ideal fetch for BREB has been reported to be within 10 to 200 times the height of upper measuring level above zero plane displacement. This broad range is a result of different atmospheric stratifications and surface roughness, but the fetch to height ratio 100:1 has become generally acknowledged as a rule of thumb. In this study, data from four different BREB systems above various covers (two poplar plantations, grassland and turf grass field) will be used to calculate and analyse LE for different fetches. Data were recorded in Domanínek near Bystřice nad Pernštejnem in Czech-Moravian highlands where two BREB systems have measured above poplar plantation and turf grass since summer 2008 until present and two more systems have been placed above grassland and another poplar plantation at the beginning of 2011 and have measured until present time. During the measurements changing wind direction limited the fetch of particular BREB systems on the sites. That is why LE calculated for particular fetch lengths will be split into three categories - fetch classes ("good", "medium", and "bad") according to prevailing wind direction and corresponding fetch. These categories will be delimited using the simple footprint model. Fetches with more than 75% of the measured entities coming from the area of interest will be considered as the "good" ones. The "medium" class will contain fetches with 50-75% of the flux

  16. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 2; Evaluation of Estimates Using Independent Data

    NASA Technical Reports Server (NTRS)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2004-01-01

    Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar

  17. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    SciTech Connect

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolution imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating

  18. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    DOE PAGES

    Feng, Fei; Chen, Jiquan; Li, Xianglan; ...

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolutionmore » imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables

  19. Ocean heat drives rapid basal melt of the Totten Ice Shelf.

    PubMed

    Rintoul, Stephen Rich; Silvano, Alessandro; Pena-Molino, Beatriz; van Wijk, Esmee; Rosenberg, Mark; Greenbaum, Jamin Stevens; Blankenship, Donald D

    2016-12-01

    Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 10(6) m(3) s(-1) of warm water enters the cavity through a newly discovered deep channel. The ocean heat transport into the cavity is sufficient to support the large basal melt rates inferred from glaciological observations. Change in ocean heat flux is a plausible physical mechanism to explain past and projected changes in this sector of the East Antarctic Ice Sheet and its contribution to sea level.

  20. Ocean heat drives rapid basal melt of the Totten Ice Shelf

    PubMed Central

    Rintoul, Stephen Rich; Silvano, Alessandro; Pena-Molino, Beatriz; van Wijk, Esmee; Rosenberg, Mark; Greenbaum, Jamin Stevens; Blankenship, Donald D.

    2016-01-01

    Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 106 m3 s−1 of warm water enters the cavity through a newly discovered deep channel. The ocean heat transport into the cavity is sufficient to support the large basal melt rates inferred from glaciological observations. Change in ocean heat flux is a plausible physical mechanism to explain past and projected changes in this sector of the East Antarctic Ice Sheet and its contribution to sea level. PMID:28028540

  1. Experimental Technique and Assessment for Measuring the Convective Heat Transfer Coefficient from Natural Ice Accretions

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.

  2. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows.

    PubMed

    Santos, Severino Guilherme Caetano Gonçalves Dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2017-02-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m(2). There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m(2) for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  3. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows

    NASA Astrophysics Data System (ADS)

    Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2016-07-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  4. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows

    NASA Astrophysics Data System (ADS)

    Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2017-02-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation ( P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  5. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  6. Heat-requirements for Ice Protection of a Cyclically Gas-heated, 36 Degree Swept Airfoil with Partial-span Leading-edge Slat

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H; vonGlahn, Uwe H

    1956-01-01

    Heating requirements for satisfactory cyclic de-icing over a wide range of icing and operating conditions have been determined for a gas-heated, 36deg swept airfoil of 6.9-foot chord with a partial-span leading-edge slat. Comparisons of heating requirements and effectiveness were made between the slatted and unslatted portions of the airfoil. Studies were also made comparing cyclic de-icing with continuous anti-icing, and cycll.cde-icing systems with and without leading-edge ice-free parting strips. De-icing heat requirements were approximately the same with either heated or unheated parting strips because of the aerodynamic effects of the 36deg sweep angle and the spanwise saw-tooth profile of leading-edge glaze-ice deposits. Cyclic de-icing heat-source requirements were found to be one-fourth or less of the heat requirements for complete anti-icing. The primary factors that affected the performance of the cyclic de-icing heating system were ambient air temperature, heat distribution, and thermal lag.

  7. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  8. Assimilating Latent Heat Fluxes From Meteorological Geostationary Satellite Data In A Hydrological Model At The Scale of 20000 Km2

    NASA Astrophysics Data System (ADS)

    Roulin, E.

    This paper focuses on the use of evapotranspiration estimated from Meteosat data and from conventional meteorological information in a simple hydrological model at the scale of the river Scheldt and the river Meuse basins in Belgium and France. The radia- tive balance at the ground is computed from infrared and visible counts, radiosound- ing profiles and meteorological information from the synoptic network (Roulin et al., 1996). Latent heat flux is computed using the Monin-Obukhov theory and data of an automatic station. The ratio between latent heat flux and energy balance at the automatic station is used to infer evapotranspiration over the whole area (Gellens- Meulenberghs, 2000). The hydrological model is adapted from a conceptual model onto a grid of cells with 50 km2 area. Seven vegetation covers are represented. Wa- ter from vegetation and two soil buckets is depleted regarding the Penman-Monteith potential evapotranspiration. A simple assimilation scheme of the evapotranspiration from Meteosat is applied for the year 1995. The results are compared with soil mois- ture data gathered during a field campaign in a study area of 2200 km2 by UCL (Auquière et al., 1997).

  9. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  10. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2013-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands (P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  11. Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale-model precipitation forecast - A case study

    NASA Technical Reports Server (NTRS)

    Wang, Wei; Warner, Thomas T.

    1988-01-01

    The Penn State/NCAR mesoscale model was used to study special static-initialization (SI) and dynamic-initialization (DI) techniques designed to improve short-range quantitative precipitation forecasts (QPFs), as applied to the heavy convective rainfall that occurred in Texas, Oklahoma, and Kansas during the May 9-10, 1979 SESAMY IV study period. In the DI procedure, two types of four-dimensional data assimilation (FDDA) procedures were used to incorporate data during a 12-h preforecast period, one using the Newtonian relaxation, the other using latent-heat forcing. It was found that combined use of either the preforecast or in-forecast latent-heat forcing with the Newtonian relaxation produced an improved forecast (relative to a conventional forecast procedure) of rainfall intensity compared to the use of the Newtonian relaxation alone. The use of the experimental SI with prescribed latent heating during the first forecast hour produced greatly improved rainfall rates.

  12. Interannual and Decadal Variability of Ocean Surface Latent Heat Flux as Seen from Passive Microwave Satellite Algorithms

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Jackson, Darren L.; Wick, Gary A.; Roberts, Brent; Miller, Tim L.

    2007-01-01

    Ocean surface turbulent fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Deriving physically-based latent and sensible heat fluxes from satellite is dependent on inferences of near surface moisture and temperature from coarser layer retrievals or satellite radiances. Uncertainties in these "retrievals" propagate through bulk aerodynamic algorithms, interacting as well with error properties of surface wind speed, also provided by satellite. By systematically evaluating an array of passive microwave satellite algorithms, the SEAFLUX project is providing improved understanding of these errors and finding pathways for reducing or eliminating them. In this study we focus on evaluating the interannual variability of several passive microwave-based estimates of latent heat flux starting from monthly mean gridded data. The algorithms considered range from those based essentially on SSM/I (e.g. HOAPS) to newer approaches that consider additional moisture information from SSM/T-2 or AMSU-B and lower tropospheric temperature data from AMSU-A. On interannual scales, variability arising from ENSO events and time-lagged responses of ocean turbulent and radiative fluxes in other ocean basins (as well as the extratropical Pacific) is widely recognized, but still not well quantified. Locally, these flux anomalies are of order 10-20 W/sq m and present a relevant "target" with which to verify algorithm performance in a climate context. On decadal time scales there is some evidence from reanalyses and remotely-sensed fluxes alike that tropical ocean-averaged latent heat fluxes have increased 5-10 W/sq m since the early 1990s. However, significant uncertainty surrounds this estimate. Our work addresses the origin of these uncertainties and provides statistics on time series of tropical ocean averages, regional space

  13. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  14. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  15. Measurement of local connective heat transfer coefficients of four ice accretion shapes

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Armilli, R. V.; Keshock, E. G.

    1984-01-01

    In the analytical study of ice accretions that form on aerodynamic surfaces (airfoils, engine inlets, etc.) it is often necessary to be able to calculate convective heat transfer rates. In order to do this, local convective heat transfer coefficients for the ice accretion shapes must be known. In the past, coefficients obtained for circular cylinders were used as an approximation to the actual coefficients since no better information existed. The purpose of this experimental study was to provide local convective heat transfer coefficients for four shapes that represent ice accretions. The shapes were tested with smooth and rough surfaces. The experimental method chosen was the thin-skin heat rate technique. Using this method local Nusselt numbers were determined for the ice shapes. In general it was found that the convective heat transfer was higher in regions where the model's surfaces were convex and lower in regions where the model's surfaces were concave. The effect of roughness was to increase the heat transfer in the high heat transfer regions by approximately 100% while little change was apparent in the low heat transfer regions.

  16. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within

  17. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Biraud, S. C.; Torn, M. S.; Fischer, M. L.; Billesbach, D. P.; Berry, J. A.

    2009-12-01

    Characterizing net ecosystem exchanges (NEE) of CO2 and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km "macrocells" to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO2 exchange with the local atmosphere was -240, -340, and -270 gC m-2 yr-1 (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in

  18. Latent Heat Flux Estimate Through an Energy Water Balance Model and Land Surface Temperature from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Sobrino, Jose A.; Mancini, Marco; Hidalgo, Victoria

    2011-01-01

    Soil moisture plays a key role in the terrestrial water cycle and is responsible for the partitioning of precipitation between runoff and infiltration. Moreover, surface soil moisture controls the redistribution of the incoming solar radiation on land surface into sensible and latent heat fluxes. Recent developments have been made to improve soil moisture dynamics predictions with hydrologic land surface models (LSMs) that compute water and energy balances between the land surface and the low atmosphere. However, most of the time soil moisture is confined to an internal numerical model variable mainly due to its intrinsic space and time variability and to the well known difficulties in assessing its value from remote sensing as from in situ measurements. In order to exploit the synergy between hydrological distributed models and thermal remote sensed data, FEST-EWB, a land surface model that solves the energy balance equation, was developed. In this hydrological model, the energy budget is solved looking for the representative thermodynamic equilibrium temperature (RET) defined as the land surface temperature that closes the energy balance equation. So using this approach, soil moisture is linked to the latent heat flux and then to LST. In this work the relationship between land surface temperature and soil moisture is analysed using LST from AHS (airborne hyperspectral scanner), with a spatial resolution of 2-4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the thermodynamic equilibrium temperature from the energy water balance model. Moreover soil moisture measurements were carried out during the airborne overpasses and then compared with SM from the hydrological model. An improvement of this well known inverse relationship between soil moisture and land surface temperature is obtained when the thermodynamic approach is used. The analysis of the scale effects of the different

  19. The first geothermal heat flux measurement below the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Mankoff, K. D.; Tulaczyk, S. M.; Foley, N.; Hossainzadeh, S.

    2014-12-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow and mass balance of outlet glaciers and ice sheets. We measured directly the geothermal heat flux below the West Antarctic Ice Sheet (WAIS), under Subglacial Lake Whillans (SLW), as part of the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. The one-dimensional, conductive heat flux is the product of thermal gradient and thermal conductivity. We developed and fielded a tool to determine the thermal gradient in lake sediments, after penetrating ~800 m of ice using a hot water drilling system. We used the needle-probe method to measure the thermal conductivity of sediments recovered from the bottom of the lake with a gravity-driven multi-corer. The thermal gradient was determined during two separate deployments of the geothermal tool, which penetrated ~1.1 m into the till below SLW, yielding essentially identical results: 0.21±0.07 °C/m. Fifteen sediment thermal conductivity measurements yield an average value of 1.36±0.12 W/m-K. The heat flux determined from these measurements is 285±85 W/m2. This value is somewhat higher than that estimated from the WAIS-Divide ice core site, 230 mW/m2, ~800 km away, and much higher than regional estimates based on magnetics and a global seismic model, generally ≤100 mW/m2. Elevated heat flux in this area could result from thermal perturbations associated with rifting, crustal thinning, or volcanic activity. Heat flux of this magnitude is likely to cause basal melt rate of a few cm/year. If this value is representative of conditions below this part of the WAIS, it might help to explain the occurrence of active subglacial lakes and fast-moving ice streams and the ice dynamics of WAIS more broadly.

  20. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  1. Poleward eddy heat flux anomalies associated with recent Arctic sea ice loss

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuhira; Ukita, Jinro; Honda, Meiji; Iwamoto, Katsushi; Nakamura, Tetsu; Yamazaki, Koji; Dethloff, Klaus; Jaiser, Ralf; Handorf, Dörthe

    2017-01-01

    Details of the characteristics of upward planetary wave propagation associated with Arctic sea ice loss under present climate conditions are examined using reanalysis data and simulation results. Recent Arctic sea ice loss results in increased stratospheric poleward eddy heat fluxes in the eastern and central Eurasia regions and enhanced upward propagation of planetary-scale waves in the stratosphere. A linear decomposition scheme reveals that this modulation of the planetary waves arises from coupling of the climatological planetary wavefield with temperature anomalies for the eastern Eurasia region and with meridional wind anomalies for the central Eurasia region. Propagation of stationary Rossby wave packets results in a dynamic link between these temperature and meridional wind anomalies with sea ice loss over the Barents-Kara Sea. The results provide strong evidence that recent Arctic sea ice loss significantly modulates atmospheric circulation in winter to modify poleward eddy heat fluxes so as to drive stratosphere-troposphere coupling processes.

  2. Development of a river ice jam by a combined heat loss and hydraulic model

    NASA Astrophysics Data System (ADS)

    Eliasson, J.; Gröndal, G. O.

    2008-11-01

    The heat loss theory and the hydraulic theory for the analysis of the development of wide channel ice jams are discussed and shown. The heat loss theory has been used in Iceland for a long time, while the hydraulic theory largely follows the classical ice-jam build-up theories used in known CFD models. The results are combined in a new method to calculate the maximum thickness and the extent of an ice jam. The results compare favorably to the HEC-RAS model for the development of a very large ice jam in Thjorsa River in Iceland, and have been found in good agreement with historical data, collected where a hydroelectric dam project, Urridafoss, is being planned in the Thjorsa River.

  3. Development of a river ice jam by a combined heat loss and hydraulic model

    NASA Astrophysics Data System (ADS)

    Eliasson, J.; Orri Gröndal, G.

    2008-04-01

    This paper discusses and shows the heat loss theory and the hydraulic theory for the analysis of the development of wide channel ice jams. The heat loss theory has been used in Iceland for a long time, while the hydraulic theory largely follows the classical ice-jam build-up theories used in known CFD models. The results are combined in a new method to calculate the maximum thickness and the extent of an ice jam. The results compare favorably to the HEC-RAS model for the development of a very large ice jam in Thjorsa River in Iceland. They are also in good agreement with historical data, collected where a hydroelectric dam project, Urridafoss, is being planned in the Thjorsa River.

  4. Spectral Retrieval of Latent Heating Profiles from TRMM PR data. Part 3; Moistening Estimates over Tropical Ocean Regions

    NASA Technical Reports Server (NTRS)

    Shige, S.; Takayabu, Y.; Tao, W.-K.

    2007-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "econsti-LKth"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels

  5. Comparisons of sensible and latent heat fluxes using surface and aircraft data over adjacent wet and dry surfaces

    SciTech Connect

    Doran, J.C.; Hubbe, J.M.; Shaw, W.J.; Baldocchi, D.D.; Crawford, T.L.; Dobosy, R.J.; Meyers, T.J.

    1992-01-01

    In June 1991, a field study of surface fluxes of latent and sensible heat over heterogeneous surfaces was carried out near Boardman, Oregon (Doran et al., 1992). The object of the study was to develop improved methods of extrapolating from local measurements of fluxes to area-averaged values suitable for use in general circulation models (GCMs) applied to climate studies. A grid element in a GCM is likely to encompass regions whose fluxes vary significantly from one surface type to another. The problem of integrating these fluxes into a single, representative value for the whole element is not simple, and describing such a flux in terms of flux-gradient relationships, as is often done, presents additional difficulties.

  6. Interlayer-interaction dependence of latent heat in the Heisenberg model on a stacked triangular lattice with competing interactions.

    PubMed

    Tamura, Ryo; Tanaka, Shu

    2013-11-01

    We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J(1) and antiferromagnetic third nearest-neighbor interaction J(3) in each triangular layer and the ferromagnetic interlayer interaction J([perpendicular]). Frustration comes from the intralayer interactions J(1) and J(3). We focus on the case that the order parameter space is SO(3)×C(3). We find that the model exhibits a first-order phase transition with breaking of the SO(3) and C(3) symmetries at finite temperature. We also discover that the transition temperature increases but the latent heat decreases as J([perpendicular])/J(1) increases, which is opposite to the behavior observed in typical unfrustrated three-dimensional systems.

  7. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.

    1992-06-01

    A simple eddy correlation system is presented that allows on-line calculation of latent and sensible heat fluxes. The system is composed of a three dimensional propeller anemometer, a thermocouple and a capacitance relative humidity sensor. Results from two contrasting sites demonstrate the capability of the system to measure turbulent fluxes under varying conditions. A dry mixed (dominantly coniferous) forest in hilly terrain in Austria is compared to a well irrigated, heavily transpiring, deciduous pecan orchard in the Southwest of the US. The US site shows insufficient closure of the energy balance that is attributed to non-turbulent fluxes under advective conditions in a stable boundary layer (Blanford et al., 1991) while the Austrian site exhibits almost perfect closure with the use of the very same instruments when the boundary layer is convective and advection is negligible.

  8. The Effects of Crushed Ice Ingestion Prior to Steady State Exercise in the Heat.

    PubMed

    Zimmermann, Matthew; Landers, Grant; Wallman, Karen E; Saldaris, Jacinta

    2017-01-04

    This study examined the physiological effects of crushed ice ingestion prior to steady state exercise in the heat. Ten healthy males with age (23±3 y), height (176.9±8.7 cm), body-mass (73.5±8.0 kg), V̇O2peak (48.5±3.6 mL·kg·min(-1)) participated in the study. Participants completed 60 min of cycling at 55% of their V̇O2peak preceded by 30 min of pre-cooling whereby 7 g·kg(-1) of thermoneutral water (CON) or crushed ice (ICE) was ingested. The reduction in Tc at the conclusion of pre-cooling was greater in ICE (-0.9±0.3°C) compared with CON (-0.2±0.2°C) (p≤0.05). Heat storage capacity was greater in ICE compared with CON after pre-cooling (ICE -29.3±4.8 W·m(-2); CON -11.1±7.3 W·m(-2), p<0.05). Total heat storage was greater in ICE compared with CON at the end of the steady state cycle (ICE 62.0±12.5 W·m(-2); CON 49.9±13.4 W·m(-2), p<0.05). Gross efficiency was higher in ICE compared with CON throughout the steady state cycle (ICE 21.4±1.8%; CON 20.4±1.9%, p<0.05). Ice ingestion resulted in a lower thermal sensation at the end of pre-cooling and a lower sweat rate during the initial stages of cycling (p<0.05). Sweat loss, respiratory exchange ratio, heart rate and ratings of perceived exertion and thirst were similar between conditions (p>0.05). Pre-cooling with crushed ice led to improved gross efficiency whilst cycling due to an increased heat storage capacity, which was the result of a lower core temperature.

  9. Convective heat transfer and experimental icing aerodynamics of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil

  10. Hot Spot of Enceladus: Role of Thermal Convection and Tidal Internal Heating in the Ice Shell

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Showman, A. P.

    2007-12-01

    The south pole of Enceladus is geologically active at the present time, with elevated surface temperatures, fractures, and jets of water and fine grained particles. We explore whether thermal convection can occur in Enceladus' ice shell and the spatial localization of tidal heating within convective plumes. To determine whether concentrated dissipation can occur in convective plumes, we develop a two-dimensional model to compute the volumetric dissipation rate for an idealized, vertically oriented, isolated convective plume obeying a Maxwellian viscoelastic compressible rheology. We apply the model to the Enceladus ice shell, and we investigate the consequences for partial melting and resurfacing processes. Calculations by us and others have demonstrated that thermal convection can occur in the ice shell of Enceladus under a range of conditions. Here, we show that tidal heating is strongly temperature dependent in a convective ice plume and could produce elevated temperatures and local partial melting in the ice shell of Enceladus. Our calculation provides the first quantitative verification of the hypothesis by Sotin et al. (2002) and others that the tidal dissipation rate is a strong function of temperature inside a convective plume. Localized tidal heating in a thermal plume could explain the concentrated activity at the south pole and its associated heat transport (2-7 GW).

  11. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  12. Cold energy release characteristics of an ice/air direct contact heat exchanger

    SciTech Connect

    Ohira, Akiyoshi; Yanadori, Michio; Iwabuchi, Kunihiko; Kimura, Toshikatsu; Tsubota, Yuji

    1998-12-31

    This paper deals with the cold energy release characteristics of an ice/air direct contact heat exchanger in a refined cold energy conveyance system. Characteristics of the outlet temperature, the humidity, and time history of released heat are examined when the initial height of the ice-cube-packed bed in the heat exchanger is changed. The following are the results obtained in these experiments: (1) Inlet air of 30 C is lowered to about 0 C by passing the air through the heat exchanger, and absolute humidity of the outlet air is reduced to about a quarter of that of the inlet air. (2) There is an optimum height of the ice-cube-packed bed for maximizing the amount of cold energy released. (3) This heat exchange method can supply about twice the amount of cold energy released by an ordinary fin-tube-type heat exchanger even if the air velocity in the heat exchanger is reduced to about 0.38 times that of the fin-tube-type heat exchanger.

  13. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer

    1989-01-01

    Simple models are being developed to simulate interaction of planetary and synoptic-scale waves incorporating the effects of large-scale topography; eddy heat and momentum fluxes (or nonlinear dynamics); radiative heating/cooling; and latent heat release (precipitation) in synoptic-scale waves. The importance of latent heat release is determined in oceanic storm tracks for temporal variability and time-mean behavior of planetary waves. The model results were compared with available observations of planetary and synoptic-scale wave variability and time-mean circulation. The usefulness of monitoring precipitation in oceanic storm tracks by satellite observing systems was ascertained. The modeling effort includes two different low-order quasi-geostrophic models-time-dependent version and climatological mean version. The modeling also includes a low-order primitive equation model. A time-dependent, multi-level version will be used to validate the two-level Q-G models and examine effects of spherical geometry.

  14. Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1.

    PubMed

    Suzuki, Shigeki; Kulkarni, Ashok B

    2010-07-30

    Transforming growth factor-beta 1 (TGF-beta1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-beta signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-beta activation process. In this study, we have identified heat shock protein 90 beta (HSP90beta) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90beta into extracellular space which inhibits the activation of latent TGF-beta1, and that there is a subsequent decrease in cell proliferation. TGF-beta1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90beta. Thus, extracellular HSP90beta is a negative regulator for the activation of latent TGF-beta1 modulating TGF-beta signaling in the extracellular domain.

  15. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.

  16. The impact of stored solar heat on Arctic sea ice growth

    NASA Astrophysics Data System (ADS)

    Timmermans, M.-L.

    2015-08-01

    High-resolution measurements of ocean temperature and salinity in the Arctic Ocean's Canada Basin reveal the importance of the release of solar-derived stored ocean heat on sea ice growth. Locally absorbed summer solar heat is stored in a near-surface temperature maximum (NSTM) layer underlying the mixed layer. The heat content of the NSTM layer was anomalously large following summer 2007, which saw considerable sea ice losses and intense solar absorption into the exposed surface ocean. Measurements provide evidence for the entrainment of NSTM layer heat in fall/winter 2007-2008 by shear-driven mixing, and convective mixing by the release of dense, salty plumes during sea ice growth. While at least a portion of the NSTM layer was eroded, deeper warm ocean layers remained unaffected. It is shown that the release of solar heat stored following summer 2007 was sufficient to have reduced sea ice thickness at the end of the 2008 growth season by about 25%.

  17. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs.

  18. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides

    PubMed Central

    2015-01-01

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  19. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets

    NASA Astrophysics Data System (ADS)

    Rogozhina, Irina; Vaughan, Alan

    2014-05-01

    Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central

  20. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    SciTech Connect

    Suzuki, Shigeki; Kulkarni, Ashok B.

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.

  1. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2004-01-01

    Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.

  2. Improvements in Heat Transfer for Anti-Icing of Gas-Heated Airfoils with Internal Fins and Partitions

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.

    1950-01-01

    The effect of modifying the gas passage of hollow metal airfoils by the additIon of internal fins and partitions was experimentally investigated and comparisons were made among a basic unfinned airfoil section and two airfoil designs having metal fins attached at the leading edge of the internal gas passage. An analysis considering the effects of heat conduction in the airfoil metal was made to determine the internal modification effectiveness that may be obtained in gas-heated components, such as turbojet-inlet guide vanes, support struts, hollow propeller blades, arid. thin wings. Over a wide range of heated-gas flow and tunnel-air velocity, the increase In surface-heating rates with internal finning was marked (up to 3.5 times), with the greatest increase occurring at the leading edge where anti-icing heat requirements are most critical. Variations in the amount and the location of internal finning and. partitioning provided. control over the local rates of surface heat transfer and permitted efficient anti-icing utilization of the gas-stream heat content.

  3. Icing Protection for a Turbojet Transport Airplane: Heating Requirements, Methods of Protection, and Performance Penalties

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Lewis, James P.; Koutz, Stanley L.

    1953-01-01

    The problems associated with providing icing protection for the critical components of a typical turbojet transport airplane operating over a range of probable icing conditions are analyzed and discussed. Heating requirements for several thermal methods of protection are evaluated and the airplane performance penalties associated with providing this protection from various energy sources are assessed. The continuous heating requirements for icing protection and the associated airplane performance penalties for the turbojet transport are considerably increased over those associated with lower-speed aircraft. Experimental results show that the heating requirements can be substantially reduced by the deve1opment of a satisfactory cyclic deicing system. The problem of providing protection can be minimized by employing a proper energy source since the airplane performance penalties vary considerably with the source of energy employed. The optimum icing protection system for the turbojet transport or for any other particular aircraft cannot be generally specified; the choice of the optimum system is dependent upon the specific characteristics of the airplane and engine, the flight plan, the probable icing conditions, and the performance requirements of the aircraft.

  4. Solar heating of the Arctic Ocean in the context of ice-albedo feedback

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Niu, Xiaolei; Ma, Yingtao

    2014-12-01

    To study the relationship of solar heat input into the Arctic open water and the variations of sea ice extent, improved satellite-based estimates of shortwave radiative (SWR) fluxes and most recent observations of ice extent are used. The SWR flux estimates are based on observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Advanced Very High Resolution Radiometer (AVHRR) for the period of 1984-2009. Ice extent information at 25 km resolution comes from Nimbus-7 SMMR and DMSP SSM/I Passive Microwave Data as generated with the NASA Team algorithm developed by the Oceans and Ice Branch, Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center. The trends of the solar heat input into the ocean and the open water fraction for 1984-2009 are found to be positive: 0.3%/yr and 0.8%/yr, respectively, at a 99% confidence level. There is an obvious transition region separating the 26 years into two periods: one with moderate change: 1984-2002, and the other with an abrupt growth in both solar heat input and open water fraction: 2003-2009. The impact of the observed changes on the reduction of winter ice growth in 2007 is estimated to be about 44 cm, and a delay in fall freezeup as about 10-36 days.

  5. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  6. Analysis and Prediction of Ice Shedding for a Full-Scale Heated Tail Rotor

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Work, Andrew; Douglass, Rebekah; Gazella, Matthew; Koster, Zakery; Turk, Jodi

    2016-01-01

    When helicopters are to fly in icing conditions, it is necessary to consider the possibility of ice shed from the rotor blades. In 2013, a series of tests were conducted on a heated tail rotor at NASA Glenn's Icing Research Tunnel (IRT). The tests produced several shed events that were captured on camera. Three of these shed events were captured at a sufficiently high frame rate to obtain multiple images of the shed ice in flight that had a sufficiently long section of shed ice for analysis. Analysis of these shed events is presented and compared to an analytical Shedding Trajectory Model (STM). The STM is developed and assumes that the ice breaks off instantly as it reaches the end of the blade, while frictional and viscous forces are used as parameters to fit the STM. The trajectory of each shed is compared to that predicted by the STM, where the STM provides information of the shed group of ice as a whole. The limitations of the model's underlying assumptions are discussed in comparison to experimental shed events.

  7. Effects of an Arctic under-ice bloom on solar radiant heating of the water column

    NASA Astrophysics Data System (ADS)

    Taskjelle, Torbjørn; Granskog, Mats A.; Pavlov, Alexey K.; Hudson, Stephen R.; Hamre, Børge

    2017-01-01

    The deposition of solar energy in the upper Arctic Ocean depends, among other things, on the composition of the water column. During the N-ICE2015 expedition, a drift in the Arctic pack ice north of Svalbard, an under-ice phytoplankton bloom was encountered in May 2015. This bloom led to significant changes in the inherent optical properties (IOPs) of the upper ocean. Mean values of total water absorption in the upper 20 m of the water column were up to 4 times higher during the bloom than prior to it. The total water attenuation coefficient increased by a factor of up to around 7. Radiative transfer modeling, with measured IOPs as input, has been performed with a coupled atmosphere-ice-ocean model. Simulations are used to investigate the change in depth-dependent solar heating of the ocean after the onset of the bloom, for wavelengths in the region 350-700 nm. Effects of clouds, sea ice cover, solar zenith angle, as well as the average cosine for scattering of the ocean inclusions are evaluated. An increase in energy absorption in the upper 10 m of about 36% is found under 25 cm ice with 2 cm snow, for bloom conditions relative to prebloom conditions, which may have implications for ice melt and growth in spring. Thicker clouds and lower sun reduce the irradiance available, but lead to an increase in relative absorption.

  8. Vertical Profiles of Latent Heat Release and Their Retrieval for TOGA COARE Convective Systems Using a Cloud Resolving Model, SSM/I, and Ship-borne Radar Data

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, S.; Simpson, J.; Olson, W. S.; Johnson, D.; Ferrier, B.; Kummerow, C.; Adler, R.

    1999-01-01

    Latent heating profiles associated with three (TOGA COARE) Tropical Ocean and Global Atmosphere Coupled Ocean Atmosphere Response Experiment active convective episodes (December 10-17 1992; December 19-27 1992; and February 9-13 1993) are examined using the Goddard Cumulus Ensemble (GCE) Model and retrieved by using the Goddard Convective and Stratiform Heating (CSH) algorithm . The following sources of rainfall information are input into the CSH algorithm: Special Sensor Microwave Imager (SSM/1), Radar and the GCE model. Diagnostically determined latent heating profiles calculated using 6 hourly soundings are used for validation. The GCE model simulated rainfall and latent heating profiles are in excellent agreement with those estimated by soundings. In addition, the typical convective and stratiform heating structures (or shapes) are well captured by the GCE model. Radar measured rainfall is smaller than that both estimated by the GCE model and SSM/I in all three different COARE IFA periods. SSM/I derived rainfall is more than the GCE model simulated for the December 19-27 and February 9-13 periods, but is in excellent agreement with the GCE model for the December 10-17 period. The GCE model estimated stratiform amount is about 50% for December 19-27, 42% for December 11-17 and 56% for the February 9-13 case. These results are consistent with large-scale analyses. The accurate estimates of stratiform amount is needed for good latent heating retrieval. A higher (lower) percentage of stratiform rain can imply a maximum heating rate at a higher (lower) altitude. The GCE model always simulates more stratiform rain (10 to 20%) than the radar for all three convective episodes. SSM/I derived stratiform amount is about 37% for December 19-27, 48% for December 11-17 and 41% for the February 9-13 case. Temporal variability of CSH algorithm retrieved latent heating profiles using either GCE model simulated or radar estimated rainfall and stratiform amount is in good

  9. Bulk heat transfer coefficient in the ice-upper ocean system in the ice melt season derived from concentration-temperature relationship

    NASA Astrophysics Data System (ADS)

    Nihashi, Sohey; Ohshima, Kay I.

    2008-06-01

    The bulk heat transfer coefficient in the ice-upper ocean system (Kb) in the ice melt season is estimated by a new method at 18 areas that cover much of the Antarctic seasonal ice zone. The method is based on a model in which ice melting is caused only by heat input through open water and is treated in a bulk fashion in the ice-upper ocean system. Kb is estimated by fitting a convergent curve derived from the model to an observed ice concentration-temperature plot (CT-plot). Estimated Kb is 1.15 ± 0.72 × 10-4 m s-1 on average. If Kb can be expressed by the product of the heat transfer coefficient (ch) and the friction velocity (uτ), ch is 0.0113 ± 0.0055. This value is about two times larger than that estimated at the ice bottom. The relationship between Kb and the geostrophic wind speed (Uw), which is roughly proportional to uτ, shows a significant positive correlation, as expected. Further, Kb seems more likely to be proportional to the square or cube of Uw rather than a linear relationship. Since Kb estimated from our method is associated with ice melting in a bulk fashion in the ice-upper ocean system, this relationship likely indicates both the mixing process of heat in the upper ocean (proportional to uτ3) and the local heat transfer process at the ice-ocean interface (proportional to uτ).

  10. Inferring the State of Tidally-heated Satellite Ice Shells from Global Shape Measurements

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Thomas, P. C.; Pappalardo, R. T.; Moore, W. B.

    2006-12-01

    Several icy satellites of the outer solar system, notably Europa and Enceladus, are sufficiently tidally heated that they likely possess ice shells overlying oceans. Because tidal heating varies spatially [1], variations in ice shell thickness are likely to occur [2]. Lateral variations in shell thickness will in turn give rise to global topographic variations. The amplitude of this long-wavelength topography is potentially comparable to shape variations due to tidal and rotational stresses [3]. Thus, careful measurement of satellite shapes from limb profiles may be used to infer the nature of shell thickness variations, and thus the state of the ice shell. We demonstrate that limb profiles of Europa give no evidence for lateral shell thickness variations, in contrast to theoretical predictions [2] for a conductive ice shell above liquid water. There are two possible explanations: 1) the ice shell is sufficiently thick (> ~10 km) that lateral shell flow has smoothed out any variations; 2) the shell is heated mainly from below, resulting in a uniform, thin (~3 km) shell. Based on local topography from limb profiles and stereo topography [4] we favour the former explanation: a constant shell thickness rules out isostatic support, and the thin shell model is unable to flexurally support topography with amplitudes of ~1 km. Given sufficiently good limb profiles, a similar analysis may be carried out for Enceladus. Lateral variations in ice shell thickness also affect the tendency of a satellite to reorient itself [5]; thus, reorientation of Enceladus [6] may provide another constraint on the nature of the ice shell there. [1] G. Tobie et al., Icarus 177, 534-549, 2005. [2] Ojakangas and Stevenson, Icarus 81, 220-241, 1989 [3] Murray and Dermott, Solar System Dynamics, 2000 [4] Prockter and Schenk, Icarus 177, 305-326, 2005. [5] Ojakangas and Stevenson, Icarus 81, 242-270, 1989 [6] Nimmo and Pappalardo, Nature 441, 614-616, 2006.

  11. Study of Ice Clogged Channel Clearing Problems.

    DTIC Science & Technology

    1981-05-01

    diverter bow would be mounted to a high powered vessel and divert the ice to the top of the ice cover. D-4 A catapult -bucket device would pick up the brash...amount of brash ice required to be melted is 1.55 x l08 ft3. The latent heat of fusion is approximately 8242 BTU/ft 3. Therefore the heat required to melt...three backing and filling cycles would be required under worst conditions and the total time would be one hour. Therefore, TB was set equal to 15 minutes

  12. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    SciTech Connect

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  13. Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating

    NASA Astrophysics Data System (ADS)

    Shajiee, Shervin

    Ice accumulation on wind turbines operating in cold regions reduces power generation by degrading aerodynamic efficiency and causes mass imbalance and fatigue loads on the blades. Due to blade rotation and variation of the pitch angle, different locations on the blade experience large variations of Reynolds number, Nusselt number, heat loss, and non-uniform ice distribution. Hence, applying different amounts of heat flux in different blade locations can provide more effective de-icing for the same total power consumption. This large variation of required heat flux motivates using distributed resistive heating, with the capability of locally adjusting thermal power as a function of location on the blade. The main contributions of this research are developing the experimental feasibility of direct ice sensing using an optical sensing technique as well as development of a computational framework for implementation of closed-loop localized active de-icing using distributed sensing. A script-base module was developed in a commercial finite-element software (ANSYS) which provides the capability of (i) Closed-loop de-icing simulations for a distributed network of sensors and actuators, (ii) investigating different closed-loop thermal control schemes and their de-icing efficiency (iii) optimizing thermal actuation for a distributed resistive heating, and (iv) analyzing different faulty scenarios for sensors and thermal actuators under known faults in the network. Different surrogate models were used to enhance the computational efficiency of this approach. The results showed that optimal value of control parameters in a distributed network of heaters depends on convective heat transfer characteristics, layout of heaters and type of closed-loop controller scheme used for thermal actuation. Furthermore, It was shown that closed-loop control provides much faster de-icing than the open-loop constant heat flux thermal actuation. It was observed both experimentally and

  14. Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting.

    PubMed

    Richardson, Hugh H; Hickman, Zackary N; Govorov, Alexander O; Thomas, Alyssa C; Zhang, Wei; Kordesch, Martin E

    2006-04-01

    We investigate the system of optically excited gold NPs in an ice matrix aiming to understand heat generation and melting processes at the nanoscale level. Along with the traditional fluorescence method, we introduce thermooptical spectroscopy based on phase transformation of a matrix. With this, we can not only measure optical response but also thermal response, that is, heat generation. After several recrystallization cycles, the nanoparticles are embedded into the ice film where the optical and thermal properties of the nanoparticles are probed. Spatial fluorescence mapping shows the locations of Au nanoparticles, whereas the time-resolved Raman signal of ice reveals the melting process. From the time-dependent Raman signals, we determine the critical light intensities at which the laser beam is able to melt ice around the nanoparticles. The melting intensity depends strongly on temperature and position. The position-dependence is especially strong and reflects a mesoscopic character of heat generation. We think that it comes from the fact that nanoparticles form small complexes of different geometry and each complex has a unique thermal response. Theoretical calculations and experimental data are combined to make a quantitative measure of the amount of heat generated by optically excited Au nanoparticles and agglomerates. The information obtained in this study can be used to design nanoscale heaters and actuators.

  15. A Method for Calculating the Heat Required for Windshield Thermal Ice Prevention Based on Extensive Flight Tests in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Alun R; Holdaway, George H; Steinmetz, Charles P

    1947-01-01

    An equation is presented for calculating the heat flow required from the surface of an internally heated windshield in order to prevent the formation of ice accretions during flight in specified icing conditions. To ascertain the validity of the equation, comparison is made between calculated values of the heat required and measured values obtained for test windshields in actual flights in icing conditions. The test windshields were internally heated and provided data applicable to two common types of windshield configurations; namely the V-type and the type installed flush with the fuselage contours. These windshields were installed on a twin-engine cargo airplane and the icing flights were conducted over a large area of the United States during the winters of 1945-46 and 1946-47. In addition to the internally heated windshield investigation, some test data were obtained for a windshield ice-prevention system in which heated air was discharged into the windshield boundary layer. The general conclusions resulting from this investigation are as follows: 1) The amount of heat required for the prevention of ice accretions on both flush- and V-type windshields during flight in specified icing conditions can be calculated with a degree of accuracy suitable for design purposes. 2) A heat flow of 2000 to 2500 Btu per hour per square foot is required for complete and continuous protection of a V-type windshield in fight at speeds up to 300 miles per hour in a moderate cumulus icing condition. For the same degree of protection and the same speed range, a value of 1000 Btu per hour per square foot suffices in a moderate stratus icing condition. 3) A heat supply of 1000 Btu per hour per square foot is adequate for a flush windshield located well aft of the fuselage stagnation region, at speeds up to 300 miles per hour, for flight in both stratus and moderate cumulus icing conditions. 4) The external air discharge system of windshield thermal ice prevention is thermally

  16. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.

    PubMed

    Ding, Wenchao; Zhang, Peina; Li, Yijing; Xia, Haibing; Wang, Dayang; Tao, Xutang

    2015-02-02

    The Turkevich method, involving the reduction of HAuCl4 with citrate in boiling water, allows the facile production of monodisperse, quasispherical gold nanoparticles (AuNPs). Although, it is well-known that the size of the AuNPs obtained with the same recipe vary slightly (as little as approximately 4 nm), but noticeably, from one report to another, it has rarely been studied. The present work demonstrates that this size variation can be reconciled by the small, but noticeable, effect that the latent heat in boiling water has on the size of the AuNPs obtained by using the Turkevich method. The increase in latent heat during water boiling caused an approximately 3 nm reduction in the size of the as-prepared AuNPs; this reduction in size is mainly a result of accelerated nucleation driven by the extra heat. It was further demonstrated that, the heating temperature can be utilized as an additional measure to adjust the growth rate of AuNPs during the reduction of HAuCl4 with citrate in boiling water. Therefore, the latent heat of boiling solvents may provide one way to control nucleation and growth in the synthesis of monodisperse nanoparticles.

  17. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion

    DTIC Science & Technology

    2014-06-01

    However, when cut open and examined, it was seen that small cracks had still formed in the internal boron nitride liners . An additional 80% fill...factor test was completed with a test section constructed entirely with SIC-6 grade graphite (i.e. no BN liner ) as a follow-on to materials...sectioning an 80% fill factor solar furnace test article. The graphite absorber / heat spreader, boron nitride liner , and silicon are shown. Test section

  18. Thermal energy storage - overview and specific insight into nitrate salts for sensible and latent heat storage.

    PubMed

    Pfleger, Nicole; Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.

  19. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 2: 50% Impartitioned Blades

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.; Mulholland, Donald R.

    1948-01-01

    The icing protection afforded an internal air-heated propeller blade by radial partitioning at 50-percent chord to confine the heated air to the forward half of the blade was determined in the NACA Cleveland icing research tunnel. A modified production-model hollow steel propeller, was used for the investigation. Temperatures of the blade surfaces for several heating rates were measured under various tunnel Icing' conditions. Photographic observations of ice formations on blade surfaces and blade heat-exchanger effectiveness were obtained. With 50-percent partitioning of the blades, adequate icing protection at 1050 rpm was obtained with a heating rate of 26,000 Btu per hour per blade at the blade shank using an air temperature of 400 F with a flow rate of 280 pounds per hour per blade, which is one-third less heat than was found necessary for similar Ice protection with unpartitioned blades. The chordwise distribution of the applied heat, as determined by surface temperature measurements, was considered unsatisfactory with much of the heat dissipated well back of the leading edge. Heat-exchanger effectiveness of approximately 56 percent also Indicated poor utilization of available heat. This effectiveness was, however, 9 percent greater than that obtained from unpartitioned blades.

  20. Thermal Assessment of a Latent-Heat Energy Storage Module During Melting and Freezing for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Ramos Archibold, Antonio

    Capital investment reduction, exergetic efficiency improvement and material compatibility issues have been identified as the primary techno-economic challenges associated, with the near-term development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar power plants. Three TES techniques have gained attention in the solar energy research community as possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and (3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the most-promising methods because of its potential to develop more effective energy exchange, reduce the cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to this approach arise from the encapsulation techniques used to create a durable capsule, as well as an assessment of the fundamental thermal energy transport mechanisms during the phase change. A comprehensive study of the energy exchange interactions and induced fluid flow during melting and solidification of a confined storage medium is reported in this investigation from a theoretical perspective. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to, precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been solved numerically by the finite volume scheme. Initially, the interaction between conduction and natural convection energy transport modes, in the absence of thermal radiation, is investigated for solar power applications at temperatures (300--400°C). Later, participating thermal radiation

  1. Towards the development of latent heat storage electrodes for electroporation-based therapies

    NASA Astrophysics Data System (ADS)

    Arena, Christopher B.; Mahajan, Roop L.; Rylander, Marissa Nichole; Davalos, Rafael V.

    2012-08-01

    Phase change materials (PCMs) capable of storing a large amount of heat upon transitioning from the solid-to-liquid state have been widely used in the electronics and construction industries for mitigating temperature development. Here, we show that they are also beneficial for reducing the peak tissue temperature during electroporation-based therapies. A numerical model is developed of irreversible electroporation (IRE) performed with hollow needle electrodes filled with a PCM. Results indicate that this electrode design can be utilized to achieve large ablation volumes while reducing the probability for thermal damage.

  2. A field study of the effects of inhomogeneities of surface sensible and latent heat fluxes

    SciTech Connect

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1992-01-01

    In recent years, the problem of characterizing turbulent fluxes of heat, momentum, and moisture over inhomogeneous surfaces has received increasing attention. This issue is relevant to the performance of general circulation models (GCMs), in which a single grid element can encompass a variety of surface and topographical features. Although considerable progress has been made in describing the energy balance at a surface partially covered by vegetation, less is known about how to treat adjacent regions of sharply contrasting surface characteristics. One difficulty is the scarcity of suitable data sets with which to study the problem, particularly on scales of tens to hundreds of kilometers.

  3. Non-eruptive ice melt driven by internal heat at glaciated stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Hemmings, Brioch; Whitaker, Fiona; Gottsmann, Joachim; Hawes, Molly C.

    2016-11-01

    Mudflows, floods and lahars from rapid snow and ice melting present potentially devastating hazards to populations surrounding glacial stratovolcanoes. Most ice-melt induced lahars have resulted from eruptive processes. However, there is evidence for non-eruptive hydrothermal volcanic unrest generating rapid and hazardous glacial melt. Here, we use TOUGH2 numerical fluid flow simulations to explore ice melt potential associated with hydrothermal perturbation. Our simulations are loosely based on Cotopaxi Volcano, Ecuadorian Andes. We show that dynamic permeability has a strong control on ice melt response to perturbation. In the absence of concurrent permeability increases, the delay time between onset of a deep hydrothermal perturbation and a response in surface heat flow is on the order of many 10s of years. When increased hot fluid influx at depth is combined with permeability enhancement, the surface heat flow response can be immediate. However, our results suggest that melt rates resulting from such hydrothermal perturbation are still orders of magnitude lower than those induced by eruptive processes; potentially hazardous melt volumes take many months to accumulate, compared to minutes for eruption induced melting. Additional mechanisms, such as glacier destabilisation, meltwater impounding and hydrothermal outburst, may be required to generate volumes of water similar to those associated with catastrophic eruption initiated ice-melt lahars.

  4. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE PAGES

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; ...

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  5. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    SciTech Connect

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  6. A Procedure for the Design of Air-Heated Ice-Prevention Systems

    NASA Technical Reports Server (NTRS)

    Neel, C. B.

    1954-01-01

    A procedure proposed for use in the design of air-heated systems for the continuous prevention of ice formation on airplane components is set forth. Required heat-transfer and air-pressure-loss equations are presented, and methods of selecting appropriate meteorological conditions for flight over specified geographical areas and for the calculation of water-drop-impingement characteristics are suggested. In order to facilitate the design, a simple electrical analogue was devised which solves the complex heat-transfer relationships existing in the thermal-system analysis. The analogue is described and an illustration of its application to design is given.

  7. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  8. Investigation of an Electrically Heated Airplane Windshield for Ice Prevention, Special Report

    NASA Technical Reports Server (NTRS)

    Rodert, Lewis A.

    1939-01-01

    A study was made at the National Advisory Committee for Aeronautics Laboratory of the operation of an electrically heated glass panel, which simulated a segment of an airplane windshield, to determine if ice formations, which usually result in the loss of visibility, could be prevented. Tests were made in the 7- by 3-foot ice tunnel, and in flight, under artificially created ice-forming conditions. Ice was prevented from forming on the windshield model in the tunnel by 1.25 watts of power per square inch with the air temperature at 23 F and a velocity of 80 miles per hour. Using an improved model in flight, ice was prevented by 1.43 watts of power per square inch of protected area and 2 watts per inch concentrated in the rim, with the air temperature at 26 F and a velocity of 120 miles per hour. The removal of a preformed ice cap was effected to a limited extent in the tunnel by the use of 1.89 watts of power per square inch when the temperature and velocity were 25 F and 80 miles per hour, respectively. The results indicate that service tests with an improved design are justified.

  9. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface

    NASA Astrophysics Data System (ADS)

    Keitzl, T.; Mellado, J. P.; Notz, D.

    2016-12-01

    The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.

  10. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations

    PubMed Central

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J. Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types. PMID:27472383

  11. Non-quasi-geostrophic effects in baroclinic waves with latent heat release

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Tang, C.-M.

    1984-01-01

    A study is conducted for the non-quasi-geostrophic baroclinic wave effects in a saturated atmosphere whose vertical motion is subject to pseudo-adiabatic processes. With respect to the characteristics of energetics for the first-order solution, it is noted that, in the cases of both the dry mode and the first moist mode, the heat transport quantities due to the second-order eddy are small and opposite in sign to their respective transports. The non-quasi-geostrophic effects render the vertical motion field asymmetric in each of the regions involved and enter into the present treatment only as nonlinear terms. The moisture transport terms in the eddy-available potential energy equation is small by comparison to other individual terms in the cyclone scale motion's energetics calculation. This is consistent with the observational results of Smith (1980).

  12. Heat transport in the high-pressure ice mantle of large icy moons

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Tobie, G.; Sotin, C.; Kalousová, K.; Grasset, O.

    2017-03-01

    While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (∼ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to

  13. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be

  14. Experimental investigation of passive infrared ice detection for helicopter applications

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Hansman, R. John, Jr.

    1991-01-01

    A technique is proposed to remotely detect rotor icing on helicopters. Using passive infrared (IR) thermometry, it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the blade leading edge will be warmer than the uniced trailing edge, resulting in a chordwise temperature profile characteristic of icing. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The characteristic chordwise temperature profiles were observed with an IR thermal video system and confirmed with thermocouple measurements. A prototype detector system was built consisting of a single point IR pyrometer. Experiments were run on a small scale rotor model. Again, the characteristic chordwise temperature profiles were observed during icing, and the IR system was able to remotely detect icing. Based on the static and subscale rotor tests, the passive IR technique is promising for rotor ice detection.

  15. Heat Transfer Measurements on Surfaces with Natural Ice Castings and Modeled Roughness

    NASA Technical Reports Server (NTRS)

    Breuer, Kenneth S.; Torres, Benjamin E.; Orr, D. J.; Hansman, R. John

    1997-01-01

    An experimental method is described to measure and compare the convective heat transfer coefficient of natural and simulated ice accretion roughness and to provide a rational means for determining accretion-related enhanced heat transfer coefficients. The natural ice accretion roughness was a sample casting made from accretions at the NASA Lewis Icing Research Tunnel (IRT). One of these castings was modeled using a Spectral Estimation Technique (SET) to produce three roughness elements patterns that simulate the actual accretion. All four samples were tested in a flat-plate boundary layer at angle of attack in a "dry" wind tunnel test. The convective heat transfer coefficient was measured using infrared thermography. It is shown that, dispite some problems in the current data set, the method does show considerable promise in determining roughness-induced heat transfer coefficients, and that, in addition to the roughness height and spacing in the flow direction, the concentration and spacing of elements in the spanwise direction are important parameters.

  16. Water Freezing and Ice Melting.

    PubMed

    Małolepsza, Edyta; Keyes, Tom

    2015-12-08

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to the freezing of liquid water and the melting of hexagonal and cubic ice. It is confirmed that coexisting states are well-sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice ↔ liquid and cubic ice ↔ liquid with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. Pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  17. Comparison of energy storage systems in the United States chilled water versus two types of ice storage systems

    NASA Astrophysics Data System (ADS)

    Fischer, H. C.

    1984-10-01

    Current U.S. production non-storage heat pumps are compared to heat pumps using stored hot water and stored chilled water and to heat pumps using ice-on-coils as a means of using latent heat of fusion of water as a heat source. This equipment is also used as a means of stored cooling for air conditioning during hot weather. An ice-making heat pump which harvests ice as sheets of ice 3 to 4 times per hour and stores the ice in a large inexpensive bin is discussed. The advantages of such an ice-making heat pump to heat in cold weather and cool in hot weather is discussed as it relates to electric utility load management in different parts of the United States.

  18. Estimation of Mesoscale Atmospheric Latent Heating Profiles from TRMM Rain Statistics Utilizing a Simple One-Dimensional Model

    NASA Technical Reports Server (NTRS)

    Iacovazzi, Robert A., Jr.; Prabhakara, C.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    In this study, a model is developed to estimate mesoscale-resolution atmospheric latent heating (ALH) profiles. It utilizes rain statistics deduced from Tropical Rainfall Measuring Mission (TRMM) data, and cloud vertical velocity profiles and regional surface thermodynamic climatologies derived from other available data sources. From several rain events observed over tropical ocean and land, ALH profiles retrieved by this model in convective rain regions reveal strong warming throughout most of the troposphere, while in stratiform rain regions they usually show slight cooling below the freezing level and significant warming above. The mesoscale-average, or total, ALH profiles reveal a dominant stratiform character, because stratiform rain areas are usually much larger than convective rain areas. Sensitivity tests of the model show that total ALH at a given tropospheric level varies by less than +/- 10 % when convective and stratiform rain rates and mesoscale fractional rain areas are perturbed individually by 1 15 %. This is also found when the non-uniform convective vertical velocity profiles are replaced by one that is uniform. Larger variability of the total ALH profiles arises when climatological ocean- and land-surface temperatures (water vapor mixing ratios) are independently perturbed by +/- 1.0 K (+/- 5 %) and +/- 5.0 K (+/- 15 %), respectively. At a given tropospheric level, such perturbations can cause a +/- 25 % variation of total ALH over ocean, and a factor-of-two sensitivity over land. This sensitivity is reduced substantially if perturbations of surface thermodynamic variables do not change surface relative humidity, or are not extended throughout the entire model evaporation layer. The ALH profiles retrieved in this study agree qualitatively with tropical total diabatic heating profiles deduced in earlier studies. Also, from January and July 1999 ALH-profile climatologies generated separately with TRMM Microwave Imager and Precipitation Radar rain

  19. Latent heat loss of dairy cows in an equatorial semi-arid environment.

    PubMed

    da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A Fernandes

    2012-09-01

    The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous (E(S)) and respiratory (E(R)) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature (T(R)), hair coat surface temperature (T(S)) and respiratory rate (F(R)) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature (T(G)), air temperature (T(A)), wind speed (U), and partial air vapour pressure (P(V)). Data were analysed by mixed models, using the least squares method. Results showed that average E(S) and E(R) were higher in the semi-arid region (117.2 W m(-2) and 44.0 W m(-2), respectively) than in the subtropical region (85.2 W m(-2) and 30.2 W m(-2), respectively). Herds and individual cows were significant effects (P < 0.01) for all traits in the semi-arid region. Body parts did not affect T(S) and E(S) in the subtropical region, but was a significant effect (P < 0.01) in the semi-arid region. The average flank T(S) (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E(S) was higher in the neck (133.3 W m(-2)) than in the flank (116.2 W m(-2)) and hindquarters (98.6 W m(-2)). Coat colour affected significantly both T(S) and E(S) (P < 0.01). Black coats had higher T(S) and E(S) in the semi-arid region (41.7°C and 117.2 W m(-2), respectively) than white coats (37.2°C and 106.7 W m(-2), respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific

  20. Ice Prevention on Aircraft by Means of Engine Exhaust Heat and a Technical Study of Heat Transmission from a Clark Y Airfoil

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Clay, William C

    1933-01-01

    This investigation was conducted to study the practicability of employing heat as a means of preventing the formation of ice on airplane wings. The report relates essentially to technical problems regarding the extraction of heat from the exhaust gases and its proper distribution over the exposed surfaces. In this connection a separate study has been made to determine the variation of the coefficient of heat transmission along the chord of a Clark Y airfoil. Experiments on ice prevention both in the laboratory and in flight show conclusively that it is necessary to heat only the front portion of the wing surface to effect complete prevention. Experiments in flight show that a vapor-heating system which extracts heat from the exhaust and distributes it to the wings is an entirely practical and efficient method for preventing ice formation.

  1. LATENT LIFE OF ARTERIES.

    PubMed

    Carrel, A

    1910-07-23

    When a segment of artery, killed by heat, formalin or glycerin is transplanted, it undergoes a rapid degeneration. Its muscle fibers disappear while the tissue of the host reacts by building a new wall of connective tissue. When the transplanted vessel has been preserved in a condition of latent life, no degeneration of the wall occurs, or the wall undergoes only partial degeneration. The muscle fibers can keep their normal appearance, even for a long time after the operation. It is, therefore, demonstrated that arteries can be preserved outside of the body in a condition of unmanifested actual life. The best method of preservation consists of placing the vessels, immersed in vaselin, in an ice box, the temperature of which is slightly above the freezing point. From a surgical standpoint, the transplantation of preserved vessels can be used with some safety. When the arteries were kept in defibrinated blood or vaselin and in cold storage, the proportion of positive results was 75 and 80 per cent., and this can probably be increased.

  2. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed

    Wilcox, Christie L; Yanagihara, Angel A

    2016-04-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes.

  3. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed Central

    Wilcox, Christie L.; Yanagihara, Angel A.

    2016-01-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes. PMID:27043628

  4. Altering crystal growth and annealing in ice-templated scaffolds.

    PubMed

    Pawelec, K M; Husmann, A; Best, S M; Cameron, R E

    The potential applications of ice-templating porous materials are constantly expanding, especially as scaffolds for tissue engineering. Ice-templating, a process utilizing ice nucleation and growth within an aqueous solution, consists of a cooling stage (before ice nucleation) and a freezing stage (during ice formation). While heat release during cooling can change scaffold isotropy, the freezing stage, where ice crystals grow and anneal, determines the final size of scaffold features. To investigate the path of heat flow within collagen slurries during solidification, a series of ice-templating molds were designed with varying the contact area with the heat sink, in the form of the freeze drier shelf. Contact with the heat sink was found to be critical in determining the efficiency of the release of latent heat within the perspex molds. Isotropic collagen scaffolds were produced with pores which ranged from 90 μm up to 180 μm as the contact area decreased. In addition, low-temperature ice annealing was observed within the structures. After 20 h at -30 °C, conditions which mimic storage prior to lyophilization, scaffold architecture was observed to coarsen significantly. In future, ice-templating molds should consider not only heat conduction during the cooling phase of solidification, but the effects of heat flow during ice growth and annealing.

  5. Validation of HOAPS and ERA Interim latent heat fluxes against parameterizations applied to RV Polarstern data for 1995-1997

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; Kinzel, Julian

    2014-05-01

    Latent heat fluxes (LHF) represent a crucial component of the global energy cycle. As LHF provide one of the upper boundary conditions for the oceanic component of coupled atmosphere-ocean circulation models, it is desirable to rely on one consistent LHF data source with sufficient spatial and temporal resolution. Remotely sensed LHF, particularly the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) climatology, are considered to fulfil this criterion. However, the validity of HOAPS LHF needs to be investigated to assess its potential of reliably representing an essential part of the global freshwater cycle. Within this study, a validation of HOAPS-3.0-based LHF at pixel-level resolution for 1995-1997 is performed over the Atlantic basin. A recently developed bulk flux algorithm termed OCEANET (Bumke et al., 2013), derived from turbulence measurements onboard R/V Polarstern by inertial dissipation method, is applied to hourly bulk measurements obtained during 19 Atlantic cruises of R/V Polarstern. Its LHF output serves as the in-situ validation data source, which is supplemented by ERA-Interim reanalysis data. By means of the nearest-neighbor approach, a collocation of HOAPS- to OCEANET- and ERA-Interim data is carried out. Bias analyses suggest that HOAPS LHF are on average significantly underestimated compared to OCEANET and ERA-Interim (-8 W/m²). A sub-division into latitudinal bands resolves absolute biases exceeding -20 W/m² in the tropics. As the minor differences between the HOAPS- and OCEANET-based transfer coefficients lie within the uncertainty range inherent to bulk flux parameterizations, it is suggested that the significant LHF deviations for the most part arise from deviations among the bulk input variables. Investigations of bulk input parameters reveal that the observed negative LHF biases within the HOAPS record are mainly associated with an overrepresentation of air specific humidity for 20°S - 60°N. Latitudinal

  6. Comparison between global latent heat flux computed from multisensor (SSM/I and AVHRR) and from in situ data

    NASA Technical Reports Server (NTRS)

    Jourdan, Didier; Gautier, Catherine

    1995-01-01

    Comprehensive Ocean-Atmosphere Data Set (COADS) and satellite-derived parameters are input to a similarity theory-based model and treated in completely equivalent ways to compute global latent heat flux (LHF). In order to compute LHF exclusively from satellite measurements, an empirical relationship (Q-W relationship) is used to compute the air mixing ratio from Special Sensor Microwave/Imager (SSM/I) precipitable water W and a new one is derived to compute the air temperature also from retrieved W(T-W relationship). First analyses indicate that in situ and satellite LHF computations compare within 40%, but systematic errors increase the differences up to 100% in some regions. By investigating more closely the origin of the discrepancies, the spatial sampling of ship reports has been found to be an important source of error in the observed differences. When the number of in situ data records increases (more than 20 per month), the agreement is about 50 W/sq m rms (40 W/sq m rms for multiyear averages). Limitations of both empirical relationships and W retrieval errors strongly affect the LHF computation. Systematic LHF overestimation occurs in strong subsidence regions and LHF underestimation occurs within surface convergence zones and over oceanic upwelling areas. The analysis of time series of the different parameters in these regions confirms that systematic LHF discrepancies are negatively correlated with the differences between COADS and satellite-derived values of the air mixing ratio and air temperature. To reduce the systematic differences in satellite-derived LHF, a preliminary ship-satellite blending procedure has been developed for the air mixing ratio and air temperature.

  7. Evaluation of three satellite-based latent heat flux algorithms over forest ecosystems using eddy covariance data.

    PubMed

    Yao, Yunjun; Zhang, Yuhu; Zhao, Shaohua; Li, Xianglan; Jia, Kun

    2015-06-01

    We have evaluated the performance of three satellite-based latent heat flux (LE) algorithms over forest ecosystems using observed data from 40 flux towers distributed across the world on all continents. These are the revised remote sensing-based Penman-Monteith LE (RRS-PM) algorithm, the modified satellite-based Priestley-Taylor LE (MS-PT) algorithm, and the semi-empirical Penman LE (UMD-SEMI) algorithm. Sensitivity analysis illustrates that both energy and vegetation terms has the highest sensitivity compared with other input variables. The validation results show that three algorithms demonstrate substantial differences in algorithm performance for estimating daily LE variations among five forest ecosystem biomes. Based on the average Nash-Sutcliffe efficiency and root-mean-squared error (RMSE), the MS-PT algorithm has high performance over both deciduous broadleaf forest (DBF) (0.81, 25.4 W/m(2)) and mixed forest (MF) (0.62, 25.3 W/m(2)) sites, the RRS-PM algorithm has high performance over evergreen broadleaf forest (EBF) (0.4, 28.1 W/m(2)) sites, and the UMD-SEMI algorithm has high performance over both deciduous needleleaf forest (DNF) (0.78, 17.1 W/m(2)) and evergreen needleleaf forest (ENF) (0.51, 28.1 W/m(2)) sites. Perhaps the lower uncertainties in the required forcing data for the MS-PT algorithm, the complicated algorithm structure for the RRS-PM algorithm, and the calibrated coefficients of the UMD-SEMI algorithm based on ground-measured data may explain these differences.

  8. Evaluation of heat shock proteins for discriminating between latent tuberculosis infection and active tuberculosis: A preliminary report.

    PubMed

    Shekhawat, Seema D; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-01-01

    The diagnosis of a latent tuberculosis infection (LTBI) is of the utmost concern. The available tests, the tuberculin skin test (TST) and the Quantiferon-TB Gold test (QFT-G) cannot discriminate between active TB and LTBI. Therefore, the aim of the study is to identify new biomarkers that can discriminate between active TB and LTBI and can also assess the risk of the individual developing active TB. In total, 55 blood samples were collected, of which 10 samples were from the active TB infection group, 10 were from the high-risk exposure group, 23 were from the low-risk exposure group, and 12 were from healthy controls living in a non-TB endemic area. A panel of heat shock proteins (Hsps), including host Hsp25, Hsp60, Hsp70, and Hsp90 and Mycobacterium tuberculosis (MTB) Hsp16, were evaluated in all of the collected samples using ELISA. The levels of the host Hsp(s) (Hsp25, Hsp60, Hsp70 and Hsp90) and MTB Hsp16 were significantly (p<0.05) elevated in the active TB group compared to the high-risk exposure group, the low-risk exposure group and the control group. Notably, the levels of the same panel of Hsp(s) were elevated in the high-risk exposure group compared to the low-risk exposure group. On follow-up, out of the 10 high-risk exposure participants, 3 converted into active TB, indicating that this group has the highest risk of developing TB. Thus, the evaluated panel of Hsp(s) can discriminate between LTBI and active TB. They can also identify individuals who are at the highest risk of developing active TB. Because they can be rapidly detected, Hsp(s) have an edge over the existing diagnostic tools for LTBI. The evaluation of these proteins will be useful in designing better diagnostic methods for LTBI.

  9. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  10. Impact of tidal heating on the onset of convection in Enceladus' ice shell

    NASA Astrophysics Data System (ADS)

    Behounkova, Marie; Tobie, Gabriel; Choblet, Gael; Cadek, Ondrej

    2013-04-01

    Observations of Enceladus by the Cassini spacecraft indicated that its south pole is very active, with jets of water vapor and ice emanating from warm tectonic ridges. Convective processes in the ice shell are commonly advocated to explain the enhanced activity at the south pole. The conditions under which convection may occur on Enceladus are, however, still puzzling. According to the estimation of Barr and McKinnon (2007) based on scaling laws, convection may initiate in Enceladus' ice shell only for grain size smaller than 0.3 mm, which is very small compared to the grain size observed on Earth in polar ice sheets for similar temperature and stress conditions (2-4mm). Moreover, Bahounková et al. (2012) showed that such enhanced activity periods associated with thermal convection and internal melting should be brief (~ 1 - 10Myrs) and should be followed by relatively long periods of inactivity (~ 100Myrs), with a probable cessation of thermal convection. In order to constrain the likelihood and periodicity of enhanced activity periods, the conditions under which thermal convection may restart are needed to be investigated. In particular, the goal is to understand how tidal heating, especially during periods of elevated eccentricity, may influence the onset of convection. To answer this question, 3D simulations of thermal convection including a self-consistent computation of tidal dissipation using the code Antigone (Bahounková et al., 2010, 2012) were performed, a composite non-Newtonian rheology (Goldsby and Kohlstedt, 2001) and Maxwell-like rheology mimicking Andrade model were considered. Our simulations show that the onset of convection may occur in Enceladus' ice shell only for ice grain size smaller or equal than 0.5 mm in absence of tidal heating. Tidal dissipation shifts the critical grain size for convection up to values of 1-1.5 mm. The convection is initiated in the polar region due to enhanced tidal dissipation in this area and remains in the

  11. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat.

    PubMed

    Stevens, Christopher John; Dascombe, Ben; Boyko, Andriy; Sculley, Dean; Callister, Robin

    2013-01-01

    This study investigated the effect of ice slurry ingestion during a triathlon on intragastric temperature and 10 km running performance in the heat. Nine well-trained male triathletes performed two randomised trials of a simulated Olympic distance triathlon in hot conditions (32-34°C). Exercise intensity during the swim (1500 m) and cycle (1 hr) legs was standardised, and the 10 km run leg was a self-paced time trial. During the cycle leg, either 10 g · kgBM(-1) of ice slurry (< 1°C) or room temperature fluid (32-34°C) was ingested. In the run leg of the ice slurry trial, performance time (43.4 ± 3.7 vs. 44.6 ± 4.0 min; P = 0.03), intragastric temperature (at 1.5 km; 35.5 ± 1.2 vs. 37.5 ± 0.4°C; P = 0.002) and perceived thermal stress (at 5 km; 73 ± 9 vs. 80 ± 7 mm; P = 0.04) were significantly lower. Oxygen consumption was significantly higher in the ice trial between 9.5-10 km (52.4 ± 3.4 vs. 47.8 ± 5.4 mL · kg(-1) · min(-1); P = 0.04). The results suggest ice slurry ingestion was an effective ergogenic aid for triathlon running performance in the heat. The attenuation of intragastric temperature and perceived thermal stress were likely contributors to the self-selection of a higher running intensity and improved performance time.

  12. Heat and Ice in Sermilik Fjord: Novel Observational Techniques Using PIES

    NASA Astrophysics Data System (ADS)

    Andres, M.; Straneo, F.; Sutherland, D.

    2014-12-01

    A 1-year pilot experiment using pressure-sensor-equipped inverted echo sounders (PIES) was conducted in Sermilik Fjord in eastern Greenland to test non-traditional methods for measuring the time-varying
heat content in high-latitude seas, shelves, and fjords and for detecting the presence of ice. PIES, which are installed on the seafloor below the reach of destructive iceberg keels, present
a promising and inexpensive way to improve understanding of fjord dynamics and shelf-fjord interactions and will increase long-term monitoring capabilities in high latitudes where
remoteness and harsh conditions hamper traditional in situ observation techniques. The use
of PIES to characterize variability at high latitudes is a novel application of an existing
technology, but rests on the same principle as the traditional blue-water uses for PIES: due
to the dependence of sound speed on temperature, the surface-to-bottom round-trip acoustic-travel-time associated with reflections between the PIES and the air-sea interface is an excellent proxy
for heat content in the intervening water column. Furthermore, since reflections from seawater-ice interfaces are also detected when ice
is present, PIES provide a means to characterize the ice component in high-latitude systems. The PIES deployed in Sermilik Fjord (August 2011 - September 2012) resolved changes in heat content at scales ranging from hourly to seasonal. Furthermore, during winter, the PIES logged about 300 iceberg detections and recorded a 2-week period of land-fast ice cover in March. The deepest icebergs in the fjord were found to have keel depths reaching to ~350 m and iceberg speeds averaged about 0.2 m/s but were as high as 0.5 m/s.

  13. SIMPLE MODEL OF ICE SEGREGATION USING AN ANALYTIC FUNCTION TO MODEL HEAT AND SOIL-WATER FLOW.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1984-01-01

    This paper reports on the development of a simple two-dimensional model of coupled heat and soil-water flow in freezing or thawing soil. The model also estimates ice-segregation (frost-heave) evolution. Ice segregation in soil results from water drawn into a freezing zone by hydraulic gradients created by the freezing of soil-water. Thus, with a favorable balance between the rate of heat extraction and the rate of water transport to a freezing zone, segregated ice lenses may form.

  14. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.

    PubMed

    Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A

    2016-10-01

    The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.

  15. Numerical modeling and simulation of hot air jet anti-icing system employing channels for enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Ahmed, Kamran Zaki

    Aircraft icing is a serious concern for the aviation community since it is one of the major causes of fatal aircraft accidents. Aircrafts use different anti-icing systems and one such system is the hot-air anti-icing system, which utilizes hot-air from the engine compressor bleed to heat critical aircraft surfaces and prevent ice formation. Numerous experimental and numerical studies have been performed to increase the efficiency of the hot-air jet based anti-icing systems. Most of the investigations have focused on either orifice design or the impingement region of target surface geometry. Since the impingement surface heat transfer drops off sharply past the stagnation region, investigators have studied the use of multiple jets to enhance surface heat transfer over a larger area. However, use of multiple jets is a further strain on engine resources. One way to conserve engine resources is to use single jet in conjunction with various geometric and physical mechanisms to enhance heat transfer. The current study focuses on enhancing heat transfer using a single jet and a channel. The study investigates the effect of channel's height, inlet location and Reynolds number on heat transfer characteristics in terms of average Nusselt number distribution along the impingement surface. The commercial CFD code, FLUENT, is used to simulate the different cases. Results indicate that the heat transfer depends strongly on height and width of channel, jet-to-target spacing, inlet angle and jet Reynolds number.

  16. Late Pleistocene variations in Antarctic sea ice II: effect of interhemispheric deep-ocean heat exchange

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas J.; Parkinson, Claire L.

    1988-10-01

    Variations in production rates of warm North Atlantic Deep Water (NADW) have been proposed as a mechanism for linking climate fluctuations in the northern and southern hemispheres during the Pleistocene. We have tested this hypothesis by examining the sensitivity of a thermodynamic/dynamic model for Antarctic sea ice to changes in vertical ocean heat flux and comparing the simulations with modified CLIMAP sea-ice maps for 18 000 B.P. Results suggest that changes in NADW production rates, and the consequent changes in the vertical ocean heat flux in the Antarctic, can only account for about 20% 30% of the overall variance in Antarctic sea-ice extent. This conclusion has been validated against an independent geological data set involving a time series of sea-surface temperatures from the subantarctic. The latter comparison suggests that, although the overall influence of NADW is relatively minor, the linkage may be much more significant at the 41 000-year obliquity period. Despite some limitations in the models and geological data, we conclude that NADW variations may have played only a modest role in causing late Pleistocene climate change in the high latitudes of the southern hemisphere. Our conclusion is consistent with calculations by Manabe and Broccoli (1985) suggesting that atmospheric CO2 changes may be more important for linking the two hemispheres.

  17. Spectral retrieval of latent heating profiles from TRMM PR data: comparisons of lookup tables from two- and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Shige, Shoichi; Takayabu, Yukari N.; Kida, Satoshi; Tao, Wei-Kuo; Zeng, Xiping; L'Ecuyer, Tristan

    2008-12-01

    The Spectral Latent Heating (SLH) algorithm was developed to estimate latent heating profiles for the TRMM PR. The method uses PR information (precipitation top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables. Lookup tables for the three rain types-convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)-were derived from numerical simulations of tropical cloud systems from the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) utilizing a cloud-resolving model (CRM). The two-dimensional ("2D") CRM was used in the previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional ("3D") CRM simulations for multiday periods becoming increasing prevalent. In this study, we compare lookup tables from the 2D and 3D simulations. The lookup table from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based one for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived one. This is explained by the fact that the 3D lookup table produces stronger convective heating and weaker stratiform heating above the melting level that 2D counterpart. Condensate generated in and carried over from the convective region is larger in 3D than in 2D, and condensate that is produced by the stratiform region's own upward motion is smaller in 3D than 2D.

  18. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  19. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Reichstein, Markus; Margolis, Hank A.; Cescatti, Alessandro; Richardson, Andrew D.; Arain, M. Altaf; Arneth, Almut; Bernhofer, Christian; Bonal, Damien; Chen, Jiquan; Gianelle, Damiano; Gobron, Nadine; Kiely, Gerald; Kutsch, Werner; Lasslop, Gitta; Law, Beverly E.; Lindroth, Anders; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J.; Papale, Dario; Sottocornola, Matteo; Vaccari, Francesco; Williams, Christopher

    2011-09-01

    We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° × 0.5° spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 1018 yr-1), H (164 ± 15 J × 1018 yr-1), and GPP (119 ± 6 Pg C yr-1) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr-1) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

  20. The Simulation of the Opposing Fluxes of Latent Heat and CO2 over Various Land-Use Types: Coupling a Gas Exchange Model to a Mesoscale Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Reyers, Mark; Krüger, Andreas; Werner, Christiane; Pinto, Joaquim G.; Zacharias, Stefan; Kerschgens, Michael

    2011-04-01

    A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.

  1. Microwave heating of water, ice, and saline solution: molecular dynamics study.

    PubMed

    Tanaka, Motohiko; Sato, Motoyasu

    2007-01-21

    In order to study the heating process of water by the microwaves of 2.5-20 GHz frequencies, the authors have performed molecular dynamics simulations by adopting a nonpolarizable water model that has fixed point charges on a rigid-body geometry. All runs are started from the equilibrated states derived from the I(c) ice with given density and temperature. In the presence of microwaves, the molecules of liquid water exhibit rotational motion whose average phase is delayed from the microwave electric field. Microwave energy is transferred to the kinetic and intermolecular energies of water, where one-third of the absorbed microwave energy is stored as the latter energy. The water in ice phase is scarcely heated by microwaves because of the tight hydrogen-bonded network of water molecules. Dilute salt water is significantly more heated than pure water because of the field-induced motion of salt ions, especially that of large-size ions, by the microwave electric field and energy transfer to water molecules by collisions.

  2. Investigation of Porous Gas-Heated Leading-Edge Section for Icing Protection of a Delta Wing

    NASA Technical Reports Server (NTRS)

    Bowden, Dean T.

    1955-01-01

    A tip section of a delta wing having an NACA 0004-65 airfoil section and a 600 leading-edge sweepback was equipped with a porous leading-edge section through which hot gas was 'bled for anti-icing. Heating rates for anti-icing were determined for a wide range of icing conditions. The effects of gas flow through the porous leading-edge section on airfoil pressure distribution and drag in dry air were investigated. The drag increase caused by an ice formation on the unheated airfoil was measured for several icing conditions. Experimental porous surface- to free-stream convective heat-transfer coefficients were obtained in dry air and compared with theory. Adequate icing protection was obtained at all icing conditions investigated. Savings in total gas-flow rate up to 42 percent may be obtained with no loss in anti-icing effectiveness by sealing half the upper-surface porous area. Gas flow through the leading-edge section had no appreciable effect on airfoil pressure distribution. The airfoil section drag increased slightly (5-percent average) with gas flow through the porous surface. A heavy glaze-ice formation produced after 10 minutes of icing caused an increase in section drag coefficient of 240 percent. Experimental convective heat-transfer coefficients obtained with hot-gas flow through the porous area in dry air and turbulent flow were 20 to 30 percent lower than the theoretical values for a solid surface under similar conditions. The transition region from laminar to turbulent flow moved forward as the ratio of gas velocity through the porous surface to air-stream velocity was increased.

  3. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components

    NASA Astrophysics Data System (ADS)

    Chao, D. F. K.

    1983-11-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  4. Aerodynamic heating and the deflection of drops by an obstacle in an air stream in relation to aircraft icing

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1940-01-01

    Two topics of interest to persons attempting to apply the heat method of preventing ice formation on aircraft are considered. Surfaces moving through air at high speed are shown, both theoretically and experimentally, to be subject to important aerodynamic heating effects that will materially reduce the heat required to prevent ice. Numerical calculations of the path of water drops in an air stream around a circular cylinder are given. From these calculations, information is obtained on the percentage of the swept area cleared of drops.

  5. An Investigation of the Icing and Heated-air De-icing Characteristics of the R-2600-13 Induction System

    NASA Technical Reports Server (NTRS)

    Chapman, Gilbert E.

    1946-01-01

    A laboratory investigation was made on a Holley 1685-HB carburetor mounted on an R-2600-13 supercharger assembly to determine the icing characteristics and the heated-air de-icing requirements of this portion of the B-25D airplane induction system. Icing has been found to be most prevalent at relatively small throttle openings and, consequently, all runs were made at simulated 60-percent normal rated power condition. Icing characteristics were determined during a series of 15-minute runs over a range of inlet-air conditions. For the de-icing investigation severe impact ice was allowed to form in the induction system and the time required for the recovery of 95 percent of the maximum possible air flow at the original throttle setting was then determined for a range of wet-bulb temperatures. Results of these runs showed that ice on the walls of the carburetor adapter and on the rim of the impeller-shroud portion of the supercharger diffuser plate did not affect engine operation at 60-percent normal rated power. Ice that adversely affected the air flow and the fuel-air ratio was formed only on the central web of the carburetor and then only when the inlet air was saturated or contained free moisture in excess of saturation. No serious ice formations were observed at inlet-air temperatures above 66 0 F or with an inlet-air enthalpy greater than 34 Btu per pound. The maximum temperature at. which any trace of icing could be detected was 1110 F with a relative humidity of approximately 28 percent, The air-flow recovery time for emergency de-icing was 0.3 minute for.an enthalpy of 35 Btu per pound or wet-bulb temperature of 68 0 F. Further increase in enthalpy and wet-bulb temperature above these values resulted in very slight improvement in recovery time. The fuel-air ratio restored by a 5-Minute application of heated air was approximately 7 percent less than the initial value for cold-air conditions.

  6. Impact of tidal heating on the onset of convection in Enceladus’s ice shell

    NASA Astrophysics Data System (ADS)

    Běhounková, Marie; Tobie, Gabriel; Choblet, Gaël; Čadek, Ondřej

    2013-09-01

    By performing 3D simulations of thermal convection and tidal dissipation, we investigated the effect of tidal heating on the onset of convection in Enceladus’s ice shell. We considered a composite non-Newtonian rheology including diffusion, grain-size-sensitive and dislocation creeps, and we defined an effective tidal viscosity reproducing the dissipation function as predicted by the Andrade rheology. For simulations with no or moderate tidal heating, the onset of convection requires ice grain sizes smaller than or equal to 0.5-0.6 mm. For simulations including significant tidal heating (>10-6 W m-3), the critical grain size for the onset of convection is shifted up to values of 1-1.5 mm. Whatever the width of the internal ocean, convection is initiated in the polar region due to enhanced tidal dissipation at high latitudes. For a given eccentricity value, the onset of convection depends on the ocean width, as tidal flexing and hence tidal heat production is controlled by the ocean width. For heating rates larger than 5-9 × 10-7 W m-3, we systematically observe the occurrence of melting in our simulations, whatever the grain size and for both convecting and non-convecting cases. Grain sizes smaller than 1.5 mm, required to initiate convection, may be obtained either by the presence of a few percent of impurities limiting the grain growth by pinning effects or by the increase of stress and hence dynamic recrystallization associated with tidally-induced melting events.

  7. Lunar South Pole ice as heat sink for Lunar cryofuel production system

    SciTech Connect

    Zuppero, A.; Stanley, M.; Modro, S.M.; Whitman, P.

    1995-03-01

    Recent Clementine bistatic radar data suggest that water ice may be present in a {open_quotes}forever shaded{close_quotes} depression or crater at the South Pole of the Moon. The ice is a feedstock for the electrolysis production of cryogenic oxygen and hydrogen rocket fuels for a transportation system on the moon and for leaving and descending on to the moon. The ice also provides a convective heat sink critical to the practical implementation of high throughput electric power generators and refrigerators that liquefy and cool the oxygen and hydrogen into cryogenic rocket fuel. This brief analysis shows that about a hundred tonnes of hardware delivered to the lunar surface can produce tens of thousands of tonnes of rocket fuel per year, on the moon. And it makes the point that if convective cooling is used instead of radiative cooling, then power and processing systems can be used that exist and have been tested already. This shortens the time by an order of magnitude to develop lunar operations. Quick deployment of a chemical cryofuel energy source is a key factor in the economics of lunar development.

  8. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the

  9. Ice ages and the thermal equilibrium of the earth, II

    USGS Publications Warehouse

    Adam, D.P.

    1975-01-01

    The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of

  10. Thermal conductivity and specific heat of the spin-ice compound Dy2Ti2O7: Experimental evidence for monopole heat transport

    NASA Astrophysics Data System (ADS)

    Kolland, G.; Breunig, O.; Valldor, M.; Hiertz, M.; Frielingsdorf, J.; Lorenz, T.

    2012-08-01

    Elementary excitations in the spin-ice compound Dy2Ti2O7 can be described as magnetic monopoles propagating independently within the pyrochlore lattice formed by magnetic Dy ions. We studied the magnetic-field dependence of the thermal conductivity κ(B) for B||[001] and observe clear evidence for magnetic heat transport originating from the monopole excitations. The magnetic contribution κmag is strongly field dependent and correlates with the magnetization M(B). The diffusion coefficient obtained from the ratio of κmag and the magnetic specific heat is strongly enhanced below 1 K, indicating a high mobility of the monopole excitations in the spin-ice state.

  11. Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lind, Sigrid; Ingvaldsen, Randi B.; Furevik, Tore

    2016-05-01

    In the seasonally ice-covered northern Barents Sea an intermediate layer of cold and relatively fresh Arctic Water at ~25-110 m depth isolates the sea surface and ice cover from a layer of warm and saline Atlantic Water below, a situation that resembles the cold halocline layer in the Eurasian Basin. The upward heat flux from the Atlantic layer is of major concern. What causes variations in the heat flux and how is the Arctic layer maintained? Using observations, we found that interannual variability in Arctic layer salinity determines the heat flux from the Atlantic layer through its control of stratification and vertical mixing. A relatively fresh Arctic layer effectively suppresses the upward heat flux, while a more saline Arctic layer enhances the heat flux. The corresponding upward salt flux causes a positive feedback. The Arctic layer salinity and the water column structures have been remarkably stable during 1970-2011.

  12. User's manual for the NASA Lewis ice accretion/heat transfer prediction code with electrothermal deicer input

    NASA Technical Reports Server (NTRS)

    Masiulaniec, Konstanty C.; Wright, William B.

    1994-01-01

    A version of LEWICE has been developed that incorporates a recently developed electrothermal deicer code, developed at the University of Toledo by William B. Wright. This was accomplished, in essence, by replacing a subroutine in LEWICE, called EBAL, which balanced the energies at the ice surface, with a subroutine called UTICE. UTICE performs this same energy balance, as well as handles all the time-timperature transients below the ice surface, for all of the layers of a composite blade as well as the ice layer itself. This new addition is set up in such a fashion that a user may specify any number of heaters, any heater chordwise length, and any heater gap desired. The heaters may be fired in unison, or they may be cycled with periods independent of each other. The heater intensity may also be varied. In addition, the user may specify any number of layers and thicknesses depthwise into the blade. Thus, the new addition has maximum flexibility in modeling virtually any electrothermal deicer installed into any airfoil. It should be noted that the model simulates both shedding and runback. With the runback capability, it can simulate the anti-icing mode of heater performance, as well as detect icing downstream of the heaters due to runback in unprotected portions of the airfoil. This version of LEWICE can be run in three modes. In mode 1, no conduction heat transfer is modeled (which would be equivalent to the original version of LEWICE). In mode 2, all heat transfer is considered due to conduction but no heaters are firing. In mode 3, conduction heat transfer where the heaters are engaged is modeled, with subsequent ice shedding. When run in the first mode, there is virtually identical agreement with the original version of LEWICE in the prediction of accreted ice shapes. The code may be run in the second mode to determine the effects of conduction on the ice accretion process.

  13. Experimental studies of heat transfer at the dynamic magma ice/water interface: Application to subglacially emplaced lava

    NASA Astrophysics Data System (ADS)

    Oddsson, Björn; Gudmundsson, Magnús T.; Sonder, Ingo; Zimanowski, Bernd; Schmid, Andrea

    2016-05-01

    Experiments simulating processes operating in volcano-ice interactions were carried out to explain and quantify lava thermal properties and processes of heat transfer from pure lava melt to water and ice and from hot crystalline lava to water. The samples used (70-200 g) were obtained from an intermediate lava flow (benmoreite-trachyte) that was emplaced under and within the outlet glacier Gígjökull in the 2010 eruption of Eyjafjallajökull. Experiments involved settings with direct contact between ice and lava, and settings where melt and ice were separated by a few centimeters. Direct contact involved melt being emplaced on ice and ice placed on melt. The direct contact experiments provided initial heat flux of up to 900 kW m-2 at an initially lava melt surface temperature of 1100°C, declining to <100 kW m-2 at 200-300°C within 1-2 min, while the experiments without melt-ice contact yielded an initial maximum of 100-180 kW m-2 dropping to 50-80 kW m-2 in 2-3 min. In other experiments, where cubes of hot crystalline lava were subjected to forced convection of water at initial temperature of 20-30°C, initial heat fluxes of 400-770 kW m-2 were followed by fast decline to <100 kW m-2 in 15-35 s, the rate depending on cube size. The hot rock experiments provided thermal conductivity values of 1.2-1.7 W m-1K-1 and diffusivity of about 9 × 10-7 m2s-1. Values for heat flux obtained in these experiments are in the same range as those obtained from field observations of the lava emplacement in the Eyjafjallajökull 2010 eruption.

  14. Enhancement of volcanism and geothermal heat flux by ice-age cycling: A stress modeling study of Greenland

    NASA Astrophysics Data System (ADS)

    Stevens, Nathan T.; Parizek, Byron R.; Alley, Richard B.

    2016-08-01

    Ice-age cycling of the Greenland ice sheet likely contributed to locally elevated subglacial geothermal heat fluxes (GHFs), based on recent thermal modeling. Borehole and geophysical data indicate higher GHF in some areas than suggested by current knowledge of underlying geology, particularly at the head of the Northeast Greenland Ice Stream. Changes in lithospheric loading during ice-sheet growth and decay cycles produce large and geologically rapid changes in the effective stress state beneath and near the ice sheet. Oscillations in melt fraction from cyclic loading through multiple ice-age cycles will enhance upward magma migration through the nonlinear increase of melt migration velocity with melt fraction. We simulate periodic ice-sheet loading scenarios along an east-west transect across central Greenland on an Elastic Lithosphere, Relaxed Asthenosphere Earth model. Under likely parameter ranges, deviatoric stresses in the elastic lithosphere across widespread regions are sufficiently high to meaningfully enhance dike emplacement and also allow vug-wave propagation in some scenarios. Stress patterns migrate laterally in response to ice-sheet dynamics, favoring multistage magma ascent. If melt occurs at depth, our modeling suggests that ice-age cycling could help it migrate upward to shallow depth or erupt, contributing to the high observed GHF. Furthermore, shallow magma emplacement might feed hydrothermal systems exploiting enhanced faulting or fracturing from ice-age cycling, adding to elevated GHF. The preglacial passage of the Iceland-Jan Mayen hot spot could have sourced such magmas. Direct observations of these lithospheric processes needed to further constrain our models are limited, highlighting the value of more targeted geophysical studies informing future modeling.

  15. A Preliminary Study of the Prevention of Ice on Aircraft by the Use of Engine-exhaust Heat

    NASA Technical Reports Server (NTRS)

    Rodert, Lewis A

    1939-01-01

    An investigation was made in the N.A.C.A. ice tunnel at air temperatures from 20 degrees to 28 degrees Fahrenheit and at a velocity of 80 miles per hour to determine whether ice formations on a model wing could be prevented by the use of the heat from the engine-exhaust gas. Various spanwise duct systems were tested in a 6-foot-chord N.A.C.A. 23012 wing model. The formation of ice over the entire wing chord was prevented by the direct heating of the forward 10 percent of the wing by hot air, which was passed through leading-edge ducts. Under dry conditions, enough heat to maintain the temperature of the forward 10 percent of the wing at about 200 degrees Fahrenheit above that of the ambient air was required for the prevention of ice formation. The air temperature in the ducts that was necessary to produce these skin temperatures varied from 360 degrees to 834 degrees Fahrenheit; the corresponding air velocities in the duct were 152 and 45 feet per second. Ice formations at the leading edge were locally prevented by air that passed over the interior of the wing surface at a velocity of 30 feet per second and a temperature of 122 degrees Fahrenheit.

  16. Crystal Ice Formation of Solution and Its Removal Phenomena around Vertical Cooled Cylinder

    NASA Astrophysics Data System (ADS)

    Hirata, Tetsuo; Ishikawa, Masaaki; Akutsu, Nobuaki

    Experimental and analytical studies for freezing phenomena of ethylene glycol solution around a vertical cooled polyvinyl-chloride cylinder have been performed. It is found that the crystal ice formed around the vertical cylinder is removed from the cylinder surface due to buoyancy force acting on the crystal ice. The crystal ice slides along the cylinder surface due to buoyancy force and grows in a shape of tube by joining with the neighbour ice. It is shown that the onset of ice removal condition is related to the heat flux at the cylinder surface when the latent heat of fusion is discharged with freezing, and that the heat flux ratio of 'from the cylinder surface into the cylinder' to 'from the cylinder surface to the solution' is an important parameter for the onset conditions. The ice removal occurs easily for short cylinders than for long ones.

  17. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  18. Water freezing and ice melting

    SciTech Connect

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  19. Ice cooling vest on tolerance for exercise under uncompensable heat stress.

    PubMed

    Kenny, Glen P; Schissler, Andrew R; Stapleton, Jill; Piamonte, Matthew; Binder, Konrad; Lynn, Aaron; Lan, Christopher Q; Hardcastle, Stephen G

    2011-08-01

    This study was conducted to evaluate the effectiveness of a commercial, personal ice cooling vest on tolerance for exercise in hot (35°C), wet (65% relative humidity) conditions with a nuclear biological chemical suit (NBC). On three separate occasions, 10 male volunteers walked on a treadmill at 3 miles per hour and 2% incline while (a) seminude (denoted CON), (b) dressed with a nuclear, biological, chemical (NBC) suit with an ice vest (V) worn under the suit (denoted NBCwV); or (c) dressed with an NBC suit but without an ice vest (V) (denoted NBCwoV). Participants exercised for 120 min or until volitional fatigue, or esophageal temperature reached 39.5°C. Esophageal temperature (T(es)), heart rate (HR), thermal sensation, and ratings of perceived exertion were measured. Exercise time was significantly greater in CON compared with both NBCwoV and NBCwV (p < 0.05), whereas T(es), thermal sensation, heart rate, and rate of perceived exertion were lower (p < 0.05). Wearing the ice vest increased exercise time (NBCwoV, 103.6 ± 7.0 min; NBCwV, 115.9 ± 4.1 min) and reduced the level of thermal strain, as evidenced by a lower T(es) at end-exercise (NBCwoV, 39.03 ± 0.13°C; NBCwV, 38.74 ± 0.13°C) and reduced thermal sensation (NBCwoV, 6.4 ± 0.4; NBCwV, 4.8 ± 0.6). This was paralleled by a decrease in rate of perceived exertion (NBCwoV, 14.7 ± 1.6; NBCwV, 12.4 ± 1.6) (p < 0.05) and heat rate (NBCwoV, 169 ± 6; NBCwV, 159 ± 7) (p < 0.05). We show that a commercially available cooling vest can significantly reduce the level of thermal strain during work performed in hot environments.

  20. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    SciTech Connect

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence and horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.

  1. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGES

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  2. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    NASA Technical Reports Server (NTRS)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  3. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade

    NASA Astrophysics Data System (ADS)

    Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.

  4. Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2016-06-01

    Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas

  5. The Dielectric Loss Characteristic of Ice by Dielectric Heating Method for The Thawing of Foods or Biomaterials

    NASA Astrophysics Data System (ADS)

    Bai, Xianglan; Shirakashi, Ryo; Nishio, Shigefumi

    The thawing of ice crystal is very important for thawing of frozen foods and cryopreserved biomaterials. It was found that an alternative current (AC) electric field may effect the thawing process of frozen foods and cryopreserved biomaterials. In the present study, the spectrum of dielectric loss of ice crystal (50Hz~1.8GHz) was measured at various temperatures(-60°C to -2°C). The experiments of heating ice crystal using electric field were done to investigate the absorption of AC electric energy, which changes with the frequency of electric field. In order to evaluate the rapidness and the uniformity of thawing quantitatively, a numerical simulation of one-dimensional heat transfer was also conducted based on the measured spectrum of the dielectric loss of ice. The results showed that AC electric field have the uniform heating effect, only when the value of the frequency multiplied by dielectric loss (fε") decreases as the temperature increases. One of the optimum frequencies for a rapid and uniform thawing was found to be at around 3MHz.

  6. An Ice-Tethered Instrument for Sustained Observation of Arctic Upper-Ocean Freshwater and Heat Content Variability

    NASA Astrophysics Data System (ADS)

    Toole, J. M.; Proshutinsky, A.; Krishfield, R. A.; Dohherty, K. W.

    2003-12-01

    To address the Arctic gap in the global ocean observing system, we are developing an expendable, ice-tethered instrument capable of making long-term observations of freshwater and heat content variability beneath the ice pack. The system will consist of a small surface package that will support a weighted tether extending down 500 or more meters into the water column along which a variant of the now-operational Moored Profiler instrument will travel. Conductivity-Temperature-Depth data from the Profiler will be transmitted to the surface unit via an inductive modem, be combined with any additional sensor data (such as atmospheric pressure and temperature) and relayed to shore using a satellite data telemetry unit. We envision a loose array of these Ice-Tethered Profilers repeatedly sampling the thermohaline properties of the upper ocean below the perennial ice pack at daily to weekly time scale. Beyond estimating vertically-integrated quantities such as freshwater anomalies, the better-than 1-m-vertical-resolution data will also be valuable for documenting and assessing double-diffusive layering, thermohaline intrusions and mesoscale eddies, all possibly important to the evolution of the Arctic ice-ocean system. Multi-year lifetime and modest cost will permit basin-scale coverage (about 20 or more systems) to be maintained through regular seeding of replacement units as necessary, similar to the surface ice buoys (measuring sea ice drift, sea level atmospheric pressure, and 2-meter air temperature) of the International Arctic Buoy Program (IABP). Operationally, the array will serve as the Arctic analogue of the ARGO float program now being initiated at lower latitudes. Further information on the Ice-Tethered Profiler system is available at http://ioeb.whoi.edu/itp.

  7. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment.

    PubMed

    Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira

    2016-10-10

    The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.

  8. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment

    NASA Astrophysics Data System (ADS)

    Fonseca, Vinícius Carvalho; Saraiva, Edilson Paes; Maia, Alex Sandro Campos; Nascimento, Carolina Cardoso Nagib; da Silva, Josinaldo Araújo; Pereira, Walter Esfraim; Filho, Edgard Cavalcanti Pimenta; Almeida, Maria Elivânia Vieira

    2016-10-01

    The aim of this study was to build a prediction model both sensible and latent heat transfer by respiratory tract for Morada Nova sheep under field conditions in a semiarid tropical environment, using easily measured physiological and environmental parameters. Twelve dry Morada Nova ewes with an average of 3 ± 1.2 years old and average body weight of 32.76 ± 3.72 kg were used in a Latin square design 12 × 12 (12 days of records and 12 schedules). Tidal volume, respiratory rate, expired air temperature, and partial vapor pressure of the expired air were obtained from the respiratory facial mask and using a physiological measurement system. Ewes were evaluated from 0700 to 1900 h in each day under shade. A simple nonlinear model to estimate tidal volume as a function of respiratory rate was developed. Equation to estimate the expired air temperature was built, and the ambient air temperature was the best predictor together with relative humidity and ambient vapor pressure. In naturalized Morada Nova sheep, respiratory convection seems to be a mechanism of heat transfer of minor importance even under mild air temperature. Evaporation from the respiratory system increased together with ambient air temperature. At ambient air temperature, up to 35 °C respiratory evaporation accounted 90 % of the total heat lost by respiratory system, on average. Models presented here allow to estimate the heat flow from the respiratory tract for Morada Nova sheep bred in tropical region, using easily measured physiological and environmental traits as respiratory rate, ambient air temperature, and relative humidity.

  9. Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore

    NASA Astrophysics Data System (ADS)

    Bartos, I.; Beloborodov, A. M.; Hurley, K.; Márka, S.

    2013-06-01

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube+DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube+DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube+DeepCore observatory.

  10. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    PubMed

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.

  11. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer; Obrien, Enda

    1990-01-01

    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial

  12. An estimate of the impact of trapped melt ponds on sea ice thinning

    NASA Astrophysics Data System (ADS)

    Flocco, Daniela; Feltham, Daniel; Schroeder, David

    2013-04-01

    Melt ponds form on Arctic sea ice during the melting season and their presence affects the heat and mass balance of the ice cover. Towards the end of the melt season melt ponds cover up to 50% of the sea ice area decreasing the value of the surface albedo by up to 20%. The dramatic impact of melt ponds on the albedo feedback mechanism for sea ice melt has been demonstrated in previous studies. Here, we focus on the refreezing of melt ponds. As the ponds freeze from above, they gradually release latent heat that inhibits basal ice growth. The refreezing process can take up to three months. Freezing of the melt pond comes to an halt if the pond's freezing point reaches the air temperature since the Stefan condition for sea ice growth is not met anymore. Since the ice in presence of melt pond will stay thinner and flatter for longer, the areas where ponds are present are likely location for pond formation in the subsequent years. The presence of a pond trapped in the ice delays significantly the sea ice growth at locations where melt ponds form. The potential volume loss of sea ice per year in the Arctic considering a melt pond cover of 20% is up to 1000 km3 without considering the presence of snow. Within the ASBO (Arctic Synoptic Basin-wide Observations) project we have developed a model of refreezing melt ponds that uses mushy layer theory to describe the sea ice and takes account of the presence of salt in the refreezing melt pond. We use this model to investigate the rate at which melt ponds refreeze, releasing latent heat, and their impact on sea ice growth. In this work we would like to present model result with climatology input. We will give an estimate of the impact of the melt pond presence on sea ice growth in the Arctic basin.

  13. The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat.

    PubMed

    Burdon, Catriona A; Ruell, Patricia; Johnson, Nathan; Chapman, Phillip; O'Brien, Sinead; O'Connor, Helen T

    2015-01-01

    The aim of this study was to determine the effect of exercise in the heat on thermoregulatory responses and plasma vasoactive intestinal peptide concentration (VIP) and whether it is modulated by ice-slushy consumption. Ten male participants cycled at 62% V̇O2max for 90min in 32°C and 40% relative humidity. A thermoneutral (37°C) or ice-slushy (-1°C) sports drink was given at 3.5mlkg(-1) body mass every 15min during exercise. VIP and rectal temperature increased during exercise (mean±standard deviation: 4.6±4.4pmolL(-1), P=0.005; and 1.3±0.4°C, P<0.001 respectively) and were moderately associated (r=0.35, P=0.008). While rectal temperature and VIP were not different between trials, ice-slushy significantly reduced heat storage (P=0.010) and skin temperature (time×trial interaction P=0.038). It appears that VIP does not provide the signal linking cold beverage ingestion and lower skin temperature in the heat.

  14. GeV neutrinos from collisional heating in GRBs: Detection prospects with IceCube-DeepCore

    SciTech Connect

    Bartos, Imre

    2014-11-18

    The observed gamma-ray burst (GRB) emission may be due to jet reheating via nuclear collisions. The role of this collisional heating can be probed through the observation of 10–100 GeV neutrinos, which are generated in nuclear collisions along with gamma rays. Neutrino and gamma-ray luminosities are closely related, which further aids observations. If the main mechanism behind the production of GRBs is collisional heating then IceCube-DeepCore could detect the GeV-neutrino emission of GRBs with a few years of observation.

  15. Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage

    PubMed Central

    Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje

    2015-01-01

    Summary Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems. PMID:26199853

  16. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.; Vanfossen, G. James; Dewitt, Kenneth J.

    1989-01-01

    Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10(exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10(exp 6) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.

  17. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.; Van Fossen, G. James; Dewitt, Kenneth J.

    1990-01-01

    Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10 (exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10 (exp t) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.

  18. Detecting ice lenses and melt-refreeze crusts using satellite passive microwaves (Invited)

    NASA Astrophysics Data System (ADS)

    Montpetit, B.; Royer, A.; Roy, A.

    2013-12-01

    With recent winter climate warming in high latitude regions, rain-on-snow and melt-refreeze events are more frequent creating ice lenses or ice crusts at the surface or even within the snowpack through drainage. These ice layers create an impermeable ice barrier that reduces vegetation respiration and modifies snow properties due to the weak thermal diffusivity of ice. Winter mean soil temperatures increase due to latent heat being released during the freezing process. When ice layers freeze at the snow-soil interface, they can also affect the feeding habits of the northern wild life. Ice layers also significantly affect satellite passive microwave signals that are widely used to monitor the spatial and temporal evolution of snow. Here we present a method using satellite passive microwave brightness temperatures (Tb) to detect ice lenses and/or ice crusts within a snowpack. First the Microwave Emission Model for Layered Snowpacks (MEMLS) was validated to model Tb at 10.7, 19 and 37 GHz using in situ measurements taken in multiple sub-arctic environments where ice layers where observed. Through validated modeling, the effects of ice layer insertion were studied and an ice layer index was developed using the polarization ratio (PR) at all three frequencies. The developed ice index was then applied to satellite passive microwave signals for reported ice layer events.

  19. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  20. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion.

    PubMed

    Stevens, C J; Thoseby, B; Sculley, D V; Callister, R; Taylor, L; Dascombe, B J

    2016-10-01

    The purpose of this study was to compare the effects of a cooling strategy designed to predominately lower thermal state with a strategy designed to lower thermal sensation on endurance running performance and physiology in the heat. Eleven moderately trained male runners completed familiarization and three randomized, crossover 5-km running time trials on a non-motorized treadmill in hot conditions (33 °C). The trials included ice slurry ingestion before exercise (ICE), menthol mouth rinse during exercise (MEN), and no intervention (CON). Running performance was significantly improved with MEN (25.3 ± 3.5 min; P = 0.01), but not ICE (26.3 ± 3.2 min; P = 0.45) when compared with CON (26.0 ± 3.4 min). Rectal temperature was significantly decreased with ICE (by 0.3 ± 0.2 °C; P < 0.01), which persisted for 2 km of the run and MEN significantly decreased perceived thermal sensation (between 4 and 5 km) and ventilation (between 1 and 2 km) during the time trial. End-exercise blood prolactin concentration was elevated with MEN compared with CON (by 25.1 ± 24.4 ng/mL; P = 0.02). The data demonstrate that a change in the perception of thermal sensation during exercise from menthol mouth rinse was associated with improved endurance running performance in the heat. Ice slurry ingestion reduced core temperature but did not decrease thermal sensation during exercise or improve running performance.

  1. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  2. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean.

    PubMed

    Díaz, J I; Hidalgo, A; Tello, L

    2014-10-08

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge-Kutta total variation diminishing for time integration.

  3. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean

    PubMed Central

    Díaz, J. I.; Hidalgo, A.; Tello, L.

    2014-01-01

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration. PMID:25294969

  4. Quantification and attribution of errors in the simulated annual gross primary production and latent heat fluxes by two global land surface models

    NASA Astrophysics Data System (ADS)

    Li, Jianduo; Wang, Ying-Ping; Duan, Qingyun; Lu, Xingjie; Pak, Bernard; Wiltshire, Andy; Robertson, Eddy; Ziehn, Tilo

    2016-09-01

    Differences in the predicted carbon and water fluxes by different global land models have been quite large and have not decreased over the last two decades. Quantification and attribution of the uncertainties of global land surface models are important for improving the performance of global land surface models, and are the foci of this study. Here we quantified the model errors by comparing the simulated monthly global gross primary productivity (GPP) and latent heat flux (LE) by two global land surface models with the model-data products of global GPP and LE from 1982 to 2005. By analyzing model parameter sensitivities within their ranges, we identified about 2-11 most sensitive model parameters that have strong influences on the simulated GPP or LE by two global land models, and found that the sensitivities of the same parameters are different among the plant functional types (PFT). Using parameter ensemble simulations, we found that 15%-60% of the model errors were reduced by tuning only a few (<4) most sensitive parameters for most PFTs, and that the reduction in model errors varied spatially within a PFT or among different PFTs. Our study shows that future model improvement should optimize key model parameters, particularly those parameters relating to leaf area index, maximum carboxylation rate, and stomatal conductance.

  5. The impact of multidecadal NAO variations on Atlantic ocean heat transport and rapid changes in Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Delworth, Thomas; Zeng, Fanrong

    2016-04-01

    The Arctic and North Atlantic have experienced pronounced changes over the 20th and early 21st centuries, including a rapid loss of Arctic sea ice over the last several decades, prominent multidecadal variability in both ocean temperatures and sea ice, and decadal-scale change in tropical storm activity. We use suites of coupled climate model simulations to probe some of the factors responsible for the observed multidecadal variability in the Atlantic/Arctic system. In our models we show that multidecadal fluctuations of the North Atlantic Oscillation (NAO) induce multidecadal fluctuations of the Atlantic Meridional Overturning Circulation (AMOC). A positive phase of the NAO is associated with strengthened westerly winds over the North Atlantic. These winds extract more heat than normal from the subpolar ocean, thereby increasing upper ocean density, deepwater formation, and the strength of the AMOC and associated poleward ocean heat transport. In model simulations the observed negative phase of the NAO in the 1960s and 1970s led to a weaker than normal AMOC, reduced poleward ocean heat transport, a cold North Atlantic, and an increase in Arctic sea ice extent in both winter and summer. The NAO strengthened from the 1970s to the mid 1990s, leading to an increase of the AMOC and a warming of the North Atlantic. The increased heat transport extended throughout the North Atlantic, into the Barents Sea, and finally into the Arctic, contributing to a rapid reduction of sea ice in the 1990s through the 2000s. Feedbacks involving shortwave radiation are an important component of the overall changes. The NAO-induced AMOC increase also led to hemispheric-scale atmospheric circulation changes and increased Atlantic hurricane activity, as well as atmospheric teleconnections to the Southern Ocean. Since the mid 1990s the strong positive phase of the NAO has weakened to a more neutral phase. Climate projections for the next decade that take into account recent behavior of the

  6. Arctic Ocean stability: The effects of local cooling, oceanic heat transport, freshwater input, and sea ice melt with special emphasis on the Nansen Basin

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2016-07-01

    The Arctic loses energy to space and heat is transported northward in the atmosphere and ocean. The largest transport occurs in the atmosphere. The oceanic heat flux is significantly smaller, and the warm water that enters the Arctic Ocean becomes covered by a low-salinity surface layer, which reduces the heat transfer to the sea surface. This upper layer has two distinct regimes. In most of the deep basins it is due to the input of low-salinity shelf water, ultimately conditioned by net precipitation and river runoff. The Nansen Basin is different. Here warm Atlantic water is initially in direct contact with and melts sea ice, its upper part being transformed into less dense surface water. The characteristics and depth of this layer are determined as functions of the temperature of the Atlantic water and for different energy losses using a one-dimensional energy balance model. The amount of transformed Atlantic water is estimated for two different sea ice melt rates and the assumption of a buoyant boundary outflow. To create the upper layer sea ice formed elsewhere has to drift to the Nansen Basin. With reduced ice cover, this ice drift might weaken and the ice could disappear by the end of winter. The surface buoyancy input would disappear, and the upper layer might eventually convect back into the Atlantic water, reducing the formation of less dense Polar water. The created ice-free areas would release more heat to the atmosphere and affect the atmospheric circulation.

  7. Crushed Ice Ingestion Does Not Improve Female Cycling Time Trial Performance in the Heat.

    PubMed

    Zimmermann, Matthew; Landers, Grant Justin; Wallman, Karen Elizabeth

    2017-02-01

    This study examined the effects of precooling via ice ingestion on female cycling performance in hot, humid conditions. Ten female endurance athletes, mean age (28 ± 6 y), height (167.6 ± 6.5 cm) and body-mass (68.0 ± 11.5 kg) participated in the study. Participants completed an 800 kJ cycle time-trial in hot, humid conditions (34.9 ± 0.3 °C, 49.8 ± 3.5% RH). This was preceded by the consumption of 7 g∙kg(-1) of crushed ice (ICE) or water (CON). There was no difference in performance time (CON 3851 ± 449 s; ICE 3767 ± 465 s), oxygen consumption (CON 41.6 ± 7.0 ml∙kg∙min(-1); ICE 42.4 ± 6.0 ml∙kg∙min(-1)) or respiratory exchange ratio (CON 0.88 ± 0.05; ICE 0.90 ± 0.06) between conditions (p > .05, d < 0.5). Core and skin temperature following the precooling period were lower in ICE (Tc 36.4 ± 0.4 °C; Tsk 31.6 ± 1.2 °C) compared with CON (Tc 37.1 ± 0.4 °C; Tsk 32.4 ± 0.7 °C) and remained lower until the 100 kJ mark of the cycle time-trial (p < .05, d > 1.0). Sweat onset occurred earlier in CON (228 ± 113 s) compared with ICE (411 ± 156 s) (p < .05, d = 1.63). Mean thermal sensation (CON 1.8 ± 2.0; ICE 1.2 ± 2.5, p < .05, d = 2.51), perceived exertion (CON 15.3 ± 2.9; ICE 14.9 ± 3.0, p < .05, d = 0.38) and perceived thirst (CON 5.6 ± 2.2; ICE 4.6 ± 2.4, p < .05, d = 0.98) were lower in ICE compared with CON. Crushed ice ingestion did not improve cycling performance in females, although perceptual responses were reduced.

  8. Late Pleistocene variations in Antarctica sea ice. I - Effect of orbital isolation changes. II - Effect of interhemispheric deep-ocean heat exchange

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.; Parkinson, Claire L.

    1988-01-01

    A dynamic-thermodynamic sea-ice model is presently used to ascertain the effects of orbitally-induced insolation changes on Antarctic sea-ice cover; the results thus obtained are compared with modified CLIMAP reconstructions of sea-ice 18,000 years ago. The minor influence exerted by insolation on Pleistocene sea-ice distributions is attributable to a number of factors. In the second part of this investigation, variations in the production of warm North Atlantic Deep Water are proposed as a mechanism constituting the linkage between climate fluctuations in the Northern and Southern hemispheres during the Pleistocene; this hypothesis is tested by examining the sensitivity of the dynamic-thermodynamic model for Antarctic sea-ice changes in vertical ocean heat flux, and comparing the simulations with modified CLIMAP sea-ice maps for 18,000 years ago.

  9. Bacterial ice nuclei impact cloud lifetime and radiative properties and reduce atmospheric heat loss in the BRAMS simulation model

    NASA Astrophysics Data System (ADS)

    Costa, Tassio S.; Gonçalves, Fábio L. T.; Yamasoe, Marcia A.; Martins, Jorge A.; Morris, Cindy E.

    2014-08-01

    This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as -2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties.

  10. A passive infrared ice detection technique for helicopter applications

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam L.; Hansman, R. John, Jr.

    1991-01-01

    A technique has been developed, and successfully tested, to detect icing remotely on helicopter rotor blades. Using passive infrared (IR) thermometry it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the leading edge of the blade is found to be warmer than the uniced trailing edge resulting in a chordwise temperature profile characteristic of icing. Preliminary tests, using an IR Thermal video system, were conducted on a static model in the NASA Icing Research Tunnel (IRT) for a variety of wet (glaze) and dry (rime) ice conditions. A prototype detector system was built consisting of a single point IR pyrometer, and experiments were run on a small scale rotor model. Using this prototype detector, the characteristic chordwise temperature profiles were again observed for a range of icing conditions. Several signal processing methods were investigated, to allow automatic recognition of the icing signature. Additionally, several implementation issues were considered. Based on both the static and subscale rotor tests, where ice was successfully detected, the passive IR technique appears to be promising for rotor ice detection.

  11. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Chao, D. F. K.

    1983-01-01

    Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.

  12. Comparison of the spatial and temporal distribution of fluxes of sensible heat, latent heat and CO2 from grid flights in BOREAS 1994 and 1996

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, Segun O.; Schuepp, Peter H.; MacPherson, Ian J.; Desjardins, Ray L.

    1999-11-01

    Analysis of airborne eddy correlation flux measurements of heat (H), moisture (LE) and CO2 (C) over two 16 km × 16 km heterogeneous grid sites in BOREAS 1994 (IFC-2) and 1996 are compared in order to examine persistence and variability in the distributions of surface characteristics and fluxes between the two years. The data used were obtained in grid patterns flown at 30 m above ground level, under generally clear sky and thermally unstable conditions. Maps of fluxes and surface characteristics were constructed by block averaging over 2 km windows along the flight lines, analyzed for similarities, and used to quantify spatial variability of the fluxes. Sensitivity analysis suggested minor effects of boundary layer variability and window size on the main features of the source/sink distributions. Incident radiation was more highly correlated with grid-averaged values of C than with H and LE. The dominant role of surface inhomogeneity, as opposed to local variations in solar energy input, on spatial variation of flux distributions was confirmed, and mesoscale motion was found negligible, probably because of the small sizes of homogeneous subareas with sufficient surface contrast to induce thermally generated motion. CO2 flux and greenness index were highly correlated, but correlation was site- and time-specific. The previously observed low correlation between sensible heat flux and surface minus air temperature difference (Ts-Ta), primarily over old black spruce, was confirmed. The high Bowen ratio over the forest contributed to the growth and development of the observed deep boundary layers over the sites, but no clear correlation emerged between boundary layer depth and observed near-surface fluxes.

  13. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  14. Heat-Induced Reactivation of HSV-1 in Latent Mice: Upregulation in the TG of CD83 and Other Immune Response Genes and Their LAT-ICP0 Locus

    PubMed Central

    Clement, Christian; Bhattacharjee, Partha S.; Kaufman, Herbert E.; Hill, James M.

    2009-01-01

    Purpose To determine changes in host gene expression in HSV-1 latent trigeminal ganglia (TG) after hyperthermic stress. Methods Scarified corneas of 6-week-old female BALB/c mice were inoculated with either HSV-1 17Syn+ (high phenotypic reactivator) or 17ΔPst(LAT−) (low phenotypic reactivator) at 104 plaque-forming units/eye. At 28 days after infection, viral reactivation was induced in some of the infected mice with hyperthermic stress, and the mice were killed after 1 hour. Heat-treated uninfected mice served as the control. Labeled cRNA derived from TG-isolated total RNA was hybridized to 430 2.0 chips containing 14,000 mouse genes. Gene expression was confirmed by quantitative real-time PCR. Results There was no difference in gene expression in the non–heat-treated mice. Gene expression in the TG of each of the heat-treated mouse groups (17Syn+, 17ΔPst(LAT−) and uninfected) yielded upregulation of more than twofold of a group of the same genes, designated as heat stress–induced gene expression. Twenty-nine genes (0.2%) were significantly upregulated (2- to 17-fold) when the heat stress–induced gene expression was subtracted from the gene expression of 17Syn+ latent TG relative to 17ΔPst(LAT−) latent TG 1 hour after mouse hyperthermic stress. Nine host adaptive immunity genes comprising Ig molecules, CD83, CD8A, ADA, and CCL8 were the largest subset upregulated, and all were confirmed by real-time PCR. Others identified included genes involved in hypothalamic-pituitary gland functions. Conclusions Hyperthermic stress–induced reactivation of the HSV-1 high phenotypic reactivator can upregulate gene expression involved in B-cell function and in T-cell function. CD83 is implicated in HSV-1 latency, suggesting it could also be involved in immune-mediated mechanisms of viral reactivation. PMID:19151393

  15. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  16. On the nature of the sea ice albedo feedback in simple models.

    PubMed

    Moon, W; Wettlaufer, J S

    2014-08-01

    We examine the nature of the ice-albedo feedback in a long-standing approach used in the dynamic-thermodynamic modeling of sea ice. The central issue examined is how the evolution of the ice area is treated when modeling a partial ice cover using a two-category-thickness scheme; thin sea ice and open water in one category and "thick" sea ice in the second. The problem with the scheme is that the area evolution is handled in a manner that violates the basic rules of calculus, which leads to a neglected area evolution term that is equivalent to neglecting a leading-order latent heat flux. We demonstrate the consequences by constructing energy balance models with a fractional ice cover and studying them under the influence of increased radiative forcing. It is shown that the neglected flux is particularly important in a decaying ice cover approaching the transitions to seasonal or ice-free conditions. Clearly, a mishandling of the evolution of the ice area has leading-order effects on the ice-albedo feedback. Accordingly, it may be of considerable importance to reexamine the relevant climate model schemes and to begin the process of converting them to fully resolve the sea ice thickness distribution in a manner such as remapping, which does not in principle suffer from the pathology we describe.

  17. Effectiveness of a light-weight ice-vest for body cooling while wearing fire fighter's protective clothing in the heat.

    PubMed

    Smolander, Juhani; Kuklane, Kalev; Gavhed, Désirée; Nilsson, Håkan; Holmér, Ingvar

    2004-01-01

    The aim of the study was to examine the effects of wearing an ice-vest (ca 1 kg) on physiological and subjective responses in fire fighters. The experiments were carried out on a treadmill in a hot-dry environment. The physical cooling effect of the ice-vest was measured with a thermal manikin. The ice-vest effectively reduced skin temperatures under the vest. On average, heart rate was 10 beats/min lower, the amount of sweating was reduced by 13%, and subjective sensations of effort and warmth were lower during work with the ice-vest compared to work without it. Thermal manikin tests indicated that the useful energy available from the vest for body cooling was rather high (58%). In conclusion, the ice-vest reduces physiological and subjective strain responses during heavy work in the heat, and may promote efficient work time by 10%.

  18. Lithospheric stresses due to radiogenic heating of an ice-silicate planetary body - Implications for Ganymede's tectonic evolution

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.

    1984-01-01

    Thermal evolution models of differentiated and undifferentiated ice-silicate bodies containing long-lived radiogenic heat sources are examined. Lithospheric sresses arise due to volume change of the interior and temperature change in the lithosphere. For an undifferentiated body, the surface stress peaks early in the evolution, while in the differentiated case, stresses peak later and continue to accumulate for longer periods of time. The variation of near-surface stress with depth shows that stresses for the undifferentiated body initially penetrate to great depths, but rapidly concentrate within a few kilometers of the surface. For the differentiated body, elastic stresses never accumulate at a depth greater than a few kilometers. These models are applied to consider long-term rdioactive heating as a possible mechanism of tectonic activity and bright terrain formation on Ganymede.

  19. Effect of heat on aspalathin, iso-orientin, and orientin contents and color of fermented rooibos (Aspalathus linearis) iced tea.

    PubMed

    Joubert, Elizabeth; Viljoen, Melvi; De Beer, Dalene; Manley, Marena

    2009-05-27

    The phenolic quality of commercial South African fermented rooibos iced teas in terms of aspalathin, iso-orientin, and orientin contents in comparison to a "cup of tea" was shown to be inferior. The role of the different manufacturing stages of powdered extract used in iced tea formulation and, more specifically, the impact of pasteurization and sterilization on the color and phenolic content of the beverage, were assessed as potential causes of its inferior phenolic quality. Aspalathin and its corresponding flavones, iso-orientin and orientin, were found to be present at all stages of the powdered extract production process. Spray-drying did not significantly (P ≥ 0.05) alter the aspalathin, iso-orientin, or orientin content of concentrates. Simulated normal-temperature sterilization (NTS at 121 °C/15 min) and high-temperature sterilization (HTS at 135 °C/4 min), but not necessarily pasteurization (93 °C/30 min), significantly (P < 0.05) reduced the aspalathin, iso-orientin, and orientin contents of different iced tea formulations. Heat-induced losses of iso-orientin and orientin were lower than those for aspalathin. Conversion of aspalathin to the flavones is implicated. The addition of ascorbic acid and/or citric acid to the base iced tea formulation containing only rooibos extract and sugar proved to be beneficial, especially for the retention of aspalathin. Browning, that is, absorbance at 420 nm, was significantly (P < 0.05) increased in the base formulation. In the case of the formulations also containing ascorbic acid and/or citric acid, absorbance remained unchanged or decreased when subjected to NTS and HTS treatments. This was attributed to removal of brown polymers from solution as the pH values of these formulations were lower than that of the base formulation.

  20. Heat Conduction with Freezing or Thawing

    DTIC Science & Technology

    1986-01-01

    with permafrost and seasonally frozen ground, thermal storage systems for solar energy, the freezing of food or biological mater- ial, and the...solar latent heat methods, and preservation of food . 1.1 THE NATURE OF THE THERMODYNAMIC SYSTEM Before any equations or physical laws are discussed...fluids or other solids. An important example Is a soil system consisting of a mineral skeleton whose voids may contain air, water, water A - vapor, ice

  1. Onsager heat of transport for water vapour at the surface of water and ice: thermal accommodation coefficients for water vapour on a stainless-steel surface.

    PubMed

    Pursell, Christopher J; Phillips, Leon F

    2006-10-28

    The Onsager heat of transport Q* has been measured for water vapour at the surface of water, supercooled water, and ice, over the temperature range -8 to +10 degrees C. For liquid water, Q* is constant at -24.7 +/- 3.6 kJ mol(-1) (two standard deviations) over the pressure range 4-9.5 Torr. Provided the ice is suitably aged, the |Q*| values are very similar for water and ice, a result which is consistent with the presence of a liquid-like layer at the surface of ice. The values are slightly larger for ice, in proportion to the ratio of the heat of sublimation of ice to the heat of vaporization of the liquid. Departures from linearity of plots of P against DeltaT are attributed to temperature jumps at the surface of the dry upper plate. Hence jump coefficients and thermal accommodation coefficients have been derived as a function of temperature for collisions of water molecules with type-304 stainless steel.

  2. The impact of poleward moisture and sensible heat flux on Arctic winter sea-ice variability.

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Lee, S.; Son, S. W.; Feldstein, S. B.; Kosaka, Y.

    2015-12-01

    The surface warming in recent decades has been most rapid in the Arctic, especially during the winter. Here, by utilizing global reanalysis and satellite datasets, we show that the northward flux of moisture into the Arctic during the winter strengthens the downward infrared radiation (IR) by 30-40 W m-2 over 1-2 weeks. This is followed by a decline of up to 10% in sea ice concentration over the Greenland, Barents and Kara Seas. A climate model simulation indicates that the wind-induced sea-ice drift leads the decline of sea-ice thickness during the early stage of the strong downward IR events, but that within one week the cumulative downward IR effect appears to be dominant. Further analysis indicates that strong downward IR events are preceded several days earlier by enhanced convection over the tropical Indian-western Pacific Ocean. This finding suggests that sea-ice predictions can benefit from an improved understanding of tropical convection and ensuing planetary wave dynamics.

  3. Deep Ocean Heat Uptake and the Influence of Sea Ice in the Southern Ocean

    SciTech Connect

    Cecilia M. Bitz

    2011-11-22

    Climate sensitivity defines the equilibrium response to climate forcing, but ocean heat uptake is equally important at controlling the transient, response. Heat stored beneath the mixed layer is not in close thermal contact with the atmosphere, and therefore warming below the mixed layer sequesters heat that would otherwise be available to warm the surface, slowing the rate of surface warming. In this study, we investigate mechanisms that control heat uptake, primarily in the Southern Ocean, where roughly 40% of the global heat uptake occurs.

  4. Evolution of a Canada Basin ice-ocean boundary layer and mixed layer across a developing thermodynamically forced marginal ice zone

    NASA Astrophysics Data System (ADS)

    Gallaher, Shawn G.; Stanton, Timothy P.; Shaw, William J.; Cole, Sylvia T.; Toole, John M.; Wilkinson, Jeremy P.; Maksym, Ted; Hwang, Byongjun

    2016-08-01

    A comprehensive set of autonomous, ice-ocean measurements were collected across the Canada Basin to study the summer evolution of the ice-ocean boundary layer (IOBL) and ocean mixed layer (OML). Evaluation of local heat and freshwater balances and associated turbulent forcing reveals that melt ponds (MPs) strongly influence the summer IOBL-OML evolution. Areal expansion of MPs in mid-June start the upper ocean evolution resulting in significant increases to ocean absorbed radiative flux (19 W m-2 in this study). Buoyancy provided by MP drainage shoals and freshens the IOBL resulting in a 39 MJ m-2 increase in heat storage in just 19 days (52% of the summer total). Following MP drainage, a near-surface fresh layer deepens through shear-forced mixing to form the summer mixed layer (sML). In late summer, basal melt increases due to stronger turbulent mixing in the thin sML and the expansion of open water areas due in part to wind-forced divergence of the sea ice. Thermal heterogeneities in the marginal ice zone (MIZ) upper ocean led to large ocean-to-ice heat fluxes (100-200 W m-2) and enhanced basal ice melt (3-6 cm d-1), well away from the ice edge. Calculation of the upper ocean heat budget shows that local radiative heat input accounted for at least 89% of the observed latent heat losses and heat storage (partitioned 0.77/0.23). These results suggest that the extensive area of deteriorating sea ice observed away from the ice edge during the 2014 season, termed the "thermodynamically forced MIZ," was driven primarily by local shortwave radiative forcing.

  5. The role of chemical additives to the phase change process of CaCl2.6H2O to optimize its performance as latent heat energy storage system

    NASA Astrophysics Data System (ADS)

    Sutjahja, I. M.; U, S. Rahayu A.; Kurniati, Nia; Pallitine, Ivyalentine D.; Kurnia, D.

    2016-08-01

    CaCl2.6H2O is one of salt hydrate based phase change material (PCM) which is suitable for room air-temperature stabilizer because it has the melting temperature just above the human comfort zone temperature (Tm ∼⃒ 29 oC) and a relatively large heat entalphy (AH ∼⃒ 190 kJ/kg). This paper reports the role of the type of chemical additives to PCM CaCl2.6H2O to the phase change process throughout the solidification process or heat release in order to optimize its performance as latent heat energy storage system. In this research we used several kinds of chemical additive, namely SrCl2.6H2O (1.0 wt%), BaCO3 (0.5 wt%), and K2CO3 (0.5 wt%). In terms of its latent time for phase change process the order the effectiveness of those chemical additives are reduced from SrCl2.6H2O, BaCO3and K2CO3. We found that this is also related to their role in suppression supercooling and phase separation effects which occurs during crystallization process of CaCl2.6H2O.

  6. Numerical simulation of comet nuclei. I - Water-ice comets

    NASA Technical Reports Server (NTRS)

    Herman, G.; Podolak, M.

    1985-01-01

    A one-dimensional numerical model of pure water-ice cometary nuclei is presented, and the influence of the nuclear interior as a heat reservoir on the behavior of the nuclear surface is examined. It is shown that a number of effects, including the thermal inertia due to heat stored in the core and the release of latent heat, which goes entirely into heating the adjacent layers or into sublimation on passing through a phase transition from amorphous to crystalline ice, can help to explain such characteristics as the asymmetrical lightcurve of Comet Halley. Results are given for the cases of Comet Schwassmann-Wachmann 1 and Comet Encke. Consideration is also given to the insulating effect of an evolving dust mantle. The role of this mantle in determining the surface temperature of the ice core is studied as a function of the mass fraction of the dust in the ice-dust mixture and the thermal conductivity of the nucleus. The loose-lattice model of Mendis and Brin (1977) indicates that both high dust to ice ratios and high-core conductivities inhibit mantle blowoff.

  7. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    PubMed

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  8. An Experimental Investigation of Ice-melting and heat transfer rates from submerged warm water jets upward impinging into ice-blocks as analogous for water-filled cavities formed during subglacial eruptions.

    NASA Astrophysics Data System (ADS)

    Jamshidnia, Hamidreza; Gudmundsson, Magnus Tumi

    2016-11-01

    Rates of energy transfer in water-filled cavities formed under glaciers by geothermal and volcanic activity are investigated by conducting experiments in which hot water jets (10°- 90°C) impinging into an ice block for jet Reynolds numbers in turbulent regime of 10000 -70000. It is found that heat flux is linearly dependent on jet flow temperature. Water jet melts a cavity into an ice block. Cavities had steep to vertical sides with a doming roof. Some of ice blocks used had trapped air bubbles. In these cases that melting of the ice could have led to trapping of air at the top of cavity, partially insulating the roof from hot water jet. The overall heat transfer rate in cavity formation varied with jet temperature from <100 kW m-2 to 900 kW m-2 while melting rates in the vertical direction yield heat transfer rates of 200-1200 kW m-2. Experimental heat transfer rates can be compared to data on subglacial melting observed for ice cauldrons in Iceland. For lowest temperatures the numbers are comparable to those for geothermal water in cool, subglacial water bodies and above subglacial flowpaths of jökulhlaups. Highest experimental rates for 80-90°C jets are 3-10 times less than inferred from observations of recent subglacial eruptions (2000-4000 kW m-2) . This can indicate that single phase liquid water convection alone may not be sufficient to explain the rates seen in recent subglacial eruptions, suggesting that forced 2 or 3 phase convection can be common.

  9. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  10. Airborne Passive Microwave Measurements from the AMISA 2008 Science Campaign for Modeling of Arctic Sea Ice Heating

    NASA Astrophysics Data System (ADS)

    Zucker, M. L.; Gasiewski, A. J.; CenterEnvironmental Technology

    2011-12-01

    While climate changes in the Arctic are occurring more rapidly than anywhere else on Earth model-based predictions of sea ice extent are at once both more optimistic than the data suggest and exhibit a high degree of variability. It is believed that this high level of uncertainty is the result of an inadequate quantitative understanding of surface heating mechanisms, which in large part is due to a lack of high spatial resolution data on boundary layer and surface energy processes during melt and freezeup. In August 2008 the NASA Arctic Mechanisms of Interactions between the Surface and Atmosphere (AMISA) campaign, in conjunction with the Swedish-led Arctic Summer Cloud-Ocean Study (ASCOS) conducted coordinated high spatial resolution measurements of geophysical parameters in the Arctic relevant to atmospheric-sea ice interaction. The IPY-approved AMISA campaign used airborne radiometers, including the Polarimetric Scanning Radiometer (PSR) system, a suite of L-band to V-band fixed-beam radiometers for cloud liquid and water vapor measurement, short and longwave radiation sensors, meteorological parameters from cloud size distribution probes, GPS dropsondes, and aerosol sensors. Calibration of the PSR is achieved through periodic observations of stable references such as thermal blackbody targets and noise diodes. A combination of methods using both infrequent external thermal blackbody views and brief frequent internal noise sources has proven practical for airborne systems such as the PSR and is proposed for spaceborne systems such as GeoMAS. Once radiometric data is calibrated it is then rasterized into brightness temperature images which are then geo-located and imported into Google EarthTM. An example brightness temperature map from the AMISA 2008 campaign is included in this abstract. The analysis of this data provides a basis for the development of a heat flux model needed to decrease the uncertainly in weather and climate predictions within the Arctic. In

  11. Measuring sea ice permeability as a function of the attenuation and phase velocity shift of an acoustic wave

    NASA Astrophysics Data System (ADS)

    Hudier, E. J.; Bahoura, M.

    2012-12-01

    Sea ice is a two-phase porous medium consisting of a solid matrix of pure ice and a salty liquid phase. At spring when ice permeability increases, it has been observed that pressure gradients induced at the ice-water interface upstream and downstream of pressure ridge keels can cause sea water and brine to be forced through the ice water boundary. It suggests that salt and heat fluxes through the bottom ice layers may be a major factor controlling the decay of an ice sheet. Knowing how water flows through the ice matrix is fundamental to a modeling of ocean-ice heat exchanges integrating the advective import/export of latent heat that result from melting/freezing within the ice. Permeability is the measurement of the ease with which fluids flow through a porous medium, however one of the most tricky to measure without altering the porosity of the sampled medium. To further complicate the challenge, horizontal and vertical permeability of the ice, referred as ice anisotropy, is significant. Acoustic wave propagation through porous media have been theorized to relate the acoustic velocity and attenuation to the physical properties of the tested material. It is a non-invasive technique, and as such could provide more reliable measurements of sea ice permeability than anything presently used. Simulations combining the Biot's and squirt flow mechanisms are performed to investigate the effect of permeability on the attenuation and phase velocity as a function of frequency. We first present the attenuation dispersion curves for an isotropic sea ice, then low-frequency and high-frequency limits are determined. Optimal frequency range and resolution requirements are evaluated for testing.

  12. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic

    NASA Astrophysics Data System (ADS)

    Tremblin, Maxime; Hermoso, Michaël; Minoletti, Fabrice

    2016-10-01

    Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ˜33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO2 values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO2 decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

  13. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.

    PubMed

    Tremblin, Maxime; Hermoso, Michaël; Minoletti, Fabrice

    2016-10-18

    Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ∼33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO2 values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO2 decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

  14. Reduction of residential heating and cooling requirements possible through atmospheric seeding with ice-forming nuclei

    SciTech Connect

    Detwiler, A.; Cho, H.

    1982-07-01

    A rough analysis shows that it may be economically feasible to reduce space heating costs during the cold season in the northern United States by modifying naturally-occurring cloud cover, or by artificially forming clouds in otherwise clear skies. 10 references.

  15. Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery

    DTIC Science & Technology

    2014-09-01

    content of the IOBL was calculated by vertically integrating the departure from freezing for the time series along the AOFB drift track. This study...AOFB drift track. This study represents one of the first attempts to quantify local open water fraction and upper ocean heat content using 1-meter...from the Transpolar Drift . ...........................................................53 xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii LIST

  16. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion.

    PubMed

    Siegel, Rodney; Maté, Joseph; Watson, Greig; Nosaka, Kazunori; Laursen, Paul B

    2012-01-01

    The purpose of this study was to compare the effects of pre-exercise ice slurry ingestion and cold water immersion on submaximal running time in the heat. On three separate occasions, eight males ran to exhaustion at their first ventilatory threshold in the heat (34.0 ± 0.1 ° C, 52 ± 3% relative humidity) following one of three 30 min pre-exercise manoeuvres: (1) ice slurry ingestion; (2) cold water immersion; or (3) warm fluid ingestion (control). Running time was longer following cold water immersion (56.8 ± 5.6 min; P = 0.008) and ice slurry ingestion (52.7 ± 8.4 min; P = 0.005) compared with control (46.7 ± 7.2 min), but not significantly different between cold water immersion and ice slurry ingestion (P = 0.335). During exercise, rectal temperature was lower with cold water immersion from 15 and 20 min into exercise compared with control and ice slurry ingestion, respectively, and remained lower until 40 min (P = 0.001). At exhaustion rectal temperature was significantly higher following ice slurry ingestion (39.76 ± 0.36 ° C) compared with control (39.48 ± 0.36 ° C; P = 0.042) and tended to be higher than cold water immersion (39.48 ± 0.34 ° C; P = 0.065). As run times were similar between conditions, ice slurry ingestion may be a comparable form of pre-cooling to cold water immersion.

  17. Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Oddsson, Björn; Gudmundsson, Magnús T.; Edwards, Benjamin R.; Thordarson, Thorvaldur; Magnússon, Eyjólfur; Sigurðsson, Gunnar

    2016-07-01

    During the 2010 Eyjafjallajökull eruption in South Iceland, a 3.2-km-long benmoreite lava flow was emplaced subglacially during a 17-day effusive-explosive phase from April 18 to May 4. The lava flowed to the north out of the ice-filled summit caldera down the outlet glacier Gígjökull. The flow has a vertical drop of about 700 m, an area of ca. 0.55 km2, the total lava volume is ca. 2.5·107 m3 and it is estimated to have melted 10-13·107 m3 of ice. During the first 8 days, the lava advanced slowly (<100 m day-1), building up to a thickness of 80-100 m under ice that was initially 150-200 m thick. Faster advance (up to 500 m day-1) formed a thinner (10-20 m) lava flow on the slopes outside the caldera where the ice was 60-100 m thick. This subglacial lava flow was emplaced along meltwater tunnels under ice for the entire 3.2 km of the flow field length and constitutes 90 % of the total lava volume. The remaining 10 % belong to subaerial lava that was emplaced on top of the subglacial lava flow in an ice-free environment at the end of effusive activity, forming a 2.7 km long a'a lava field. About 45 % of the thermal energy of the subglacial lava was used for ice melting; 4 % was lost with hot water; about 1 % was released to the atmosphere as steam. Heat was mostly released by forced convection of fast-flowing meltwater with heat fluxes of 125-310 kWm-2.

  18. An Experimental Investigation of Ice Melting and Heat Transfer Characteristics from Submerged Jets of Hot Water, Implications for Subglacial Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Jamshidnia, H.; Gudmundsson, M. T.

    2014-12-01

    The rates and processes of energy transfer in water-filled cavities formed under glaciers by geothermal and volcanic activity has been investigated by designing, developing, and using an experimental setup in which hot water jets can impinge on an ice block. Systematic sets of experimental runs typically lasting 60-90 seconds with water jet temperatures in the range 10° - 90°C have been performed with initial ice block temparature. It is quantitatively found that heat flux from flowing water to ice is linearly dependent on temperature of the jet flow. The hot water jet meltes out a cavity into the ice block during the process. The cavities had steep to vertical sides with a doming roof. Some of the ice blocks used had trapped air bubbles. In these cases melting of the ice lead to the trapping of air at the top of the cavity, partially insulating the roof from the hot water jet. Such cavities had lower aspect ratios (height/width) and flatter and less dome shaped roofs than did cavities in ice blocks with little or no air bubbles. The overall heat transfer rate in cavity formation varied with jet temperature from <100 kW m-2 to ~900 kW m-2 while melting rates in the vertical direction yield heat transfer rates of 200-1200 kW m-2. The observed experimental heat transfer rates can be compared to data on subglacial melting observed for ice cauldrons in various settings in Iceland. For the lowest experimental temperatures the numbers are comparable to those found for geothermal water in cool, subglacial water bodies and above subglacial flowpaths of jökulhlaups. However, the highest experimental rates for 80-90°C jets are 3-10 times less than inferred from observations of recent subglacial eruptions (2000-4000 kW m-2). This can indicate that single phase liquid water convection alone is not sufficient to explain the rates seen in recent subglacial eruptions in Iceland, suggesting that during such eruptions forced two-phase (liquid and steam) or three phase (liquid

  19. Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, Roger H.; Williams, Trevor; Henry, Stuart; ,; Hansaraj, Dhiresh

    2010-01-01

    The Antarctic Drilling Program (ANDRILL) successfully drilled and cored a borehole, AND-1B, beneath the McMurdo Ice Shelf and into a flexural moat basin that surrounds Ross Island. Total drilling depth reached 1285 m below seafloor (mbsf) with 98 percent core recovery for the detailed study of glacier dynamics. With the goal of obtaining complementary information regarding heat flow and permeability, which is vital to understanding the nature of marine hydrogeologic systems, a succession of three temperature logs was recorded over a five-day span to monitor the gradual thermal recovery toward equilibrium conditions. These data were extrapolated to true, undisturbed temperatures, and they define a linear geothermal gradient of 76.7 K/km from the seafloor to 647 mbsf. Bulk thermal conductivities of the sedimentary rocks were derived from empirical mixing models and density measurements performed on core, and an average value of 1.5 W/mK ± 10 percent was determined. The corresponding estimate of heat flow at this site is 115 mW/m2. This value is relatively high but is consistent with other elevated heat-flow data associated with the Erebus Volcanic Province. Information regarding the origin and frequency of pathways for subsurface fluid flow is gleaned from drillers' records, complementary geophysical logs, and core descriptions. Only two prominent permeable zones are identified and these correspond to two markedly different features within the rift basin; one is a distinct lithostratigraphic subunit consisting of a thin lava flow and the other is a heavily fractured interval within a single thick subunit.

  20. Heat pumps using heat from lakes and the sea

    NASA Astrophysics Data System (ADS)

    Davin, B. L.; Nordling, J.; Sandart, K.

    1981-01-01

    A study is presented on heat pump designs and processes in which lake or sea water both enters and leaves the heat exchanger used in the liquid state, so that only sensible (rather than liquid-solid phase transition, or latent) heat is extracted. Among the factors that must be considered in meeting these criteria are: (1) water temperature should not fall below 3 C, in order to avoid icing, and its average temperature should be as high as possible; (2) sufficient quantitites of water should be available at the lowest required temperature level, thereby eliminating the use of the smaller lakes as sources; (3) the corrosion risks of salinity must be weighed against its advantageous depression of the freezing point; and (4) biofouling must be prevented on all heat-transfer surfaces. Detailed performance and economic figure comparisons are given for 100 kW, 1 MW, and 10MW plants.

  1. Quasi-steady-state Model of Subsurface Ice on Mars through Obliquity Variation

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Wood, S.

    2010-10-01

    Stability and evolution of subsurface ice is relevant to the understanding of past and current Mars geology and climatology. The effect of subsurface water vapor reaching a diffusive steady-state is considered here. As long as deep water is present (as ancient ice, groundwater, or dehydrating minerals), water vapor will diffuse from the subsurface towards the atmosphere (i.e. the spatial location of lower vapor density) and recondense as ice as it experiences colder temperatures near the surface. This process allows the occurrence of stable subsurface ice at lower latitudes and greater depths than the near-surface ice in equilibrium with atmospheric water vapor. One aspect of our investigation is updating a previous steady-state model from Mellon and Jakosky [1993, 1995] and Mellon et al. [1997] with newer expressions for thermal conductivity and tortuosity. Also considered are the effects of latent heat (i.e. heat of vaporization and condensation) which may have a significant role in this process. Theoretical models of thermal conductivity are especially important as variation in conductivity is based on the ice content in the porous media (e.g. Martian regolith). The model is then applied to a larger scale in determining ice allocation for a hypothetical Martian hemisphere. By changing orbital parameters, such as obliquity, we can see the effects made on the location, depth, and density of ice beneath the Martian surface.

  2. Technology for Ice Rinks

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.

  3. Temporal variability of the energy balance of thick arctic pack ice

    SciTech Connect

    Lindsay, R.W.

    1998-03-01

    The temporal variability of the six terms of the energy balance equation for a slab of ice 3 m thick is calculated based on 45 yr of surface meteorological observations from the drifting ice stations of the former Soviet Union. The equation includes net radiation, sensible heat flux, latent heat flux, bottom heat flux, heat storage, and energy available for melting. The energy balance is determined with a time-dependent 10-layer thermodynamic model of the ice slab that determines the surface temperature and the ice temperature profile using 3-h forcing values. The observations used for the forcing values are the 2-m air temperature, relative humidity and wind speed, the cloud fraction, the snow depth and density, and the albedo of the nonponded ice. The downwelling radiative fluxes are estimated with parameterizations based on the cloud cover, the air temperature and humidity, and the solar angle. The linear relationship between the air temperature and both the cloud fraction and the wind speed is also determined for each month of the year. The annual cycles of the mean values of the terms of the energy balance equation are all nearly equal to those calculated by others based on mean climatological forcing values. The short-term variability, from 3 h to 16 days, of both the forcings and the fluxes, in investigated on a seasonal basis with the discreet wavelet transform. Significant diurnal cycles are found in the net radiation, storage, and melt, but not in the sensible or latent heat fluxes. The total annual ice-melt averages 0.67 m, ranges between 0.29 and 1.09 m, and exhibits large variations from year to year. It is closely correlated with the albedo and, to a lesser extent, with the latitude and the length of the melt season. 29 refs., 14 figs., 3 tabs.

  4. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat.

    PubMed

    Stanley, Jamie; Leveritt, Michael; Peake, Jonathan M

    2010-12-01

    We compared the effects of an ice-slush beverage (ISB) and a cool liquid beverage (CLB) on cycling performance, changes in rectal temperature (T (re)) and stress responses in hot, humid conditions. Ten trained male cyclists/triathletes completed two exercise trials (75 min cycling at ~60% peak power output + 50 min seated recovery + 75% peak power output × 30 min performance trial) on separate occasions in 34°C, 60% relative humidity. During the recovery phase before the performance trial, the athletes consumed either the ISB (mean ± SD -0.8 ± 0.1°C) or the CLB (18.4 ± 0.5°C). Performance time was not significantly different after consuming the ISB compared with the CLB (29.42 ± 2.07 min for ISB vs. 29.98 ± 3.07 min for CLB, P = 0.263). T (re) (37.0 ± 0.3°C for ISB vs. 37.4 ± 0.2°C for CLB, P = 0.001) and physiological strain index (0.2 ± 0.6 for ISB vs. 1.1 ± 0.9 for CLB, P = 0.009) were lower at the end of recovery and before the performance trial after ingestion of the ISB compared with the CLB. Mean thermal sensation was lower (P < 0.001) during recovery with the ISB compared with the CLB. Changes in plasma volume and the concentrations of blood variables (i.e., glucose, lactate, electrolytes, cortisol and catecholamines) were similar between the two trials. In conclusion, ingestion of ISB did not significantly alter exercise performance even though it significantly reduced pre-exercise T(re) compared with CLB. Irrespective of exercise performance outcomes, ingestion of ISB during recovery from exercise in hot humid environments is a practical and effective method for cooling athletes following exercise in hot environments.

  5. The Gibbs-Thomson effect and intergranular melting in ice emulsions: Interpreting the anomalous heat capacity and volume of supercooled water

    NASA Astrophysics Data System (ADS)

    Johari, G. P.

    1997-12-01

    Calculations for the Gibbs-Thomson effect and the intergranular melting of the ice droplets in (water) emulsions at temperatures below 273.16 K show that water and ice coexist at thermodynamic equilibrium in an apparently frozen emulsion. The fraction of water at this equilibrium increases on heating, which alters further the thermodynamic properties of the emulsion. As some of the ice in the emulsion has already melted, the increase in the enthalpy, H, and heat capacity, Cp, and the decrease in the volume measured on the normal melting at 273.16 K, are less than the values anticipated. The ratio of this increase in H, or Cp, on melting of the emulsion to the corresponding value for pure ice, underestimates the emulsion's water content which, when used for scaling the difference between the Cp of the unfrozen and frozen emulsion at lower temperatures, as in earlier studies, leads to a larger Cp of supercooled water than the actual value. Similar scaling of the corresponding difference between the volume leads to higher volume, or lower density, than the actual value. A formalism for this premelting effect is given for both the adiabatic and differential scanning calorimetry (DSC), and its magnitude is calculated. New experiments show that the rise in the DSC signal, or equivalently in the apparent Cp observed on heating the frozen emulsion, occurs over a temperature range much wider than the Gibbs-Thomson effect and intergranular melting predict, for which reasons are given. It is shown that Cp of the dispersant phase is also affected by the melting of ice droplets. There are four consequences of the premelting effects for all finely dispersed materials, for frozen water emulsions below 273.16 K: (i) water and ice coexist in the emulsion, (ii) its apparent Cp will increase with increase in the heat input used to measure it, (iii) the apparent Cp will increase with decrease in the average size of the droplets, and (iv) the apparent Cp will decrease on annealing the

  6. From the Sun to the Ice - Then Where? A Bi-polar, Integrated View of the Role of Polar Snow and Floating Ice Covers in the Earth's Heat Budget During IPY 2007/08

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Grenfell, T.; Jeffries, M.; Perovich, D.; Sturm, M.

    2003-12-01

    The polar regions play a key role in the disposition of energy and in particular solar radiation in the earth's climate system. With the largest seasonal variations in surface albedo occurring over the polar oceans and with substantial changes in the extent and nature of the snow and ice covers in recent decades, the polar regions are a critical link between top-of-the atmosphere radiative fluxes and solar energy absorbed by the earth system. While recent studies have greatly improved our knowledge of the heat budget of the polar oceans, we are still far from understanding a number of fundamental questions related to the role of snow and ice in the global radiation budget and their importance for albedo feedback processes. For example, currently albedo parameterizations in large-scale sea ice and climate models are only partially successful in taking into account the physical processes driving seasonal and interannual albedo changes. In fact, the majority of models employ different albedo parameterizations for northern and southern hemisphere snow and sea ice. This is dictated by the strong contrasts in snow and ice melt processes in Arctic and Antarctic, which in of themselves are not all that well understood. Our own research in the Western Arctic and in the southern Ross Sea indicates that snow may play a crucial, currently underestimated role in governing these processes and hence the nature and magnitude of ice-albedo feedback processes. Here, we propose that an integrated, bi-polar examination of the interaction between snow and floating ice covers (sea and lake ice), coupled with a global-scale analysis of the role of polar ice masses in affecting the earth's radiation budget would provide an interesting and scientifically significant cryospheric thread within the framework of the IPY 2007/08. This work would also address other important aspects such as large-scale cloud radiative forcing over ice surfaces and spatio-temporal partitioning of the radiation

  7. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  8. Latent Period of Relaxation.

    PubMed

    Kobayashi, M; Irisawa, H

    1961-10-27

    The latent period of relaxation of molluscan myocardium due to anodal current is much longer than that of contraction. Although the rate and the grade of relaxation are intimately related to both the stimulus condition and the muscle tension, the latent period of relaxation remains constant, except when the temperature of the bathing fluid is changed.

  9. Arctic temperature amplification and sea-ice melt

    NASA Astrophysics Data System (ADS)

    Graversen, R. G.; Kapsch, M.; Mauritzen, T.; Tjernström, M.

    2012-04-01

    In recent decades, Arctic temperatures increase more than the global average - this has become known as Arctic temperature amplification. At the same time, Arctic sea-ice extent is shrinking with a pace being largest in summer. Reanalysis data show Arctic temperature amplification in the free troposphere above the boundary layer. In summer this warming aloft cannot be attributed to surface processes. This is because the surface-air temperature trends are modest in the Arctic during summer, since the ice-melt keeps the temperatures close to the melting point. Rather the warming in the free troposphere could be due to changes of the heat advection into the Arctic and changes of the cloudiness. The warming aloft induces an increase of the energy flux towards the surface in terms of longwave radiation and turbulent fluxes, which contributes to the sea-ice melt during summer. When the ice melts, surface-based processes start acting, among them the surface-albedo feedback where the sea-ice reduction leads to an increase of absorption of solar radiation. During summer, the excess of energy at the surface is stored in the ocean, both internally as heat, and latently due to the ice melt. This energy is released during the following autumn and winter causing positive surface-air temperature in these seasons. The extreme ice melt in 2007 is an example of this chain of processes. During the summer of 2007 the Arctic sea ice shrank to the lowest extent ever observed. Using the state-of-the-art ERA-Interim reanalysis data, the role of the atmospheric energy transport in this extreme melt event is explored.

  10. Convectively Driven Heat Flux Heterogeneity in Europa's Mantle

    NASA Astrophysics Data System (ADS)

    Travis, Bryan; Schubert, G.; Palguta, J.

    2006-09-01

    Features on the surface of Europa may reflect non-uniform heating in an underlying ocean due to variations in heat flux at the mantle surface. Pore water convection can generate a spatially heterogeneous heat flux in a fractured, permeable mantle, as illustrated in 2-D computer simulations of the thermal evolution of Europa. The model uses three layers - core, silicate mantle, and H2O (liquid and frozen). Processes active in the model include radiogenic heating, tidal dissipative heating (TDH), thermal diffusion, latent heat of melting and pore water convection. Starting from a cold Europa, radiogenic heating and TDH produce a temperature profile ranging from a peak near 1150 oC in the deep interior to 15 oC at the mantle surface, overlain by an 80 km deep ocean layer at 3 oC, capped by an ice shell approximately 20 km thick. This structure provides initial conditions for our pore water convection simulation. Mantle permeability is based on Earth values. An initial, very strong flow gives way to a weaker quasi-steady pattern of convection in the mantle's porosity. Plumes rise from the mantle at a roughly 10o spacing, through the ocean layer up to the base of the ice. These are typically 50 - 100 km wide at the base of the ice. Plume heat flux is 10-12 W/m2 during the initial transient, but later drops to about 0.5 - 1.5 W/m2. Heating at the base of the ice shell is spatially heterogeneous, but only strong enough to produce significant melt-through during the initial transient. However, strong spatial heterogeneity of basal heating of the ice shell could significantly influence convection in the ice phase. This work was supported by a grant from the Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory and by the NASA Planetary Geology and Geophysics Program.

  11. Latent fingerprint matching.

    PubMed

    Jain, Anil K; Feng, Jianjiang

    2011-01-01

    Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.

  12. Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica

    NASA Astrophysics Data System (ADS)

    Jourdain, Nicolas C.; Mathiot, Pierre; Gallée, Hubert; Barnier, Bernard

    2011-04-01

    Air-sea ice-ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean-sea ice-atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean-sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.

  13. Surface energy budget of the Larsen C Ice Shelf, and its relation to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; King, J. C.; Gray, T.; van den Broeke, M. R.; Reijmer, C. H.

    2012-04-01

    Ponding of melt water has played a pivotal role in the breakup of ice shelves in the past decades. In-situ observations are important to determine the relation between meltwater production and the atmospheric circulation over the ice shelves. Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the north-south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the reduction of net longwave and latent heat fluxes, providing energy for significant melt.

  14. Drivers of past and future Arctic sea-ice evolution in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Burgard, Clara; Notz, Dirk

    2016-04-01

    The Arctic sea-ice cover has been melting rapidly over the last decades. The main drivers of this sea-ice retreat are assumed to be changes in sea-ice thermodynamics, driven by changes in atmospheric surface fluxes and the oceanic heat flux at the base of the ice. To identify the fluxes most affecting past and future sea-ice evolution (under the RCP4.5 scenario) in climate models, we analyzed the surface energy budget over the Arctic Ocean in global climate models involved in the Coupled Model Intercomparison Project 5 (CMIP5) framework. In the multi-model ensemble annual mean, the sum of atmospheric fluxes increases from 1990 to 2045, mainly driven by an increase of the radiative surface fluxes and decreases from 2045 to 2099, mainly driven by an increase in upward turbulent heat fluxes. However, due to the large model spread, the future changes in the sum of atmospheric fluxes are not significant. These non-significant changes result from several effects counteracting each other under climate change. On the one hand, a higher CO2 concentration, air temperature and air moisture lead to a higher incoming energy flux (incoming longwave radiation). On the other hand, the resulting melt of sea ice leads to higher outgoing energy fluxes (outgoing longwave radiation, sensible heat flux, latent heat flux). Shortwave radiation behaves differently, but also in two counteracting ways, as higher air moisture leads to a decrease in incoming shortwave radiation and less sea-ice cover leads to a decrease in outgoing shortwave radiation. The small changes in the atmospheric fluxes can be converted to an energy gain or loss by the ocean/sea-ice system, either as sensible heat by changing the oceanic heat content or as latent heat by changing the sea-ice volume. Such analysis in the multi-model ensemble mean shows that the loss of energy at the surface due to atmospheric fluxes is decreasing during the 21st century, leading to an increase in oceanic heat content and an increase in

  15. Atmospheric Response to Variations in Arctic Sea Ice Conditions

    NASA Astrophysics Data System (ADS)

    Bhatt, U.; Alexander, M.; Walsh, J.; Timlin, M.; Miller, J.

    2001-12-01

    While it is generally accepted that changes in air temperature and circulation determine sea ice conditions, it is not understood how the atmosphere is influenced by changes in sea ice. We employ the NCAR CCM 3.6 with specified ice extent and sea surface temperatures (sst). The overarching question addressed in this study is: how do variations in sea ice influence the atmosphere? We are particularly interested in the summer time response to highlight this unique aspect of this research. A control experiment has been integrated for 55 years by repeating the mean annual cycle of observed sea ice extent (either 0% or 100% ice cover) and sst, based on the period 1979-99. Sets of 50 member ensemble experiments were constructed by integrating the CCM from October to April using climatological sst (same as control) and observed sea ice extent from the winters of 1982-83 (ice maximum) and 1995-96 (ice minimum). Similar summertime sensitivity experiments were performed using ice extent conditions from April to October during 1982 (maximum) and 1995 (minimum). While responses were found both in winter and summer, the results described below refer to the summer of 1995. A set of 50 ensembles was also integrated for the summer of 1995 using sea ice concentration instead of extent. During the summer of 1995, negative sea ice anomalies were particularly large in the Siberian Arctic. Sea ice reductions result in increased surface and air temperatures and enhanced latent, sensible, and longwave fluxes out of the ocean. However, the net heat flux out of the ocean decreases because the changes are dominated by increased absorption of solar radiation over the low-albedo ocean. Cloud feedbacks are important in the Arctic and the downwelling solar at the surface decreases. The total cloud amount decreases due to reductions in low level clouds, however, convective cloud amounts increased. The net cloud radiative (shortwave and longwave) forcing is smaller in the experiment than the

  16. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Global Atmospheric Heat Distributions Observed from Space

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Fan, Tai-Fang

    2009-01-01

    This study focuses on the observations of global atmospheric heat distributions using satellite measurements. Major heat components such as radiation energy, latent heat and sensible heat are considered. The uncertainties and error sources are assessed. Results show that the atmospheric heat is basically balanced, and the observed patterns of radiation and latent heat from precipitation are clearly related to general circulation.

  18. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2015-09-30

    solar energy was deposited into first year ice than multiyear ice. 4 Figure 1. Albedo evolution and solar heat input for multiyear (MY) and...S. R. Hudson, D. K. Perovich, M. Nicolaus, T. I. Karlsen, K. Fossan, and M. Bratrein (2014), Autonomous observations of solar energy partitioning in...quantitative understanding of the partitioning of solar radiation by the Arctic sea ice cover and its impact on the heat and mass balance of the ice and upper

  19. Numerical simulation of one-dimensional heat transfer in composite bodies with phase change. M.S. Thesis, 1980 Final Report; [wing deicing pads

    NASA Technical Reports Server (NTRS)

    Dewitt, K. J.; Baliga, G.

    1982-01-01

    A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.

  20. The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Poinar, Kristin

    As the climate has warmed over the past decades, the amount of melt on the Greenland Ice Sheet has increased, and areas higher on the ice sheet have begun to melt regularly. This increase in melt has been hypothesized to enhance ice flow in myriad ways, including through basal lubrication and englacial refreezing. By developing and interpreting thermal ice-sheet models and analyzing remote sensing data, I evaluate the effect of these processes on ice flow and sea-level rise from the Greenland Ice Sheet. I first develop a thermal ice sheet model that is applicable to western Greenland. Key components of this model are its treatment of multiple phases (solid ice and liquid water) and its viscosity-dependent velocity field. I apply the model to Jakobshavn Isbrae, a fast-flowing outlet glacier. This is an important benchmark for my model, which I next apply to the topics outlined above. I use the thermal model to calculate the effect of englacial latent-heat transfer (meltwater refreezing within englacial features such as firn and crevasses) on ice dynamics in western Greenland. I find that in slow-moving areas, this can significantly warm the ice, but that englacial latent heat transfer has only a minimal effect on ice motion (60%) of the ice flux into the ocean, evidence of deep englacial warming is virtually absent. Thus, the effects of englacial latent heat transfer on ice motion are likely limited to slow-moving regions, which limits its importance to ice-sheet mass balance. Next, I couple a model for ice fracture to a modified version of my thermal model to calculate the depth and shape evolution of water-filled crevasses that form in crevasse fields. At most elevations and for typical water input volumes, crevasses penetrate to the top ~200--300 meters depth, warm the ice there by ~10°C, and may persist englacially, in a liquid state, for multiple decades. The surface hydrological network limits the amount of water that can reach most crevasses. We find that

  1. Inception of ice accretion by ice crystal impact

    NASA Astrophysics Data System (ADS)

    Löwe, Jens; Kintea, Daniel; Baumert, Arne; Bansmer, Stephan; Roisman, Ilia V.; Tropea, Cameron

    2016-09-01

    In this experimental and theoretical study the ice accretion phenomena on a heated cylinder in Braunschweig Icing Wind Tunnel are investigated. The ice crystal size, velocity, the liquid-to-total mass ratio are accurately controlled. The evolution of the cylinder temperature, the time required for the inception of the ice accretion, and the ice accretion rate are measured for various operating conditions. The surface temperature of the solid target is determined by balancing the heating power in the wall and the cooling effect of the stream of ice particles. We have discovered that the inception of the ice crystal accretion is determined by the instant when the surface temperature of the heated target reduces to the freezing temperature. This result will help to model the phenomena of ice crystal accretion.

  2. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect

    Robert A. Houze, Jr.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  3. Potentiation of latent inhibition.

    PubMed

    Rodriguez, Gabriel; Hall, Geoffrey

    2008-07-01

    Rats were given exposure either to an odor (almond) or a compound of odor plus taste (almond plus saline), prior to training in which the odor served as the conditioned stimulus. It was found, for both appetitive and aversive procedures, that conditioning was retarded by preexposure (a latent inhibition effect), and the extent of the retardation was greater in rats preexposed to the compound (i.e., latent inhibition to the odor was potentiated by the presence of the taste). In contrast, the presence of the taste during conditioning itself overshadowed learning about the odor. We argue that the presence of the salient taste in compound with the odor enhances the rate of associative learning, producing a rapid loss in the associability of the odor. This loss of associability will generate both overshadowing and the potentiation of latent inhibition that is observed after preexposure to the compound.

  4. Multiple climate and sea ice states on a coupled Aquaplanet

    NASA Astrophysics Data System (ADS)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  5. Vertical heat transfer based on direct microstructure measurements in the ice-free Pacific-side Arctic Ocean: the role and impact of the Pacific water intrusion

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Kikuchi, T.; Inoue, R.

    2014-12-01

    This study quantifies diapycnal mixing and vertical heat transfer in the Pacific side of the Arctic Ocean, where sea-ice cover has disappeared between July and September in the last few decades. We conducted microstructure measurements in the open water region around the Canada Basin from late summer to fall in 2009 and 2010 using RV Mirai. In the study domain, the dissipation rate of turbulent kinetic energy, ɛ, is typically as low level as O(10-10) W kg-1, resulting in vertical heat diffusivity of O(10-7) m2 s-1, which is close to the molecular diffusivity of heat, suggesting comparatively little predominance of mechanical turbulent mixing. An exception is the case at the Barrow Canyon, where the strong baroclinic throughflow generates substantial vertical mixing, producing ɛ >O(10-7) W kg-1, because of the shear flow instability. Meanwhile, in the confluence region, where the warm/salty Pacific water and the cold/fresh Arctic basin water encounter, the micro-temperature profiles revealed a localized enhancement in vertical diffusivity of heat, reaching O(10-5) m2 s-1 or greater. In this region, an intrusion of warm Pacific water creates a horizontally interleaved structure, where the double-diffusive mixing facilitates vertical heat transfer between the intruding Pacific water and the surrounding basin waters.

  6. Ice-nucleating bacteria control the order and dynamics of interfacial water

    DOE PAGES

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  7. Ice-nucleating bacteria control the order and dynamics of interfacial water.

    PubMed

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A; Fischer, Sean A; Pfaendtner, Jim; Backus, Ellen H G; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F; Knopf, Daniel A; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.

  8. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  9. Ice-nucleating bacteria control the order and dynamics of interfacial water

    SciTech Connect

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Frohlich-Nowoisky, Janine; Schmuser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Poschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.

  10. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  11. Sauna, shower, and ice water immersion. Physiological responses to brief exposures to heat, cool, and cold. Part I. Body fluid balance.

    PubMed

    Kauppinen, K

    1989-04-01

    Nine men were subjected to four temperature exposures to detect changes in weight, hemoglobin, hematocrit, and relative volumes of plasma. The exposures were: (A) sauna and head-out ice water immersion; (B) sauna and 15 degrees C shower; (C) sauna and room temperature; (D) head-out ice water immersion and room temperature. All experiments were repeated and ended with recovery at room temperature. The greatest weight loss (mean +/- S.D.) (i.e. sweating) was observed in C, 544 +/- 207 g. The weight losses (mean +/- S.D.) in A and B were equal, 417 +/- 253 g and 437 +/- 221 g. The relative post-exposure plasma volumes decreased 7.2% in A, 8.0% in B, and 5.6% in C; the decrease in D (1.3%) was statistically not significant. Combinations of heat and cold or cool (A and B) reduced the plasma volumes more than mere heat (C), suggesting a disturbance of cutaneous circulation producing transient edema in the skin.

  12. Latent Variable Interaction Modeling.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.

    2002-01-01

    Used simulation to study two different approaches to latent variable interaction modeling with continuous observed variables: (1) a LISREL 8.30 program and (2) data analysis through PRELIS2 and SIMPLIS programs. Results show that parameter estimation was similar but standard errors were different. Discusses differences in ease of implementation.…

  13. Latent Semantic Analysis.

    ERIC Educational Resources Information Center

    Dumais, Susan T.

    2004-01-01

    Presents a literature review that covers the following topics related to Latent Semantic Analysis (LSA): (1) LSA overview; (2) applications of LSA, including information retrieval (IR), information filtering, cross-language retrieval, and other IR-related LSA applications; (3) modeling human memory, including the relationship of LSA to other…

  14. Extending periodic eddy covariance latent heat fluxes through tree sap-flow measurements to estimate long-term total evaporation in a peat swamp forest

    NASA Astrophysics Data System (ADS)

    Clulow, A. D.; Everson, C. S.; Mengistu, M. G.; Price, J. S.; Nickless, A.; Jewitt, G. P. W.

    2015-05-01

    A combination of measurement and modelling was used to find a pragmatic solution to estimate the annual total evaporation from the rare and indigenous Nkazana Peat Swamp Forest (PSF) on the east coast of Southern Africa to improve the water balance estimates within the area. Actual total evaporation (ETa) was measured during three window periods (between 7 and 9 days each) using an eddy covariance (EC) system on a telescopic mast above the forest canopy. Sap flows of an understory tree and an emergent tree were measured using a low-maintenance heat pulse velocity system for an entire hydrological year (October 2009 to September 2010). An empirical model was derived, describing the relationship between ETa from the Nkazana PSF and sap-flow measurements. These overlapped during two of the window periods (R2 = 0.92 and 0.90), providing hourly estimates of ETa from the Nkazana PSF for a year, totalling 1125 mm (while rainfall was 650 mm). In building the empirical model, it was found that to include the understory tree sap flow provided no benefit to the model performance. In addition, the relationship between the emergent tree sap flow with ETa between the two field campaigns was consistent and could be represented by a single empirical model (R2 = 0.90; RMSE = 0.08 mm h-1). During the window periods of EC measurement, no single meteorological variable was found to describe the Nkazana PSF ETa satisfactorily. However, in terms of evaporation models, the hourly FAO Penman-Monteith reference evaporation (ETo) best described ETa during the August 2009 (R2 = 0.75), November 2009 (R2 = 0.85) and March 2010 (R2 = 0.76) field campaigns, compared to the Priestley-Taylor potential evaporation (ETp) model (R2 = 0.54, 0.74 and 0.62 during the respective field campaigns). From the extended record of ETa (derived in this study from sap flow) and ETo, a monthly crop factor (Kc) was derived for the Nkazana PSF, providing a method of estimating long-term swamp forest water-use from

  15. An experimental and theoretical study of the ice accretion process during artificial and natural icing conditions

    NASA Technical Reports Server (NTRS)

    Kirby, Mark S.; Hansman, R. John

    1988-01-01

    Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an ultrasonic pulse-echo technique. This technique allows ice thickness to be measured with an accuracy of + or - 0.5 mm; in addition, the ultrasonic signal characteristics may be used to detect the presence of liquid on the ice surface and hence discern wet and dry ice growth behavior. Ice growth was measured on the stagnation line of a cylinder exposed to artificial icing conditions in the NASA Lewis Icing Research Tunnel (IRT), and similarly for a cylinder exposed in flight to natural icing conditions. Ice thickness was observed to increase approximately linearly with exposure time during the initial icing period. The ice accretion rate was found to vary with cloud temperature during wet ice growth, and liquid runback from the stagnation region was inferred. A steady-state energy balance model for the icing surface was used to compare heat transfer characteristics for IRT and natural icing conditions. Ultrasonic measurements of wet and dry ice growth observed in the IRT and in flight were compared with icing regimes predicted by a series of heat transfer coefficients. The heat transfer magnitude was generally inferred to be higher for the IRT than for the natural icing conditions encountered in flight. An apparent variation in the heat transfer magnitude was also observed for flights conducted through different natural icing-cloud formations.

  16. Thermally Stable, Latent Olefin Metathesis Catalysts

    PubMed Central

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  17. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  18. Heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.

    1990-01-01

    Local heat transfer coefficients from a smooth and roughened NACA 0012 airfoil were measured using a steady state heat flux method. Heat transfer measurements on the specially constructed 0.533 meter chord airfoil were made both in flight on the NASA Lewis Twin Otter Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of small, 2 mm diameter, hemispheres of uniform size to the airfoil surface in four distinct patterns. The flight data was taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range of 1.24x10(exp 6) to 2.50x10(exp 6) and at various angles of attack up to 4 degrees. During these flight tests the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). The wind tunnel data was taken in the Reynolds number range of 1.20x10(exp 6) to 4.52x10(exp 6) and at angles of attack from -4 degrees to +8 degrees. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud making spray off. Results for both the flight and tunnel tests are presented as Frossling number based on chord versus position on the airfoil surface for various roughnesses and angle of attack. A table of power law curve fits of Nusselt number as a function of Reynolds number is also provided. The higher level of turbulence in the IRT versus flight had little effect on heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the higher Reynolds numbers. Turning on the cloud making spray air in the IRT did not alter the heat transfer. Roughness generally increased the heat transfer by locally disturbing the boundary layer flow. Finally, the present data was not only compared with previous airfoil data where applicable, but also with leading edge cylinder and flat plate heat transfer values which are often used to estimate airfoil heat transfer in computer codes.

  19. Comparison of heat balance characteristics at five glaciers in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yukari; Naruse, Renji; Satow, Kazuhide; Ishikawa, Nobuyoshi

    1999-10-01

    Ablation characteristics of five glaciers in Patagonia and New Zealand were compared. Investigated glaciers were Tyndall and Moreno in southern Patagonia, Soler and San Rafael in northern Patagonia, and Franz Josef in New Zealand. Micro-meteorological observations were carried out at the glaciers and the heat balance components were estimated. At Franz Josef and Soler glaciers, the sensible heat flux is the largest and the latent heat flux is the second, and they are larger than the net radiation. At San Rafael Glacier, the net radiation is the largest and the latent heat flux is the smallest component, which is similar to Moreno and Tyndall glaciers. Though the latent heat flux is the smallest component at San Rafael Glacier, it is more than twice as large as that at Tyndall Glacier and contributes substantially to ice melting. The ratios of heat balance components were very different among glaciers, but the total heat flux ranged from about 240 to 300 W m -2 showing little difference among glaciers.

  20. Latent effects decision analysis

    DOEpatents

    Cooper, J. Arlin; Werner, Paul W.

    2004-08-24

    Latent effects on a system are broken down into components ranging from those far removed in time from the system under study (latent) to those which closely effect changes in the system. Each component is provided with weighted inputs either by a user or from outputs of other components. A non-linear mathematical process known as `soft aggregation` is performed on the inputs to each component to provide information relating to the component. This information is combined in decreasing order of latency to the system to provide a quantifiable measure of an attribute of a system (e.g., safety) or to test hypotheses (e.g., for forensic deduction or decisions about various system design options).

  1. The invasion of non-native grasses into California grasslands has caused a shift in energy partitioning between latent and sensible heat flux, reduced albedo and higher surface temperatures

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Harte, J.; Baldocchi, D. D.

    2012-12-01

    of latent to sensible heat flux is higher where native perennial grasses are found, particularly in wet years. Annual sums of total evaporation are likewise higher in native-dominated regions, and soil moisture is lower relative to non-natives in the deep soil. We also found that PAR albedo is lower in native grasslands compared to non-natives during significant portions of the year, and corresponding to the hotter months. In all, our findings indicate that the non-native annual grasses which now dominate California grasslands, promote conditions that support higher surface temperatures relative to native perennial grasses.

  2. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    DTIC Science & Technology

    2015-11-30

    large. The albedo of first year ice is consistently smaller than multiyear ice throughout the remainder of summer. In this example 32% more solar energy ...K. Perovich, M. Nicolaus, T. I. Karlsen, K. Fossan, and M. Bratrein (2014), Autonomous observations of solar energy partitioning in first-year sea...understanding of the partitioning of solar radiation by the Arctic sea ice cover and its impact on the heat and mass balance of the ice and upper ocean

  3. Effectiveness of ice-vest cooling in prolonging work tolerance time during heavy exercise in the heat for personnel wearing Canadian forces chemical defense ensembles

    SciTech Connect

    Bain, B.

    1991-01-01

    Effectiveness of a portable, ice-pack cooling vest (Steelevest) in prolonging work tolerance time in chemical defense clothing in the heat (33 C dry bulb, 33% relative humidity or 25 C WBGT) was evaluated while subjects exercised at a metabolic rate of approx. 700 watts. Subjects were six male volunteers. The protocol consisted of a 20 minute treadmill walk at 1.33 m/s. and 7.5% grade, followed by 15 minutes of a lifting task, 5 minutes rest, then another 20 minutes of lifting task for a total of one hour. The lifting task consisted of lifting of 20 kg box, carrying it 3 meters and setting it down. This was followed by a 6 m walk (3m back to the start point and 3 m back to the box) 15 sec after which the lifting cycle began again. The work was classified as heavy as previously defined. This protocol was repeated until the subjects were unable to continue or they reached a physiological endpoint. Time to voluntary cessation or physiological endpoint was called the work tolerance time. Physiological endpoints were rectal temperature of 39 C, heart rate exceeding 95% of maximum for two consecutive minutes or visible loss of motor control or nausea. The cooling vest had no effect on work tolerance time, rate of rise of rectal temperature or sweat loss. It was concluded that the Steelvest ice-vest is ineffective in prolonging work tolerance time and preventing increases in rectal temperature while wearing chemical protective clothing.

  4. Direct Observations of Heat and Salt Entrainment Fluxes Across the Base of the Ocean Mixing Layer Under Marginal Ice Conditions in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Gallaher, S.; Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Measurements of turbulent fluxes of heat and salt across the base of the upper ocean mixed layer in summer marginal ice zone conditions in the Beaufort Sea were made using two eddy-correlation flux sensors with a vertical separation of 6m mounted on a depth-controlled frame. A third flux sensor measured fluxes 2m below the ice. A 16 element thermistor string measured finescale thermal gradients while a high resolution ADCP measured current profiles every 20cm across the frame to resolve finescale shear. Every hour the frame was profiled between 2m and 60m depth then re-positioned to span the base of the active mixing layer, determined primarily from the density profile, allowing the surface mixed layer entrainment fluxes to be determined. A range of wind conditions allowed mixed layer entrainment fluxes to be compared with several bulk entrainment formulations based on surface friction velocity values and the density jump across the base of the surface mixing layer.

  5. Development and optimization of an analytical system for volatile organic compound analysis coming from the heating of interstellar/cometary ice analogues.

    PubMed

    Abou Mrad, Ninette; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry; Danger, Grégoire

    2014-08-19

    This contribution presents an original analytical system for studying volatile organic compounds (VOC) coming from the heating and/or irradiation of interstellar/cometary ice analogues (VAHIIA system) through laboratory experiments. The VAHIIA system brings solutions to three analytical constraints regarding chromatography analysis: the low desorption kinetics of VOC (many hours) in the vacuum chamber during laboratory experiments, the low pressure under which they sublime (10(-9) mbar), and the presence of water in ice analogues. The VAHIIA system which we developed, calibrated, and optimized is composed of two units. The first is a preconcentration unit providing the VOC recovery. This unit is based on a cryogenic trapping which allows VOC preconcentration and provides an adequate pressure allowing their subsequent transfer to an injection unit. The latter is a gaseous injection unit allowing the direct injection into the GC-MS of the VOC previously transferred from the preconcentration unit. The feasibility of the online transfer through this interface is demonstrated. Nanomoles of VOC can be detected with the VAHIIA system, and the variability in replicate measurements is lower than 13%. The advantages of the GC-MS in comparison to infrared spectroscopy are pointed out, the GC-MS allowing an unambiguous identification of compounds coming from complex mixtures. Beyond the application to astrophysical subjects, these analytical developments can be used for all systems requiring vacuum/cryogenic environments.

  6. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  7. Consider an Ice Stream.

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2002-12-01

    Forty years ago, John Nye was one of the leaders who introduced the rigors of classical physics to glaciology. His elegant treatments frequently took advantage of the then recent discovery that ice could be approximated as a plastic material. With this viewpoint, Nye was able to explain the shape of ice sheets and glaciers, to predict the expected pattern of stress and velocity within a glacier, and to derive the advance and retreat of a glacier from the record of accumulation and ablation. These advances have given generations of glaciologists tools to interpret the excellent observational record of glacier behavior and variation. In the 1980s, glaciologist, weaned on these works of Nye and of other similarly adept colleagues, carried their lessons to West Antarctica to study ice streams, the vast conveyor belts of ice that discharged nearly as much Antarctic ice as the much larger East Antarctic ice sheet. Ice streams were a glaciological conundrum. Despite the gently sloping surface, these broad features roared along, moving fastest when the gravitational impetus was least. After two decades of research, ice streams still have not given up all their secrets, yet much is now known. Internal deformation is negligible. Basal friction is frequently nil leaving the shattered margins as the primary means to avoid rapid wastage of the ice sheet. Within the margins, the resistive force results from a delicate balance of heat and evolving ice fabrics. Nevertheless, the bed beneath an ice stream cannot be ignored. It is ultimately the state of the underlying marine sediment that determines whether the ice stream can slide at all. There too, the heat balance is critical with an influx of water required to keep the bed wet enough to let the streams glide along. Ice stream research has been the portal through which glaciologists have seen and identified the complexities of West Antarctic ice sheet dynamics. Remarkably, nearly all time scales seem important. Ice stream

  8. Latent heat characteristics of biobased oleochemical carbonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleochemical carbonates represent biobased materials that can be readily prepared through a carbonate interchange reaction between renewably available C10-C18 fatty alcohols. Although these carbonates have commercial use in cosmetics and lubricant applications, they have not been examined as phase ...

  9. Arctic landfast sea ice

    NASA Astrophysics Data System (ADS)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  10. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  11. Observing Radiative Properties of a Thinner, Seasonal Arctic Ice Pack

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.; Nicolaus, M.; Granskog, M.; Gerland, S.; Wang, C.

    2011-12-01

    variability. For this, we have developed a radiation sled for measuring the full radiation budget of sea ice at a grid of locations to observe the variability within an area similar to a satellite pixel or model grid cell. Based on a modified dog sled, it carries upward and downward looking longwave and shortwave broadband radiometers, a spectral radiometer (350 to 2500 nm) for measuring spectral albedo, cameras to record surface and ground conditions at each measurement site, a thermometer, hygrometer, and GPS. Small enough to be deployed from a ship at short ice stations, it can also be used at longer stations to observe the effect of the spatial variability on the temporal variability. When combined with measurements or estimates of the sensible and latent heat fluxes, a full picture of the large-scale energy budget and its small-scale variations is obtained, valuable insight for parameterization and remote sensing product development. Surface profiles with the sled can be complemented by under-ice profiles made with a spectral radiometer mounted on an ROV or carried by a diver, providing a measure of the spatial variability of the partitioning of the absorbed solar energy into the ice and water.

  12. Fire beneath the ice

    SciTech Connect

    Monastersky, R.

    1993-02-13

    A volcano discovered six years ago by researchers Blankenship and Bell under Antarctica poses questions about a potential climatic catastrophe. The researchers claim that the volcano is still active, erupting occasionally and growing. A circular depression on the surface of the ice sheet has ice flowing into it and is used to provide a portrait of the heat source. The volcano is on a critical transition zone within West Antarctica with fast flowing ice streams directly downhill. Work by Blankenship shows that a soft layer of water-logged sediments called till provide the lubricating layer on the underside of the ice streams. Volcanos may provide the source of this till. The ice streams buffer the thick interior ice from the ocean and no one know what will happen if the ice streams continue to shorten. These researchers believe their results indicate that the stability of West Antarctica ultimately depends less on the current climate than on the location of heat and sediments under the ice and the legacy of past climatic changes.

  13. Distribution and activity of ice wedges across the forest-tundra transition, western Arctic Canada

    NASA Astrophysics Data System (ADS)

    Kokelj, S. V.; Lantz, T. C.; Wolfe, S. A.; Kanigan, J. C.; Morse, P. D.; Coutts, R.; Molina-Giraldo, N.; Burn, C. R.

    2014-09-01

    Remote sensing, regional ground temperature and ground ice observations, and numerical simulation were used to investigate the size, distribution, and activity of ice wedges in fine-grained mineral and organic soils across the forest-tundra transition in uplands east of the Mackenzie Delta. In the northernmost dwarf-shrub tundra, ice wedge polygons cover up to 40% of the ground surface, with the wedges commonly exceeding 3 m in width. The largest ice wedges are in peatlands where thermal contraction cracking occurs more frequently than in nearby hummocky terrain with fine-grained soils. There are fewer ice wedges, rarely exceeding 2 m in width, in uplands to the south and none have been found in mineral soils of the tall-shrub tundra, although active ice wedges are found there throughout peatlands. In the spruce forest zone, small, relict ice wedges are restricted to peatlands. At tundra sites, winter temperatures at the top of permafrost are lower in organic than mineral soils because of the shallow permafrost table, occurrence of phase change at 0°C, and the relatively high thermal conductivity of icy peat. Due to these factors and the high coefficient of thermal contraction of frozen saturated peat, ice wedge cracking and growth is more common in peatlands than in mineral soil. However, the high latent heat content of saturated organic active layer soils may inhibit freezeback, particularly where thick snow accumulates, making the permafrost and the ice wedges in spruce forest polygonal peatlands susceptible to degradation following alteration of drainage or climate warming.

  14. Comparing Arctic Sea Ice Kinematics from Satellite Remote Sensing Data to Coupled Sea Ice-Ocean Model Results

    NASA Astrophysics Data System (ADS)

    Spreen, G.; Menemenlis, D.; Kwok, R.; Nguyen, A. T.

    2009-12-01

    The Arctic sea ice in many respects is an important component of the Earth's climate system, e.g., sea ice governs the ocean to atmosphere heat flux, freezing and melting influences the upper ocean salinity and density, and sea ice dynamics act as a latent energy transport. During recent years substantial changes of the Arctic sea ice cover have been observed. Many of these aspects of sea ice and its recent changes can be reproduced by coupled sea ice-ocean models. In part this can be attributed to the fact that model parameters are tuned to produce observed ice concentration (extent) and drift distributions. Detailed comparisons between satellite remote sensing data with model results, however, reveal big differences in certain aspects of the sea ice cover, e.g., for fracture zones and for small scale dynamic processes. It remains unclear whether the model physics are suited to reproduce these observed sea ice features. Accurate modeling of leads and fracture zones is important for realistic (1) new ice production estimates, (2) ocean to air heat flux, and (3) brine rejection into the ocean. In this study we use satellite remote sensing data to compare with and to improve results of the MIT general circulation model (MITgcm) as used in the framework of the ECCO2 project (http://ecco2.org). Model integrations in an Arctic domain at horizontal grid spacing of 18, 9, and 4.5 km using two different atmospheric forcing datasets (ERA40 and JRA-25) were carried out. Sea ice motion, deformation, and estimates of ice production are obtained from Synthetic Aperture Radar (SAR) using the RADARSAT Geophysical Processor System (RGPS). Even though the viscous-plastic dynamic sea ice model with elliptical yield curve is able to produce what appears to be linear kinematic features (LKFs), the orientation and spatial density are far from that which is observed. In addition the LKFs occur less frequently in the simulations. Figure 1 shows an example of the fractional number each

  15. Influence of wet conditions on snow temperature diurnal variations: An East Antarctic sea-ice case study

    NASA Astrophysics Data System (ADS)

    Lecomte, O.; Toyota, T.

    2016-09-01

    A one-dimensional snow-sea-ice model is used to simulate the evolution of temperature profiles in dry and wet snow over a diurnal cycle, at locations where associated observations collected during the Sea Ice Physics and Ecosystem eXperiment (SIPEX-II) are available. The model is used at two sites, corresponding to two of the field campaign's sea-ice stations (2 and 6), and under two configurations: dry and wet snow conditions. In the wet snow model setups, liquid water may refreeze internally into the snow. At station 6, this releases latent heat to the snow and results in temperature changes at the base of the snow pack of a magnitude comparing to the model-observation difference (1 - 2 ° C). As the temperature gradient across the snow is in turn weakened, the associated conductive heat flux through snow decreases. At station 2, internal refreezing also occurs but colder air temperatures and the competing process of strengthened heat conduction in snow concurrent to snow densification maintain a steady temperature profile. However, both situations share a common feature and show that the conductive heat flux through the snow may significantly be affected (by 10-20% in our simulations) as a result of the liquid water refreezing in snow, either through thermal conductivity enhancement or direct temperature gradient alteration. This ultimately gives motivation for further investigating the impacts of these processes on the sea-ice mass balance in the framework of global scale model simulations.

  16. Advancement of Latent Trait Theory.

    DTIC Science & Technology

    1988-02-01

    latent trait theory further, and include more varieties of situations. I [51 Investigation of ways of bridging across mathematical psychology and...five years on various topics in Latent Trait Theory, including more general topics such as the method of moments as the least squares solution for...response theory." The address described as (3) in the above list was a one hour special lecture overviewing latent trait models. There were more than two

  17. Matlab based automatization of an inverse surface temperature modelling procedure for Greenland ice cores using an existing firn densification and heat diffusion model

    NASA Astrophysics Data System (ADS)

    Döring, Michael; Kobashi, Takuro; Kindler, Philippe; Guillevic, Myriam; Leuenberger, Markus

    2016-04-01

    In order to study Northern Hemisphere (NH) climate interactions and variability, getting access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. For example, understanding the causes for changes in the strength of the Atlantic meridional overturning circulation (AMOC) and related effects for the NH [Broecker et al. (1985); Rahmstorf (2002)] or the origin and processes leading the so called Dansgaard-Oeschger events in glacial conditions [Johnsen et al. (1992); Dansgaard et al., 1982] demand accurate and reproducible temperature data. To reveal the surface temperature history, it is suitable to use the isotopic composition of nitrogen (δ15N) from ancient air extracted from ice cores drilled at the Greenland ice sheet. The measured δ15N record of an ice core can be used as a paleothermometer due to the nearly constant isotopic composition of nitrogen in the atmosphere at orbital timescales changes only through firn processes [Severinghaus et. al. (1998); Mariotti (1983)]. To reconstruct the surface temperature for a special drilling site the use of firn models describing gas and temperature diffusion throughout the ice sheet is necessary. For this an existing firn densification and heat diffusion model [Schwander et. al. (1997)] is used. Thereby, a theoretical δ15N record is generated for different temperature and accumulation rate scenarios and compared with measurement data in terms of mean square error (MSE), which leads finally to an optimization problem, namely the finding of a minimal MSE. The goal of the presented study is a Matlab based automatization of this inverse modelling procedure. The crucial point hereby is to find the temperature and accumulation rate input time series which minimizes the MSE. For that, we follow two approaches. The first one is a Monte Carlo type input generator which varies each point in the input time series and calculates the MSE. Then the solutions that fulfil a given limit

  18. Loss of sea ice in the Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  19. Analysis of organic refractory residues coming from the heating of cometary ice analogs: an insight in complex cometary chemistry

    NASA Astrophysics Data System (ADS)

    Danger, Grégoire; Abou Mrad, Ninette; Fresnau, Aurelien; Duvernay, Fabrice; Chiavassa, Thierry

    2015-04-01

    This contribution focuses on one aspect of our work, which relate to the analysis of refractory residues formed from UV irradiation and warming of astrophysical ice analogs, the RAHIIA project. The understanding of the formation of refractory residues, commonly called "Yellow Stuff" is an important step to establish what kind of organic matter could be available within interplanetary objects such as comets or asteroids. We present here the first results obtained by spectrometric analysis with high resolution mass spectroscopy (LT-Orbitrap) of these residues. These analyzes show that these residues are composed of thousands of molecules of high molecular weight (m / z> 4000), and present an average elemental composition H/C= 1.6, N/C= 0.4, O/C= 0.4 for an initial ice containing H2O:CH3OH:NH3 3:1:1. We further develop specific data representation in order to obtain information on the residue composition. These representations allow to define that three different groups of molecules are present in these residues, molecules bearing only CHN, CHO or CHNO atoms. These representations also give important information on the family composition of each molecular group. All these developments will be used for the comparison of various residues as well as for the development of more specific analytical methods such as UHPLC-MS or GC-MS. In conclusion, these results demonstrate that from only three simple molecules CH3OH, H2O and NH3, a complex chemistry occurs when these molecules are subjected to physical processes available in cometary environments.

  20. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; van den Broeke, M. R.; King, J. C.; Gray, T.; Reijmer, C. H.

    2011-10-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the north-south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the reduction of net longwave and latent heat fluxes, providing energy for significant melt.

  1. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; van den Broeke, M. R.; King, J. C.; Gray, T.; Reijmer, C. H.

    2012-03-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in the north-south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak conve