Sample records for ice layer formation

  1. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  2. Quasi-Liquid Layer Formation on Ice under Stratospheric Conditions

    NASA Technical Reports Server (NTRS)

    McNeill, V. Faye; Loerting, Thomas; Trout, Bernhardt L.; Molina, Luisa T.; Molina, Mario J.

    2004-01-01

    Characterization of the interaction of hydrogen chloride (HCl) with ice is essential to understanding at a molecular level the processes responsible for ozone depletion involving polar stratospheric cloud (PSC) particles. To explain the catalytic role PSC particle surfaces play during chlorine activation, we proposed previously that HCl induces the formation of a disordered region on the ice surface, a quasi-liquid layer (QLL), at stratospheric conditions. The QLL is known to exist in pure ice crystals at temperatures near the melting point, but its existence at stratospheric temperatures (-85 C to -70 C) had not been reported yet. We studied the interaction of HCl with ice under stratospheric conditions using the complementary approach of a) ellipsometry to directly monitor the ice surface, using chemical ionization mass spectrometry (CIMS) to monitor the gas phase species present in the ellipsometry experiments, and b) flow-tube experiments with CIMS detection. Here we show that trace amounts of HCl induce QLL formation at stratospheric temperatures, and that the QLL enhances the chlorine-activation reaction of HCl with chlorine nitrate (ClONO2), and also enhances acetic acid (CH3COOH) adsorption.

  3. Forecasting and modelling ice layer formation on the snowpack due to freezing precipitations in the Pyrenees

    NASA Astrophysics Data System (ADS)

    Quéno, Louis; Vionnet, Vincent; Cabot, Frédéric; Vrécourt, Dominique; Dombrowski-Etchevers, Ingrid

    2017-04-01

    In the Pyrenees, freezing precipitations in altitude occur at least once per winter, leading to the formation of a pure ice layer on the surface of the snowpack. It may lead to accidents and fatalities among mountaineers and skiers, with sometimes a higher human toll than avalanches. Such events are not predicted by the current operational systems for snow and avalanche hazard forecasting. A crowd-sourced database of surface ice layer occurrences is first built up, using reports from Internet mountaineering and ski-touring communities, to mitigate the lack of observations from conventional observation networks. A simple diagnostic of freezing precipitation is then developed, based on the cloud water content and screen temperature forecast by the Numerical Weather Prediction model AROME, operating at 2.5-km resolution. The performance of this diagnostic is assessed for the event of 5-6 January 2012, with a good representation of altitudinal and spatial distributions of the ice layer. An evaluation of the diagnostic for major events over five winters gives good skills of detection compared to the occurrences reported in the observation database. A new modelling of ice formation on the surface of the snowpack due to impinging supercooled water is added to the detailed snowpack model Crocus. It is combined to the atmospheric diagnostic of freezing precipitations and resulting snowpack simulations over a winter season capture well the formation of the main ice layers. Their influence on the snowpack stratigraphy is also realistically simulated. These simple methods enable to forecast the occurrence of surface ice layer formations with good confidence and to simulate their evolution within the snowpack, even if an accurate estimation of freezing precipitation amounts remains the main challenge.

  4. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.

  5. Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.

    2015-12-01

    With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.

  6. Modeling the interplay between sea ice formation and the oceanic mixed layer: Limitations of simple brine rejection parameterizations

    NASA Astrophysics Data System (ADS)

    Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues; Madec, Gurvan

    2015-02-01

    The subtle interplay between sea ice formation and ocean vertical mixing is hardly represented in current large-scale models designed for climate studies. Convective mixing caused by the brine release when ice forms is likely to prevail in leads and thin ice areas, while it occurs in models at the much larger horizontal grid cell scale. Subgrid-scale parameterizations have hence been developed to mimic the effects of small-scale convection using a vertical distribution of the salt rejected by sea ice within the mixed layer, instead of releasing it in the top ocean layer. Such a brine rejection parameterization is included in the global ocean-sea ice model NEMO-LIM3. Impacts on the simulated mixed layers and ocean temperature and salinity profiles, along with feedbacks on the sea ice cover, are then investigated in both hemispheres. The changes are overall relatively weak, except for mixed layer depths, which are in general excessively reduced compared to observation-based estimates. While potential model biases prevent a definitive attribution of this vertical mixing underestimation to the brine rejection parameterization, it is unlikely that the latter can be applied in all conditions. In that case, salt rejections do not play any role in mixed layer deepening, which is unrealistic. Applying the parameterization only for low ice-ocean relative velocities improves model results, but introduces additional parameters that are not well constrained by observations.

  7. Modelling the interplay between sea ice formation and the oceanic mixed layer: limitations of simple brine rejection parameterizations

    NASA Astrophysics Data System (ADS)

    Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues; Madec, Gurvan

    2015-04-01

    The subtle interplay between sea ice formation and ocean vertical mixing is hardly represented in current large-scale models designed for climate studies. Convective mixing caused by the brine release when ice forms is likely to prevail in leads and thin ice areas, while it occurs in models at the much larger horizontal grid cell scale. Subgrid-scale parameterizations have hence been developed to mimic the effects of small-scale convection using a vertical distribution of the salt rejected by sea ice within the mixed layer, instead of releasing it in the top ocean layer. Such a brine rejection parameterization is included in the global ocean--sea ice model NEMO-LIM3. Impacts on the simulated mixed layers and ocean temperature and salinity profiles, along with feedbacks on the sea ice cover, are then investigated in both hemispheres. The changes are overall relatively weak, except for mixed layer depths, which are in general excessively reduced compared to observation-based estimates. While potential model biases prevent a definitive attribution of this vertical mixing underestimation to the brine rejection parameterization, it is unlikely that the latter can be applied in all conditions. In that case, salt rejections do not play any role in mixed layer deepening, which is unrealistic. Applying the parameterization only for low ice--ocean relative velocities improves model results, but introduces additional parameters that are not well constrained by observations.

  8. Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.

    2016-12-01

    The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.

  9. Ice sublimation and rheology - Implications for the Martian polar layered deposits

    NASA Astrophysics Data System (ADS)

    Hofstadter, M. D.; Murray, B. C.

    1990-04-01

    If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.

  10. Ice sublimation and rheology - Implications for the Martian polar layered deposits

    NASA Technical Reports Server (NTRS)

    Hofstadter, Mark D.; Murray, Bruce C.

    1990-01-01

    If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.

  11. Biological ice nucleation initiates hailstone formation

    NASA Astrophysics Data System (ADS)

    Michaud, Alexander B.; Dore, John E.; Leslie, Deborah; Lyons, W. Berry; Sands, David C.; Priscu, John C.

    2014-11-01

    Cloud condensation and ice nuclei in the troposphere are required precursors to cloud and precipitation formation, both of which influence the radiative balance of Earth. The initial stage of hailstone formation (i.e., the embryo) and the subsequent layered growth allow hail to be used as a model for the study of nucleation processes in precipitation. By virtue of the preserved particle and isotopic record captured by hailstones, they represent a unique form of precipitation that allows direct characterization of the particles present during atmospheric ice nucleation. Despite the ecological and economic consequences of hail storms, the dynamics of hailstone nucleation, and thus their formation, are not well understood. Our experiments show that hailstone embryos from three Rocky Mountain storms contained biological ice nuclei capable of freezing water at warm, subzero (°C) temperatures, indicating that biological particles can act as nucleation sites for hailstone formation. These results are corroborated by analysis of δD and δ18O from melted hailstone embryos, which show that the hailstones formed at similarly warm temperatures in situ. Low densities of ice nucleation active abiotic particles were also present in hailstone embryos, but their low concentration indicates they were not likely to have catalyzed ice formation at the warm temperatures determined from water stable isotope analysis. Our study provides new data on ice nucleation occurring at the bottom of clouds, an atmospheric region whose processes are critical to global climate models but which has challenged instrument-based measurements.

  12. Influence of Sea Ice Crack Formation on the Spatial Distribution of Nutrients and Microalgae in Flooded Antarctic Multiyear Ice

    NASA Astrophysics Data System (ADS)

    Nomura, Daiki; Aoki, Shigeru; Simizu, Daisuke; Iida, Takahiro

    2018-02-01

    Cracks are common and natural features of sea ice formed in the polar oceans. In this study, a sea ice crack in flooded, multiyear, land-fast Antarctic sea ice was examined to assess its influence on biological productivity and the transport of nutrients and microalgae into the upper layers of neighboring sea ice. The water inside the crack and the surrounding host ice were characterized by a strong discoloration (brown color), an indicator of a massive algal bloom. Salinity and oxygen isotopic ratio measurements indicated that 64-84% of the crack water consisted of snow meltwater supplied during the melt season. Measurements of nutrient and chlorophyll a concentrations within the slush layer pool (the flooded layer at the snow-ice interface) revealed the intrusion of water from the crack, likely forced by mixing with underlying seawater during the tidal cycle. Our results suggest that sea ice crack formation provides conditions favorable for algal blooms by directly exposing the crack water to sunlight and supplying nutrients from the under-ice water. Subsequently, constituents of the crack water modified by biological activity were transported into the upper layer of the flooded sea ice. They were then preserved in the multiyear ice column formed by upward growth of sea ice caused by snow ice formation in areas of significant snow accumulation.

  13. Formation of hexagonal and cubic ice during low-temperature growth

    PubMed Central

    Thürmer, Konrad; Nie, Shu

    2013-01-01

    From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592

  14. Computational Simulation of the Formation and Material Behavior of Ice

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Singhal, Surendra N.; Chamis, Christos C.

    1994-01-01

    Computational methods are described for simulating the formation and the material behavior of ice in prevailing transient environments. The methodology developed at the NASA Lewis Research Center was adopted. A three dimensional finite-element heat transfer analyzer was used to predict the thickness of ice formed under prevailing environmental conditions. A multi-factor interaction model for simulating the material behavior of time-variant ice layers is presented. The model, used in conjunction with laminated composite mechanics, updates the material properties of an ice block as its thickness increases with time. A sample case of ice formation in a body of water was used to demonstrate the methodology. The results showed that the formation and the material behavior of ice can be computationally simulated using the available composites technology.

  15. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.

    NASA Astrophysics Data System (ADS)

    Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.

    2016-02-01

    The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.

  16. Methods and systems for detection of ice formation on surfaces

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Wang, Wubao (Inventor); Sztul, Henry (Inventor); Budansky, Yury (Inventor)

    2007-01-01

    A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.

  17. Evolution of Titan's High-Pressure Ice layer

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Kalousova, K.

    2016-12-01

    Constraints on the present interior structure of Titan come from the gravity science experiment onboard the Cassini spacecraft and from the interpretation of the Extremely Low Frequency (ELF) wave observed by the Huygens probe [1, 2]. From the surface to the center, Titan would be composed of 4 layers: an icy crust, a global salty ocean, a layer of high-pressure ice (HP ice) and a core made of hydrated silicates [2, 3, 4]. The presence of a large amount of 40Ar in Titan's atmosphere argues for a geologically recent exchange process between the silicate core, where 40Ar is produced by the decay of 40K, and the atmosphere. Argon must then be able to be transported from the silicate core to the surface. This study investigates how volatiles can be transported through the HP ice layer.Recent numerical simulations [5] have demonstrated that the dynamics of the HP ice layer is controlled by convection processes in a two-phase material (water and high-pressure ice). The silicate / HP ice interface is maintained at the melting temperature, which might allow for the incorporation of volatiles such as 40Ar into the convecting HP ice. Above the hot thermal boundary layer, the temperature of the convecting HP ice is below the melting temperature, except for the upwelling plumes when they approach the cold thermal boundary layer. The upper part of the HP ice layer is at the melting point and permeable for water transport, providing a path for the transfer of volatiles trapped in the ice towards the ocean.Scaling laws are inferred from the numerical simulations [5]. They are then used to model the evolution of the HP ice layer. Specifically, we look at the effect of (i) ice viscosity, (ii) heat flux at the silicate/HP ice interface, and (iii) presence of anti-freeze compounds in the ocean, on the thickness of the HP ice layer. In addition, our results provide insights on possible resurfacing processes that could explain the geologically young age of Titan's surface. This work

  18. Ice Formation on Wings

    NASA Technical Reports Server (NTRS)

    Ritz, L

    1939-01-01

    This report makes use of the results obtained in the Gottingen ice tunnel in which the atmospheric conditions are simulated and the process of ice formation photographed. The effect of ice formation is threefold: 1) added weight to the airplane; 2) a change in the lift and drag forces; 3) a change in the stability characteristics.

  19. The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing

    NASA Astrophysics Data System (ADS)

    Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît

    2017-02-01

    The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by sea-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and sea-ice plays a key role for water mass transformation, the carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under sea-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional sea-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.

  20. A GCM Recent History of Northern Martian Polar Layered Deposits: Contribution from Past Equatorial Ice Reservoirs

    NASA Technical Reports Server (NTRS)

    Levrard, B.; Laskar, J.; Montmessin, F.; Forget, F.

    2005-01-01

    Polar layered deposits are exposed in the walls of the troughs cutting the north polar cap of Mars. They consist of alternating ice and dust layers or layers of an ice-dust mixture with varying proportions and are found throughout the cap. Layers thickness ranges from meters to several tens of meters with an approximately 30 meter dominant wavelength. Although their formation processes is not known, they are presumed to reflect changes in ice and dust stability over orbital and axial variations. Intensive 3-D LMD GCM simulations of the martian water cycle have been thus performed to determine the annual rates of exchange of surface ice between the northern cap and tropical areas for a wide range of obliquity and orbital parameters values.These rates have been employed to reconstruct an history of the northern cap and test simple models of dust-ice layers formation over the last 10 Ma orbital variations. We use the 3-D water cycle model simulated by the 3-D LMD GCM with an intermediate grid resolution (7.5 longitude x 5.625 latitude) and 25 vertical levels. The dust opacity is constant and set to 0,15. No exchange of ice with regolith is allowed. The evolution of the northern cap over obliquity and orbital changes (eccentricity, Longitude of perihelion) has been recently described with this model. High summer insolation favors transfer of ice from the northern pole to the Tharsis and Olympus Montes, while at low obliquity, unstable equatorial ice is redeposited in high-latitude and polar areas of both hemisphere. The disappearance of the equatorial ice reservoir leads to a poleward recession of icy high latitude reservoirs, providing an additional source for the cap accumulation during each obliquity or orbital cycle. Furthering the efforts, a quantitative evolution of ice reservoirs is here investigated for various astronomical conditions.

  1. Ice Lens Formation and Frost Heave at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Sizemore, H. G.; Remple, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavated by Phoenix. The leading hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metabolize and grow down to temperatures of at least 258 K.

  2. Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Bui, Thaopaul; Weinheimer, Andrew; Weinstock, Elliot; Smith, Jessica; Pittman, Jasna; Baumgardner, Darrel; Lawson, Paul; McGill, Matthew J.

    2005-01-01

    On July 13, 2002 a widespread, subvisible tropopause cirrus layer occurred over the Florida region. This cloud was observed in great detail with the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) instrumentation, including in situ measurements with the WB-57 aircraft. In this paper, we use the 13 July cloud as a case study to evaluate the physical processes controlling the formation and evolution of tropopause cirrus layers. Microphysics measurements indicate that ice crystal diameters in the cloud layer ranged from about 7 to 50 microns, and the peak number mode was about 10-25 microns. In situ water vapor and temperature measurements in the cloud indicated supersaturation with respect to ice throughout, with ice saturation ratios as large as 1.8. Even when the ice surface area density was as high as about 500 sq microns/cu cm, ice supersaturations of 20-30% were observed. Trajectory analysis shows that the air sampled near the tropopause on this day generally came from the north and cooled considerably during the previous few days. Examination of infrared satellite imagery along air parcel back trajectories from the WB-57 flight track indicates that the tropopause cloud layer formation was, in general, not simply left over ice from recently generated anvil cirrus. Simulations of cloud formation using time-height curtains of temperature along the trajectory paths show that the cloud could have formed in situ near the tropopause as the air was advected into the south Florida region and cooled to unusually low temperatures. If we assume a high threshold for ice nucleation via homogeneous freezing of aqueous sulfate aerosols, the model reproduces the observed cloud structure, ice crystal size distributions, and ice supersaturation statistics. Inclusion of observed gravity wave temperature perturbations in the simulations is essential to reproduce the observed cloud properties. Without waves, crystal

  3. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  4. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation

    NASA Astrophysics Data System (ADS)

    Ohshima, Kay I.; Nihashi, Sohey; Iwamoto, Katsushi

    2016-12-01

    Global overturning circulation is driven by density differences. Saline water rejected during sea-ice formation in polynyas is the main source of dense water, and thus sea-ice production is a key factor in the overturning circulation. Due to difficulties associated with in situ observation, sea-ice production and its interannual variability have not been well understood until recently. Methods to estimate sea-ice production on large scales have been developed using heat flux calculations based on satellite microwave radiometer data. Using these methods, we present the mapping of sea-ice production with the same definition and scale globally, and review the polynya ice production and its relationship with dense/bottom water. The mapping demonstrates that ice production rate is high in Antarctic coastal polynyas, in contrast to Arctic coastal polynyas. This is consistent with the formation of Antarctic Bottom Water (AABW), the densest water mass which occupies the abyssal layer of the global ocean. The Ross Ice Shelf polynya has by far the highest ice production in the Southern Hemisphere. The Cape Darnley polynya (65°E-69°E) is found to be the second highest production area and recent observations revealed that this is the missing (fourth) source of AABW. In the region off the Mertz Glacier Tongue (MGT), the third source of AABW, sea-ice production decreased by as much as 40 %, due to the MGT calving in early 2010, resulting in a significant decrease in AABW production. The Okhotsk Northwestern polynya exhibits the highest ice production in the Northern Hemisphere, and the resultant dense water formation leads to overturning in the North Pacific, extending to the intermediate layer. Estimates of its ice production show a significant decrease over the past 30-50 years, likely causing the weakening of the North Pacific overturning. These regions demonstrate the strong linkage between variabilities of sea-ice production and bottom/intermediate water formation. The

  5. Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.

    2016-06-01

    Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.

  6. The Role of Late Summer Melt Pond Water Layers in the Ocean Mixed Layer on Enhancing Ice/Ocean Albedo Feedbacks in the Arctic

    NASA Astrophysics Data System (ADS)

    Stanton, T. P.; Shaw, W. J.

    2016-02-01

    Drainage of surface melt pond water into the top of the ocean mixed layer is seen widely in the Arctic ice pack in later summer (for example Gallaher et al 2015). Under calm conditions, this fresh water forms a thin, stratified layer immediately below the ice which is dynamically decoupled from the thicker, underlying seasonal mixed layer by the density difference between the two layers. The ephemeral surface layer is significantly warmer than the underlying ocean water owing to the higher freezing temperature of the fresh melt water. How the presence of this warm ephemeral layer enhances basal melt rate and speeds the destruction of the floes is investigated. High resolution timeseries measurements of T/S profiles in the 2m of the ocean immediately below the ice, and eddy-correlation fluxes of heat, salt and momentum 2.5m below the ice were made from an Autonomous Ocean Flux Buoy over a 2 month interval in later summer of 2015 as a component of the ONR Marginal Ice Zone project. The stratification and turbulent forcing observations are used with a 1 D turbulence closure model to understand how momentum and incoming radiative energy are stored and redistributed within the ephemeral layer. Under low wind forcing conditions both turbulent mixing energy and the water with high departure from freezing are trapped in the ephemeral layer by the strong density gradient at the base of the layer, resulting in rapid basal melting. This case is contrasted with model runs where the ephemeral layer heat is allowed to mix across the seasonal mixed layer, which results in slower basal melt rates. Consequently, the salinity-trapped warm ephemeral layer results in the formation of more open water earlier in the summer season, in turn resulting in increased cumulative heating of the ocean mixed layer, enhancing ice/ocean albedo feedbacks.

  7. Under-ice melt ponds and the oceanic mixed layer

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Smith, N.; Feltham, D. L.

    2017-12-01

    Under-ice melt ponds are pools of freshwater beneath the Arctic sea ice that form when melt from the surface of the sea ice percolates down through the porous sea ice. Through double diffusion, a sheet of ice can form at the interface between the ocean and the under-ice melt pond, completely isolating the pond from the mixed layer below and forming a false bottom to the sea ice. As such, they insulate the sea ice from the ocean below. It has been estimated that these ponds could cover between 5 and 40 % of the base of the Arctic sea ice, and so could have a notable impact on the mass balance of the sea ice. We have developed a one-dimensional model to calculate the thickness and thermodynamic properties of a slab of sea ice, an under-ice melt pond, and a false bottom, as these layers evolve. Through carrying out sensitivity studies, we have identified a number of interesting ways that under-ice melt ponds affect the ice above them and the rate of basal ablation. We found that they result in thicker sea ice above them, due to their insulation of the ice, and have found a possible positive feedback cycle in which less ice will be gained due to under-ice melt ponds as the Arctic becomes warmer. More recently, we have coupled this model to a simple Kraus-Turner type model of the oceanic mixed layer to investigate how these ponds affect the ocean water beneath them. Through altering basal ablation rates and ice thickness, they change the fresh water and salt fluxes into the mixed layer, as well as incoming radiation. Multi-year simulations have, in particular, shown how these effects work on longer time-scales.

  8. Rapid Water Transport through Organic Layers on Ice.

    PubMed

    Kong, Xiangrui; Toubin, Céline; Habartova, Alena; Pluharova, Eva; Roeselova, Martina; Pettersson, Jan B C

    2018-05-31

    Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.

  9. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    NASA Astrophysics Data System (ADS)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10º C and then once again during 60 hours at -20º C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of

  10. Ice Accretion Formations on a NACA 0012 Swept Wing Tip in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Giriunas, Julius A.; Ratvasky, Thomas P.

    2002-01-01

    An experiment was conducted in the DeHavilland DHC-6 Twin Otter Icing Research Aircraft at NASA Glenn Research Center to study the formation of ice accretions on swept wings in natural icing conditions. The experiment was designed to obtain ice accretion data to help determine if the mechanisms of ice accretion formation observed in the Icing Research Tunnel are present in natural icing conditions. The experiment in the Twin Otter was conducted using a NACA 0012 swept wing tip. The model enabled data acquisition at 0 deg, 15 deg, 25 deg, 30 deg, and 45 deg sweep angles. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that the mechanisms of ice accretion formation observed in-flight agree well with the ones observed in the Icing Research Tunnel. Observations on the end cap of the airfoil showed the same strong effect of the local sweep angle on the formation of scallops as observed in the tunnel.

  11. Cloud and boundary layer interactions over the Arctic sea-ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-05-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing

  12. Cloud and boundary layer interactions over the Arctic sea ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-09-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing

  13. Modelling sea ice formation in the Terra Nova Bay polynya

    NASA Astrophysics Data System (ADS)

    Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.

    2017-02-01

    Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to

  14. A Model for the Formation and Melting of Ice on Surface Waters.

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Wessels, H. R. A.

    1988-02-01

    Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed and radiation balance. The more complicated ice formation in rapidly flowing rivers is not considered in this study. A model is described that simulates ice growth and melting utilizing observed or forecast weather data. The model includes situations with a snow cover. Special attention is given to the optimal estimation of the net radiation and to the role of the stability of the near-surface air. Since a major practical application in the Netherlands is the use of frozen waters for recreation skating, the model is extended to include artificial ice tracks.

  15. An automated approach for annual layer counting in ice cores

    NASA Astrophysics Data System (ADS)

    Winstrup, M.; Svensson, A.; Rasmussen, S. O.; Winther, O.; Steig, E.; Axelrod, A.

    2012-04-01

    The temporal resolution of some ice cores is sufficient to preserve seasonal information in the ice core record. In such cases, annual layer counting represents one of the most accurate methods to produce a chronology for the core. Yet, manual layer counting is a tedious and sometimes ambiguous job. As reliable layer recognition becomes more difficult, a manual approach increasingly relies on human interpretation of the available data. Thus, much may be gained by an automated and therefore objective approach for annual layer identification in ice cores. We have developed a novel method for automated annual layer counting in ice cores, which relies on Bayesian statistics. It uses algorithms from the statistical framework of Hidden Markov Models (HMM), originally developed for use in machine speech recognition. The strength of this layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on purely objective criteria for annual layer identification. With this methodology, it is possible to determine the most likely position of multiple layer boundaries in an entire section of ice core data at once. It provides a probabilistic uncertainty estimate of the resulting layer count, hence ensuring a proper treatment of ambiguous layer boundaries in the data. Furthermore multiple data series can be incorporated to be used at once, hence allowing for a full multi-parameter annual layer counting method similar to a manual approach. In this study, the automated layer counting algorithm has been applied to data from the NGRIP ice core, Greenland. The NGRIP ice core has very high temporal resolution with depth, and hence the potential to be dated by annual layer counting far back in time. In previous studies [Andersen et al., 2006; Svensson et al., 2008], manual layer counting has been carried out back to 60 kyr BP. A comparison between the counted annual layers based on the two approaches will be presented

  16. Are annual layers preserved in NorthGRIP Eemian ice?

    NASA Astrophysics Data System (ADS)

    Kettner, E.; Bigler, M.; Nielsen, M. E.; Steffensen, J. P.; Svensson, A.

    2009-04-01

    A newly developed setup for continuous flow analysis (CFA) of ice cores in Copenhagen is optimized for high resolution analysis of four components: Soluble sodium (mainly deriving from sea salt), soluble ammonium (related to biological processes and biomass burning events), insoluble dust particles (basically transported from Asian deserts to Greenland), and the electrolytic melt water conductivity (which is a bulk signal for all ionic constituents). Furthermore, we are for the first time implementing a flow cytometer to obtain high quality dust concentration and size distribution profiles based on individual dust particle measurements. Preliminary measurements show that the setup is able to resolve annual layers of 1 cm thickness. Ice flow models predict that annual layers in the Eemian section of the Greenland NorthGRIP ice core (130-115 ka BP) have a thickness of around 1 cm. However, the visual stratigraphy of the ice core indicates that the annual layering in the Eemian section may be disturbed by micro folds and rapid crystal growth. In this case study we will measure the impurity content of an Eemian segment of the NorthGRIP ice core with the new CFA setup. This will allow for a comparison to well-known impurity levels of the Holocene in both Greenland and Antarctic ice and we will attempt to determine if annual layers are still present in the ice.

  17. Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation

    DOE PAGES

    Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.

    2012-06-06

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumptionmore » that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.« less

  18. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation.

    PubMed

    Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C

    2012-01-01

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.

  19. On the Formation of Rifts in Ice Shelves

    NASA Astrophysics Data System (ADS)

    Sayag, R.; Worster, G.

    2017-12-01

    Ice calving accounts for significant part in the mass loss of present ice sheets. Several processes could lead to calving, among them is the formation of rifts near the fronts of ice shelves. Here we combine laboratory-scale experiments of ice sheets together with theoretical modeling to investigate the formation of rifts in ice shelves. We model the deformation of ice with a thin viscous film that is driven axisymmetrically by buoyancy. When the viscous fluid intrudes a bath of an inviscid fluid that represents the ocean, the circular symmetry of the front breaks up into a set of tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Theoretically, we model the formation of rifts as a hydrodynamic instability of powerlaw fluid. Our model demonstrates the formation of rifts and the coarsening of the characteristic wavelength, and predicts coarsening transition times that are consistent with our experimental measurements.

  20. Layered Ice Near the South Pole of Mars

    NASA Image and Video Library

    2017-12-12

    The two largest ice sheets in the inner solar system are here on Earth, Antarctica and Greenland. The third largest is at the South Pole of Mars and a small part of it is shown in this image from NASA's Mars Reconnaissance Orbiter (MRO). Much like the terrestrial examples, this ice sheet is layered and scientists refer to it as the South Polar layered deposits. The ice layers contain information about past climates on Mars and deciphering this record has been a major goal of Mars science for decades. This slope, near the ice sheet's edge, shows the internal layers that have this climate record. With stereo images, we can tell the heights of these layers so we can measure their thickness and try to unravel the climatic information they contain. (Be sure to view the digital terrain model for this observation.) The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25.0 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 75 centimeters (29.5 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22125

  1. Predictive model for ice formation on superhydrophobic surfaces.

    PubMed

    Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom

    2011-12-06

    The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society

  2. Ice formation in subglacial Lake Vostok, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  3. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water

    PubMed Central

    van Wijk, Esmee

    2018-01-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise. PMID:29675467

  4. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.

    PubMed

    Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall

    2018-04-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise.

  5. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  6. Intracellular ice formation in insects: unresolved after 50 years?

    PubMed

    Sinclair, Brent J; Renault, David

    2010-01-01

    Many insects survive internal ice formation. The general model of freeze tolerance is of extracellular ice formation (EIF) whereby ice formation in the haemocoel leads to osmotic dehydration of the cells, whose contents remain unfrozen. However, survivable intracellular ice formation (IIF) has been reported in fat body and certain other cells of some insects. Although the cellular location of ice has been determined only in vitro, several lines of evidence suggest that IIF occurs in vivo. Both cell-to-cell propagation of intracellular ice and inoculation from the haemocoel may be important, although the route of ice into the cell is unclear. It is unclear why some cells survive IIF and others do not, but it is suggested that the shape, size, and low water content of fat body cells may predispose them towards surviving ice formation. We speculate that IIF may reduce water loss in some freeze tolerant species, but there are too few data to build a strong conceptual model of the advantages of IIF. We suggest that new developments in microscopy and other forms of imaging may allow investigation of the cellular location of ice in freeze tolerant insects in vivo.

  7. The formation of ice sails

    NASA Astrophysics Data System (ADS)

    Fowler, A. C.; Mayer, C.

    2017-11-01

    Debris-covered glaciers are prone to the formation of a number of supraglacial geomorphological features, and generally speaking, their upper surfaces are far from level surfaces. Some of these features are due to radiation screening or enhancing properties of the debris cover, but theoretical explanations of the consequent surface forms are in their infancy. In this paper we consider a theoretical model for the formation of "ice sails", which are regularly spaced bare ice features which are found on debris-covered glaciers in the Karakoram.

  8. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  9. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R. E.; Leeper, R. J.

    2013-09-27

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ~34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid”more » (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.« less

  10. Detecting Near-Surface Ice Formation Over Time Using the Kennaugh Elements Approach From TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Fernandes, L.

    2016-12-01

    The summer melting has increased substantially at higher elevations on the Canadian Arctic ice caps. The resulting meltwater percolates into the upper layers of snow and firn and then refreeze, building massive ice bodies. It seems likely that these within-firn ice bodies now limit meltwater penetration into the firn and may be creating a feedback whereby the fraction of melt that runs off to the ocean is increasing. Although changes in firn structure as presence of ice layers and ice bodies are well documented over the Devon ice cap, the firm has shown that it exerts a crucial role to predict more accurately the contribution of small ice caps to the sea level rise. However it is still challenging to assess the extent of these features within the shallow subsurface using ice cores and GPR (Ground Penetrating Radar) data collected along a limited number of linear transects. Studying changes in the distribution of ice bodies' formation over time has the potential to provide information about how the growth of ice bodies in the firn is affecting the pattern of water flow in the firn layer. The objective is investigate the potential of Kennaugh Elements (KE) derived from x-band SAR (Synthetic Aperture Radar) for mapping the distribution and growth of large ice bodies within the firn and the evolution of their distribution over time. The evaluation of this method could reveal a new approach suitable for other glacierized regions that would reduce the costs and amount of field work for studying such properties.

  11. Hypervelocity impacts into ice-topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, Mark J.

    2017-07-01

    Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the

  12. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui, E-mail: ryang73@ustc.edu; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry,more » previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes

  13. IceAge: Chemical Evolution of Ices during Star Formation

    NASA Astrophysics Data System (ADS)

    McClure, Melissa; Bailey, J.; Beck, T.; Boogert, A.; Brown, W.; Caselli, P.; Chiar, J.; Egami, E.; Fraser, H.; Garrod, R.; Gordon, K.; Ioppolo, S.; Jimenez-Serra, I.; Jorgensen, J.; Kristensen, L.; Linnartz, H.; McCoustra, M.; Murillo, N.; Noble, J.; Oberg, K.; Palumbo, M.; Pendleton, Y.; Pontoppidan, K.; Van Dishoeck, E.; Viti, S.

    2017-11-01

    Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R 1500-3000) and sensitivity (S/N 100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of ices down to 20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies,thermal histories, and mixing environments. The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.

  14. Timing and Distribution of Single-Layered Ejecta Craters Imply Sporadic Preservation of Tropical Subsurface Ice on Mars

    NASA Astrophysics Data System (ADS)

    Kirchoff, Michelle R.; Grimm, Robert E.

    2018-01-01

    Determining the evolution of tropical subsurface ice is a key component to understanding Mars's climate and geologic history. Study of an intriguing crater type on Mars—layered ejecta craters, which likely form by tapping subsurface ice—may provide constraints on this evolution. Layered ejecta craters have a continuous ejecta deposit with a fluidized-flow appearance. Single-layered ejecta (SLE) craters are the most common and dominate at tropical latitudes and therefore offer the best opportunity to derive new constraints on the temporal evolution of low-latitude subsurface ice. We estimate model formation ages of 54 SLE craters with diameter (D) ≥ 5 km using the density of small, superposed craters with D < 1 km on their continuous ejecta deposits. These model ages indicate that SLE craters have formed throughout the Amazonian and at a similar rate expected for all Martian craters. This suggests that tropical ice has remained at relatively shallow depths at least where these craters formed. In particular, the presence of equatorial SLE craters with D 1 km indicates that ice could be preserved as shallow as 100 m or less at those locations. Finally, there is a striking spatial mixing in an area of highlands near the equator of layered and radial (lunar-like ballistic) ejecta craters; the latter form where there are insufficient concentrations of subsurface ice. This implies strong spatial heterogeneity in the concentration of tropical subsurface ice.

  15. Wind-Driven Formation of Ice Bridges in Straits.

    PubMed

    Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A

    2017-03-24

    Ice bridges are static structures composed of tightly packed sea ice that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of ice bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea ice dynamics, we develop a one-dimensional theory for the wind-driven formation of ice bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state ice bridge can only form beyond a critical value of the thickness and the compactness of the ice field. The theory also makes quantitative predictions for ice fluxes, which are particularly useful to estimate the ice export associated with the breakup of ice bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.

  16. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  17. Two-phase convection in the high-pressure ice layer of the large icy moons: geodynamical implications

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Tobie, G.; Choblet, G.; Grasset, O.

    2015-12-01

    The H2O layers of large icy satellites such as Ganymede, Callisto, or Titan probably include a liquid water ocean sandwiched between the deep high-pressure ice layer and the outer ice I shell [1]. It has been recently suggested that the high-pressure ice layer could be decoupled from the silicate core by a salty liquid water layer [2]. However, it is not clear whether accumulation of liquids at the bottom of the high-pressure layer is possible due to positive buoyancy of water with respect to high-pressure ice. Numerical simulation of this two-phase (i.e. ice and water) problem is challenging, which explains why very few studies have self-consistently handled the presence and transport of liquids within the solid ice [e.g. 3]. While using a simplified description of water production and transport, it was recently showed in [4] that (i) a significant fraction of the high-pressure layer reaches the melting point and (ii) the melt generation and its extraction to the overlying ocean significantly influence the global thermal evolution and interior structure of the large icy moons.Here, we treat the high-pressure ice layer as a compressible mixture of solid ice and liquid water [5]. Several aspects are investigated: (i) the effect of the water formation on the vigor of solid-state convection and its influence on the amount of heat that is transferred from the silicate mantle to the ocean; (ii) the fate of liquids within the upper thermal boundary layer - whether they freeze or reach the ocean; and (iii) the effect of salts and volatile compounds (potentially released from the rocky core) on the melting/freezing processes. Investigation of these aspects will allow us to address the thermo-chemical evolution of the internal ocean which is crucial to evaluate the astrobiological potential of large icy moons. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Hussmann et al. (2007), Treatise of

  18. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multi-frequency EM

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.

    2015-12-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.

  19. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R. E.; Leeper, R. J.

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid”more » (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.« less

  20. The effects of mixed layer dynamics on ice growth in the central Arctic

    NASA Astrophysics Data System (ADS)

    Kitchen, Bruce R.

    1992-09-01

    The thermodynamic model of Thorndike (1992) is coupled to a one dimensional, two layer ocean entrainment model to study the effect of mixed layer dynamics on ice growth and the variation in the ocean heat flux into the ice due to mixed layer entrainment. Model simulations show the existence of a negative feedback between the ice growth and the mixed layer entrainment, and that the underlying ocean salinity has a greater effect on the ocean beat flux than does variations in the underlying ocean temperature. Model simulations for a variety of surface forcings and initial conditions demonstrate the need to include mixed layer dynamics for realistic ice prediction in the arctic.

  1. Landform Formation Under Ice Sheets

    NASA Astrophysics Data System (ADS)

    Schoof, C. G.; Ng, F. S.; Hallet, B.

    2004-12-01

    We present a new mathematical model for the formation of subglacial landforms such as drumlins under a warm-based, soft-bedded ice sheet. At the heart of the model is a channelized drainage system in which smaller channels grow at the expense of larger ones, leading to the continuous creation and extinction of drainage paths, and to a spatially distributed imprint on the landscape. We demonstrate how interactions between such a drainage system, bed topography and ice flow can lead to the spontaneous formation of subglacial landforms, and discuss the effect of different sediment transport characteristics in the drainage system on the shape and migration of these landforms. This mathematical model is the first component of a study of landscape/ice-sheet self-organization, which is inspired and guided, in part, by new digital topographic data (LIDAR) that are revealing with unprecedented detail the striking grain of glacially scoured topography on length scales ranging from 0.5 to 20 km.

  2. Combining laboratory results, numerical modeling, and in situ measurements to investigate the relative contributions of homogeneous and heterogeneous nucleation to ice formation in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Jensen, E. J.; Karcher, B.; Ueyama, R.; Pfister, L.; Bui, T. V.; Diskin, G. S.; DiGangi, J. P.; Woods, S.; Lawson, P.; Froyd, K. D.; Murphy, D. M.

    2017-12-01

    Laboratory experiments over the past decade have advanced our understanding of the physical state and ice nucleation efficacy of aerosols with atmospherically-relevant compositions at low temperatures. We use these laboratory results along with measurements of upper-tropospheric aerosol composition to develop a parameterization if the ice nuclei number, and activity dependence on ice supersaturation and temperature in the cold tropical tropopause layer (TTL, 13-18 km). We show that leading candidates for aerosol types serving as effective ice nuclei are glassy organic-containing aerosols, crystalline ammonium sulfate, and mineral dust. We apply the low-temperature heterogeneous ice nucleation parameterization in a detailed model of TTL transport and cirrus formation. The model treats heterogeneous ice nucleation and homogeneous freezing of aqueous aerosols, deposition growth and sublimation of ice crystals, and sedimentation of ice crystals. The model is driven by meteorological fields with high-frequency waves superimposed, and simulated cirrus microphysical properties are statistically compared with recent measurements of TTL cirrus microphysical properties and ice supersaturation from recent high-altitude aircraft campaigns. We show that effective ice nuclei concentrations on the order of 50-100/L can dominate over homogeneous freezing production of TTL cirrus ice crystals. Glassy organic-containing aerosols or crystalline ammonium sulfate could conceivably provide more abundant sources of ice nuclei, but the simulations indicate that high concentrations of effective IN would prevent observed occurrence of large supersaturations and high ice concentrations. We will also show the impact of heterogeneous ice nuclei on TTL cirrus microphysical properties and occurrence frequencies.

  3. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains

  4. Arctic sea ice melt leads to atmospheric new particle formation.

    PubMed

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  5. Two-phase convection in Ganymede's high-pressure ice layer - Implications for its geological evolution

    NASA Astrophysics Data System (ADS)

    Kalousová, Klára; Sotin, Christophe; Choblet, Gaël; Tobie, Gabriel; Grasset, Olivier

    2018-01-01

    Ganymede, the largest moon in the solar system, has a fully differentiated interior with a layer of high-pressure (HP) ice between its deep ocean and silicate mantle. In this paper, we study the dynamics of this layer using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. While focusing on the generation of water at the silicate/HP ice interface and its upward migration towards the ocean, we investigate the effect of bottom heat flux, the layer thickness, and the HP ice viscosity and permeability. Our results suggest that melt can be generated at the silicate/HP ice interface for small layer thickness ( ≲ 200 km) and high values of heat flux ( ≳ 20 mW m-2) and viscosity ( ≳ 1015 Pa s). Once generated, the water is transported through the layer by the upwelling plumes. Depending on the vigor of convection, it stays liquid or it may freeze before melting again as the plume reaches the temperate (partially molten) layer at the boundary with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the permeability of the HP ice. This process constitutes a means of transporting volatiles and salts that might have dissolved into the melt present at the silicate/HP ice interface. As the moon cools down, the HP ice layer becomes less permeable because the heat flux from the silicates decreases and the HP ice layer thickens.

  6. Ice Versus Rock

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Olson, Eric A.; Dehm, Janet

    2005-01-01

    During a snow bank exploration, students noticed "ice caves," or pockets, in some of the larger snow banks, usually below darker layers. Most of these caves had many icicles hanging inside. Students offered reasonable explanations of ice cave formation--squirrels, kids, snow blowers--and a few students came close to the true ice cave-formation…

  7. Ice formation on kaolinite: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  8. Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers.

    PubMed

    Cox, Stephen J; Kathmann, Shawn M; Slater, Ben; Michaelides, Angelos

    2015-05-14

    Coarse grained molecular dynamics simulations are presented in which the sensitivity of the ice nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting ice nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of interfacial water plays in heterogeneous ice nucleation and demonstrate that the extent of layering is not a good indicator of ice nucleating ability for all surfaces. Our results suggest that to be an efficient ice nucleating agent, a surface should not bind water too strongly if it is able to accommodate high coverages of water.

  9. Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations

    NASA Astrophysics Data System (ADS)

    Wong, T.; McKinnon, W. B.; Schenk, P.

    2016-12-01

    Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.

  10. Solar cycle and long term variations of mesospheric ice layers

    NASA Astrophysics Data System (ADS)

    Lübken, Franz-Josef; Berger, Uwe; Kiliani, Johannes; Baumgarten, Gerd; Fiedler, Jens; Gerding, Michael

    2010-05-01

    Ice layers in the summer mesosphere at middle and polar latitudes, frequently called `noctilucent clouds' (NLC) or `polar mesosphere clouds'(PMC), are considered to be sensitive indicators of long term changes in the middle atmosphere. We present a summary of long term observations from the ground and from satellites and compare with results from the LIMA model (Leibniz Institute Middle Atmosphere Model). LIMA nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and thereby the morphology of ice clouds. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this give s negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. As will be shown, these trends originate in the stratosphere. Solar cycle effects are expected in ice layers due to variations in background temperatures and water paper. We will present results from LIMA regarding solar cycle variations and compare with NLC observations at our lidar stations in Kühlungsborn (54°N) and ALOMAR (69°N), and also with satellite measurements.

  11. Meteorological conditions during the formation of ice on aircraft

    NASA Technical Reports Server (NTRS)

    Samuels, L T

    1932-01-01

    These are the results of a number of records recently secured from autographic meteorological instruments mounted on airplanes at times when ice formed. Ice is found to collect on an airplane only when the airplane is in some form of visible moisture, such as cloud, fog, mist, rain. etc., and the air temperature is within certain critical limits. Described here are the characteristics of clear ice and rime ice and the specific types of hazards they present to airplanes and lighter than air vehicles. The weather records are classified according to the two general types of formation (clear ice and rime) together with the respective temperatures, relative humidities, clouds, and elevations above ground at which formations occurred. This classification includes 108 cases where rime formed, 43 cases in which clear ice formed, and 4 cases when both rime and clear ice formed during the same flight. It is evident from the above figures that there was a preponderance of rime by the ratio of 2.5 to 1, while in only a few cases both types of ice formation occurred during the same flight.

  12. TOWARDS ICE FORMATION CLOSURE IN MIXED-PHASE BOUNDARY LAYER CLOUDS DURING ISDAC

    NASA Astrophysics Data System (ADS)

    Avramov, A.; Ackerman, A. S.; Fridlind, A. M.; van Diedenhoven, B.; Korolev, A. V.

    2009-12-01

    Mixed-phase stratus clouds are ubiquitous in the Arctic during the winter and transition seasons. Despite their important role in various climate feedback mechanisms they are not well understood and are difficult to represent faithfully in cloud models. In particular, models of all types experience difficulties reproducing observed ice concentrations and liquid/ice water partitioning in these clouds. Previous studies have demonstrated that simulated ice concentrations and ice water content are critically dependent on ice nucleation modes and ice crystal habit assumed in simulations. In this study we use large-eddy simulations with size-resolved microphysics to determine whether uncertainties in ice nucleus concentrations, ice nucleation mechanisms, ice crystal habits and large-scale forcing are sufficient to account for the difference between simulated and observed quantities. We present results of simulations of two case studies based on observations taken during the recent Indirect and Semi-Direct Aerosol Campaign (ISDAC) on April 8 and 26, 2008. The model simulations are evaluated through extensive comparison with in-situ observations and ground-based remote sensing measurements.

  13. Longevity of Compositionally Stratified Layers in Ice Giants

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  14. Cross Flow Effects on Glaze Ice Roughness Formation

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2004-01-01

    The present study examines the impact of large-scale cross flow on the creation of ice roughness elements on the leading edge of a swept wing under glaze icing conditions. A three-dimensional triple-deck structure is developed to describe the local interaction of a 3 D air boundary layer with ice sheets and liquid films. A linear stability analysis is presented here. It is found that, as the sweep angle increases, the local icing instabilities enhance and the most linearly unstable modes are strictly three dimensional.

  15. The growth process of first water layer and crystalline ice on the Rh(111) surface

    NASA Astrophysics Data System (ADS)

    Beniya, Atsushi; Sakaguchi, Yuji; Narushima, Tetsuya; Mukai, Kozo; Yamashita, Yoshiyuki; Yoshimoto, Shinya; Yoshinobu, Jun

    2009-01-01

    The adsorption states and growth process of the first layer and multilayer of water (D2O) on Rh(111) above 135K were investigated using infrared reflection absorption spectroscopy (IRAS), temperature programed desorption, spot-profile-analysis low-energy electron diffraction, and scanning tunneling microscopy (STM). At the initial stage, water molecules form commensurate (√3×√3)R30° islands, whose size is limited for several hexagonal units; the average diameter is ˜2.5nm. This two-dimensional (2D) island includes D-down species, and free OD species exist at the island edge. With increasing coverage, the D-up species starts to appear in IRAS. At higher coverages, the 2D islands are connected in STM images. By the titration of Xe adsorption we estimated that the D-down domain occupies about 55% on Rh(111) at the saturation coverage. Further adsorption of water molecules forms three-dimensional ice crystallites on the first water layer; thus, the growth mode of crystalline water layers on Rh(111) is a Stranski-Krastanov type. We have found that an ice crystallite starts to grow on D-down domains and the D-down species do not reorient upon the formation of a crystalline ice.

  16. Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with

  17. Diatom assemblages promote ice formation in large lakes

    PubMed Central

    D'souza, N A; Kawarasaki, Y; Gantz, J D; Lee, R E; Beall, B F N; Shtarkman, Y M; Koçer, Z A; Rogers, S O; Wildschutte, H; Bullerjahn, G S; McKay, R M L

    2013-01-01

    We present evidence for the directed formation of ice by planktonic communities dominated by filamentous diatoms sampled from the ice-covered Laurentian Great Lakes. We hypothesize that ice formation promotes attachment of these non-motile phytoplankton to overlying ice, thereby maintaining a favorable position for the diatoms in the photic zone. However, it is unclear whether the diatoms themselves are responsible for ice nucleation. Scanning electron microscopy revealed associations of bacterial epiphytes with the dominant diatoms of the phytoplankton assemblage, and bacteria isolated from the phytoplankton showed elevated temperatures of crystallization (Tc) as high as −3 °C. Ice nucleation-active bacteria were identified as belonging to the genus Pseudomonas, but we could not demonstrate that they were sufficiently abundant to incite the observed freezing. Regardless of the source of ice nucleation activity, the resulting production of frazil ice may provide a means for the diatoms to be recruited to the overlying lake ice, thereby increasing their fitness. Bacterial epiphytes are likewise expected to benefit from their association with the diatoms as recipients of organic carbon excreted by their hosts. This novel mechanism illuminates a previously undescribed stage of the life cycle of the meroplanktonic diatoms that bloom in Lake Erie and other Great Lakes during winter and offers a model relevant to aquatic ecosystems having seasonal ice cover around the world. PMID:23552624

  18. Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.; Nimmo, Francis; Wong, Teresa; Schenk, Paul M.; White, Oliver L.; Roberts, J. H.; Moore, J. M.; Spencer, J. R.; Howard, A. D.; Umurhan, O. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Dalle Ore, C.; Gladstone, R.; Grundy, W.; Howard, A.; Lauer, T.; Linscott, I.; Nimmo, F.; Olkin, C.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; Weaver, H.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; New Horizons Geology, Geophysics and Imaging Theme Team

    2016-06-01

    The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.

  19. Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour.

    PubMed

    McKinnon, William B; Nimmo, Francis; Wong, Teresa; Schenk, Paul M; White, Oliver L; Roberts, J H; Moore, J M; Spencer, J R; Howard, A D; Umurhan, O M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E

    2016-06-02

    The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.

  20. Shock timing measurements in DT ice layers

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. The Effect of Ice Formations on Propeller Performance

    NASA Technical Reports Server (NTRS)

    Neel, C. B., Jr.; Bright, L. G.

    1950-01-01

    Measurements of propeller efficiency loss due to ice formation are supplemented by an analysis to establish the magnitude of efficiency losses to be anticipated during flight in icing conditions. The measurements were made during flight in natural icing conditions; whereas the analysis consisted of an investIgation of changes in blade-section aerodynamic characteristics caused by ice formation and the resulting propeller efficiency changes. Agreement in the order of magnitude of eff 1- ciency losses to be expected is obtained between measured and analytical results. The results indicate that, in general, efficiency losses can be expected to be less than 10 percent; whereas maximum losses, which will be encountered only rarely, may be as high as 15 or 20 percent. Reported. losses larger than 15 or 20 percent, based on reductions in airplane performance, probably are due to ice accretions on other parts of the airplane. Blade-element theory is used in the analytical treatment, and calculations are made to show the degree to which the aerodynamic characteristics of a blade section. must be altered to produce various propeller efficiency losses. The effects of ice accretions on airfoil-section characteristics at subcritical speeds and their influence on drag-divergence Mach number are examined, and. the attendant maximum efficiency losses are computed. The effect of kinetic heating on the radial extent of ice formation is considered, and its influence on required length of blade heating shoes is discussed. It is demonstrated how the efficiency loss resulting from an icing encounter is influenced by the decisions of the pilot in adjusting the engine and propeller controls.

  2. Inferring Enceladus' ice shell strength and structure from Tiger Stripe formation

    NASA Astrophysics Data System (ADS)

    Rhoden, A.; Hurford, T., Jr.; Spitale, J.; Henning, W. G.

    2017-12-01

    The tiger stripe fractures (TSFs) of Enceladus are four, roughly parallel, linear fractures that correlate with plume sources and high heat flows measured by Cassini. Diurnal variations of plume eruptions along the TSFs strongly suggest that tides modulate the eruptions. Several attempts have been made to infer Enceladus' ice shell structure, and the mechanical process of plume formation, by matching variations in the plumes' eruptive output with tidal stresses for different interior models. Unfortunately, the many, often degenerate, unknowns make these analyses non-unique. Tidal-interior models that best match the observed plume variability imply very low tidal stresses (<14 kPa), much lower than the 1 MPa tensile strength of ice implied by lab experiments or the 100 kPa threshold inferred for Europa's ice. In addition, the interior models that give the best matches are inconsistent with the constraints from observed librations. To gain more insight into the interior structure and rheology of Enceladus and the role of tidal stress in the development of the south polar terrain, we utilize the orientations of the TSFs themselves as observational constraints on tidal-interior models. While the initial formation of the TSFs has previously been attributed to tidal stress, detailed modeling of their formation has not been performed until now. We compute tidal stresses for a suite of rheologically-layered interior models, consistent with Enceladus' observed librations, and apply a variety of failure conditions. We then compare the measured orientations at 6391 points along the TSFs with the predicted orientations from the tidal models. Ultimately, we compute the likelihood of forming the TSFs with tidal stresses for each model and failure condition. We find that tidal stresses are a good match to the observed orientations of the TSFs and likely led to their formation. We also find that the model with the highest likelihood changes depending on the failure criterion

  3. Atmospheric boundary layer modification in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Bennett, Theodore J., Jr.; Hunkins, Kenneth

    1986-01-01

    A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.

  4. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  5. Formation and decomposition of CO2-filled ice.

    PubMed

    Massani, B; Mitterdorfer, C; Loerting, T

    2017-10-07

    Recently it was shown that CO 2 -filled ice is formed upon compression of CO 2 -clathrate hydrate. Here we show two alternative routes of its formation, namely, by decompression of CO 2 /ice VI mixtures at 250 K and by isobaric heating of CO 2 /high-density amorphous ice mixtures at 0.5-1.0 GPa above 200 K. Furthermore, we show that filled ice may either transform into the clathrate at an elevated pressure or decompose to "empty" hexagonal ice at ambient pressure and low temperature. This complements the literature studies in which decomposition to ice VI was favoured at high pressures and low temperatures.

  6. Formation and decomposition of CO2-filled ice

    NASA Astrophysics Data System (ADS)

    Massani, B.; Mitterdorfer, C.; Loerting, T.

    2017-10-01

    Recently it was shown that CO2-filled ice is formed upon compression of CO2-clathrate hydrate. Here we show two alternative routes of its formation, namely, by decompression of CO2/ice VI mixtures at 250 K and by isobaric heating of CO2/high-density amorphous ice mixtures at 0.5-1.0 GPa above 200 K. Furthermore, we show that filled ice may either transform into the clathrate at an elevated pressure or decompose to "empty" hexagonal ice at ambient pressure and low temperature. This complements the literature studies in which decomposition to ice VI was favoured at high pressures and low temperatures.

  7. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  8. Ice flow in the Weddell Sea sector of West Antarctica as elucidated by radar-imaged internal layering

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.

    2012-12-01

    Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial

  9. Forming Uniform Deuterium-Ice Layers in Cryogenic Targets: Experiences Using the OMEGA Cryogenic Target Handling System

    NASA Astrophysics Data System (ADS)

    Harding, D. R.; Wittman, M. D.; Elasky, L.; Iwan, L. S.; Lund, L.

    2001-10-01

    The OMEGA Cryogenic Target Handling System (OCTHS) allows variable-thickness ice layers (nominal 100-μm) to be formed inside OMEGA-size (1-mm-diam., 3-μm-wall) plastic shells. The OCTHS design provides the most straightforward thermal environment for layering targets: permeation filled spherical targets are in a spherical isothermal environment. The layered target can be rotated 360^o to acquire multiple views of the ice layer. However, the capability of providing cryogenic targets for implosion experiments imposes constraints that do not exist in test systems dedicated to ice-layering studies. Most affected is the ability to characterize the target: space constraints and the need for multiple sets of windows limit the viewing access to f/5 optics, which affects the image quality. With these features, the OCTS provides the most relevant test system, to date, for layering targets and quantifying the overall ice roughness. No single layering protocol provides repeatable ice smoothness. All techniques require extensive operator interaction, and the layering process is lengthy. Typical ice rms smoothness varied from 5 to 10 μm for all targets studied. Characterizing the ice layer from different views shows a ~30% variation in the ice rms smoothness and a greater difference in the power spectra, depending on the view axis. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  10. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  11. Ice Nucleation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Diskin, Glenn S.; Lawson, R Paul; Lance, Sara; Bui, Thaopaul Van; Hlavka, Dennis L.; Mcgill, Matthew J.; Pfister, Leonhard; Toon, Owen B.; Gao, Rushan

    2013-01-01

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent highaltitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to approx. 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L-1 (often less than 20 L-1), whereas the high ice concentration layers (with concentrations up to 10,000 L-1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as approx. 1.7 times the ice saturation mixing ratio.

  12. Ice Lens Formation, Frost Heave, Thin Films, and the Importance of the Polar H2O Reservoir at High Obliquity

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Sizemore, H. G.; Rempel, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavaged by Phoenix. One hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metaboluze and grow down to temperatures of at least 258 K.

  13. To determine ice layer thickness of Europa by high energy neutrino

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Kurita, K.; Tanaka, H. K.

    2010-12-01

    Europa, the second closest Galilean satellite is one of the targets which are suspected to have an internal ocean. Detection and characterization of the internal ocean is one of the main subjects for Europa orbiter exploration. Although the gravitational data has shown the thickness of the surface H2O layer of 80-170km[1], it can not determine the phase of H2O. The variations in the magnetic field associated with the induced current in the internal ocean can determine the thickness of the layer of ice if satellite's orbits satisfy the required conditions. Observations of tidal amplitude forced by Jupiter can also resolve the thickness of the surface lithosphere[2]. At moment because of the lack of observational constraints there exist two contrasting models:thick ice layer model and thin model. Here we propose new method to detect the ocean directly based on the radiation by high energy neutrino interacted with matter. Schaefer et al[3] have proposed a similar method to determine ice layer thickness. We will focus on the detection of internal ocean for Europa and present the method is suitable for actual situations of Europa exploration by numerical simulations. Neutrino is famous for its traveling at long distance without any interaction with matter. When high energy neutrinos traverse in Europa hadronic showers are produced by the weak interaction with the nucleons that makes the body of Europa. These hadronic showers induces excess electrons. Because of these excess electrons, Cherenkov photons are emitted. When this radiation occurs in the ice layer, radiations whose wave length is over 10cm should be coherent because the scale of the shower becomes small (a few cm) in the ice, which is called as Askaryan effect[3]. Thus, the intensity of the radiation whose frequency is a few GHz should be enhanced. Since ice has a much longer attenuation length than water, the radiations which occur in the surface ice layer could be detected by the antenna outside Europa but

  14. Response of mixed-phase boundary layer clouds with rapid and slow ice nucleation processes to cloud-top temperature trend

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.; DeMott, P. J.; Brooks, S. D.; Glen, A.

    2015-12-01

    It has been argued on the basis of some laboratory data sets, observed mixed-phase cloud systems, and numerical modeling studies that weakly active or slowly consumed ice forming nuclei (IFN) may be important to natural cloud systems. It has also been argued on the basis of field measurements that ice nucleation under mixed-phase conditions appears to occur predominantly via a liquid-phase mechanism, requiring the presence of liquid droplets prior to substantial ice nucleation. Here we analyze the response of quasi-Lagrangian large-eddy simulations of mixed-phase cloud layers to IFN operating via a liquid-phase mode using assumptions that result in either slow or rapid depletion of IFN from the cloudy boundary layer. Using several generalized case studies that do not exhibit riming or drizzle, based loosely on field campaign data, we vary environmental conditions such that the cloud-top temperature trend varies. One objective of this work is to identify differing patterns in ice formation intensity that may be distinguishable from ground-based or satellite platforms.

  15. Investigating the Relative Contributions of Secondary Ice Formation Processes to Ice Crystal Number Concentrations Within Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, S.; Nenes, A.

    2015-12-01

    Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.

  16. Ice nucleation and dehydration in the Tropical Tropopause Layer.

    PubMed

    Jensen, Eric J; Diskin, Glenn; Lawson, R Paul; Lance, Sara; Bui, T Paul; Hlavka, Dennis; McGill, Matthew; Pfister, Leonhard; Toon, Owen B; Gao, Rushan

    2013-02-05

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent high-altitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to ∼70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L(-1) (often less than 20 L(-1)), whereas the high ice concentration layers (with concentrations up to 10,000 L(-1)) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as ∼1.7 times the ice saturation mixing ratio.

  17. Formation of methyl formate in comets by irradiation of methanol-bearing ices

    NASA Astrophysics Data System (ADS)

    Modica, P.; Palumbo, M. E.; Strazzulla, G.

    2012-12-01

    Methyl formate is a complex organic molecule considered potentially relevant as precursor of biologically active molecules. It has been observed in several astrophysical environments, such as hot cores, hot corinos, and comets. The processes that drive the formation of molecules in cometary ices are poorly understood. In particular it is not yet clear if molecules are directly accreted from the pre-solar nebula to form comets or are formed after accretion. The present work analyzes the possible role of cosmic ion irradiation and radioactive decay in methyl formate formation in methanol-bearing ices. The results indicate that cosmic ion irradiation can account for about 12% of the methyl formate observed in comet Hale-Bopp, while radioactive decay can account for about 6% of this amount. The need of new data coming from earth based and space observational projects as well as from laboratory experiments is outlined.

  18. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition during Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, Jeremy; Murphy, Jim

    2016-10-01

    Structural and compositional variability in the layering sequences comprising Mars' polar layered terrains (PLT's) is likely explained by orbital-forced climatic variations in the sedimentary cycles of water ice and dust from which they formed [1]. The PLT's therefore contain a direct, extensive record of the recent climate history of Mars encoded in their structure and stratigraphy, but deciphering this record requires understanding the depositional history of their dust and water ice constituents. 3D Mars atmosphere modeling enables direct simulation of atmospheric dynamics, aerosol transport and quantification of surface accumulation for a range of past and present orbital configurations. By quantifying the net yearly polar deposition rates of water ice and dust under Mars' current and past orbital configurations characteristic of the last several millions of years, and integrating these into the present with a time-stepping model, the formation history of the north and south PLT's will be investigated, further constraining their age and composition, and, if reproducible, revealing the processes responsible for prominent features and stratigraphy observed within the deposits. Simulating the formation of the deposits by quantifying net deposition rates during past orbital epochs and integrating these into the present, effectively 'rebuilding' the terrains, could aid in understanding deeper stratigraphic trends, correlating between geographically-separated deposits, explaining the presence and shapes of large-scale polar features, and correlating stratigraphy with geological time. Quantification of the magnitude and geographical distribution of surface aerosol accumulation will build on the work of previous GCM-based investigations [3]. Construction and analysis of hypothetical stratigraphic sequences in the PLT's will draw from previous climate-controlled stratigraphy methodologies [2,4], but will utilize GCM-derived net deposition rates to model orbital

  19. Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity

    NASA Astrophysics Data System (ADS)

    Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.

    2010-07-01

    The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensation trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve which empirically describes the ISS fraction in any average relative humidity pressure layer. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.

  20. Limit regimes of ice formation in turbulent supercooled water.

    PubMed

    De Santi, Francesca; Olla, Piero

    2017-10-01

    A study of ice formation in stationary turbulent conditions is carried out in various limit regimes of crystal growth, supercooling, and ice entrainment at the water surface. Analytical expressions for the temperature, salinity, and ice concentration mean profiles are provided, and the role of fluctuations in ice production is numerically quantified. Lower bounds on the ratio of sensible heat flux to latent heat flux to the atmosphere are derived and their dependence on key parameters such as salt rejection in freezing and ice entrainment in the water column is elucidated.

  1. On the Formation of Planetesimals: Radial Contraction of the Dust Layer Interacting with the Protoplanetary Disk Gas

    NASA Astrophysics Data System (ADS)

    Makalkin, A. B.; Artyushkova, M. E.

    2017-11-01

    Radial contraction of the dust layer in the midplane of a gas-dust protoplanetary disk that consists of large dust aggregates is modeled. Sizes of aggregates vary from centimeters to meters assuming the monodispersion of the layer. The highly nonlinear continuity equation for the solid phase of the dust layer is solved numerically. The purpose of the study is to identify the conditions under which the solid matter is accumulated in the layer, which contributes to the formation of planetesimals as a result of gravitational instability of the dust phase of the layer. We consider the collective interaction of the layer with the surrounding gas of the protoplanetary disk: shear stresses act on the gas in the dust layer that has a higher orbital velocity than the gas outside the layer, this leads to a loss of angular momentum and a radial drift of the layer. The stress magnitude is determined by the turbulent viscosity, which is represented as the sum of the α-viscosity associated with global turbulence in the disk and the viscosity associated with turbulence that is localized in a thin equatorial region comprising the dust layer and is caused by the Kelvin-Helmholtz instability. The evaporation of water ice and the continuity of the mass flux of the nonvolatile component on the ice line is also taken into account. It is shown that the accumulation of solid matter on either side of the ice line and in other regions of the disk is determined primarily by the ratio of the radii of dust aggregates on either side of the ice line. If after the ice evaporation the sizes (or density) of dust aggregates decrease by an order of magnitude or more, the density of the solid phase of the layer's matter in the annular zone adjacent to the ice line from the inside increases sharply. If, however, the sizes of the aggregates on the inner side of the ice line are only a few times smaller than behind the ice line, then in the same zone there is a deficit of mass at the place of the

  2. An improved ice cloud formation parameterization in the EMAC model

    NASA Astrophysics Data System (ADS)

    Bacer, Sara; Pozzer, Andrea; Karydis, Vlassis; Tsimpidi, Alexandra; Tost, Holger; Sullivan, Sylvia; Nenes, Athanasios; Barahona, Donifan; Lelieveld, Jos

    2017-04-01

    Cirrus clouds cover about 30% of the Earth's surface and are an important modulator of the radiative energy budget of the atmosphere. Despite their importance in the global climate system, there are still large uncertainties in understanding the microphysical properties and interactions with aerosols. Ice crystal formation is quite complex and a variety of mechanisms exists for ice nucleation, depending on aerosol characteristics and environmental conditions. Ice crystals can be formed via homogeneous nucleation or heterogeneous nucleation of ice-nucleating particles in different ways (contact, immersion, condensation, deposition). We have implemented the computationally efficient cirrus cloud formation parameterization by Barahona and Nenes (2009) into the EMAC (ECHAM5/MESSy Atmospheric Chemistry) model in order to improve the representation of ice clouds and aerosol-cloud interactions. The parameterization computes the ice crystal number concentration from precursor aerosols and ice-nucleating particles accounting for the competition between homogeneous and heterogeneous nucleation and among different freezing modes. Our work shows the differences and the improvements obtained after the implementation with respect to the previous version of EMAC.

  3. Temperature and ice layer trends in the summer middle atmosphere

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  4. Modeling the relative contributions of secondary ice formation processes to ice crystal number concentrations within mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios

    2016-04-01

    Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.

  5. Ketene Formation in Interstellar Ices: A Laboratory Study

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loeffler, Mark Josiah

    2013-01-01

    The formation of ketene (H2CCO, ethenone) in polar and apolar ices was studied with in situ 0.8 MeV proton irradiation, far-UVphotolysis, and infrared spectroscopic analyses at 10-20 K. Using isotopically enriched reagents, unequivocal evidencewas obtained for ketene synthesis in H2O-rich and CO2-rich ices, and several reaction products were identified. Results from scavenging experiments suggested that ketene was formed by free-radical pathways, as opposed to acid-base processes or redox reactions. Finally, we use our results to draw conclusions about the formation and stability of ketene in the interstellar medium.

  6. Possible Sea Ice Impacts on Oceanic Deep Convection

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.

    1984-01-01

    Many regions of the world ocean known or suspected to have deep convection are sea-ice covered for at least a portion of the annual cycle. As this suggests that sea ice might have some impact on generating or maintaining this phenomenon, several mechanisms by which sea ice could exert an influence are presented in the following paragraphs. Sea ice formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As sea ice forms, either by ice accretion or by in situ ice formation in open water or in lead areas between ice floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the ice. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive ice formation and a relatively unstable oceanic density structure.

  7. A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.

  8. Water generation and transport through the high-pressure ice layers of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Choblet, G.; Tobie, G.; Grasset, O.

    2017-09-01

    We investigate the generation and transport of water through the high-pressure (HP) ice layers of Ganymede and Titan using a numerical model of two-phase convection in 2D geometry. Our results suggest that water can be generated at the silicate/HP ice interface for small to intermediate values of Rayleigh number (Ra 1.e8-1.e10) while no melt is generated for the higher values (Ra 1.e11). If generated, water is transported through the layer by the upwelling plumes and, depending on the vigor of convection, it stays liquid (smaller Ra) or it may freeze (intermediate Ra) before melting again as the plume reaches the temperate layer at the interface with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the HP ice permeability. This process may enable the transfer of volatiles and salts that might have been leached from silicates by the meltwater. Since the HP ice layer is much thinner on Titan than on Ganymede, it is probably more permeable for volatiles and salts leached from the silicate core.

  9. Stability of Water Ice Beneath Porous Dust Layers of the Martian South Polar Terrain

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Skorov, Yu. V.; Markiewicz, W. J.; Basilevsky, A. T.

    2000-08-01

    The analysis of the Viking Infrared Thermal Mapper (IRTM) data show that the surface layers of the Mars south polar layered deposits have very low thermal inertia between 75 and 125 J/(sq m)(s-1/2)(K-1). This is consistent with the assumption that the surface is covered by a porous layer of fine dust. Paige and Keegan determined a slightly higher value based on a thermal model similar to that of Kieffer et al. In this model the heat transfer equation is used to estimate the thickness of the layer that protects the ground ice from seasonal and diurnal temperature variations. The physical properties of the layer are unimportant as long as it has a low thermal inertia and conductivity and keeps the temperature at the ice boundary low enough to prevent sublimation. A thickness between 20 and 4 cm was estimated. This result can be considered to be an upper limit. We assume the surface to be covered by a porous dust layer and consider the gas diffusion through it, from the ground ice and from the atmosphere. Then the depth of the layer is determined by the mass flux balance of subliming and condensing water and not by the temperature condition. The dust particles in the atmosphere are of the order 1 gm. On the surface we can expect larger grains (up to sand size). Therefore assuming an average pore size of 10 gm, a volume porosity of 0.5, a heat capacity of 1300 J/(kg-1)(K-1) leads to a thermal inertia of approx. 80 J/(sq m)(s-1/2)(K-1). With these parameters a dust layer of only 5 mm thickness is found to establish the flux balance at the ice-dust interface during spring season in the southern hemisphere at high latitudes (where Mars Polar Lander arrived). The diurnal temperature variation at the ice-dust surface is shown. The maximum of 205 K well exceeds the sublimation temperature of water ice at 198 K under the atmospheric conditions. The corresponding vapour flux during the last day is shown together with the flux condensing from the atmosphere. The calculations

  10. Methanol Formation via Oxygen Insertion Chemistry in Ices

    NASA Astrophysics Data System (ADS)

    Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh

    2017-08-01

    We present experimental constraints on the insertion of oxygen atoms into methane to form methanol in astrophysical ice analogs. In gas-phase and theoretical studies this process has previously been demonstrated to have a very low or nonexistent energy barrier, but the energetics and mechanisms have not yet been characterized in the solid state. We use a deuterium UV lamp filtered by a sapphire window to selectively dissociate O2 within a mixture of O2:CH4 and observe efficient production of CH3OH via O(1D) insertion. CH3OH growth curves are fit with a kinetic model, and we observe no temperature dependence of the reaction rate constant at temperatures below the oxygen desorption temperature of 25 K. Through an analysis of side products we determine the branching ratio of ice-phase oxygen insertion into CH4: ˜65% of insertions lead to CH3OH, with the remainder leading instead to H2CO formation. There is no evidence for CH3 or OH radical formation, indicating that the fragmentation is not an important channel and that insertions typically lead to increased chemical complexity. CH3OH formation from O2 and CH4 diluted in a CO-dominated ice similarly shows no temperature dependence, consistent with expectations that insertion proceeds with a small or nonexistent barrier. Oxygen insertion chemistry in ices should therefore be efficient under low-temperature ISM-like conditions and could provide an important channel to complex organic molecule formation on grain surfaces in cold interstellar regions such as cloud cores and protoplanetary disk midplanes.

  11. Thermal evolution of the high-pressure ice layers beneath a buried ocean within Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Tobie, G.

    2015-12-01

    Deep interiors of massive icy satellites such as Titan and Ganymede probably harbor a buried ocean above high-pressure (HP) ice layers. The nature and location of the lower interface of the ocean is ultimately controlled by the amount of heat transferred through the surface ice Ih layer but it also involves equilibration of heat and melt transfer in the HP ices. While the Rayleigh number associated to such HP ice layers is most probably supercritical, classical subsolidus convection might not be a viable mechanism as the radial temperature gradient in the cold boundary layer is likely to exceed the slope of the melting curve. A significant part of the heat transfer could be achieved via the mass flux of warm liquid through this cold boundary layer up to the global phase boundary, a phenomenon sometimes referred to as heat-pipe mechanism. We present 3D spherical simulations of thermal convection in these HP ice layers that address for the first time this complex interplay. First, scaling relationships are proposed to describe this configuration for a large range of Rayleigh numbers and solidus curves. We then focus on a more realistic set-up where a prescribed basal heat flux is considered in a plausible range for the thermal history of Ganymede or Titan together with the expected viscosity law for HP ices.

  12. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  13. KETENE FORMATION IN INTERSTELLAR ICES: A LABORATORY STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, Reggie L.; Loeffler, Mark J., E-mail: Reggie.Hudson@NASA.gov

    2013-08-20

    The formation of ketene (H{sub 2}CCO, ethenone) in polar and apolar ices was studied with in situ 0.8 MeV proton irradiation, far-UV photolysis, and infrared spectroscopic analyses at 10-20 K. Using isotopically enriched reagents, unequivocal evidence was obtained for ketene synthesis in H{sub 2}O-rich and CO{sub 2}-rich ices, and several reaction products were identified. Results from scavenging experiments suggested that ketene was formed by free-radical pathways, as opposed to acid-base processes or redox reactions. Finally, we use our results to draw conclusions about the formation and stability of ketene in the interstellar medium.

  14. Boundary Waves on the Ice Surface Created by Currents

    NASA Astrophysics Data System (ADS)

    Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.

    2013-12-01

    The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance

  15. Thermal Convection in High-Pressure Ice Layers Beneath a Buried Ocean within Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Choblet, G.; Dumont, M.

    2014-12-01

    Deep interiors of large icy satellites such as Titan and Ganymede probably harbor a buried ocean sandwiched between low pressure ice and high-pressure ice layers. The nature and location of the lower interface of the ocean involves equilibration of heat and melt transfer in the HP ices and is ultimately controlled by the amount heat transferred through the surface ice Ih layer. Here, we perform 3D simulations of thermal convection, using the OEDIPUS numerical tool (Choblet et al. GJI 2007), to determine the efficiency of heat and mass transfer through these HP ice mantles. In a first series of simulations with no melting, we show that a significant fraction of the HP layer reaches the melting point. Using a simple description of water production and transport, our simulations demonstrate that the melt generation in the outermost part of the HP ice layer and its extraction to the overlying ocean increase the efficiency of heat transfer and reduce strongly the internal temperature. structure and the efficiency of the heat transfer. Scaling relationships are proposed to describe the cooling effect of melt production/extraction and used to investigate the consequences of internal melting on the thermal history of Titan and Ganymede's interior.

  16. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    NASA Technical Reports Server (NTRS)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  17. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  18. LWC and Temperature Effects on Ice Accretion Formation on Swept Wings at Glaze Ice Conditions

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    2000-01-01

    An experiment was conducted to study the effect of liquid water content and temperature on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to tile beginning of the zone where roughness elements develop into glaze ice feathers. A baseline case of 150 mph, 25 F, 0.75 g/cu m. Cloud Liquid Water Content (LWC) and 20 micrometers in Water Droplet Median Volume Diameter (MVD) was chosen. Icing runs were performed on a NACA 0012 swept wing tip at 150 mph and MVD of 20 micrometers for liquid water contents of 0.5 g/cu m, 0.75 g/cu m, and 1.0 g/cu m, and for total temperatures of 20 F, 25 F and 30 F. At each tunnel condition, the sweep angle was changed from 0 deg to 45 deg in 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that decreasing the LWC to 0.5 g/cu m decreases the value of the critical distance at a given sweep angle compared to the baseline case, and starts the formation of complete scallops at 30 sweep angle. Increasing the LWC to 1.0 g/cu m increases the value of the critical distance compared to the baseline case, the critical distance remains always above 0 millimeters and complete scallops are not formed. Decreasing the total temperature to 20 F decreases the critical distance with respect to the baseline case and formation of complete scallops begins at 25 deg sweep angle. When the total temperature is increased to 30 F, bumps covered with roughness elements appear on the ice accretion at 25 deg and 30 deg sweep angles, large ice structures appear at 35 deg and 40 deg sweep angles, and complete scallops are formed at 45 deg sweep angle.

  19. Processes influencing formation of low-salinity high-biomass lenses near the edge of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Li, Yizhen; McGillicuddy, Dennis J.; Dinniman, Michael S.; Klinck, John M.

    2017-02-01

    Both remotely sensed and in situ observations in austral summer of early 2012 in the Ross Sea suggest the presence of cold, low-salinity, and high-biomass eddies along the edge of the Ross Ice Shelf (RIS). Satellite measurements include sea surface temperature and ocean color, and shipboard data sets include hydrographic profiles, towed instrumentation, and underway acoustic Doppler current profilers. Idealized model simulations are utilized to examine the processes responsible for ice shelf eddy formation. 3-D model simulations produce similar cold and fresh eddies, although the simulated vertical lenses are quantitatively thinner than observed. Model sensitivity tests show that both basal melting underneath the ice shelf and irregularity of the ice shelf edge facilitate generation of cold and fresh eddies. 2-D model simulations further suggest that both basal melting and downwelling-favorable winds play crucial roles in forming a thick layer of low-salinity water observed along the edge of the RIS. These properties may have been entrained into the observed eddies, whereas that entrainment process was not captured in the specific eddy formation events studied in our 3-D model-which may explain the discrepancy between the simulated and observed eddies, at least in part. Additional sensitivity experiments imply that uncertainties associated with background stratification and wind stress may also explain why the model underestimates the thickness of the low-salinity lens in the eddy interiors. Our study highlights the importance of incorporating accurate wind forcing, basal melting, and ice shelf irregularity for simulating eddy formation near the RIS edge. The processes responsible for generating the high phytoplankton biomass inside these eddies remain to be elucidated. Appendix B. Details for the basal melting and mechanical forcing by the ice shelf edge.

  20. Pleistocene ice-rich yedoma in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.

    2011-12-01

    Yedoma, or the ice-rich syngenetic permafrost with large ice wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek area, Boot Lake area, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of ice-rich silt with large ice wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding area revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-ice (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between ice wedges are extremely ice-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave ice were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek area) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the area are extremely ice-rich. Thickness of ice-rich silt varies from 10 m to more than 26 m, and volume of wedge-ice reaches 35-45%. Soil between ice wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to

  1. Methanol Formation via Oxygen Insertion Chemistry in Ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh

    We present experimental constraints on the insertion of oxygen atoms into methane to form methanol in astrophysical ice analogs. In gas-phase and theoretical studies this process has previously been demonstrated to have a very low or nonexistent energy barrier, but the energetics and mechanisms have not yet been characterized in the solid state. We use a deuterium UV lamp filtered by a sapphire window to selectively dissociate O{sub 2} within a mixture of O{sub 2}:CH{sub 4} and observe efficient production of CH{sub 3}OH via O({sup 1}D) insertion. CH{sub 3}OH growth curves are fit with a kinetic model, and we observemore » no temperature dependence of the reaction rate constant at temperatures below the oxygen desorption temperature of 25 K. Through an analysis of side products we determine the branching ratio of ice-phase oxygen insertion into CH{sub 4}: ∼65% of insertions lead to CH{sub 3}OH, with the remainder leading instead to H{sub 2}CO formation. There is no evidence for CH{sub 3} or OH radical formation, indicating that the fragmentation is not an important channel and that insertions typically lead to increased chemical complexity. CH{sub 3}OH formation from O{sub 2} and CH{sub 4} diluted in a CO-dominated ice similarly shows no temperature dependence, consistent with expectations that insertion proceeds with a small or nonexistent barrier. Oxygen insertion chemistry in ices should therefore be efficient under low-temperature ISM-like conditions and could provide an important channel to complex organic molecule formation on grain surfaces in cold interstellar regions such as cloud cores and protoplanetary disk midplanes.« less

  2. Biofilm formation in an ice cream plant.

    PubMed

    Gunduz, Gulten Tiryaki; Tuncel, Gunnur

    2006-01-01

    The sites of biofilm formation in an ice cream plant were investigated by sampling both the production line and the environment. Experiments were carried out twice within a 20-day period. First, stainless steel coupons were fixed to surfaces adjacent to food contact surfaces, the floor drains and the doormat. They were taken for the analysis of biofilm at three different production stages. Then, biofilm forming bacteria were enumerated and also presence of Listeria monocytogenes was monitored. Biofilm forming isolates were selected on the basis of colony morphology and Gram's reaction; Gram negative cocci and rod, Gram positive cocci and spore forming isolates were identified. Most of the biofilm formations were seen on the conveyor belt of a packaging machine 8 h after the beginning of the production, 6.5 x 10(3) cfu cm(-2). Most of the Gram negative bacteria identified belong to Enterobacteriaceae family such as Proteus, Enterobacter, Citrobacter, Shigella, Escherichia, Edwardsiella. The other Gram negative microflora included Aeromonas, Plesiomonas, Moraxella, Pseudomonas or Alcaligenes spp. were also isolated. Gram positive microflora of the ice cream plant included Staphyloccus, Bacillus, Listeria and lactic acid bacteria such as Streptococcus, Leuconostoc or Pediococcus spp. The results from this study highlighted the problems of spread of pathogens like Listeria and Shigella and spoilage bacteria. In the development of cleaning and disinfection procedures in ice cream plants, an awareness of these biofilm-forming bacteria is essential for the ice cream plants.

  3. Spurious sea ice formation caused by oscillatory ocean tracer advection schemes

    NASA Astrophysics Data System (ADS)

    Naughten, Kaitlin A.; Galton-Fenzi, Benjamin K.; Meissner, Katrin J.; England, Matthew H.; Brassington, Gary B.; Colberg, Frank; Hattermann, Tore; Debernard, Jens B.

    2017-08-01

    Tracer advection schemes used by ocean models are susceptible to artificial oscillations: a form of numerical error whereby the advected field alternates between overshooting and undershooting the exact solution, producing false extrema. Here we show that these oscillations have undesirable interactions with a coupled sea ice model. When oscillations cause the near-surface ocean temperature to fall below the freezing point, sea ice forms for no reason other than numerical error. This spurious sea ice formation has significant and wide-ranging impacts on Southern Ocean simulations, including the disappearance of coastal polynyas, stratification of the water column, erosion of Winter Water, and upwelling of warm Circumpolar Deep Water. This significantly limits the model's suitability for coupled ocean-ice and climate studies. Using the terrain-following-coordinate ocean model ROMS (Regional Ocean Modelling System) coupled to the sea ice model CICE (Community Ice CodE) on a circumpolar Antarctic domain, we compare the performance of three different tracer advection schemes, as well as two levels of parameterised diffusion and the addition of flux limiters to prevent numerical oscillations. The upwind third-order advection scheme performs better than the centered fourth-order and Akima fourth-order advection schemes, with far fewer incidents of spurious sea ice formation. The latter two schemes are less problematic with higher parameterised diffusion, although some supercooling artifacts persist. Spurious supercooling was eliminated by adding flux limiters to the upwind third-order scheme. We present this comparison as evidence of the problematic nature of oscillatory advection schemes in sea ice formation regions, and urge other ocean/sea-ice modellers to exercise caution when using such schemes.

  4. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  5. Raman lidar measurement of water vapor and ice clouds associated with Asian dust layer over Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Matsumura, Takatsugu

    2004-03-01

    The vertical distributions of particle extinction, backscattering, depolarization, and water vapor mixing ratio were measured using a Raman lidar over Tsukuba (36.1°N, 140.1°E), Japan, on 23-24 April 2001. Ice clouds associated with the Asian dust layer were observed at an altitude of ~6-9 km. The relative humidities in the cloud layer were close to the ice saturation values and the temperature at the top of the cloud layer was ~-35°C, suggesting that the Asian dust acted as ice nuclei at the high temperatures. The meteorological analysis suggested that the ice-saturated region was formed near the top of the dust layer where the moist air ascended in slantwise fashion above the cold-frontal zone associated with extratropical cyclone.

  6. Crystalline embryos at ice-vapor interfaces

    NASA Technical Reports Server (NTRS)

    Bartley, D. L.

    1976-01-01

    The nucleation of small monolayer ice-like clusters at the basal and prism ice-vapor interfaces is considered. It is found that the basal surfaces prefer triangular embryos with an orientation that reverses from layer to layer, whereas the most stable clusters on the prism surfaces are rectangular in configuration. At any given saturation ratio, the preferred prism clusters are found to have a critical energy of formation significantly lower than that of the basal clusters, basically because of differences in cluster corner free energies.

  7. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea

    USGS Publications Warehouse

    Sherwood, C.R.

    2000-01-01

    A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.

  8. Isochronal Ice Sheet Model: a New Approach to Tracer Transport by Explicitly Tracing Accumulation Layers

    NASA Astrophysics Data System (ADS)

    Born, A.; Stocker, T. F.

    2014-12-01

    The long, high-resolution and largely undisturbed depositional record of polar ice sheets is one of the greatest resources in paleoclimate research. The vertical profile of isotopic and other geochemical tracers provides a full history of depositional and dynamical variations. Numerical simulations of this archive could afford great advances both in the interpretation of these tracers as well as to help improve ice sheet models themselves, as show successful implementations in oceanography and atmospheric dynamics. However, due to the slow advection velocities, tracer modeling in ice sheets is particularly prone to numerical diffusion, thwarting efforts that employ straightforward solutions. Previous attemps to circumvent this issue follow conceptually and computationally extensive approaches that augment traditional Eulerian models of ice flow with a semi-Lagrangian tracer scheme (e.g. Clarke et al., QSR, 2005). Here, we propose a new vertical discretization for ice sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world ice flow as a thinning of underlying layers (see figure). A new layer is added to the surface at equidistant time intervals (isochronally). Therefore, each layer is uniquely identified with an age. Horizontal motion follows the shallow ice approximation using an implicit numerical scheme. Vertical diffusion of heat which is physically desirable is also solved implicitly. A simulation of a two-dimensional section through the Greenland ice sheet will be discussed.

  9. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  10. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  11. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during NICE2015:salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.

    2016-12-01

    IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.

  12. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon

    2018-05-01

    The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  13. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  14. Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite

    PubMed Central

    2016-01-01

    Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed. PMID:27269363

  15. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a

  16. Physical Mechanisms of Glaze Ice Scallop Formations on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1998-01-01

    An experiment was conducted to understand the physical mechanisms that lead to the formation of scallops on swept wings. Icing runs were performed on a NACA 0012 swept wing tip at 45 deg, 30 deg, and 15 deg sweep angles. A baseline case was chosen and direct measurements of scallop height and spacing, castings, video data and close-up photographic data were obtained. The results showed the scallops are made of glaze ice feathers that grow from roughness elements that have reached a minimum height and are located beyond a given distance from the attachment line. This distance depends on tunnel conditions and sweep angle, and is the critical parameter in the formation of scallops. It determines if complete scallops, incomplete scallops or no scallops are going to be formed. The mechanisms of growth for complete and incomplete scallops were identified. The effect of velocity, temperature and LWC on scallop formation was studied. The possibility that cross flow instability may be the physical mechanism that triggers the growth of roughness elements into glaze ice feathers is examined.

  17. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Crater deposit thicknesses (~50 m) cannot fill the craters in a time period compatible with the interpreted formation times of the Pedestal Crater mantled ice layers. We use a representative obliquity solution to drive an ice flow model and show that a cyclical pattern of multiply recurring layers can both fill the craters with a significant volume of ice, as well as transport debris from the crater walls out into the central regions of the craters. The cyclical pattern of waxing and waning mantling layers results in a rippled pattern of surface debris extending out into the crater interiors that would manifest itself as an observable concentric pattern, comparable in appearance to concentric crater fill. In this scenario, the formation of mantling sublimation till layers seals the accumulating ice and sequesters it from significant temperature variations at diurnal, annual and spin-axis/orbital cycle time scales, to produce ancient ice records preserved today below CCF crater floors. Lack of meltwater features associated with concentric crater fill provides evidence that the Late Amazonian climate did not exceed the melting temperature in the mid- to high-latitudes for any significant period of time. Continued sequestration of ice with time in CCF and related deposits (lobate debris aprons and lineated valley fill) further reduces the already supply-limited polar ice sources, suggesting that there has been a declining reservoir of available ice with each ensuing glacial period. Together, these deposits represent a candidate library of climate chemistry and global change dating from the Late Amazonian, and a non-polar water resource for future exploration.

  18. Refrigerated Wind Tunnel Tests on Surface Coatings for Preventing Ice Formation

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Clay, William C

    1930-01-01

    This investigation was conducted to determine the effectiveness of various surface coatings as a means for preventing ice formations on aircraft in flight. The substances used as coatings for these tests are divided into two groups: compounds soluble in water, and those which are insoluble in water. It was found that certain soluble compounds were apparently effective in preventing the formation of ice on an airfoil model, while all insoluble compounds which were tested were found to be ineffective.

  19. Formation of Large (Approximately 100 micrometers) Ice Crystals Near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Bui, T. V.; Lawson, P.; Baker, B.; Mo, Q.; Baumgardner, D.; Weinstock, E. M.; Smith, J. B.; Moyer, E. J.; hide

    2008-01-01

    Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (approx.100 microns length), thin (aspect ratios of approx.6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01/L). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to approx.3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%). If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008)) then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (approx.10:1), then H2O concentrations toward the low end of the measurement range (approx.2-2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm/s to loft the crystals in the tropopause region. These calculations would

  20. Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland

    NASA Technical Reports Server (NTRS)

    Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.

  1. The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits

    NASA Technical Reports Server (NTRS)

    Cardell, G.; Hecht, M. H.; Carsey, F. D.; Engelhardt, H.; Fisher, D.; Terrell, C.; Thompson, J.

    2004-01-01

    The distinctive layering visible in images from Mars Global Surveyor of the Martian polar caps, and particularly in the north polar cap, indicates that the stratigraphy of these polar layered deposits may hold a record of Martian climate history covering millions of years. On Earth, ice sheets are cored to retrieve a pristine record of the physical and chemical properties of the ice at depth, and then studied in exacting detail in the laboratory. On the Martian north polar cap, coring is probably not a practical method for implementation in an autonomous lander. As an alternative, thermal probes that drill by melting into the ice are feasible for autonomous operation, and are capable of reasonable approximations to the scientific investigations performed on terrestrial cores, while removing meltwater to the surface for analysis. The Subsurface Ice Probe (SIPR) is such a probe under development at JPL. To explore the dominant climate cycles, it is postulated that tens of meters of depth should be profiled, as this corresponds to the vertical separation of the major layers visible in the MOC images [1]. Optical and spectroscopic analysis of the layers, presumably demarcated by embedded dust and possibly by changes in the ice properties, would contribute to the construction of a chronology. Meltwater analysis may be used to determine the soluble chemistry of the embedded dust, and to monitor gradients of atmospheric gases, particularly hydrogen and oxygen, and isotopic variations that reflect atmospheric conditions at the time the layer was deposited. Thermal measurements can be used to determine the geothermal gradient and the bulk mechanical properties of the ice.

  2. Modeling the basal melting and marine ice accretion of the Amery Ice Shelf

    NASA Astrophysics Data System (ADS)

    Galton-Fenzi, B. K.; Hunter, J. R.; Coleman, R.; Marsland, S. J.; Warner, R. C.

    2012-09-01

    The basal mass balance of the Amery Ice Shelf (AIS) in East Antarctica is investigated using a numerical ocean model. The main improvements of this model over previous studies are the inclusion of frazil formation and dynamics, tides and the use of the latest estimate of the sub-ice-shelf cavity geometry. The model produces a net basal melt rate of 45.6 Gt year-1 (0.74 m ice year-1) which is in good agreement with reviewed observations. The melting at the base of the ice shelf is primarily due to interaction with High Salinity Shelf Water created from the surface sea-ice formation in winter. The temperature difference between the coldest waters created in the open ocean and the in situ freezing point of ocean water in contact with the deepest part of the AIS drives a melt rate that can exceed 30 m of ice year-1. The inclusion of frazil dynamics is shown to be important for both melting and marine ice accretion (refreezing). Frazil initially forms in the supercooled water layer adjacent to the base of the ice shelf. The net accretion of marine ice is 5.3 Gt year-1, comprised of 3.7 Gt year-1 of frazil accretion and 1.6 Gt year-1 of direct basal refreezing.

  3. Measured Two-Dimensional Ice-Wedge Polygon Thermal and Active Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Cable, W.; Romanovsky, V. E.; Busey, R.

    2016-12-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. To investigate the effect of microtopographic caused variation in surface conditions on the ground thermal regime, we established temperature transects, composed of five vertical array thermistor probes (VATP), across four different development stages of ice-wedge polygons near Barrow, Alaska. Each VATP had 16 thermistors from the surface to a depth of 1.5 m, for a total of 80 temperature measurements per polygon. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-centered polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT) and latest freezeback dates. While the centers of high-centered polygons, with thinner snow cover and a dryer active layer, had the lowest MAGT, earliest freezeback dates, and shallowest active layer. Refreezing of the active layer initiated at nearly the same time for all locations and polygons however, we found large differences in the proportion of downward versus upward freezing and the length of time required to complete the refreezing process between polygon types and locations. Using our four polygon stages as a space for time substitution, we conclude that ice-wedge degradation resulting in surface subsidence and trough deepening can lead to overall drying of the active layer and increased skewedness of snow

  4. Ice Layer Spreading along a Solid Substrate during Solidification of Supercooled Water: Experiments and Modeling.

    PubMed

    Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron

    2017-05-16

    The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.

  5. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    PubMed

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    -carbon nitride quantum dots (OQCNs) had profound effects in controlling ice shape and inhibiting ice growth. We also studied the ion-specific effect on ice recrystallization inhibition (IRI) with a large variety of anions and cations. All functionalities are achieved by tuning the properties of interfacial water on these materials, which reinforces the importance of the interfacial water in controlling ice formation. Finally, we review the development of novel application-oriented materials emerging from our enhanced understanding of ice formation, for example, ultralow ice adhesion coatings with aqueous lubricating layer, cryopreservation of cells by inhibiting ice recrystallization, and two-dimensional (2D) and three-dimensional (3D) porous materials with tunable pore sizes through recrystallized ice crystal templates. This Account sheds new light on the molecular mechanism of ice formation and will inspire the design of unprecedented functional materials based on controlled ice formation.

  6. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  7. An Improved Model for Nucleation-Limited Ice Formation in Living Cells during Freezing

    PubMed Central

    Zhao, Gang; He, Xiaoming

    2014-01-01

    Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications. PMID:24852166

  8. Engineer Measures Ice Formation on an Instrument Antenna Model

    NASA Image and Video Library

    1945-05-21

    A National Advisory Committee for Aeronautics (NACA) researcher measures the ice thickness on a landing antenna model in the Icing Research Tunnel at the Aircraft Engine Research Laboratory. NACA design engineers added the Icing Research Tunnel to the original layout of the new Aircraft Engine Research Laboratory to take advantage of the massive refrigeration system being built for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks air flow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45 degrees F and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flows velocities up to 400 miles per hour. The Icing Research Tunnel began testing in June of 1944. Early testing, seen in this photograph, studied ice accumulation on propellers and antenna of a military aircraft. The Icing Research Tunnel’s designers, however, struggled to develop a realistic spray system since they did not have access to data on the size of naturally occurring water droplets. The system would have to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. For five years a variety of different designs were painstakingly developed and tested before the system was perfected.

  9. Periodic fluctuations in deep water formation due to sea ice

    NASA Astrophysics Data System (ADS)

    Saha, R.

    2012-12-01

    During the last ice age, several abrupt warming events took place, known as Dansgaard-Oeschger (D-O) events. Their effects were felt globally, although the North Atlantic experienced the largest temperature increase. The leading hypothesis to explain their occurrence postulates that the warming was caused by abrupt disruptions of the North Atlantic Current due to meltwater discharge from destabilized ice sheets (Heinrich events). However, the number of warming events outnumber the those of ice-sheet collapse. Thus, the majority of D-O events are not attributed to surface freshwater anomalies, and the underlying mechanism behind their occurrence remain unexplained. Using a simple dynamical model of sea ice and an overturning circulation, I show the existence of self-sustained relaxation oscillations in the overturning circulation. The insulating effect of sea ice is shown to paradoxically lead to a net loss of heat from the top layer of the polar ocean when sea ice retreats. Repeated heat loss results in a denser top layer and a destabilized water column, which triggers convection. The convective state pulls the system out of its preferred mode of circulation, setting up relaxation oscillations. The period of oscillations in this case is linked to the geometry of the ocean basin, if solar forcing is assumed to remain constant. If appropriate glacial freshwater forcing is applied to the model, a pattern of oscillation is produced that bears remarkable similarity to the observed fluctuations in North Atlantic climate between 50,000 and 30,000 years before present.; Comparison of NGRIP δ 18-O (proxy for near surface air temperature) between 50,000 and 30,000 years before present, showing Bond cycles (left) with the model output when forced with appropriate glacial freshwater forcing (right).

  10. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band

  11. Stratospheric effects on trends of mesospheric ice clouds (Invited)

    NASA Astrophysics Data System (ADS)

    Luebken, F.; Baumgarten, G.; Berger, U.

    2009-12-01

    Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.

  12. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary

  13. Ice nucleating particles in the Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike

    2016-07-01

    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient

  14. The Effect of Surface Chemical Functionality Upon Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Doss, Jereme; Spence, Destiny; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin R.; McDougal, Nicholas D.

    2015-01-01

    In nature, anti-freeze proteins present in fish utilize specific organic functionalities to disrupt ice crystal formation and propagation. Based on these structures, surfaces with controlled chemical functionality and chain length were evaluated both experimentally and computationally to assess the effect of both parameters in mitigating ice formation. Linear aliphatic dimethylethoxysilanes terminated with methyl or hydroxyl groups were prepared, characterized, and used to coat aluminum. The effect upon icing using a microdroplet freezing apparatus and the Adverse Environment Rotor Test Stand found hydroxyl-terminated materials exhibited a greater propensity for ice formation and adhesion. Molecular dynamics simulations of a silica substrate bearing functionalized species of similar composition were brought into contact with a pre-equilibrated ice crystal. Several parameters including chain mobility were monitored to ascertain the size of a quasi-liquid layer. The studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition.

  15. Methodological synergies for glaciological constraints to find Oldest Ice

    NASA Astrophysics Data System (ADS)

    Eisen, Olaf

    2017-04-01

    The Beyond EPICA - Oldest Ice (BE-OI) consortium and its international partners unite a globally unique concentration of scientific expertise and infrastructure for ice-core investigations. It delivers the technical, scientific and financial basis for a comprehensive plan to retrieve an ice core up to 1.5 million years old. The consortium takes care of the pre-site surveys for site selection around Dome C and Dome Fuji, both potentially appropriate regions in East Antarctica. Other science consortia will investigate other regions under the umbrella of the International Partnerships in Ice Core Sciences (IPICS). Of major importance to obtain reliable estimates of the age of the ice in the basal layers of the ice sheet are the physical boundary conditions and ice-flow dynamics: geothermal heat flux, advection and layer integrity to avoid layer overturning and the formation of folds. The project completed the first field season at both regions of interest. This contribution will give an overview how the combined application of various geophysical, geodetical and glaciological methods applied in the field in combination with ice-flow modelling can constrain the glaciological boundary conditions and thus age at depth.

  16. Treatment of ice cover and other thin elastic layers with the parabolic equation method.

    PubMed

    Collins, Michael D

    2015-03-01

    The parabolic equation method is extended to handle problems involving ice cover and other thin elastic layers. Parabolic equation solutions are based on rational approximations that are designed using accuracy constraints to ensure that the propagating modes are handled properly and stability constrains to ensure that the non-propagating modes are annihilated. The non-propagating modes are especially problematic for problems involving thin elastic layers. It is demonstrated that stable results may be obtained for such problems by using rotated rational approximations [Milinazzo, Zala, and Brooke, J. Acoust. Soc. Am. 101, 760-766 (1997)] and generalizations of these approximations. The approach is applied to problems involving ice cover with variable thickness and sediment layers that taper to zero thickness.

  17. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.

    2003-08-01

    Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].

  18. Modeling the processing of interstellar ices by energetic particles

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.; Shmeld, I.

    2013-06-01

    Context. Interstellar ice is the main form of metal species in dark molecular clouds. Experiments and observations have shown that the ice is significantly processed after the freeze-out of molecules onto grains. The processing is caused by cosmic-ray particles and cosmic-ray-induced UV photons. These transformations are included in current astrochemical models only to a very limited degree. Aims: We aim to establish a model of the "cold" chemistry in interstellar ices and to evaluate its general impact on the composition of interstellar ices. Methods: The ice was treated as consisting of two layers - the surface and the mantle (or subsurface) layer. Subsurface chemical processes are described with photodissociation of ice species and binary reactions on the surfaces of cavities inside the mantle. Hydrogen atoms and molecules can diffuse between the layers. We also included deuterium chemistry. Results: The modeling results show that the content of chemically bound H is reduced in subsurface molecules by about 30% on average. This promotes the formation of more hydrogen-poor species in the ice. The enrichment of ice molecules with deuterium is significantly reduced by the subsurface processes. On average, it follows the gas-phase atomic D/H abundance ratio, with a delay. The delay produced by the model is on the order of several Myr. Conclusions: The processing of ice may place new constraints on the production of deuterated species on grains. In a mantle with a two-layer structure the upper layer (CO) should be processed substantially more intensively than the lower layer (H2O). Chemical explosions in interstellar ice might not be an important process. They destroy the structure of the mantle, which forms over long timescales. Besides, ices may lack the high radical content needed for the explosions.

  19. The North Polar Layered Deposits on Mars: The Internal Layering of Gemina Lingula and Implications for Ice Flow

    NASA Astrophysics Data System (ADS)

    Karlsson, Nanna B.; Holt, John W.; Hindmarsh, Richard C. A.; Choudhary, Prateek

    2010-05-01

    The North Polar Layered Deposits (NPLD) is one of the largest reservoirs of surface water on Mars and, via an active exchange of water vapour with the atmosphere, it plays an important role in the Martian climate. The impact of ice flow on the overall shape of the NPLD is still widely debated. A study by Winebrenner et al. (2008) found evidence for relict flow lines in the southernmost part of the NPLD called Gemina Lingula (GL). Other studies have concluded that the upper part of the NPLD shows no evidence of flow (Fishbaugh and Hvidberg, 2006) and that surface mass balance alone can produce the topography (Greve et al., 2004 and Greve and Mahajan, 2005) . This paper presents results from an analysis of radar data from the SHARAD (SHallow RADar) instrument on board NASA's Mars Reconnaissance Orbiter. The SHARAD instrument operates with a 20MHz centre frequency and a 10MHz bandwidth and one of its primary mission goals is to map the state and distribution of water on Mars. For more details on the SHARAD instrument please refer to Seu et al. (2007). In the SHARAD data we identified and mapped six internal horizons from over 80 radar lines retrieved over GL. All horizons were easily identifiable in the majority of the data and were on average present in over 80% of the radar data considered. The observed layers were then compared to modelled layers from a 3D ice flow model. The model uses a smoothed surface topography, where troughs and scarps have been filled in, and assumes that the shape and the mass balance of the NPLD are constant in time. The shape of the internal layers are then calculated as they would appear in a flowing ice cap given those parameters. More information on the model can be found in Hindmarsh et al. (2009). The overall fit between modelled and observed layers is reasonably good, but the goodness of the fit varies both between the different horizons and the different regions of GL. Horizons in the upper part of the ice fit less well than

  20. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures.

    PubMed

    Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik

    2014-05-20

    Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.

  1. Greenland meltwater storage in firn limited by near-surface ice formation

    NASA Astrophysics Data System (ADS)

    Machguth, Horst; Macferrin, Mike; van As, Dirk; Box, Jason E.; Charalampidis, Charalampos; Colgan, William; Fausto, Robert S.; Meijer, Harro A. J.; Mosley-Thompson, Ellen; van de Wal, Roderik S. W.

    2016-04-01

    Approximately half of Greenland’s current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland’s firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs ,), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ~1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.

  2. Meteorological conditions influencing the formation of level ice within the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Mazur, A. K.; Krezel, A.

    2012-12-01

    short term changes in sea ice cover and meteorological conditions. In following studies we analyzed the formation of level sea ice depending on some weather conditions (temperature, humidity, pressure at sea level, 10 meter wind). It can be clearly seen that the most important factors influencing formation of level ice are the temperature and wind.

  3. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice.

    PubMed

    Hatam, Ido; Charchuk, Rhianna; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2014-10-01

    Bacterial communities in Arctic sea ice play an important role in the regulation of nutrient and energy dynamics in the Arctic Ocean. Sea ice has vertical gradients in temperature, brine salinity and volume, and light and UV levels. Multiyear ice (MYI) has at least two distinct ice layers: old fresh ice with limited permeability, and new saline ice, and may also include a surface melt pond layer. Here, we determine whether bacterial communities (1) differ with ice depth due to strong physical and chemical gradients, (2) are relatively homogenous within a layer, but differ between layers, or (3) do not vary with ice depth. Cores of MYI off northern Ellesmere Island, NU, Canada, were subsectioned in 30-cm intervals, and the bacterial assemblage structure was characterized using 16S rRNA gene pyrotag sequencing. Assemblages clustered into three distinct groups: top (0-30 cm); middle (30-150 cm); and bottom (150-236 cm). These layers correspond to the occurrence of refrozen melt pond ice, at least 2-year-old ice, and newly grown first-year ice at the bottom of the ice sheet, respectively. Thus, MYI houses multiple distinct bacterial assemblages, and in situ conditions appear to play a less important role in structuring microbial assemblages than the age or conditions of the ice at the time of formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Pathways of basal meltwater from Antarctic ice shelves: A model study

    NASA Astrophysics Data System (ADS)

    Kusahara, Kazuya; Hasumi, Hiroyasu

    2014-09-01

    We investigate spreading pathways of basal meltwater released from all Antarctic ice shelves using a circumpolar coupled ice shelf-sea ice-ocean model that reproduces major features of the Southern Ocean circulation, including the Antarctic Circumpolar Current (ACC). Several independent virtual tracers are used to identify detailed pathways of basal meltwaters. The spreading pathways of the meltwater tracers depend on formation sites, because the meltwaters are transported by local ambient ocean circulation. Meltwaters from ice shelves in the Weddell and Amundsen-Bellingshausen Seas in surface/subsurface layers are effectively advected to lower latitudes with the ACC. Although a large portion of the basal meltwaters is present in surface and subsurface layers, a part of the basal meltwaters penetrates into the bottom layer through active dense water formation along the Antarctic coastal margins. The signals at the seafloor extend along the topography, showing a horizontal distribution similar to the observed spreading of Antarctic Bottom Water. Meltwaters originating from ice shelves in the Weddell and Ross Seas and in the Indian sector significantly contribute to the bottom signals. A series of numerical experiments in which thermodynamic interaction between the ice shelf and ocean is neglected regionally demonstrates that the basal meltwater of each ice shelf impacts sea ice and/or ocean thermohaline circulation in the Southern Ocean. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  5. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  6. Ice formation in altocumulus clouds over Leipzig: Remote sensing measurements and detailed model simulations

    NASA Astrophysics Data System (ADS)

    Simmel, Martin; Bühl, Johannes; Ansmann, Albert; Tegen, Ina

    2014-05-01

    Over Leipzig, altocumulus clouds are frequently observed using a suite of remote sensing instruments. These observations cover a wide range of heights, temperatures, and microphysical properties of the clouds ranging from purely liquid to heavily frozen. For the current study, two cases were chosen to test the sensitivity of these clouds with respect to several microphysical and dynamical parameters such as aerosol properties (CCN, IN), ice particle shape as well as turbulence. The mixed-phase spectral microphysical model SPECS was coupled to a dynamical model of the Asai-Kasahara type resulting in the model system AK-SPECS. The relatively simple dynamics allows for a fine vertical resolution needed for the rather shallow cloud layers observed. Additionally, the proper description of hydrometeor sedimentation is important especially for the fast growing ice crystals to realistically capture their interaction with the vapour and liquid phase (Bergeron-Findeisen process). Since the focus is on the cloud microphysics, the dynamics in terms of vertical velocity profile is prescribed for the model runs and the feedback of the microphysics on dynamics by release or consumption of latent heat due to phase transfer is not taken into account. The microphysics focuses on (1) ice particle shape allowing hexagonal plates and columns with size-dependant axis ratios and (2) the ice nuclei (IN) budget realized with a prognostic temperature resolved field of potential IN allowing immersion freezing only when active IN and supercooled drops above a certain size threshold are present within a grid cell. Sensitivity studies show for both cases that ice particle shape seems to have the major influence on ice mass formation under otherwise identical conditions. This is due to the effect (1) on terminal fall velocity of the individual ice particle allowing for longer presence times in conditions supersaturated with respect to ice and (2) on water vapour deposition which is enhanced due

  7. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    NASA Technical Reports Server (NTRS)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c)< 1 cm/s and v(sub f)> 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  8. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  9. Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity

    NASA Astrophysics Data System (ADS)

    Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.

    2010-02-01

    The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal path length through ISSR as observed by MOZAIC aircraft is 150 km (±250 km). The average vertical thickness of ISS layers is 600-800 m (±575 m) but layers ranging from 25 m to 3000 m have been observed, with up to one third of ISS layers thought to be less than 100 m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and

  10. The relevance of ice crystal formation for the cryopreservation of tissues and organs.

    PubMed

    Pegg, David E

    2010-07-01

    This paper discusses the role of ice crystal formation in causing or contributing to the difficulties that have been encountered in attempts to develop effective methods for the cryopreservation of some tissues and all organs. It is shown that extracellular ice can be severely damaging but also that cells in situ in tissues can behave quite differently from similar cells in a suspension with respect to intracellular freezing. It is concluded that techniques that avoid the formation of ice altogether are most likely to yield effective methods for the cryopreservation of recalcitrant tissues and vascularised organs. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Laboratory studies of cometary ice analogues

    NASA Astrophysics Data System (ADS)

    Schmitt, B.; Espinasse, S.; Grim, R. J. A.; Greenberg, J. M.; Klinger, J.

    1989-12-01

    Laboratory studies were performed in order to simulate the physico-chemical processes that are likely to occur in the near surface layers of short and intermediate period comets. Pure H2O ice as well as CO:H2O, CO2:H2O, CH4:H2O, CO:CO2:H2O, and NH3:H2O ice mixtures were studied in the temperature range between 10 and 180 K. The evolution of the composition of ice mixtures, the crystallization of H2O ice as well as the formation and decompostion of clathrate hydrate by different processes were studied as a function of temperature and time. Using the results together with numerical modeling, predictions are made about the survival of amorphous ice, CO, CO2, CH4, and NH3 in the near surface layers of short period comets. The likeliness of finding clathrate and molecular hydrates is discussed. It is proposed that the analytical methods developed here could be fruitfully adapted to the analysis of returned comet samples.

  12. The Origin of the Terra Meridiani Sediments: Volatile Transport and the Formation of Sulfate Bearing Layered Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Niles, P.B.

    2008-01-01

    The chemistry, sedimentology, and geology of the Meridiani sedimentary deposits are best explained by eolian reworking of the sublimation residue of a large scale ice/dust deposit. This large ice deposit was located in close proximity to Terra Meridiani and incorporated large amounts of dust, sand, and SO2 aerosols generated by impacts and volcanism during early martian history. Sulfate formation and chemical weathering of the initial igneous material is hypothesized to have occurred inside of the ice when the darker mineral grains were heated by solar radiant energy. This created conditions in which small films of liquid water were created in and around the mineral grains. This water dissolved the SO2 and reacted with the mineral grains forming an acidic environment under low water/rock conditions. Subsequent sublimation of this ice deposit left behind large amounts of weathered sublimation residue which became the source material for the eolian process that deposited the Terra Meridiani deposit. The following features of the Meridiani sediments are best explained by this model: The large scale of the deposit, its mineralogic similarity across large distances, the cation-conservative nature of the weathering processes, the presence of acidic groundwaters on a basaltic planet, the accumulation of a thick sedimentary sequence outside of a topographic basin, and the low water/rock ratio needed to explain the presence of very soluble minerals and elements in the deposit. Remote sensing studies have linked the Meridiani deposits to a number of other martian surface features through mineralogic similarities, geomorphic similarities, and regional associations. These include layered deposits in Arabia Terra, interior layered deposits in the Valles Marineris system, southern Elysium/Aeolis, Amazonis Planitia, and the Hellas basin, Aram Chaos, Aureum Chaos, and Ioni Chaos. The common properties shared by these deposits suggest that all of these deposits share a common

  13. Treatment of TNT red water by layer melt crystallization.

    PubMed

    Jo, Jeong-Hyeon; Ernest, Takyi; Kim, Kwang-Joo

    2014-09-15

    Treatment of the red water, which is wastewater of 2,4,6- trinitrotoluene (TNT) manufacturing process has been explored using ice crystallization. This study focuses on the formation of ice crystals from the red water in a layer crystallizer under various operating conditions. Among the parameters which affect layer crystallization, attention was given to cooling rate, cooling temperature, sweating rate and concentration of the red water. The study highlights the effect of subcooling and growth rate on purity of the ice crystalline layers produced. After sweating, the COD value of crystalline ice layer was significantly reduced from 10,000 mg/L to below 20mg/L. Most organic contaminants were removed in sweating fractions of 0.5. Eventually, the red water was treated by layer crystallization combined with the sweating process. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The study of ikaite formation in sea ice

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Nehrke, G.; Dieckmann, G.; Völker, C.; Wolf-Gladrow, D.

    2012-04-01

    Ikaite (CaCO3.6H2O) is a metastable mineral of calcium carbonate, which is usually found in environments characterized by low temperature (below 5° C), high pH, high alkalinity, high concentration of phosphate and organic matter. Although synthetic CaCO3.6H2O was already known from laboratory studies in 1865, ikaite was first observed in nature in 1963. Recently, Dieckmann et al. (2008, 2010) discovered this mineral in sea ice, which at the same time, was the first direct proof of CaCO3 precipitation in sea ice. However, little is known about the mechanism of ikaite formation in sea ice. Our study focuses on how physico-chemical processes in sea ice affect the formation of ikaite. Experiments were set up at pH ranging from 8.5 to 9.0, and salinity ranging from 0 to 105 at 0 ° C, in order to examine the effect of pH, salinity and also phosphate on the formation of ikaite. Preliminary results read: (1) Experiments show that ikaite can form at different pH levels (8.5~9.0). At high pH, the induction time (the time when the crystals start to precipitate) is shorter which means high pH favours the formation of ikaite. This might be expected given higher CO32- concentrations and thus higher saturation levels for ikaite with increasing pH. (2) The results of experiments with different salinities show that ikaite can form over wide range of salinities from 0 to 105 both in Artificial Sea Water (ASW) and NaCl solution in the presence of phosphate. In ASW, the induction time increases with salinity from S = 0 to S =105; while in NaCl solution, the induction time first increases with salinity and then decreases with the further increase of salinity. Salinity plays both positive and negative roles in the formation of ikaite. On the one hand, the increase in salinity will increase the fraction of CO32- in DIC. On the other hand, the increase in salinity means more ions are involved in the solution, which will reduce the activities of Ca2+ and CO32-by forming ion pairs with

  15. Formation of Ice Giant Satellites During Thommes Model Mirgration

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  16. A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Kingslake, J.

    2017-12-01

    It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.

  17. Deterministic multi-zone ice accretion modeling

    NASA Technical Reports Server (NTRS)

    Yamaguchi, K.; Hansman, R. John, Jr.; Kazmierczak, Michael

    1991-01-01

    The focus here is on a deterministic model of the surface roughness transition behavior of glaze ice. The initial smooth/rough transition location, bead formation, and the propagation of the transition location are analyzed. Based on the hypothesis that the smooth/rough transition location coincides with the laminar/turbulent boundary layer transition location, a multizone model is implemented in the LEWICE code. In order to verify the effectiveness of the model, ice accretion predictions for simple cylinders calculated by the multizone LEWICE are compared to experimental ice shapes. The glaze ice shapes are found to be sensitive to the laminar surface roughness and bead thickness parameters controlling the transition location, while the ice shapes are found to be insensitive to the turbulent surface roughness.

  18. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  19. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    NASA Astrophysics Data System (ADS)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  20. Spectrally-resolved UV photodesorption of CH4 in pure and layered ices

    NASA Astrophysics Data System (ADS)

    Dupuy, R.; Bertin, M.; Féraud, G.; Michaut, X.; Jeseck, P.; Doronin, M.; Philippe, L.; Romanzin, C.; Fillion, J.-H.

    2017-07-01

    Context. Methane is among the main components of the ice mantles of interstellar dust grains, where it is at the start of a rich solid-phase chemical network. Quantification of the photon-induced desorption yield of these frozen molecules and understanding of the underlying processes is necessary to accurately model the observations and the chemical evolution of various regions of the interstellar medium. Aims: This study aims at experimentally determining absolute photodesorption yields for the CH4 molecule as a function of photon energy. The influence of the ice composition is also investigated. By studying the methane desorption from layered CH4:CO ice, indirect desorption processes triggered by the excitation of the CO molecules are monitored and quantified. Methods: Tunable monochromatic vacuum ultraviolet light (VUV) light from the DESIRS beamline of the SOLEIL synchrotron is used in the 7-13.6 eV (177-91 nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice samples. The release of species in the gas phase is monitored by quadrupole mass spectrometry, and absolute photodesorption yields of intact CH4 are deduced. Results: CH4 photodesorbs for photon energies higher than 9.1 eV ( 136 nm). The photodesorption spectrum follows the absorption spectrum of CH4, which confirms a desorption mechanism mediated by electronic transitions in the ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a pattern characteristic of CO absorption, indicating desorption induced by energy transfer from CO molecules. Conclusions: The photodesorption of CH4 from pure ice in various interstellar environments is around 2.0 ± 1.0 × 10-3 molecules per incident photon. Results on CO-induced indirect desorption of CH4 provide useful insights for the generalization of this process to other molecules co-existing with CO in ice mantles.

  1. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  2. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    PubMed Central

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-01-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274

  3. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet.

    PubMed

    Bons, Paul D; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C; Binder, Tobias; Eisen, Olaf; Jessell, Mark W; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-29

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  4. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  5. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals

    PubMed Central

    Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.

    2008-01-01

    Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241

  6. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-10-01

    Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.

  7. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-04-01

    Ice caves exist in locations where annual average temperature in higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively explain the mechanism of formation and preservation of the ice cave, we use Finite Element Method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside, very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, etc. for sustainable development of ice cave as tourism resource. In some other ice caves in China, managers installed air-tight doors at these ice caves entrance intending to "protect" these caves, but this prevent cooling down these caves in winters and these cave ices will entirely melt within tens of years.

  8. Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.

    PubMed

    Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen

    2009-01-20

    We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

  9. Trends in ice formation at Lake Neusiedl since 1931 and large-scale oscillation patterns

    NASA Astrophysics Data System (ADS)

    Soja, Anna-Maria; Maracek, Karl; Soja, Gerhard

    2013-04-01

    Ice formation at Lake Neusiedl (Neusiedler See, Fertitó), a shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary, is of ecological and economic importance. Ice sailing and skating help to keep a touristic off-season alive. Reed harvest to maintain the ecological function of the reed belt (178 km2) is facilitated when lake surface is frozen. Changes in ice formation were analysed in the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU. Data records of ice-on, ice duration and ice-off at Lake Neusiedl starting with the year 1931, and air temperature (nearby monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG)) were used to investigate nearly 80 winters. Additionally, influences of 8 teleconnection patterns, i.e. the Atlantic Multidecadal Oscillation (AMO), the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. Ice cover of Lake Neusiedl showed a high variability between the years (mean duration 71±27 days). Significant trends for later ice-on (p=0.02), shorter ice duration (p=0.07) and earlier ice-off (p=0.02) for the period 1931-2011 were found by regression analysis and trend analysis tests. On an average, freezing of Lake Neusiedl started 2 days later per decade and ice melting began 2 days earlier per decade. Close relationships between mean air temperature and ice formation could be found: ice-on showed a dependency on summer (R=+0.28) and autumn air temperatures (R=+0.51), ice duration and ice off was related to autumn (R=-0.36 and -0.24), winter (R=-0.73 and -0.61) and concurrent spring air temperatures (R=-0.44). Increases of air temperature by 1° C caused an 8.4 days later

  10. Laboratory and Cloud Chamber Studies of Formation Processes and Properties of Atmospheric Ice Particles

    NASA Astrophysics Data System (ADS)

    Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2009-04-01

    The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction

  11. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    NASA Astrophysics Data System (ADS)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  12. Simulation of Titan's atmospheric photochemistry. Formation of non-volatile residue from polar nitrile ices

    NASA Astrophysics Data System (ADS)

    Couturier-Tamburelli, Isabelle; Piétri, Nathalie; Gudipati, Murthy S.

    2015-06-01

    We studied the photochemistry of frozen ice of a polar Titan's atmospheric molecule cyanodiacetylene (HC5N) to determine the possible contribution of this compound to the lower altitude photochemistry of haze layers found on Titan. We used infrared analysis to examine the residue produced by irradiation of solid HC5N at λ > 300 nm. The resulting polymer is orange-brown in color. Based on theoretical analysis and the general tendency of HC5N and C4N2 to undergo similar ice photochemistry at longer wavelengths accessible in Titan's lower atmosphere, we conclude that Titan's lower atmosphere is photochemically active in the regions of cloud, ice, and aerosol formation. C4N2is a symmetric molecule with no net dipole moment whereas, HC5N has a large dipole moment of ~4 D. Consequently, though both these molecules have very similar molecular weight and size, their sublimation temperatures are different, HC5N subliming around 170 K compared to 160 K for C4N2. Based on our studies we conclude that in Titan's atmosphere the cyanoacetylene class of molecules (HCN, HC3N, HC5N, etc.) would condense first followed by the dicyanoacetylenes (C2N2, C4N2, C6N2, etc.), leading to fractionation of different class of molecules. From the fluxes used in the laboratory and depletion of the original HC5N signals, we estimate Titan's haze ice photochemistry involving polar nitriles to be significant and very similar to their non-polar counterparts.

  13. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.

    PubMed

    Stanton, T P; Shaw, W J; Truffer, M; Corr, H F J; Peters, L E; Riverman, K L; Bindschadler, R; Holland, D M; Anandakrishnan, S

    2013-09-13

    Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.

  14. Ice-Wedge Polygon Formation Impacts Permafrost Carbon Storage and Vulnerability to Top-Down Thaw in Arctic Coastal Plain Soils

    NASA Astrophysics Data System (ADS)

    Jastrow, J. D.; Matamala, R.; Ping, C. L.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.; Mishra, U.

    2017-12-01

    Ice-wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plains and river deltas. The progressive expansion of ice wedges influences polygon development and strongly affects cryoturbation and soil formation. Thus, we hypothesized that polygon type impacts the distribution and composition of soil organic carbon (C) stocks across the landscape and that such information can improve estimates of permafrost C stocks vulnerable to active layer thickening and increased decomposition due to climatic change. We quantified the distribution of soil C across entire polygon profiles (2-m depth) for three developmental types - flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons (3 replicates of each) - formed on glaciomarine sediments within and near the Barrow Environmental Observatory at the northern tip of Alaska. Active layer thickness averaged 45 cm and did not vary among polygon types. Similarly, active layer C stocks were unaffected by polygon type, but permafrost C stocks increased from FCPs to LCPs to HCPs despite greater ice volumes in HCPs. These differences were due to a greater presence of organic horizons in the upper permafrost of LCPs and, especially, HCPs. On average, C stocks in polygon interiors were double those of troughs, on a square meter basis. However, HCPs were physically smaller than LCPs and FCPs, which affected estimates of C stocks at the landscape scale. Accounting for the number of polygons per unit area and the proportional distribution of troughs versus interiors, we estimated permafrost C stocks (2-m depth) increased from 259 Mg C ha-1 in FCPs to 366 Mg C ha-1 in HCPs. Active layer C stocks did not differ among polygon types and averaged 328 Mg C ha-1. We used our detailed polygon profiles to investigate the impact of active layer deepening as projected by Earth system models under future climate scenarios. Because HCPs have a greater proportion of upper permafrost C stocks in organic horizons

  15. Investigation of the Intake of a Stationary Gas Turbine to Prevent Ice Formation

    NASA Astrophysics Data System (ADS)

    Tramposch, Andreas; Molnár, Vojtech; Ridzoň, František

    2011-12-01

    Repeated emergency shutdowns of a stationary gas turbine under conditions of sub-freezing temperatures and moist air have led to the suspicion that ice formation in the intake channel and compressor may be a contributing factor. To understand the reason, why the installed ice protection system is not effective, a numerical investigation of the intake channel with the installed hot air ice protection system has been performed. It is shown that mixing of hot air with cold outside air is incomplete, explaining the ice accretion.

  16. Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains

    NASA Astrophysics Data System (ADS)

    Garrod, Robin

    2015-08-01

    The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.

  17. Theoretical Analysis on Marangoni-driven Cavity Formation in Ice during In Situ Burning of Oil Spills in Ice-infested Waters

    NASA Astrophysics Data System (ADS)

    Farmahini Farahani, H.; Jomaas, G.; Rangwala, A. S.

    2017-12-01

    In situ burning, intentional burning of discharged oil on the water surface, is a promising response method to oil spill accidents in the Arctic. However, burning of the oil adjacent to ice bodies creates a lateral cavity in the ice. As a result of the cavity formation the removal efficiency which is a key success criterion for in situ burning operation will decrease. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. These experiments have shown lateral cavities with a length of <12 cm for 5 minutes burning of crude oil in laboratory. Our previous findings indicate the existence of a direct relation between the burning rate of the oil and penetration length in the ice. In addition, on the surface of the oil and near the ice the anchoring of the flame on the oil surface creates a severe horizontal temperature gradient which in turn generates a Marangoni flow from hot to cold regions. This is found to be the dominant heat transfer mechanism that is providing the heat for the ice to melt. Here, we introduce an order of magnitude analysis on the governing equations of the ice melting problem to estimate the penetration length of a burning oil near ice. This correlation incorporates the flame heat feedback with the surface flow driven by Marangoni convection. The melting energy continuity is also included in the analysis to complete the energy transfer cycle that leads to melting of the ice. The comparison between this correlation and the existing experimental data shows a very good agreement. Therefore, this correlation can be used to estimate the penetration length for burning of an actual spill and can be applied towards improved guidelines of burning adjacent to ice bodies, so as to enhance the chances for successful implantation of in situ burning.

  18. Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?

    PubMed

    Pickering, Ignacio; Paleico, Martin; Sirkin, Yamila A Perez; Scherlis, Damian A; Factorovich, Matías H

    2018-05-10

    In this study, the solid-vapor equilibrium and the quasi liquid layer (QLL) of ice Ih exposing the basal and primary prismatic faces were explored by means of grand canonical molecular dynamics simulations with the monatomic mW potential. For this model, the solid-vapor equilibrium was found to follow the Clausius-Clapeyron relation in the range examined, from 250 to 270 K, with a Δ H sub of 50 kJ/mol in excellent agreement with the experimental value. The phase diagram of the mW model was constructed for the low pressure region around the triple point. The analysis of the crystallization dynamics during condensation and evaporation revealed that, for the basal face, both processes are highly activated, and in particular cubic ice is formed during condensation, producing stacking-disordered ice. The basal and primary prismatic surfaces of ice Ih were investigated at different temperatures and at their corresponding equilibrium vapor pressures. Our results show that the region known as QLL can be interpreted as the outermost layers of the solid where a partial melting takes place. Solid islands in the nanometer length scale are surrounded by interconnected liquid areas, generating a bidimensional nanophase segregation that spans throughout the entire width of the outermost layer even at 250 K. Two approaches were adopted to quantify the QLL and discussed in light of their ability to reflect this nanophase segregation phenomena. Our results in the μVT ensemble were compared with NPT and NVT simulations for two system sizes. No significant differences were found between the results as a consequence of model system size or of the working ensemble. Nevertheless, certain advantages of performing μVT simulations in order to reproduce the experimental situation are highlighted. On the one hand, the QLL thickness measured out of equilibrium might be affected because of crystallization being slower than condensation. On the other, preliminary simulations of AFM

  19. Concentration and variability of ice nuclei in the subtropical maritime boundary layer

    NASA Astrophysics Data System (ADS)

    Welti, André; Müller, Konrad; Fleming, Zoë L.; Stratmann, Frank

    2018-04-01

    Measurements of the concentration and variability of ice nucleating particles in the subtropical maritime boundary layer are reported. Filter samples collected in Cabo Verde over the period 2009-2013 are analyzed with a drop freezing experiment with sensitivity to detect the few rare ice nuclei active at low supercooling. The data set is augmented with continuous flow diffusion chamber measurements at temperatures below -24 °C from a 2-month field campaign in Cabo Verde in 2016. The data set is used to address the following questions: what are typical concentrations of ice nucleating particles active at a certain temperature? What affects their concentration and where are their sources? Concentration of ice nucleating particles is found to increase exponentially by 7 orders of magnitude from -5 to -38 °C. Sample-to-sample variation in the steepness of the increase indicates that particles of different origin, with different ice nucleation properties (size, composition), contribute to the ice nuclei concentration at different temperatures. The concentration of ice nuclei active at a specific temperature varies over a range of up to 4 orders of magnitude. The frequency with which a certain ice nuclei concentration is measured within this range is found to follow a lognormal distribution, which can be explained by random dilution during transport. To investigate the geographic origin of ice nuclei, source attribution of air masses from dispersion modeling is used to classify the data into seven typical conditions. While no source could be attributed to the ice nuclei active at temperatures higher than -12 °C, concentrations at lower temperatures tend to be elevated in air masses originating from the Sahara.

  20. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  1. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  2. Clathrate hydrate formation in amorphous cometary ice analogs in vacuo

    NASA Technical Reports Server (NTRS)

    Blake, David; Allamandola, Louis; Sandford, Scott; Hudgins, Doug; Freund, Friedemann

    1991-01-01

    Experiments conducted in clathrate hydrates with a modified electron microscope have demonstrated the possibility of such compounds' formation during the warming of vapor-deposited amorphous ices in vacuo, through rearrangements in the solid state. Subsolidus crystallization of compositionally complex amorphous ices may therefore be a general and ubiquitous process. Phase separations and microporous textures thus formed may be able to account for such anomalous cometary phenomena as the release of gas at large radial distances from the sun and the retention of volatiles to elevated temperatures.

  3. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    NASA Astrophysics Data System (ADS)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  4. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  5. Sea Ice Formation Rate and Temporal Variation of Temperature and Salinity at the Vicinity of Wilkins Ice Shelf from Data Collected by Southern Elephant Seals in 2008

    NASA Astrophysics Data System (ADS)

    Santini, M. F.; Souza, R.; Wainer, I.; Muelbert, M.; Hindell, M.

    2013-05-01

    The use of marine mammals as autonomous platforms for collecting oceanographic data has revolutionized the understanding of physical properties of low or non-sampled regions of the polar oceans. The use of these animals became possible due to advancements in the development of electronic devices, sensors and batteries carried by them. Oceanographic data collected by two southern elephant seals (Mirounga leonina) during the Fall of 2008 were used to infer the sea-ice formation rate in the region adjacent to the Wilkins Ice Shelf, west of the Antarctic Peninsula at that period. The sea-ice formation rate was estimated from the salt balance equation for the upper (100 m) ocean at a daily frequency for the period between 13 February and 20 June 2008. The oceanographic data collected by the animals were also used to present the temporal variation of the water temperature and salinity from surface to 300 m depth in the study area. Sea ice formation rate ranged between 0,087 m/day in early April and 0,008 m/day in late June. Temperature and salinity ranged from -1.84°C to 1.60°C and 32.85 to 34.85, respectively, for the upper 300 m of the water column in the analyzed period. The sea-ice formation rate estimations do not consider water advection, only temporal changes of the vertical profile of salinity. This may cause underestimates of the real sea-ice formation rate. The intense reduction of sea ice rate formation from April to June 2008 may be related to the intrusion of the Circumpolar Depth Water (CDW) into the study region. As a consequence of that we believe that this process can be partly responsible for the disintegration of the Wilkins Ice Shelf during the winter of 2008. The data presented here are considered a new frontier in physical and biological oceanography, providing a new approach for monitoring sea ice changes and oceanographic conditions in polar oceans. This is especially valid for regions covered by sea ice where traditional instruments deployed by

  6. Ice Layer Cross-Section In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood.

    Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Laboratory Investigation of Ice Formation and Elimination in the Induction System of a Large Twin-engine Cargo Aircraft

    NASA Technical Reports Server (NTRS)

    Colis, William D

    1947-01-01

    The icing characteristics, the de-icing rate with hot air, and the effect of impact ice on fuel metering and mixture distribution have been determined in a laboratory investigation of that part of the engine induction system consisting of a three-barrel injection-type carburetor and a supercharger housing with spinner-type fuel injection from an 18-cylinder radial engine used on a large twin-engine cargo airplane. The induction system remained ice-free at carburetor-air temperatures above 36 F regardless of the moisture content of the air. Between carburetor-air temperatures of 32 F and 36 F with humidity ratios in excess of saturation, serious throttling ice formed in the carburetor because of expansion cooling of the air; at carburetor-air temperatures below 32 F with humidity ratios in excess of saturation, serious impact-ice formations occurred, Spinner-type fuel injection at the entrance to the supercharger and heating of the supercharger-inlet elbow and the guide vanes by the warn oil in the rear engine housing are design features that proved effective in eliminating fuel-evaporation icing and minimized the formation of throttling ice below the carburetor. Air-flow recovery time with fixed throttle was rapidly reduced as the inlet -air wet -bulb temperature was increased to 55 F; further temperature increase produced negligible improvement in recovery time. Larger ice formations and lower icing temperatures increased the time required to restore proper air flow at a given wet-bulb temperature. Impact-ice formations on the entrance screen and the top of the carburetor reduced the over-all fuel-air ratio and increased the spread between the over-all ratio and the fuel-air ratio of the individual cylinders. The normal spread of fuel-air ratio was increased from 0.020 to 0.028 when the left quarter of the entrance screen was blocked in a manner simulating the blocking resulting from ice formations released from upstream duct walls during hot-air de-icing.

  8. Effect of Ice Formations on Section Drag of Swept NACA 63A-009 Airfoil with Partial-Span Leading-Edge Slat for Various Modes of Thermal Ice Protection

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe H.; Gray, Vernon H.

    1954-01-01

    The effects of primary and runback ice formations on the section drag of a 36 deg swept NACA 63A-009 airfoil section with a partial-span leading-edge slat were studied over a range of angles of attack from 2 to 8 deg and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.39 to 1.23 grams per cubic meter and datum air temperatures from 10 to 25 F. The results with slat retracted showed that glaze-ice formations caused large and rapid increases in section drag coefficient and that the rate of change in section drag coefficient for the swept 63A-009 airfoil was about 2-1 times that for an unswept 651-212 airfoil. Removal of the primary ice formations by cyclic de-icing caused the drag to return almost to the bare-airfoil drag value. A comprehensive study of the slat icing and de-icing characteristics was prevented by limitations of the heating system and wake interference caused by the slat tracks and hot-gas supply duct to the slat. In general, the studies showed that icing on a thin swept airfoil will result in more detrimental aerodynamic characteristics than on a thick unswept airfoil.

  9. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2014-02-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  10. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs.more » DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.« less

  11. Subsurface volatile content of martian double-layer ejecta (DLE) craters

    USGS Publications Warehouse

    Viola, Donna; McEwen, Alfred S.; Dundas, Colin M.; Byrne, Shane

    2017-01-01

    Excess ice is widespread throughout the martian mid-latitudes, particularly in Arcadia Planitia, where double-layer ejecta (DLE) craters also tend to be abundant. In this region, we observe the presence of thermokarstically-expanded secondary craters that likely form from impacts that destabilize a subsurface layer of excess ice, which subsequently sublimates. The presence of these expanded craters shows that excess ice is still preserved within the adjacent terrain. Here, we focus on a 15-km DLE crater that contains abundant superposed expanded craters in order to study the distribution of subsurface volatiles both at the time when the secondary craters formed and, by extension, remaining today. To do this, we measure the size distribution of the superposed expanded craters and use topographic data to calculate crater volumes as a proxy for the volumes of ice lost to sublimation during the expansion process. The inner ejecta layer contains craters that appear to have undergone more expansion, suggesting that excess ice was most abundant in that region. However, both of the ejecta layers had more expanded craters than the surrounding terrain. We extrapolate that the total volume of ice remaining within the entire ejecta deposit is as much as 74 km3 or more. The variation in ice content between the ejecta layers could be the result of (1) volatile preservation from the formation of the DLE crater, (2) post-impact deposition in the form of ice lenses; or (3) preferential accumulation or preservation of subsequent snowfall. We have ruled out (2) as the primary mode for ice deposition in this location based on inconsistencies with our observations, though it may operate in concert with other processes. Although none of the existing DLE formation hypotheses are completely consistent with our observations, which may merit a new or modified mechanism, we can conclude that DLE craters contain a significant quantity of excess ice today.

  12. Extra- and intracellular ice formation in mouse oocytes.

    PubMed

    Mazur, Peter; Seki, Shinsuke; Pinn, Irina L; Kleinhans, F W; Edashige, Keisuke

    2005-08-01

    The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best

  13. A Prototype Ice-Melting Probe for Collecting Biological Samples from Cryogenic Ice at Low Pressure

    NASA Astrophysics Data System (ADS)

    Davis, Ashley

    2017-08-01

    In the Solar System, the surface of an icy moon is composed of irregular ice formations at cryogenic temperatures (<200 K), with an oxidized surface layer and a tenuous atmosphere at very low pressure (<10-6 atm). A lander mission, whose aim is to collect and analyze biological samples from the surface ice, must contain a device that collects samples without refreezing liquid and without sublimation of ice. In addition, if the samples are biological in nature, then precautions must be taken to ensure the samples do not overheat or mix with the oxidized layer. To achieve these conditions, the collector must maintain temperatures close to maintenance or growth conditions of the organism (<293 K), and it must separate or neutralize the oxidized layer and be physically gentle. Here, we describe a device that addresses these requirements and is compatible with low atmospheric pressure while using no pumps. The device contains a heated conical probe with a central orifice, which is forced into surface ice and directs the meltwater upward into a reservoir. The force on the probe is proportional to the height of meltwater (pressure) obtained in the system and allows regulation of the melt rate and temperature of the sample. The device can collect 5-50 mL of meltwater from the surface of an ice block at 233-208 K with an environmental pressure of less than 10-2 atm while maintaining a sample temperature between 273 and 293 K. These conditions maintain most biological samples in a pristine state and maintain the integrity of most organisms' structure and function.

  14. Role of Underground Erosion of Ice Wedges in Drainage System Formation

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Shur, Y.; Allard, M.

    2006-12-01

    Natural rapid development of a new drainage system was studied on Bylot Island, Nunavut, Canada (73° 10' N, 80° 05' W). Formation of sinkholes eroded in ice wedges evolved in underground tunnels cut in ice- rich permafrost (average water content of 130%). The tunnel scouring process occurred mainly during snowmelt runoff and was manifestly a function of the intensity of the water flow entering the permafrost. When surface water flowed into the ground, the active layer was still frozen and the temperature of the permafrost at a depth of 3 m was below -15°C. Forced convection with a high convective heat transfer coefficient provided high rate of tunnels enlargement. The erosion rate was much higher in the beginning of runoff, when its velocity and discharge were high but water and soil were colder, than later in the summer, when water and soil temperature was much warmer but water discharge and velocity much lower. Widening of tunnels was followed by creep subsidence and collapse of their roofs and development of gullies. The drainage has generally developed along the elevation gradient. Some deviation from it was caused by temporal obstruction to water flow from collapsed blocks of soil. In such cases water found the way through connecting ice wedges. Retrogressive erosion escarpments exposed to flowing water retreated at a maximum rate of 1 to 5 meters per day for a total of 15 to 50 m during the summer. Escarpment exposed to atmospheric heat and solar radiation receded at a rate of 0.6 and 10 m per summer with a mean of 4 meters during the first year of exposition. Such slopes were nearly stabilized after 4 years with retreat rate of only a few centimeters per year in 2002. In four years, the underground tunnel network evolved into a continuous system of gullies over 750 m long and covering an area of about 20,000 m2. The main factors affecting rapid development of the new drainage system are the rate and volume of runoff, the presence of ice wedges, their

  15. Dissected Mantle Terrain on Mars: Formation Mechanisms and the Implications for Mid- latitude Near-surface Ground Ice

    NASA Astrophysics Data System (ADS)

    Searls, M. L.; Mellon, M. T.

    2008-12-01

    Determining the present and past distribution of surface and subsurface ice on Mars is critical for understanding the volatile inventory and climatic history of the planet. An analysis of a latitude-dependent layer of surface material known as the dissected mantle terrain can provide valuable insight into the distribution of ice in the recent past. The dissected mantle terrain is a surface unit that occurs globally in the mid-latitude of Mars. This unit is characterized by a smooth mantle of uniform thickness and albedo that is draped over the existing topography. This smooth mantle is disaggregated and dissected in places resulting in a hummocky pitted appearance. We propose that the mid-latitude dissected terrain results from collapse of a dusty mantle into the void left from desiccation of an underlying ice-rich (pure or dirty ice) layer. During period(s) of high obliquity, it is possible for ice to become stable at lower latitudes. Due to lack of direct solar insolation, surface ice deposits will preferentially accumulate on pole-ward facing slopes first. A mantle of dust and dirt is then deposited on top of these ice-rich deposits. As the climate changes, desiccation of the now buried ice leads to collapse of the overlying dusty layer resulting in a hummocky pitted appearance. This theory is supported by the pole-ward preference for the dissection pits as well an increase in dissection with increasing latitude. A study of the global distribution of the mid-latitude dissected terrain can provide invaluable clues towards unlocking the distribution of ice in the recent past. An analysis of HiRISE images and MOLA data indicate that the distribution of dissection pits varies from one region to the next. Knowing the distribution of ice in conjunction with ice stability modeling can provide a global view of the climate and orbital history of Mars at the time these features formed.

  16. Ice formation and development in aged, wintertime cumulus over the UK : observations and modelling

    NASA Astrophysics Data System (ADS)

    Crawford, I.; Bower, K. N.; Choularton, T. W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P.; Dorsey, J. R.; Gallagher, M. W.; Williams, P.; Trembath, J.; Cui, Z.; Blyth, A.

    2011-11-01

    In-situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of Radar and Lidar as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than ~-8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed near cloud top temperatures (~-7 °C). The role of biological particles, consistent with concentrations observed near the surface, acting as potential efficient high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L-1) could be produced by powerful secondary ice particle production emphasising the importance of understanding primary ice formation in slightly supercooled clouds. Aircraft penetrations at -3.5 °C, showed peak ice crystal concentrations of up to 100 L-1 which together with the characteristic ice crystal habits observed (generally rimed ice particles and columns) suggested secondary ice production had occurred. To investigate whether the Hallett-Mossop (HM) secondary ice production process could account for these observations, ice splinter production rates were calculated. These calculated rates and observations could only be reconciled provided the constraint that only droplets >24 μm in diameter could lead to splinter production, was relaxed slightly by 2 μm. Model simulations of the case study were also performed with the WRF (Weather, Research and Forecasting) model and ACPIM (Aerosol Cloud and

  17. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  18. A New Methodology for Simultaneous Multi-layer Retrievals of Ice and Liquid Water Cloud Properties

    NASA Astrophysics Data System (ADS)

    Sourdeval, O.; Labonnote, L.; Baran, A. J.; Brogniez, G.

    2014-12-01

    It is widely recognized that the study of clouds has nowadays become one of the major concern of the climate research community. Consequently, a multitude of retrieval methodologies have been developed during the last decades in order to obtain accurate retrievals of cloud properties that can be supplied to climate models. Most of the current methodologies have proven to be satisfactory for separately retrieving ice or liquid cloud properties, but very few of them have attempted simultaneous retrievals of these two cloud types. Recent studies nevertheless show that the omission of one of these layers can have strong consequences on the retrievals and their accuracy. In this study, a new methodology that simultaneously retrieves the properties of ice and liquid clouds is presented. The optical thickness and the effective radius of up to two liquid cloud layers and the ice water path of one ice cloud layer are simultaneously retrieved, along with an accurate estimation of their uncertainties. Radiometric measurements ranging from the visible to the thermal infrared are used for performing the retrievals. In order to quantify the capabilities and limitations of our methodology, the results of a theoretical information content analysis are first presented. This analysis allows obtaining an a priori understanding of how much information should be expected on each of the retrieval parameters in different atmospheric conditions, and which set of channels is likely to provide this information. After such theoretical considerations, global retrievals corresponding to several months of A-Train data are presented. Comparisons of our retrievals with operational products from active and passive instruments are effectuated and show good global agreements. These comparisons are useful for validating our retrievals but also for testing how operational products can be influenced by multi-layer configurations.

  19. Effect of Ice Formations on Section Drag of Swept NACA 63A-009 Airfoil with Partical-span Leading-edge Slat for Various Modes of Thermal Ice Protection

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe H; Gray, Vernon H

    1954-01-01

    Studies were made to determine the effect of ice formations on the section drag of a 6.9-foot-chord 36 degree swept NACA 63A-009 airfoil with partial-span leading-edge slat. In general, the icing of a thin swept airfoil will result in greater aerodynamic penalties than for a thick unswept airfoil. Glaze-ice formations at the leading edge of the airfoil caused large increases in section drag even at liquid-water content of 0.39 gram per cubic meter. The use of an ice-free parting strip in the stagnation region caused a negligible change in drag compared with a completely unheated airfoil. Cyclic de-icing when properly applied caused the drag to decrease almost to the bare-airfoil drag value.

  20. Janus effect of antifreeze proteins on ice nucleation.

    PubMed

    Liu, Kai; Wang, Chunlei; Ma, Ji; Shi, Guosheng; Yao, Xi; Fang, Haiping; Song, Yanlin; Wang, Jianjun

    2016-12-20

    The mechanism of ice nucleation at the molecular level remains largely unknown. Nature endows antifreeze proteins (AFPs) with the unique capability of controlling ice formation. However, the effect of AFPs on ice nucleation has been under debate. Here we report the observation of both depression and promotion effects of AFPs on ice nucleation via selectively binding the ice-binding face (IBF) and the non-ice-binding face (NIBF) of AFPs to solid substrates. Freezing temperature and delay time assays show that ice nucleation is depressed with the NIBF exposed to liquid water, whereas ice nucleation is facilitated with the IBF exposed to liquid water. The generality of this Janus effect is verified by investigating three representative AFPs. Molecular dynamics simulation analysis shows that the Janus effect can be established by the distinct structures of the hydration layer around IBF and NIBF. Our work greatly enhances the understanding of the mechanism of AFPs at the molecular level and brings insights to the fundamentals of heterogeneous ice nucleation.

  1. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  2. The behavior of N2 and O2 in pure, mixed or layered CO ices

    NASA Astrophysics Data System (ADS)

    Bisschop, Suzanne E.; Fraser, Helen J.; Fuchs, Guido; Öberg, Karin I.; Acharyya, Kinsuk; van Broekhuizen, Fleur; Schlemmer, Stephan; van Dishoeck, Ewine F.

    N2 and O2 are molecules that are predicted to be abundant in dense molecular clouds. Both molecules are difficult to detect as neither has a dipole moment. The chemical abundance of N2 is mostly inferred from its daughter species N2H+, but was recently detected in the ISM for the first time, with an abundance of 3.3 × 10-7 (Knauth et al 2004). Searches for the submillimeter lines of O2 have given upper limits for the abundance of ≤ 2.6 10-7 for star forming clouds and ≤ 3 10-6 for cold dark clouds (Goldsmith et al. 2000). Pontoppidan et al. (2003) deduced from the CO line profile that CO is present in both H2O poor and H2O rich ice layers, so it follows that N2 is likely to be present in a H2O poor ice layer. In many cold and protostellar cores N2H+ is found to anti-correlate with HCO+ and CO (Bergin et al. 2001; Jørgensen et al. 2004). Models by, for example Bergin & Langer (1997), assume this is due to the balance between freeze-out and evaporation, where ratios for the binding energy for N2 compared to CO of 0.50-0.70 are used. To model these processes, and reproduce the observed abundances of each species it is important to determine empirically the binding energies, sticking probabilities and desorption kinetics of model ice systems containing CO, N2 and O2. It seems that these quantities depend on the degree to which N2 and O2 mix with CO. Therefore, CO and N2 ices were studied extensively in a Ultra High Vacuum (UHV) experiment (P ~ 1 × 10-10 Torr) (Oberg et al. 2005; Bisschop et al submitted)). Ice samples were deposited at 14 K on a polycrystalline gold sample, mounted in the UHV chamber, covering morphologies from pure CO and N2, and 1:1 mixtures, to 1/1 layers of both CO over N2 and N2 over CO, and layers of 40 L of CO (1 L ≈ 1 monolayer) covered with 5 to 50 L of N2. The ices were studied using a combination of Reflection Absorption Infrared Spectroscopy (RAIRS) and Temperature Programmed Desorption (TPD), at a ramp-rate of 0.1 K min-1. The TPD

  3. The sensitivities of in cloud and cloud top phase distributions to primary ice formation in ICON-LEM

    NASA Astrophysics Data System (ADS)

    Beydoun, H.; Karrer, M.; Tonttila, J.; Hoose, C.

    2017-12-01

    Mixed phase clouds remain a leading source of uncertainty in our attempt to quantify cloud-climate and aerosol-cloud climate interactions. Nevertheless, recent advances in parametrizing the primary ice formation process, high resolution cloud modelling, and retrievals of cloud phase distributions from satellite data offer an excellent opportunity to conduct closure studies on the sensitivity of the cloud phase to microphysical and dynamical processes. Particularly, the reliability of satellite data to resolve the phase at the top of the cloud provides a promising benchmark to compare model output to. We run large eddy simulations with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) to place bounds on the sensitivity of in cloud and cloud top phase to the primary ice formation process. State of the art primary ice formation parametrizations in the form of the cumulative ice active site density ns are implemented in idealized deep convective cloud simulations. We exploit the ability of ICON-LEM to switch between a two moment microphysics scheme and the newly developed Predicted Particle Properties (P3) scheme by running our simulations in both configurations for comparison. To quantify the sensitivity of cloud phase to primary ice formation, cloud ice content is evaluated against order of magnitude changes in ns at variable convective strengths. Furthermore, we assess differences between in cloud and cloud top phase distributions as well as the potential impact of updraft velocity on the suppression of the Wegener-Bergeron-Findeisen process. The study aims to evaluate our practical understanding of primary ice formation in the context of predicting the structure and evolution of mixed phase clouds.

  4. Radon and radium in the ice-covered Arctic Ocean, and what they reveal about gas exchange in the sea ice zone.

    NASA Astrophysics Data System (ADS)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Moran, S. B.

    2014-12-01

    The polar sea ice zones are regions of high primary productivity and interior water mass formation. Consequently, the seasonal sea ice cycle appears important to both the solubility and biological carbon pumps. To estimate net CO2 transfer in the sea ice zone, we require accurate estimates of the air-sea gas transfer velocity. In the open ocean, the gas transfer velocity is driven by wind, waves and bubbles - all of which are strongly altered by the presence of sea ice, making it difficult to translate open ocean estimates of gas transfer to the ice zone. In this study, we present profiles of 222Rn and 226Ra throughout the mixed-layer and euphotic zone. Profiles were collected spanning a range of sea ice cover conditions from 40 to 100%. The profiles of Rn/Ra can be used to estimate the gas transfer velocity, but the 3.8 day half-life of 222Rn implies that mixed layer radon will have a memory of the past ~20 days of gas exchange forcing, which may include a range of sea ice cover conditions. Here, we compare individual estimates of the gas transfer velocity to the turbulent forcing conditions constrained from shipboard and regional reanalysis data to more appropriately capture the time history upper ocean Rn/Ra.

  5. Measurements of Ice Nuclei properties at the Jungfraujoch using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, Cédric

    2010-05-01

    Ice clouds and mixed-phase clouds have different microphysical properties. Both affect the climate in various ways. Ice phase present in these clouds have the ability to scatter the incoming solar radiation and absorb terrestrial radiation differently from water droplets. Ice is also responsible for most of the precipitation in the mid-latitudes. Ice crystals can be formed via two main processes: homogeneous and heterogeneous ice nucleation. Investigation of thermodynamic conditions at which ice nuclei (IN) trigger nucleation and their number concentrations is necessary in order to understand the formation of the ice phase in the atmosphere. In order to investigate the presence of IN in the free troposphere, the Institute for Atmospheric and Climate Sciences of the ETH Zurich has recently designed a new chamber: the Portable Ice Nucleation Chamber (PINC), which is the field version of the Zurich Ice Nucleation Chamber (Stetzer et al., 2008). Both chambers follow the principle of a "continuous flow diffusion chamber" (Rogers, 1988) and can measure the number concentration of IN at different temperatures and relative humidities. Aerosols are collected through an inlet where an impactor removes larger particles that could be counted as ice crystals. The aerosol load is layered between two dry sheath air flows as it enters the main chamber. Both walls of the chamber are covered with a thin layer of ice and maintained at two different temperatures in order to create supersaturation with respect to ice (and with respect to water in case of a larger temperature difference between the walls). At the exit of the main chamber, the sample goes throught the evaporation part that is kept saturated with respect to ice. There, water droplets evaporate and only ice crystals and smaller aerosol particles are counted by the Optical Particle Counter (OPC) at the bottom of the chamber. The high alpine research station Jungfraujoch is located at 3580 m a.s.l. It is mainly in

  6. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  7. Geological evidence for solid-state convection in Europa's ice shell.

    PubMed

    Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L

    1998-01-22

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  8. Geological evidence for solid-state convection in Europa's ice shell

    USGS Publications Warehouse

    Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.

    1998-01-01

    The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.

  9. Model simulations with COSMO-SPECS: impact of heterogeneous freezing modes and ice nucleating particle types on ice formation and precipitation in a deep convective cloud

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Grützun, Verena

    2018-03-01

    In deep convective clouds, heavy rain is often formed involving the ice phase. Simulations were performed using the 3-D cloud resolving model COSMO-SPECS with detailed spectral microphysics including parameterizations of homogeneous and three heterogeneous freezing modes. The initial conditions were selected to result in a deep convective cloud reaching 14 km of altitude with strong updrafts up to 40 m s-1. At such altitudes with corresponding temperatures below -40 °C the major fraction of liquid drops freezes homogeneously. The goal of the present model simulations was to investigate how additional heterogeneous freezing will affect ice formation and precipitation although its contribution to total ice formation may be rather low. In such a situation small perturbations that do not show significant effects at first sight may trigger cloud microphysical responses. Effects of the following small perturbations were studied: (1) additional ice formation via immersion, contact, and deposition modes in comparison to solely homogeneous freezing, (2) contact and deposition freezing in comparison to immersion freezing, and (3) small fractions of biological ice nucleating particles (INPs) in comparison to higher fractions of mineral dust INP. The results indicate that the modification of precipitation proceeds via the formation of larger ice particles, which may be supported by direct freezing of larger drops, the growth of pristine ice particles by riming, and by nucleation of larger drops by collisions with pristine ice particles. In comparison to the reference case with homogeneous freezing only, such small perturbations due to additional heterogeneous freezing rather affect the total precipitation amount. It is more likely that the temporal development and the local distribution of precipitation are affected by such perturbations. This results in a gradual increase in precipitation at early cloud stages instead of a strong increase at later cloud stages coupled with

  10. Formation of interstellar methanol ice prior to the heavy CO freeze-out stage

    NASA Astrophysics Data System (ADS)

    Qasim, D.; Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; Boogert, A. C. A.; Linnartz, H.

    2018-04-01

    Context. The formation of methanol (CH3OH) on icy grain mantles during the star formation cycle is mainly associated with the CO freeze-out stage. Yet there are reasons to believe that CH3OH also can form at an earlier period of interstellar ice evolution in CO-poor and H2O-rich ices. Aims: This work focuses on CH3OH formation in a H2O-rich interstellar ice environment following the OH-mediated H-abstraction in the reaction, CH4 + OH. Experimental conditions are systematically varied to constrain the CH3OH formation yield at astronomically relevant temperatures. Methods: CH4, O2, and hydrogen atoms are co-deposited in an ultrahigh vacuum chamber at 10-20 K. OH radicals are generated by the H + O2 surface reaction. Temperature programmed desorption - quadrupole mass spectrometry (TPD-QMS) is used to characterize CH3OH formation, and is complemented with reflection absorption infrared spectroscopy (RAIRS) for CH3OH characterization and quantitation. Results: CH3OH formation is shown to be possible by the sequential surface reaction chain, CH4 + OH → CH3 + H2O and CH3 + OH → CH3OH at 10-20 K. This reaction is enhanced by tunneling, as noted in a recent theoretical investigation Lamberts et al. (2017, A&A, 599, A132). The CH3OH formation yield via the CH4 + OH route versus the CO + H route is approximately 20 times smaller for the laboratory settings studied. The astronomical relevance of the new formation channel investigated here is discussed.

  11. Role of stacking disorder in ice nucleation

    NASA Astrophysics Data System (ADS)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria

    2017-11-01

    The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  12. Role of stacking disorder in ice nucleation.

    PubMed

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria

    2017-11-08

    The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  13. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.

  14. Formation of a wave on an ice-sheet above the dipole, moving in a fluid

    NASA Astrophysics Data System (ADS)

    Il'ichev, A. T.; Savin, A. A.; Savin, A. S.

    2012-05-01

    Theory of wave motions of a fluid with an ice-sheet was developed due to the necessity of solving of a number of problems of marine and land physics. The main attention in these investigations was focused on propagation and interaction of free waves, and also on appearance of waves under action of different loadings on the ice-sheet. From the other side, the problems dealing with waves on the fluid surface, free from the ice due to motion in the mass of the fluid of rigid bodies, has the known solutions. In this connection, it seems natural to disserminate the formulation and methods of such problems to the case of the fluid with the ice-sheet. In the present note we describe the character of formation of waves from the singularity, localized in the fluid of infinite depth beneath the ice-sheet. We use the example of the dipole, which models a cylinder in the infinite mass of the fluid. The character of the formation does not depend on the type of singularity. The ice-sheet is considered as a thin elastic plate of a constant width, floating on the water surface.

  15. A Prototype Ice-Melting Probe for Collecting Biological Samples from Cryogenic Ice at Low Pressure.

    PubMed

    Davis, Ashley

    2017-08-01

    In the Solar System, the surface of an icy moon is composed of irregular ice formations at cryogenic temperatures (<200 K), with an oxidized surface layer and a tenuous atmosphere at very low pressure (<10 -6 atm). A lander mission, whose aim is to collect and analyze biological samples from the surface ice, must contain a device that collects samples without refreezing liquid and without sublimation of ice. In addition, if the samples are biological in nature, then precautions must be taken to ensure the samples do not overheat or mix with the oxidized layer. To achieve these conditions, the collector must maintain temperatures close to maintenance or growth conditions of the organism (<293 K), and it must separate or neutralize the oxidized layer and be physically gentle. Here, we describe a device that addresses these requirements and is compatible with low atmospheric pressure while using no pumps. The device contains a heated conical probe with a central orifice, which is forced into surface ice and directs the meltwater upward into a reservoir. The force on the probe is proportional to the height of meltwater (pressure) obtained in the system and allows regulation of the melt rate and temperature of the sample. The device can collect 5-50 mL of meltwater from the surface of an ice block at 233-208 K with an environmental pressure of less than 10 -2 atm while maintaining a sample temperature between 273 and 293 K. These conditions maintain most biological samples in a pristine state and maintain the integrity of most organisms' structure and function. Key Words: Europa-Icy moon-Microbe-Eukaryote-Spacecraft. Astrobiology 17, 709-720.

  16. Synchrotron X-Ray Visualisation of Ice Formation in Insects during Lethal and Non-Lethal Freezing

    PubMed Central

    Sinclair, Brent J.; Gibbs, Allen G.; Lee, Wah-Keat; Rajamohan, Arun; Roberts, Stephen P.; Socha, John J.

    2009-01-01

    Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae), which survive freezing if it occurs above −14°C, and non-diapausing 3rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae), neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP), and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects. PMID:20011523

  17. Formation of Prebiotic Molecules in Interstellar and Cometary Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Dworkin, Jason; Gilette, J. Seb; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    We report here on our lab studies of ice photochemistry of large organic molecules under cometary conditions. We focus on polycyclic aromatic hydrocarbons (PAHs), their photoproducts, and their similarities to molecules seen in living systems today. We note that these kinds of compounds are seen in meteorites and we propose an explanation for both their formation and their observed deuterium enrichments.

  18. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  19. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  20. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  1. Diffusion model validation and interpretation of stable isotopes in river and lake ice

    USGS Publications Warehouse

    Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.

    2002-01-01

    The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.

  2. Formation and interpretation of eskers beneath retreating ice sheets

    NASA Astrophysics Data System (ADS)

    Creyts, T. T.; Hewitt, I.

    2017-12-01

    The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates

  3. Fine-Scale Layering of Mars Polar Deposits and Signatures of Ice Content in Nonpolar Material From Multiband SHARAD Data Processing

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.; Morgan, Gareth A.

    2018-02-01

    The variation of Shallow Radar (SHARAD) echo strength with frequency reveals material dielectric losses and polar layer properties. Loss tangents for Elysium and Amazonis Planitiae deposits are consistent with volcanic flows and sediments, while the Medusae Fossae Formation, lineated valley fill, and lobate debris aprons have low losses consistent with a major component of water ice. Mantling materials in Arcadia and Utopia Planitiae have higher losses, suggesting they are not dominated by ice over large fractions of their thickness. In Gemina Lingula, there are frequent deviations from a simple dependence of loss on depth. Within reflector packets, the brightest reflectors are often different among the frequency subbands, and there are cases of reflectors that occur in only the high- or low-frequency echoes. Many polar radar reflections must arise from multiple thin interfaces, or single deposits of appropriate thickness, that display resonant scattering behaviors. Reflector properties may be linked to climate-controlled polar dust deposition.

  4. Tropospheric characteristics over sea ice during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  5. Visual-Stratigraphic Dating of the GISP2 Ice Core: Basis, Reproducibility, and Application

    NASA Technical Reports Server (NTRS)

    Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; hide

    1997-01-01

    Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.

  6. Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Shuman, C. A.; Meese, D. A.; Gow, A. J.; Taylor, K. C.; Cuffey, K. M.; Fitzpatrick, J. J.; Grootes, P. M.; Zielinski, G. A.; Ram, M.; Spinelli, G.; Elder, B.

    1997-11-01

    Annual layers are visible in the Greenland Ice Sheet Project 2 ice core from central Greenland, allowing rapid dating of the core. Changes in bubble and grain structure caused by near-surface, primarily summertime formation of hoar complexes provide the main visible annual marker in the Holocene, and changes in "cloudiness" of the ice correlated with dustiness mark Wisconsinan annual cycles; both markers are evident and have been intercalibrated in early Holocene ice. Layer counts are reproducible between different workers and for one worker at different times, with 1% error over century-length times in the Holocene. Reproducibility is typically 5% in Wisconsinan ice-age ice and decreases with increasing age and depth. Cumulative ages from visible stratigraphy are not significantly different from independent ages of prominent events for ice older than the historical record and younger than approximately 50,000 years. Visible observations are not greatly degraded by "brittle ice" or many other core-quality problems, allowing construction of long, consistently sampled time series. High accuracy requires careful study of the core by dedicated observers.

  7. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  8. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  9. FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2017-02-01

    Ices, including water ice, prefer to recondense on to preexisting nuclei rather than spontaneously forming grains from a cloud of vapour. Interestingly, different potential recondensation nuclei have very different propensities to actually nucleate water ice at the temperatures associated with freeze-out in protoplanetary discs. Therefore, if a region in a disc is warmed and then recooled, water vapour should not be expected to refreeze evenly on to all available grains. Instead, it will preferentially recondense on to the most favorable grains. When the recooling is slow enough, only the most favorable grains will nucleate ice, allowing them to recondense thick ice mantles. We quantify the conditions for preferential recondensation to rapidly create pebble-sized grains in protoplanetary discs and show that FU Orionis type outbursts have the appropriate cooling rates to drive pebble creation in a band about 5 au wide outside of the quiescent frost line from approximately Jupiter's orbit to Saturn's (about -10 au). Those pebbles could be of the appropriate size to proceed to planetesimal formation via the Streaming Instability, or to contribute to the growth of planetesimals through pebble accretion. We suggest that this phenomenon contributed to the formation of the gas giants in our own Solar system.

  10. Ice formation in isolated human hepatocytes and human liver tissue.

    PubMed

    Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M

    1997-01-01

    Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.

  11. Hindered settling and the formation of layered intrusions

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Baur, Albrecht; Elburg, Marlina A.; Lindhuber, Matthias J.; Marks, Michael A. W.; Soesoo, Alvar; van Milligen, Boudewijn P.; Walte, Nicolas P.

    2015-04-01

    Layered intrusions are characterized by (often repetitive) layering on a range of scales. Many explanations for the formation of such layering have been proposed over the past decades. We investigated the formation of "mats" by hindered crystal settling, a model that was first suggested by Lauder (1964). The interaction of sinking and rising crystals leads to the amplification of perturbations in crystal density within a magma chamber, a process similar to the formation of traffic jams in dense traffic (Bons et al., 2015). Once these "crystal traffic jams" form they constitute a barrier for further settling of crystals. Between these barriers, the magma evolves in a semi-closed system in which stratification may develop by gravitational sorting. Barriers, and therefore layers, form sequentially during inward cooling of the magma chamber. Barring later equilibration, mineralogical and geochemical trends within the layers are repetitive, but with variations due to the random process of initial perturbation formation. Layers can form in the transition between two end-member regimes: (1) in a fast cooling and/or viscous magma crystals cannot sink or float a significant distance and minerals are distributed homogeneously throughout the chamber; (2) in a slow cooling and/or low-viscosity magma crystals can quickly settle at the top and bottom of the chamber and crystals concentrations are never high enough to form "traffic jams". As a result, heavy and light minerals get fully separated in the chamber. Between these two end members, crystals can sink and float a significant distance, but not the whole height of the magma chamber before entrapment in "traffic jams". We illustrate the development of layers with numerical models and compare the results with the layered nepheline syenites (kakortokites) of the Ilímaussaq intrusion in SW Greenland. References: Bons, P.D., Baur, A., Elburg, M.A., Lindhuber, M.J., Marks, M.A.W., Soesoo, A., van Milligen, B.P., Walte, N.P. 2015

  12. Janus effect of antifreeze proteins on ice nucleation

    PubMed Central

    Liu, Kai; Wang, Chunlei; Ma, Ji; Shi, Guosheng; Yao, Xi; Fang, Haiping; Song, Yanlin; Wang, Jianjun

    2016-01-01

    The mechanism of ice nucleation at the molecular level remains largely unknown. Nature endows antifreeze proteins (AFPs) with the unique capability of controlling ice formation. However, the effect of AFPs on ice nucleation has been under debate. Here we report the observation of both depression and promotion effects of AFPs on ice nucleation via selectively binding the ice-binding face (IBF) and the non–ice-binding face (NIBF) of AFPs to solid substrates. Freezing temperature and delay time assays show that ice nucleation is depressed with the NIBF exposed to liquid water, whereas ice nucleation is facilitated with the IBF exposed to liquid water. The generality of this Janus effect is verified by investigating three representative AFPs. Molecular dynamics simulation analysis shows that the Janus effect can be established by the distinct structures of the hydration layer around IBF and NIBF. Our work greatly enhances the understanding of the mechanism of AFPs at the molecular level and brings insights to the fundamentals of heterogeneous ice nucleation. PMID:27930318

  13. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    NASA Astrophysics Data System (ADS)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  14. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    PubMed Central

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-01-01

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time. PMID:25808770

  15. Development of a capacitive ice sensor to measure ice growth in real time.

    PubMed

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  16. Preservation of Midlatitude Ice Sheets on Mars

    NASA Astrophysics Data System (ADS)

    Bramson, A. M.; Byrne, S.; Bapst, J.

    2017-11-01

    Excess ice with a minimum age of tens of millions of years is widespread in Arcadia Planitia on Mars, and a similar deposit has been found in Utopia Planitia. The conditions that led to the formation and preservation of these midlatitude ice sheets hold clues to past climate and subsurface structure on Mars. We simulate the thermal stability and retreat of buried excess ice sheets over 21 Myr of Martian orbital solutions and find that the ice sheets can be orders of magnitude older than the obliquity cycles that are typically thought to drive midlatitude ice deposition and sublimation. Retreat of this ice in the last 4 Myr could have contributed 6% of the volume of the north polar layered deposits (NPLD) and more than 10% if the NPLD are older than 4 Myr. Matching the measured dielectric constants of the Arcadia and Utopia Planitia deposits requires ice porosities of 25-35%. We model geothermally driven vapor migration through porous ice under Martian temperatures and find that Martian firn may be able to maintain porosity for timescales longer than we predict for retreat of the ice.

  17. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  18. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  19. Preservation of layered paleodeposits in high-latitude pedestal craters on Mars

    NASA Astrophysics Data System (ADS)

    Kadish, Seth J.; Head, James W.

    2011-06-01

    An outstanding question in Mars' climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions.

  20. Synthesis of functional ceramic supports by ice templating and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klotz, Michaela; Weber, Matthieu; Deville, Sylvain; Oison, Didier; Iatsunskyi, Igor; Coy, Emerson; Bechelany, Mikhael

    2018-05-01

    In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ) and atomic layer deposition (ALD) of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  1. Supercooling and Ice Formation of Perchlorate Brines under Mars-relevant Conditions

    NASA Astrophysics Data System (ADS)

    Primm, K.; Gough, R. V.; Tolbert, M. A.

    2015-12-01

    Perchlorate salts, discovered in the Martian regolith at multiple landing sites, may provide pathways for liquid water stability on current Mars. It has previously been assumed that if perchlorate brines form in the Martian regolith via melting or deliquescence, they would be present only briefly because efflorescence into a crystal or freezing to ice would soon occur. Here, we used a Raman microscope to study the temperature and relative humidity (RH) conditions at which magnesium perchlorate brine will form ice. Although ice is thermodynamically predicted to form whenever the saturation with respect to ice (Sice) is greater than or equal to 1, ice formation by perchlorate brines did not occur until elevated Sice values were reached: Sice= 1.17, 1.29, and 1.25 at temperatures of 218 K, 230.5 K, and 244 K, respectively. If a magnesium perchlorate particle was allowed to deliquesce completely prior to experiencing ice supersaturation, the extent of supercooling was increased even further. These high supersaturation values imply perchlorate brines can exist over a wider range of conditions than previously believed. From these experiments it has been found that magnesium perchlorate exhibits supercooling well into the previous theoretical ice region of the stability diagram and that liquid brines on Mars could potentially exist for up to two additional hours per sol. This supercooling of magnesium perchlorate will help with the exploration of Mars by the Mars 2020 spacecraft by helping to understand the phase and duration of water existing in the Martian subsurface.

  2. The effects of sub-ice-shelf melting on dense shelf water formation and export in idealized simulations of Antarctic margins

    NASA Astrophysics Data System (ADS)

    Marques, Gustavo; Stern, Alon; Harrison, Matthew; Sergienko, Olga; Hallberg, Robert

    2017-04-01

    Dense shelf water (DSW) is formed in coastal polynyas around Antarctica as a result of intense cooling and brine rejection. A fraction of this water reaches ice shelves cavities and is modified due to interactions with sub-ice-shelf melt water. This modified water mass contributes to the formation of Antarctic Bottom Water, and consequently, influences the large-scale ocean circulation. Here, we investigate the role of sub-ice-shelf melting in the formation and export of DSW using idealized simulations with an isopycnal ocean model (MOM6) coupled with a sea ice model (SIS2) and a thermodynamic active ice shelf. A set of experiments is conducted with variable horizontal grid resolutions (0.5, 1.0 and 2.0 km), ice shelf geometries and atmospheric forcing. In all simulations DSW is spontaneously formed in coastal polynyas due to the combined effect of the imposed atmospheric forcing and the ocean state. Our results show that sub-ice-shelf melting can significantly change the rate of dense shelf water outflows, highlighting the importance of this process to correctly represent bottom water formation.

  3. Sensitivity of Great Lakes Ice Cover to Air Temperature

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Titze, D.

    2016-12-01

    Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.

  4. The anomalously high melting temperature of bilayer ice.

    PubMed

    Kastelowitz, Noah; Johnston, Jessica C; Molinero, Valeria

    2010-03-28

    Confinement of water usually depresses its melting temperature. Here we use molecular dynamics simulations to determine the liquid-crystal equilibrium temperature for water confined between parallel hydrophobic or mildly hydrophilic plates as a function of the distance between the surfaces. We find that bilayer ice, an ice polymorph in which the local environment of each water molecule strongly departs from the most stable tetrahedral structure, has the highest melting temperature (T(m)) of the series of l-layer ices. The melting temperature of bilayer ice is not only unusually high compared to the other confined ices, but also above the melting point of bulk hexagonal ice. Recent force microscopy experiments of water confined between graphite and a tungsten tip reveal the formation of ice at room temperature [K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008)]. Our results suggest that bilayer ice, for which we compute a T(m) as high as 310 K in hydrophobic confinement, is the crystal formed in those experiments.

  5. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Technical Reports Server (NTRS)

    Jacobs, S. S.; Comiso, J. C.

    1989-01-01

    The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.

  6. Late Noachian and early Hesperian ridge systems in the south circumpolar Dorsa Argentea Formation, Mars: Evidence for two stages of melting of an extensive late Noachian ice sheet

    NASA Astrophysics Data System (ADS)

    Kress, Ailish M.; Head, James W.

    2015-05-01

    The Dorsa Argentea Formation (DAF), extending from 270°-100° E and 70°-90° S, is a huge circumpolar deposit surrounding and underlying the Late Amazonian South Polar Layered Deposits (SPLD) of Mars. Currently mapped as Early-Late Hesperian in age, the Dorsa Argentea Formation has been interpreted as volatile-rich, possibly representing the remnants of an ancient polar ice cap. Uncertain are its age (due to the possibility of poor crater retention in ice-related deposits), its mode of origin, the origin of the distinctive sinuous ridges and cavi that characterize the unit, and its significance in the climate history of Mars. In order to assess the age of activity associated with the DAF, we examined the ridge populations within the Dorsa Argentea Formation, mapping and characterizing seven different ridge systems (composed of nearly 4,000 ridges covering a total area of ~300,000 km2, with a cumulative length of ridges of ~51,000 km) and performing crater counts on them using the method of buffered crater counting to determine crater retention ages of the ridge populations. We examined the major characteristics of the ridge systems and found that the majority of them were consistent with an origin as eskers, sediment-filled subglacial drainage channels. Ridge morphologies reflect both distributed and channelized esker systems, and evidence is also seen that some ridges form looping moraine-like termini distal to some distributed systems. The ridge populations fall into two age groups: ridge systems between 270° and 0° E date to the Early Hesperian, but to the east, the Promethei Planum and the Chasmata ridge systems date to the Late Noachian. Thus, these ages, and esker and moraine-like morphologies, support the interpretation that the DAF is a remnant ice sheet deposit, and that the esker systems represent evidence of significant melting and drainage of meltwater from portions of this ice sheet, thus indicating at least some regions and/or periods of wet

  7. Investigation of 2-Dimensional Isotropy of Under-Ice Roughness in the Beaufort Gyre and Implications for Mixed Layer Ocean Turbulence

    DTIC Science & Technology

    2008-03-01

    this roughness is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy...is important for numerical modeling and prediction of the Arctic air-ice-ocean system, which will play a significant role as the US Navy increases... Model 1 is based on a sequence of plane parallel layers each with a constant gradient whereas Model 2 is based on a series of flat layers of

  8. Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-01-01

    To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).

  9. Variability in radar returns from Martian debris-covered glaciers attributed to surface debris layer roughness and composition: implications for the regional distribution of massive subsurface ice and near-surface pore-filling ice.

    NASA Astrophysics Data System (ADS)

    Petersen, E.; Holt, J. W.; Levy, J. S.; Lalich, D.

    2017-12-01

    Lobate debris aprons, lineated valley fill, and concentric crater fill are a class of Martian landform thought to be glaciers blanketed by a lithic debris layer. They are found in the mid latitudes (roughly 30-50°N and S) where surface ice is presently unstable. Shallow Radar (SHARAD) sounder observations are in many cases able to resolve the basal contact between the glacier and underlying bedrock, showing that the bulk composition of these features is water ice with < 20% lithic debris; they are thus often referred to as debris-covered glaciers (DCG). The basal contact of candidate glaciers is not always present in SHARAD radargrams, and variable reflection power between glacier sites suggests that non-detections may be due to a reduction of echo power below the noise floor. A likely candidate for signal loss is the variable roughness of different glacial surface textures. We test this mechanism of signal reduction via analysis of SHARAD reflections augmented by surface roughness analyses generated from HiRISE stereo DEMs. This method provides a means of constraining the electrical properties of the surface debris. We show that measured surface roughness is sufficient to explain basal reflection signal loss for five glacier sites in the region of Deuteronilus/Protonilus Mensae (R2 = 0.90), with the dielectric constant for the surface debris layer constrained to 4.9 ± 0.3. Assuming debris formed of basalt rock, this value is consistent with a porous debris layer containing up to 64% ice, or an ice-free debris layer with porosity of 28-34%. From this work, we conclude that (1) weak or non-existent basal reflections at these sites are due to roughness-induced radar signal loss and not due to differing properties of the basal interface, (2) all DCG candidates in this study exhibit similar bulk compositions of relatively pure water ice, and (3) the surface debris layer is formed of porous lithic debris which may contain a significant fraction of pore ice.

  10. Deciphering the morphology of ice films on metal surfaces

    NASA Astrophysics Data System (ADS)

    Thürmer, Konrad

    2011-03-01

    Although extensive research has been aimed at the structure of ice films, questions regarding basic processes that govern film evolution remain. Recently we discovered how ice films as many as 30 molecular layers thick can be imaged with STM. The observed morphology yields new insights about water-solid interactions and how they affect the structure of ice films. This talk gives an overview of this progress for crystalline ice films on Pt(111) [2-5]. STM reveals a first molecular water layer very different from bulk ice: besides the usual hexagons it also contains pentagons and heptagons. Slightly thicker films (~ 1 nm, at T> 120 K) arecomprisedof ~ 3 nm - highcrystallites , surroundedbytheone - molecule - thickwettinglayer . Thesecrystalsdewetbynucleatinglayersontheirtopfacets [ 4 ] . Measurementsofthenucleationrateasafunctionofcrystalheightprovideestimatesoftheenergyoftheice - Ptinterface . ForT > 115 Ksurfacediffusionisfastenoughthatsurfacesmoothingand 2 D - islandripeningisobservable [ 5 ] . ByquantifyingtheT - dependentripeningofislandarrayswedeterminedtheactivationenergyforsurfaceself - diffusion . Theshapeofthese 2 Dislandsvariesstronglywithfilmthickness . Weattributethistoatransitionfrompolarizediceatthesubstratetowardsprotondisorderatlargerfilmthicknesses . Despitefastsurfacediffusionicemultilayersareoftenfarfromequilibrium . Forexample , icegrowsbetween ~ 120 and ~ 160 K in its cubic variant rather than in its equilibrium hexagonal form. We found this to be a consequence of the mismatch in the atomic Pt-step height and the ice-bilayer separation and propose a mechanism of cubic-ice formation via growth spirals around screw dislocations. Joint work with N.C. Bartelt and S. Nie, Sandia Natl. Labs, CA. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. DOE under Contracts No. DEAC04-94AL85000.

  11. Ice electrode electrolytic cell

    DOEpatents

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  12. Ice electrode electrolytic cell

    DOEpatents

    Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  13. In situ heat treatment from multiple layers of a tar sands formation

    DOEpatents

    Vinegar, Harold J.

    2010-11-30

    A method for treating a tar sands formation is disclosed. The method includes providing a drive fluid to a first hydrocarbon containing layer of the formation to mobilize at least some hydrocarbons in the first layer. At least some of the mobilized hydrocarbons are allowed to flow into a second hydrocarbon containing layer of the formation. Heat is provided to the second layer from one or more heaters located in the second layer. At least some hydrocarbons are produced from the second layer of the formation.

  14. Laboratory experiments of crater formation on ice-rock mixture targets

    NASA Astrophysics Data System (ADS)

    Hiraoka, K.; Arakawa, M.; Yoshikawa, K.; Nakamura, A. M.

    Surfaces of ice-rock mixture are common among planetary bodies in outer solar system, such as the satellites of the giant planets, comet nuclei, and so on. In order to study the effect of the presence of volatiles in crater formation on these bodies, we performed impact experiments using a two-stage light-gas gun and a gas gun at Hokkaido University. The targets were ice-rock mixtures (diameter = 10 or 30cm, height = 5cm) with 0 wt.% to 50 wt.% rock. Projectiles were ice cylinders (diameter = 15mm, height = 10mm) or corn-shaped nylon ones and the impact velocities were varied from about 300m/s to 3500m/s. We will show an anti-correlation between the crater volume and the rock content, and will make a comparison with previous works (Lange and Ahrens 1982; Koschny and Grun 2001). Ejecta size and velocity measured on high-speed video images will be presented and will be discussed by a comparison with a spallation model (Melosh 1984).

  15. A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach

    NASA Astrophysics Data System (ADS)

    Goossens, Thomas; Sapart, Célia J.; Dahl-Jensen, Dorthe; Popp, Trevor; El Amri, Saïda; Tison, Jean-Louis

    2016-03-01

    Basal ice is a common expression to describe bottom ice layers of glaciers, ice caps and ice sheets in which the ice is primarily conditioned by processes operating at the bed. It is chemically and/or physically distinct from the ice above and can be characterized by a component of basally derived sediments. The study of basal ice properties provides a rare opportunity to improve our understanding of subglacial environments and processes and to refine ice sheet behaviour modelling. Here, we present and discuss the results of water stable isotopes (δ18O and δD), ice fabrics, debris weight/size distribution and gas content of the basal part of the NEEM (North Greenland Eemian Ice Drilling Project) ice core. Below a depth of 2533.85 m, almost 10 m of basal debris-rich material was retrieved from the borehole, and regular occurrence of frozen sediments with only interstitial ice lenses in the bottom 5 m suggest that the ice-bedrock interface was reached. The sequence is composed of an alternation of three visually contrasting types of ice: clear ice with specks (very small amounts) of particulate inclusions, stratified debris-rich layers and ice containing dispersed debris. The use of water stable isotope signatures (δ18O and δD), together with other parameters, allows discrimination between the different types of ice and to unravel the processes involved in their formation and transformation. The basal debris-rich material presents δ18O values [-39.9 ‰; -34.4 ‰] within the range of the above last 300 m of unaltered meteoric ice [-44.9 ‰; -30.6 ‰] spanning a glacial-interglacial range of values. This rules out the hypothesis of a basal ice layer originating from pre-ice sheet ice overridden by the growing ice sheet, as previously suggested e.g. in the case of GRIP (Greenland Ice Core Project). We show that clear basal ice with specks corresponds to altered meteoric glacial ice where some of the climatic signal could have been preserved. However, the

  16. Characterizing Intracellular Ice Formation of Lymphoblasts Using Low-Temperature Raman Spectroscopy.

    PubMed

    Yu, Guanglin; Yap, Yan Rou; Pollock, Kathryn; Hubel, Allison

    2017-06-20

    Raman microspectroscopy was used to quantify freezing response of cells to various cooling rates and solution compositions. The distribution pattern of cytochrome c in individual cells was used as a measure of cell viability in the frozen state and this metric agreed well with the population-averaged viability and trypan blue staining experiments. Raman imaging of cells demonstrated that intracellular ice formation (IIF) was common and did not necessarily result in cell death. The amount of intracellular ice as well as ice crystal size played a role in determining whether or not ice inside the cell was a lethal event. Intracellular ice crystals were colocated to the sections of cell membrane in close proximity to extracellular ice. Increasing the distance between extracellular ice and cell membrane decreased the incidence of IIF. Reducing the effective stiffness of the cell membrane by disrupting the actin cytoskeleton using cytochalasin D increased the amount of IIF. Strong intracellular osmotic gradients were observed when IIF was present. These observations support the hypothesis that interactions between the cell membrane and extracellular ice result in IIF. Raman spectromicroscopy provides a powerful tool for observing IIF and understanding its role in cell death during freezing, and enables the development, to our knowledge, of new and improved cell preservation protocols. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Expanded Craters on Mars: Implications for Shallow, Mid-latitude Excess Ice

    NASA Astrophysics Data System (ADS)

    Viola, Donna

    Understanding the age and distribution of shallow ice on Mars is valuable for interpreting past and present climate conditions, and has implications on habitability and future in situ resource utilization. Many ice-related features, such as lobate debris aprons and concentric crater fill, have been studied using a range of remote sensing techniques. Here, I explore the distribution of expanded craters, a form of sublimation thermokarst where shallow, excess ice has been destabilized and sublimated following an impact event. This leads to the collapse of the overlying dry regolith to produce the appearance of diameter widening. The modern presence of these features suggests that excess ice has remained preserved in the terrain immediately surrounding the craters since the time of their formation in order to maintain the surface. High-resolution imagery is ideal for observing thermokarst features, and much of the work described here will utilize data from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). Expanded craters tend to be found in clusters that emanate radially from at least four primary craters in Arcadia Planitia, and are interpreted as secondary craters that formed nearly simultaneously with their primaries. Crater age dates of the primaries indicate that the expanded secondaries, as well as the ice layer into which they impacted, must be at least tens of millions of years old. Older double-layer ejecta craters in Arcadia Planitia commonly have expanded craters superposed on their ejecta - and they tend to be more expanded (with larger diameters) in the inner ejecta layer. This has implications on the formation mechanisms for craters with this unique ejecta morphology. Finally, I explore the distribution of expanded craters south of Arcadia Planitia and across the southern mid-latitudes, along with scalloped depressions (another form of sublimation thermokarst), in order to identify

  18. Formation of melt channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Melt channels have been observed on ice shelves experiencing strong melting in both Greenland (Petermann Glacier) and Antarctica (Pine Island Glacier). Using a fully-couple ice-shelf/sub-ice-shelf-ocean flow model, it is demonstrated that these channels can form spontaneously in laterally confined ice shelves. These channels have transverse extent of a few kilometers and a vertical relief of about a few hundred meters. Meltrates and sea-water transport in the channels are significantly higher than in between the channels on the smooth flat ice bottom. In circumstances where an ice shelf has no-slip conditions at its lateral boundaries, the ice-shelf/sub-ice-shelf-cavity system exhibits equilibrium periodic states, where the same configurations repetitively appear with a periodicity of about 30-35 years. This peculiar dynamics of the system has strong implications on the interpretation of the remote and in-situ observations and inferences of the system parameters (e.g., melt rates) based on these observations. For instance, the persistent temporal changes in the ice-shelf thickness are caused by internal dynamics of the melt channels, and, in contrast to traditional interpretation, can be independent of the oceanic forcings.

  19. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  20. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  1. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  2. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    USGS Publications Warehouse

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  3. An experimental study of icing control using DBD plasma actuator

    NASA Astrophysics Data System (ADS)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  4. What Determines the Ice Polymorph in Clouds?

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2016-07-20

    Ice crystals in the atmosphere nucleate from supercooled liquid water and grow by vapor uptake. The structure of the ice polymorph grown has strong impact on the morphology and light scattering of the ice crystals, modulates the amount of water vapor in ice clouds, and can impact the molecular uptake and reactivity of atmospheric aerosols. Experiments and molecular simulations indicate that ice nucleated and grown from deeply supercooled liquid water is metastable stacking disordered ice. The ice polymorph grown from vapor has not yet been determined. Here we use large-scale molecular simulations to determine the structure of ice that grows as a result of uptake of water vapor in the temperature range relevant to cirrus and mixed-phase clouds, elucidate the molecular mechanism of the formation of ice at the vapor interface, and compute the free energy difference between cubic and hexagonal ice interfaces with vapor. We find that vapor deposition results in growth of stacking disordered ice only under conditions of extreme supersaturation, for which a nonequilibrium liquid layer completely wets the surface of ice. Such extreme conditions have been used to produce stacking disordered frost ice in experiments and may be plausible in the summer polar mesosphere. Growth of ice from vapor at moderate supersaturations in the temperature range relevant to cirrus and mixed-phase clouds, from 200 to 260 K, produces exclusively the stable hexagonal ice polymorph. Cubic ice is disfavored with respect to hexagonal ice not only by a small penalty in the bulk free energy (3.6 ± 1.5 J mol(-1) at 260 K) but also by a large free energy penalty at the ice-vapor interface (89.7 ± 12.8 J mol(-1) at 260 K). The latter originates in higher vibrational entropy of the hexagonal-terminated ice-vapor interface. We predict that the free energy penalty against the cubic ice interface should decrease strongly with temperature, resulting in some degree of stacking disorder in ice grown from

  5. Phreatomagmatic eruptions under the West Antarctic Ice Sheet: potential hazard for ice sheet stability

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; Lieb-Lappen, R.; Kim, E. J.; Golden, E. J.; Obbard, R. W.

    2014-12-01

    Volcanic tephra layers have been seen in most ice cores in Antarctica. These tephra layers are deposited almost instantaneously across wide areas of ice sheets, creating horizons that can provide "pinning points" to adjust ice time scales that may otherwise be lacking detailed chronology. A combination of traditional particle morphology characterization by SEM with new non-destructive X-ray micro-computed tomography (Micro-CT) has been used to analyze selected coarse grained tephra in the West Antarctica Ice Sheet (WAIS) Divide WDC06A ice core. Micro-CT has the ability to image particles as small as 50µm in length (15µm resolution), quantifying both particle shape and size. The WDC06A contains hundreds of dusty layers of which 36 have so far been identified as primary tephra layers. Two of these tephra layers have been characterized as phreatomagmatic eruptions based on SEM imagery and are blocky and platy in nature, with rare magmatic particles. These layers are strikingly different in composition from the typical phonolitic and trachytic tephra produced from West Antarctic volcanoes. These two layers are coarser in grain size, with many particles (including feldspar crystals) exceeding 100µm in length. One tephra layer found at 3149.138m deep in the ice core is a coarse ~1mm thick basanitic tephra layer with a WDC06-7 ice core age of 45,381±2000yrs. The second layer is a ~1.3 cm thick zoned trachyandesite to trachydacite tephra found at 2569.205m deep with an ice core age 22,470±835yrs. Micro-CT analysis shows that WDC06A-3149.138 has normal grading with the largest particles at the bottom of the sample (~160μm). WDC06A-2569.205 has a bimodal distribution of particles with large particles at the top and bottom of the layer. These large particles are more spherical in shape at the base and become more irregular and finer grained higher in the layer, likely showing changes in eruption dynamics. The distinct chemistry as well as the blocky and large grain size

  6. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.

    2016-02-01

    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  7. A 400-Year Ice Core Melt Layer Record of Summertime Warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike

    2018-04-01

    Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice cores collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice core record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice core drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.

  8. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary-layer

  9. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-11-01

    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  10. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  11. Convective Formation of Pileus Cloud Near the Tropopause

    NASA Technical Reports Server (NTRS)

    Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick

    2005-01-01

    Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.

  12. SHARAD Finds Voluminous CO2 Ice Sequestered in the Martian South Polar Layered Deposits

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Davis, B. J.; Byrne, S.; Campbell, B. A.; Carter, L. M.; Haberle, R. M.; Holt, J. W.; Kahre, M. A.; Nunes, D. C.; Plaut, J. J.; Putzig, N. E.; Smith, I. B.; Smrekar, S. E.; Tanaka, K. L.; Titus, T. N.

    2010-12-01

    The SHARAD instrument on the Mars Reconnaissance Orbiter (MRO) mission has carried out systematic radar soundings of the layered deposits at both martian polar regions. While well-organized sets of radar reflectors are ubiquitous in the North Polar Layered Deposits, those in the South Polar Layered Deposits (SPLD) are limited to specific regions, and it is difficult to map SPLD-wide radar stratigraphy. What is evident in the radar observations are four regional reflection-free zones (RFZ) distinguished qualitatively by their radar characteristics. They are up to a kilometer in thickness and extend downward from near the surface. One such zone (RFZ3) occurs beneath the South Polar Residual Cap (SPRC), which is composed of ~5 m of solid CO2 underlain by an apparently thin layer of water ice. Using a correlation technique, we inverted for the real permittivity, ɛ', on each of 41 usable SHARAD orbits over RFZ3. The results were mean values of ɛ' = 2.0 or 2.1, with a σ of 0.2. A secondary technique based on the “smoothest” solution gave similar results. These values are exceptionally close to the laboratory-measured permittivity value of bulk CO2 ice [Pettinelli et al., 2003] and distant from the bulk water ice value (ɛ' = 3.15); water ice is the dominant volatile in the SPLD. An alternative hypothesis for ɛ' = 2.0-2.1 is that the RFZ3 material is porous water ice, but this can be strongly discounted based on theoretical and empirical models of ɛ' of porous water ice vs. thickness. By the same arguments, the proposed CO2 material also cannot be very porous, and ɛ' should be close to the bulk value. With the permittivity estimates, radar time delays were converted to depth, and for RFZ3 a mean thickness of 210-220 m and a volume of 4,200-4,400 km3 result. This is unlikely to be the entire volume because MRO’s orbital inclination precludes SHARAD sounding poleward of ~87°S, where RFZ3 appears to extend. We do find a very good spatial correlation of RFZ3 with

  13. Influences of Ocean Thermohaline Stratification on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.

    2009-04-01

    The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the sea ice and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced ice motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal sea ice growth and melting. Heat fluxes into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via air-sea exchange at leads and conduction through the ice, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by Ice-Tethered Profilers since summer 2004 and analyzed in conjunction with sea ice observations from Ice Mass Balance Buoys and atmospheric heat flux estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of sea ice melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the flux of deep ocean heat to the surface that could influence sea ice growth/decay. Consistent with previous work, this study demonstrates that the Arctic sea ice is most sensitive to changes in ocean mixed layer heat resulting from fluxes across its upper (air-sea and/or ice-water) interface.

  14. Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich Events

    NASA Astrophysics Data System (ADS)

    Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.

    2017-12-01

    The thickness of the ice-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea ice to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.

  15. Reading the climate record of the martian polar layered deposits

    USGS Publications Warehouse

    Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K. E.

    2012-01-01

    The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ∼1 million years with an average net deposition rate of ice and dust of 0.55 mm a−1. The model stratigraphy contains a quasi-periodic ∼30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375

  16. Peculiarities of the Bound Water and Water Ice Seasonal Variations in the Martian Surface Layer of the Regolith.

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. O.; Zabalueva, E. V.; Evdokimova, N. A.; Christensen, P. H.; Mitrofanov, I. G.; Litvak, M. L.

    2008-09-01

    OMEGA data demonstrates existence of the strong seasonal effect of the bound water and water ice amount variations in the surficial soil layer with thickness from a hundreds microns up to 20-30 cm. Appearance of the water ice in the surficial soil layer around of receding CO2 ice cap serves as direct conformation of the seasonal permafrost layer formation on Mars. Our results shown that mapped amount of the soil's water ice (involved in the seasonal redistribution) exceed notably the content of the atmospheric water. This means that the role of the regolith in the modern water cycle on Mars may to be much significant than it was suggested before. References: [1] Fanale F.P. et al., (1986), Icarus, 68, 1- 18 ; [2] Zent A.P. et al, (1995), JGR, 100, 5341-5349 ; [3] Zolotov M. Yu. (1989), LPSC XX, 1257-1258 ; [4] Mohlmann D.T.F. (2004), Icarus, 168, 318-323 ; [5] Tokano T. (2003), Icarus, 164, 50-78 ; [6] Mellon M.T. and Jakosky B.M. (1995), JGR, 100, 11781-11799 ; [7] Bottger H.M. et al., (2004), JGL, 31,L22702; [8] Smith M.D. (2004), Icarus, 167, 148-165 ; [9] Bish D.L. et al., (2003), Icarus, 164, 96- 103 ; [10] Kuzmin R.O. et al., (2007), Solar System Reseach, 41, 99-102 ; [11] Kuzmin R.O. et al., (2006), LPSC XXXVII, #1846 ; [12] Chipera S.J., Vaniman D.T. (2007), Geoch. et Cosmoch. Acta, 71, 241-250 ; [13] Chou I-M, R.R. Seal II (2007), JGR, 112, E11004, doi : 10.1029/2007JE002898 ; [14] Kuzmin R.O. et al., (2007) 7th Mars Conf., #3022; [15] Kuzmin R.O. et al., (2007), Europian Mars Science and Exploration Conference : Mars Express & ExoMars, # 1120023 ;[16] Titus, T.N. (2005), Lunar. Planet. Sci.XXXVI, Abstract #1993; [17] Wagstaff, K.L., T.N. Titus, A.B. Ivanov, R. Castano, J.L.Bandfield. (2008), Planetary and Space Science, 56, 256-265;[18] Kuzmin R.O. et al., (2007), Brown-Vernadsky Microsymp. 46th (www.planetology.ru/micro.php.); [19] Litvak M.L. et al., (2007), Solar System Reseach, 41,5, 385-397. used the nomogram [14], created for ice content

  17. Peculiarities of the Bound Water and Water Ice Seasonal Variations in the Martian Surface Layer of the Regolith.

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. O.; Zabalueva, E. V.; Evdokimova, N. A.; Christensen, P. H.; Mitrofanov, I. G.; Litvak, M. L.

    2008-09-01

    the joint analysis of the TES, HEND and OMEGA data demonstrates existence of the strong seasonal effect of the bound water and water ice amount variations in the surficial soil layer with thickness from a hundreds microns up to 20-30 cm. Appearance of the water ice in the surficial soil layer around of receding CO2 ice cap serves as direct conformation of the seasonal permafrost layer formation on Mars. Our results shown that mapped amount of the soil's water ice (involved in the seasonal redistribution) exceed notably the content of the atmospheric water. This means that the role of the regolith in the modern water cycle on Mars may to be much significant than it was suggested before. References: [1] Fanale F.P. et al., (1986), Icarus, 68, 1- 18 ; [2] Zent A.P. et al, (1995), JGR, 100, 5341-5349 ; [3] Zolotov M. Yu. (1989), LPSC XX, 1257-1258 ; [4] Mohlmann D.T.F. (2004), Icarus, 168, 318-323 ; [5] Tokano T. (2003), Icarus, 164, 50-78 ; [6] Mellon M.T. and Jakosky B.M. (1995), JGR, 100, 11781-11799 ; [7] Bottger H.M. et al., (2004), JGL, 31,L22702; [8] Smith M.D. (2004), Icarus, 167, 148-165 ; [9] Bish D.L. et al., (2003), Icarus, 164, 96- 103 ; [10] Kuzmin R.O. et al., (2007), Solar System Reseach, 41, 99-102 ; [11] Kuzmin R.O. et al., (2006), LPSC XXXVII, #1846 ; [12] Chipera S.J., Vaniman D.T. (2007), Geoch. et Cosmoch. Acta, 71, 241-250 ; [13] Chou I-M, R.R. Seal II (2007), JGR, 112, E11004, doi : 10.1029/2007JE002898 ; [14] Kuzmin R.O. et al., (2007) 7th Mars Conf., #3022; [15] Kuzmin R.O. et al., (2007), Europian Mars Science and Exploration Conference : Mars Express & ExoMars, # 1120023 ;[16] Titus, T.N. (2005), Lunar. Planet. Sci.XXXVI, Abstract #1993; [17] Wagstaff, K.L., T.N. Titus, A.B. Ivanov, R. Castano, J.L.Bandfield. (2008), Planetary and Space Science, 56, 256-265;[18] Kuzmin R.O. et al., (2007), Brown-Vernadsky Microsymp. 46th (www.planetology.ru/micro.php.); [19] Litvak M.L. et al., (2007), Solar System Reseach, 41,5, 385-397.

  18. Vortex Formation During Unsteady Boundary-Layer Separation

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  19. A model for spiral flows in basal ice and the formation of subglacial flutes based on a Reiner-Rivlin rheology for glacial ice

    NASA Astrophysics Data System (ADS)

    Schoof, Christian G.; Clarke, Garry K. C.

    2008-05-01

    Flutes are elongated sediment ridges formed at the base of glaciers and ice sheets. In this paper, we show that flutes can be the product of a corkscrew-like spiral flow in basal ice that removes sediment from troughs between flutes and deposits it at their crests, as first suggested by Shaw and Freschauf. In order to generate the type of basal ice flow required for this mechanism, the viscous rheology of ice must allow for the generation of deviatoric normal stresses transverse to the main flow direction. This type of behavior, which is commonly observed in real nonlinearly viscous and viscoelastic fluids, can be described by a Reiner-Rivlin rheology. Here, we develop a mathematical model that describes the role of these transverse stresses in generating spiral flows in basal ice and investigate how these flows lead to the amplification of initially small basal topography and the eventual formation of assemblies of evenly spaced subglacial flutes.

  20. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sea Ice on the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1998-01-01

    Year-round satellite records of sea ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic sea ice. In the Amundsen & Bellingshausen Seas, sea ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The sea ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of sea ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross Sea, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of sea ice range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade

  2. A Mathematical Model of Melt Lake Development on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, S. C.; Feltham, D. L.; Flocco, D.

    2018-02-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. Melt lakes have been implicated in ice shelf collapse; Antarctica's Larsen B Ice Shelf was observed to have a large amount of surface melt lakes present preceding its collapse in 2002. Such collapse can affect ocean circulation and temperature, cause habitat loss and contribute to sea level rise through the acceleration of tributary glaciers. We present a mathematical model of a surface melt lake on an idealized ice shelf. The model incorporates a calculation of the ice shelf surface energy balance, heat transfer through the firn, the production and percolation of meltwater into the firn, the formation of ice lenses, and the development and refreezing of surface melt lakes. The model is applied to the Larsen C Ice Shelf, where melt lakes have been observed. This region has warmed several times the global average over the last century and the Larsen C firn layer could become saturated with meltwater by the end of the century. When forced with weather station data, our model produces surface melting, meltwater accumulation, and melt lake development consistent with observations. We examine the sensitivity of lake formation to uncertain parameters and provide evidence of the importance of processes such as lateral meltwater transport. We conclude that melt lakes impact surface melt and firn density and warrant inclusion in dynamic-thermodynamic models of ice shelf evolution within climate models, of which our model could form the basis for the thermodynamic component.

  3. First investigations of an ice core from Eisriesenwelt cave (Austria)

    NASA Astrophysics Data System (ADS)

    May, B.; Spötl, C.; Wagenbach, D.; Dublyansky, Y.; Liebl, J.

    2010-09-01

    Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analysed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb derived tritium removing any ice accumulated, since at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses made radiocarbon dating inconclusive, though a crude estimate gave a maximum ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 4 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cyro-calcite layers, a extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.

  4. First investigations of an ice core from Eisriesenwelt cave (Austria)

    NASA Astrophysics Data System (ADS)

    May, B.; Spötl, C.; Wagenbach, D.; Dublyansky, Y.; Liebl, J.

    2011-02-01

    Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.

  5. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.

    PubMed

    Grossmann, S; Dieckmann, G S

    1994-08-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.

  6. The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.

    2009-12-01

    Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has

  7. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  8. Evidence for Possible Exposed Water Ice Deposits in Martian Low Latitude Chasms and Chaos

    NASA Technical Reports Server (NTRS)

    Leovy, C.; Wood, S. E.; Catling, D.; Montgomery, D. R.; Moore, J.; Barnhart, C.; Ginder, E.; Louie, M.

    2004-01-01

    A light-toned interior layer deposit (ILD) on the floor of the deep martian depression Juventae Chasma is found to have a relatively high thermal inertia approx. 500 J m(exp -2) s(exp -1/2) K(exp -1). This could imply rock, but is also similar to the average value of thermal inertia found for north polar layered deposits. Furthermore, ILD-B is found to exhibit a bluff and terrace structure . A terrace structure arises naturally in model simulations of the sublimation of large ice deposits. Such a staircase terrain, of course, is a further characteristic of north polar layered terrain. Morphological similarity, thermal inertia in the range of thermal inertias of the north polar cap layered terrain, and relatively high albedo lead us to propose that the ILD-B may consist of residual water ice partially covered by, and perhaps mixed with, varying amounts of dust or sand. Other ILDs (A-C) are also found in Juventae Chasma. While these ILDs lack the close morphological resemblance to the north polar cap, they share many other common features and appear to be part of the same formation. Similar ILDs are found in chaotic terrain elsewhere in the martian tropics. This leads us to propose that water ice may exist in the martian tropics today and may be implicit in the formation of chaotic terrain.

  9. IR spectral studies of the formation of prebiological organic molecules in ion-bombarded ices

    NASA Astrophysics Data System (ADS)

    Hudson, R.; Moore, M.

    To better understand the formation of C- and CN-containing molecules in cold cosmic environments we have performed a variety of processing experiments on icy mixtures. We will discuss details of condensed-phase synthetic pathways for several acids, alcohols, and aldehydes. For N2 -rich ices containing CH4 , we will show that several CN-bonded acids are easily formed. We will compare carbonic and formic acid production in H O-, CO- and CO2 -dominated ices.2 Condensed-phase pathways for the synthesis of several alcohols including methanol and ethylene glycol, along with several aldehydes including formaldehyde and acetaldehyde, will be discussed. While warming irradiated ices, IR spectra help track the formation of new species from, for example, radical or acid-base reactions, and the loss of species due to vaporization. These experiments demonstrate that condensed-phase reactions lead to cometary and interstellar molecules of varying volatilities. Several newly synthesized species are particularly relevant to recent radio detections, and are of high interest to astronomers and astrobiologists. This research is funded through NRA 344-33-01 and 344-02-57.

  10. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. II. The multilayer regime in interstellar relevant ices

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Ioppolo, S.; Lamberts, T.; Zhen, J. F.; Cuppen, H. M.; Linnartz, H.

    2012-08-01

    Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here, we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N2O, NH2OH) and intermediate (HNO, NH2O., etc.) products is discussed. The main conclusion is that hydroxyl-amine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH2OH is abundant in the solid phase under dark molecular cloud conditions. Once NH2OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.

  11. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less

  12. The Radar Effects of Perchlorate-Doped Ice in the Martian Polar Layered Deposits

    NASA Astrophysics Data System (ADS)

    Stillman, D.; Winebrenner, D. P.; Grimm, R. E.; Pathare, A.

    2010-12-01

    The presence of perchlorate in soil at near-polar latitudes on Mars suggests that dust in the ice of the North Polar Layered Deposits (NPLD) may introduce perchlorate impurities to that ice. Because eutectic temperatures of perchlorate salts range as low as 206 K (for magnesium perchlorate), perchlorate doping of NPLD ice may result in grain-scale liquid veins and softening of ice rheology at temperatures comparable to those computed for the base of the NPLD in the present climate. Any such softening would be important for understanding how processes including ice flow have shaped the NPLD. Observable consequences of such softening, or of the combination of perchlorate doping and temperatures that could cause softening, are thus similarly important. In particular, the dielectric properties of perchlorate-laden ice in a temperature gradient will change relatively rapidly at the point in the gradient near the eutectic temperature. Here we investigate the radar reflectivity of such a eutectic transition in ice with a model in which perchlorate concentration is constant and temperature varies linearly with depth in the ice. We have conducted measurements of the complex permittivity of Mg and Na perchlorate-doped ice over a range of temperatures (183 - 273 K) and concentrations. Below the eutectic temperature, the perchlorate-doped ice has electrical properties similar to that of choride-doped ice. However, above the eutectic temperature, some of the ice melts forming liquid at triple junctions. At concentrations above 3 mM, the liquid at triple junctions become connected forming brine channels, which greatly increase the dc conductivity and radar attenuation. At concentrations below 3 mM, the liquid at triple junctions are not connected and do not affect the dc conductivity. However, the liquid H2O molecules are able to rotate their permanent dipole at radar frequencies, thus causing an increase in radar attenuation. The MARSIS and SHARAD attenuation rates increase

  13. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  14. The Prevention of the Ice Hazard on Airplanes

    NASA Technical Reports Server (NTRS)

    Geer, William C; Scott, Merit

    1930-01-01

    A review of various methods to prevent ice formation and adhesion to aircraft surfaces is given. It was concluded that the adhesion of ice to a surface may be reduced somewhat by the application of certain waxes and varnishes. In the experiments described, the varnishes containing calcium stearate and calcium oleate gave the best results. In wind tunnel tests, the adhesion was further reduced by the application of these waxes and varnishes to a thin, heat insulating layer of rubber. The adhesion of ice is greatly reduced when the surface consists of a vehicle which carries an oil in sufficient quantity so that the surface of the vehicle is self lubricating. Ice may be removed from wings, struts, wires and other parts of an airplane during flight by the inflation of properly constructed pneumatic rubber members, providing that these members have been previously treated with a suitable low adhesion oil.

  15. Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1978-01-01

    The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.

  16. The role of sediment supply in esker formation and ice tunnel evolution

    NASA Astrophysics Data System (ADS)

    Burke, Matthew J.; Brennand, Tracy A.; Sjogren, Darren B.

    2015-05-01

    Meltwater is an important part of the glacier system as it can directly influence ice sheet dynamics. Although it is important that ice sheet models incorporate accurate information about subglacial meltwater processes, the relative inaccessibility of contemporary ice sheet beds makes direct investigation challenging. Former ice sheet beds contain a wealth of meltwater landforms such as eskers that, if accurately interpreted, can provide detailed insight into the hydrology of former ice sheets. Eskers are the casts of ice-walled channels and are a common landform within the footprint of the last Laurentide and Cordilleran Ice Sheets. In south-western Alberta, esker distribution suggests that both water and sediment supply may have been important controls; the longest esker ridge segments are located within meltwater valleys partially filled by glaciofluvial sediments, whereas the shortest esker ridge segments are located in areas dominated by clast-poor till. Through detailed esker ridge planform and crest-type mapping, and near surface geophysics we reveal morpho-sedimentary relationships that suggest esker sedimentation was dynamic, but that esker distribution and architecture were primarily governed by sediment supply. Through comparison of these data with data from eskers elsewhere, we suggest three formative scenarios: 1) where sediment supply and flow powers were high, coarse sediment loads result in rapid deposition, and rates of thermo-mechanical ice tunnel growth is exceeded by the rate of ice tunnel closure due to sediment infilling. High sedimentation rates reduce ice tunnel cross-sectional area, cause an increase in meltwater flow velocity and force ice tunnel growth. Thus, ice tunnel growth is fastest where sedimentation rate is highest; this positive feedback results in a non-uniform ice tunnel geometry, and favours macroform development and non-uniform ridge geometry. 2) Where sediment supply is limited, but flow power high, the rate of sedimentation

  17. Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al

    2007-01-01

    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.

  18. Report on ice formation on aircraft

    NASA Technical Reports Server (NTRS)

    1939-01-01

    The physical phenomena involved in the icing of aircraft have been analyzed and measured. Recommendations on warning devices are made as well as the different types of ice and glazing that can occur on airplanes are examined and discussed.

  19. History and anatomy of subsurface ice on Mars

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert; Forget, Francois

    2012-08-01

    Ice buried beneath a thin layer of soil has been revealed by neutron spectroscopy and explored by the Phoenix Mars Lander. It has also been exposed by recent impacts. This subsurface ice is thought to lose and gain volume in response to orbital variations (Milankovitch cycles). We use a powerful numerical model to follow the growth and retreat of near-surface ice as a result of regolith-atmosphere exchange continuously over millions of years. If a thick layer of almost pure ice has been deposited recently, it has not yet reached equilibrium with the atmospheric water vapor and may still remain as far equatorward as 43°N, where ice has been revealed by recent impacts. A potentially observable consequence is present-day humidity output from the still retreating ice. We also demonstrate that in a sublimation environment, subsurface pore ice can accumulate in two ways. The first mode, widely known, is the progressive filling of pores by ice over a range of depths. The second mode occurs on top of an already impermeable ice layer; subsequent ice accumulates in the form of pasted on horizontal layers such that beneath the ice table, the pores are completely full with ice. Most or all of the pore ice on Mars today may be of the second type. At the Phoenix landing site, where such a layer is also expected to exist above an underlying ice sheet, it may be extremely thin, due to exceptionally small variations in ice stability over time.

  20. Protective layer formation on magnesium in cell culture medium.

    PubMed

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  1. Devon island ice cap: core stratigraphy and paleoclimate.

    PubMed

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  2. Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Hilmar Gudmundsson, G.; Nagler, Thomas; Wuite, Jan; King, Edward C.

    2018-02-01

    We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day-1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica.

  3. Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse and debris-cover armoring

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.; Marchant, David R.

    2014-01-01

    Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) ice-cemented talus aprons undergoing viscous flow, (2) local debris-covered alpine-like glaciers, or (3) remnants of the collapse of a regional retreating ice sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional ice sheet by modeling this process. We find that as a regional ice sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-cover armoring of the proto-LDA surface produces a surface slope and consequent ice flow that carries the armoring debris away from the rock outcrops. As collapse and ice retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris cover. Using a simplified ice flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris cover) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating

  4. Analysis of iced wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.

    1992-01-01

    A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  5. Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Materese, Christopher K.; Milam, Stefanie N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions.

  6. Modeling studying on ice formation by bacteria in warm-based convective cloud

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2005-12-01

    Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.

  7. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  8. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  9. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  10. One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model

    NASA Astrophysics Data System (ADS)

    Hakkinen, S.; Mellor, G. L.

    1990-09-01

    A one-dimensional ice-ocean model consisting of a second moment, turbulent closure, mixed layer model and a three-layer snow-ice model has been applied to the simulation of Arctic ice mass and mixed layer properties. The results for the climatological seasonal cycle are discussed first and include the salt and heat balance in the upper ocean. The coupled model is then applied to the period 1880-1985, using the surface air temperature fluctuations from Hansen et al. (1983) and from Wigley et al. (1981). The analysis of the simulated large variations of the Arctic ice mass during this period (with similar changes in the mixed layer salinity) shows that the variability in the summer melt determines to a high degree the variability in the average ice thickness. The annual oceanic heat flux from the deep ocean and the maximum freezing rate and associated nearly constant minimum surface salinity flux did not vary significantly interannually. This also implies that the oceanic influence on the Arctic ice mass is minimal for the range of atmospheric variability tested.

  11. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  12. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation

  13. The observation of underwater frazil ice formation and upward sediment transport in an Arctic polynya in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Ito, M.; Ohshima, K. I.; Fukamachi, Y.; Simizu, D.; Mahoney, A. R.; Eicken, H.

    2016-12-01

    Sea ice is a great contributor to energy- and salt-budget, dense water formation and bio-related material cycle in the polar ocean. In coastal polynya, the ice production becomes maximum when open water is maintained owing to underwater frazil ice formation associated with supercooling. In addition, an interaction between frazil ice and re-suspended sediment can be a major process of sediment incorporation into sea ice. Although these process have been reported from laboratory experiments and numerical simulations, in-situ observations have been limited because the under-ice observation is logistically challenging and detection methods of frazil ice and sedimentary particles have not been well established. Since 2009, mooring observations with ADCPs, Ice-Profiling Sonars and C-T recorders have been continuously carried out off Barrow in the Chukchi Sea, through a collaboration between Hokkaido University and University of Alaska Fairbanks. Recently, some in-situ measurements reported the possibility that an ADCP can detect frazil ice and re-suspended sediment using acoustic backscatter strength data. Thus, we analyzed the ADCP data in the Chukchi Sea, focusing on underwater frazil ice formation and upward sediment transport. In winter, polynyas were formed episodically around the observational sites several times by offshore-ward strong winds of > 10 m/s. During these polynya events, surface-intensified signals were detected throughout the water column at two sites with water depths of 40 - 50 m simultaneously. In these cases, potential supercooling occurred and signals were particularly enhanced at timings of in-situ supercooling. Thus, we interpreted these signals as those of frazil ice. On the other hand, bottom-intensified signals originating from re-suspended sediment were detected throughout the water column just after frazil ice was detected. These signals were associated with strong ocean currents of 1 m/s. Thus, sedimentary particles are likely dispersed

  14. Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-ice Dust Particles

    NASA Astrophysics Data System (ADS)

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-01

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH• radical and H3O+ surface defects. The coupling of incoming CO molecules with the surface OH• radicals on the ice clusters yields the formation of the COOH• radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol-1 and -22 kcal mol-1, respectively. The COOH• radicals couple with incoming NH=CH2 molecules (experimentally detected in the ISM) to form the NHCH2COOH• radical glycine through energy barriers of 12 kcal mol-1, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H3O+ is present, one proton may be barrierless transferred to NH=CH2 to give NH2=CH2 +. This latter may react with the COOH• radical to give the NH2CH2COOH+• glycine radical cation which can then be transformed into the NH2CHC(OH)2 +• species (the most stable form of glycine in its radical cation state) or into the NH2CHCOOH• neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H3O+ ions to facilitate chemical

  15. Impact of diabatic processes on the tropopause inversion layer formation in baroclinic life cycles

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar

    2015-04-01

    Observations of temperature profiles in the extratropical upper troposphere/lower stratosphere (UTLS) show the presence of an inversion layer just above the thermal tropopause, i.e., the tropopause inversion layer (TIL). In recent studies both diabatic and adiabatic processes have been identified to contribute to the formation of this layer. In particular, adiabatic simulations indicate a TIL formation without the explicit simulation of diabatic, i.e. radiative or humidity related, processes after wave breaking during baroclinic life cycles. One goal of this study is to assess the additional contribution of diabatic processes to the formation and strength of the TIL in such life cycles. Moreover, since irreversible stratosphere-troposphere exchange (STE) is another inherent feature of baroclinic life cycles and a consequence of diabatic processes, we study whether there is a relationship between STE and TIL. We use the non-hydrostatic model COSMO in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. In a first step contributions of individual diabatic processes from turbulence, radiation, and cloud microphysics to the formation of the TIL are analyzed. These results are compared to those from adiabatic simulations of baroclinic life cycles in which the TIL forms during the life cycle with the limitation of being less sharp than in observations. In a second step the combined effects of several diabatic processes are studied to further include interactions between these processes as well as to advance towards a more realistic model setup. The results suggest a much more vigorous development of the TIL due to microphysics and the release of latent heat. Moreover, radiative effects can foster an increase in static stability above the thermal tropopause when large gradients of either water vapor or cloud ice are present at the level of the tropopause. By additionally adding sub-grid scale turbulence, a co-location of high static

  16. Detecting ice lenses and melt-refreeze crusts using satellite passive microwaves (Invited)

    NASA Astrophysics Data System (ADS)

    Montpetit, B.; Royer, A.; Roy, A.

    2013-12-01

    With recent winter climate warming in high latitude regions, rain-on-snow and melt-refreeze events are more frequent creating ice lenses or ice crusts at the surface or even within the snowpack through drainage. These ice layers create an impermeable ice barrier that reduces vegetation respiration and modifies snow properties due to the weak thermal diffusivity of ice. Winter mean soil temperatures increase due to latent heat being released during the freezing process. When ice layers freeze at the snow-soil interface, they can also affect the feeding habits of the northern wild life. Ice layers also significantly affect satellite passive microwave signals that are widely used to monitor the spatial and temporal evolution of snow. Here we present a method using satellite passive microwave brightness temperatures (Tb) to detect ice lenses and/or ice crusts within a snowpack. First the Microwave Emission Model for Layered Snowpacks (MEMLS) was validated to model Tb at 10.7, 19 and 37 GHz using in situ measurements taken in multiple sub-arctic environments where ice layers where observed. Through validated modeling, the effects of ice layer insertion were studied and an ice layer index was developed using the polarization ratio (PR) at all three frequencies. The developed ice index was then applied to satellite passive microwave signals for reported ice layer events.

  17. Water ice is water ice: some applications and limitations of Earth analogues to Mars

    NASA Astrophysics Data System (ADS)

    Koutnik, M.; Pathare, A.; Waddington, E. D.; Winebrenner, D. P.

    2017-12-01

    Quantitative and qualitative analyses of ice on Mars have advanced with the acquisition of abundant topography, imagery, and radar data, which have enabled the planetary-science community to tackle sophisticated questions about the martian cryosphere. Over the past decades, many studies have applied knowledge of terrestrial ice-sheet and glacier flow to improve understanding of ice behavior on Mars. A key question for both planets is how we can robustly interpret past climate from glaciological and glacial geomorphological features. Doing this requires deciphering how the history of accumulation, ablation, dust/debris deposition, and flow led to the shape and internal structure of present-day ice. Terrestrial glaciology and glacial geomorphology provide physical relationships that can be extended across environmental conditions to characterize related processes that may act at different rates or on different timescales. However, there remain fundamental unknowns about martian ice rheology and history that often limit our ability to directly apply understanding of ice dynamics learned from Antarctica, Greenland, terrestrial glaciers, and laboratory ice experiments. But the field is rich with opportunity because the constitutive relationship for water ice depends on quantities that can typically be reasonably estimated; water ice is water ice. We reflect on progress to understand the history of the ice-rich North Polar Layered Deposits (NPLD) and of select mid-latitude Lobate Debris Aprons (LDAs), and the utility of terrestrial ice-sheet and glacier analogues for these problems. Our work on Earth and Mars has focused on constraining surface accumulation/ablation patterns and ice-flow histories from topography and radar observations. We present on the challenge of interpreting internal-layer shapes when both accumulation/ablation and ice-flow histories are unknown, and how this non-uniqueness can be broken only by making assumptions about one or the other. In

  18. Subglacial hydrology and the formation of ice streams

    PubMed Central

    Kyrke-Smith, T. M; Katz, R. F; Fowler, A. C

    2014-01-01

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model. PMID:24399921

  19. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.

    2017-03-01

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

  20. Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.

    2017-10-01

    The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.

  1. Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.

    2011-12-01

    Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction timesmore » follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.« less

  2. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment.

    PubMed

    Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Lyra, Christina; Autio, Riitta; Kuosa, Harri; Dieckmann, Gerhard S; Thomas, David N

    2014-02-01

    The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  4. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  5. Parametric Experimental Study of the Formation of Glaze Ice Shapes on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1999-01-01

    An experiment was conducted to study the effect of velocity and sweep angle on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to the beginning of the zone where roughness elements develop into glaze ice feathers. Icing runs were performed on a NACA 00 1 2 swept wing tip at velocities of 75, 100, 150, and 200 miles per hour. At each velocity and tunnel condition, the sweep angle was changed from 0 deg to 45 deg at 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that at given velocity and tunnel conditions, as the sweep angle is increased from 0 deg to 25 deg the critical distance slowly decreases. As the sweep angle is increased past 25 deg, the critical distance starts decreasing more rapidly. For 75 and 100 mph it reaches a value of 0 millimeters at 35 deg. For 150 and 200 mph it reaches a value of 0 millimeters at 40 deg. On the ice accretion, as the sweep angle is increased from 0 deg to 25 deg, the extent of the attachment line zone slowly decreases. In the glaze ice feathers zone, the angle that the preferred direction of growth of the feathers makes with respect to the attachment line direction increases. But overall, the ice accretions remain similar to the 0 deg sweep angle case. As the sweep angle is increased above 25 deg, the extent of the attachment line zone decreases rapidly and complete scallops form at 35 deg sweep angle for 75 and 100 mph, and at 40 deg for 150 and 200 mph.

  6. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Impact of Ice on Evolution of Protoplanetary Disks and Formation of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Saunders, William; Gorti, Uma

    2018-01-01

    We use a 1+1D model of disk evolution, where gas and dust evolve under the influence of viscous evolution and photoevaporation. Planetesimal formation is simulated using a simple criterion for triggering the streaming instability. We modeled the disk around a young M3 star of mass 0.25M⊙, a characteristic Milky Way main sequence star. We carried out simulations of the disk with and without water ice to determine the impact of ice on the formation of planetesimals and retention of solids in the disk, but found little impact of ice, leading to the conclusion that the presence of ice alone does not significantly facilitate planetesimal growth in these models. The majority of initial dust in the disk drifts into the star. We investigated the range of possible viscous parameter (α) values and photoevaporation mass loss rates (M'pe) that could mitigate the drift problem. Both these values were treated as free parameters constant in time. We varied α between 10-4 and 10-2 M'pe between 10-10 and 10-7 M⊙/yr. Based on estimated disk lifetimes between 2 and 6 Myr, and estimated solid retention rates of 30-70% from the literature, we determined the range of α and M'pe for which this is possible. Results indicate a region of overlap exists, in which the disk evolves into planetesimals totaling tens of Earth masses. This region is defined by α in the range [7x10-4, 3x10-3] and M'pe in the range [2x10-8, 8x10-8] M⊙/yr.

  8. Fire beneath the ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monastersky, R.

    1993-02-13

    A volcano discovered six years ago by researchers Blankenship and Bell under Antarctica poses questions about a potential climatic catastrophe. The researchers claim that the volcano is still active, erupting occasionally and growing. A circular depression on the surface of the ice sheet has ice flowing into it and is used to provide a portrait of the heat source. The volcano is on a critical transition zone within West Antarctica with fast flowing ice streams directly downhill. Work by Blankenship shows that a soft layer of water-logged sediments called till provide the lubricating layer on the underside of the icemore » streams. Volcanos may provide the source of this till. The ice streams buffer the thick interior ice from the ocean and no one know what will happen if the ice streams continue to shorten. These researchers believe their results indicate that the stability of West Antarctica ultimately depends less on the current climate than on the location of heat and sediments under the ice and the legacy of past climatic changes.« less

  9. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE PAGES

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  10. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  11. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-01

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (<50 K/min). In addition, the lower critical cooling rates for IIF that is lethal to cells predicted by the present model were much lower than those estimated with the ideal-solution assumption. This study represents the first investigation on how accounting for solution nonideality in modeling water transport across the cell membrane could affect the prediction of diffusion-limited ice formation in biological cells during freezing. Future studies are warranted to look at other assumptions alongside nonideality to further develop the model as a useful tool for optimizing the protocol of cell cryopreservation for practical applications.

  12. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation.

    PubMed

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-14

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (<50 K/min). In addition, the lower critical cooling rates for IIF that is lethal to cells predicted by the present model were much lower than those estimated with the ideal-solution assumption. This study represents the first investigation on how accounting for solution nonideality in modeling water transport across the cell membrane could affect the prediction of diffusion-limited ice formation in biological cells during freezing. Future studies are warranted to look at other assumptions alongside nonideality to further develop the model as a useful tool for optimizing the protocol of cell cryopreservation for practical applications.

  13. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  14. Low-temperature surface formation of NH3 and HNCO: hydrogenation of nitrogen atoms in CO-rich interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Ioppolo, S.; Zhao, D.; Lamberts, T.; Linnartz, H.

    2015-01-01

    Solid-state astrochemical reaction pathways have the potential to link the formation of small nitrogen-bearing species, like NH3 and HNCO, and prebiotic molecules, specifically amino acids. To date, the chemical origin of such small nitrogen-containing species is still not well understood, despite the fact that ammonia is an abundant constituent of interstellar ices towards young stellar objects and quiescent molecular clouds. This is mainly because of the lack of dedicated laboratory studies. The aim of this work is to experimentally investigate the formation routes of NH3 and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant temperatures. This study focuses on the formation of NH3 and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in dark interstellar cloud regions, well before thermal and energetic processing start to become relevant. We demonstrate and discuss the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH3 upon sequential hydrogenation of N atoms. The importance of HNCO for astrobiology is discussed.

  15. Observing the formation of ice and organic crystals in active sites

    PubMed Central

    Campbell, James M.; Meldrum, Fiona C.; Christenson, Hugo K.

    2017-01-01

    Heterogeneous nucleation is vital to a wide range of areas as diverse as ice nucleation on atmospheric aerosols and the fabrication of high-performance thin films. There is excellent evidence that surface topography is a key factor in directing crystallization in real systems; however, the mechanisms by which nanoscale pits and pores promote nucleation remain unclear. Here, we use natural cleavage defects on Muscovite mica to investigate the activity of topographical features in the nucleation from vapor of ice and various organic crystals. Direct observation of crystallization within surface pockets using optical microscopy and also interferometry demonstrates that these sharply acute features provide extremely effective nucleation sites and allows us to determine the mechanism by which this occurs. A confined phase is first seen to form along the apex of the wedge and then grows out of the pocket opening to generate a bulk crystal after a threshold saturation has been achieved. Ice nucleation proceeds in a comparable manner, although our resolution is insufficient to directly observe a condensate before the growth of a bulk crystal. These results provide insight into the mechanism of crystal deposition from vapor on real surfaces, where this will ultimately enable us to use topography to control crystal deposition on surfaces. They are also particularly relevant to our understanding of processes such as cirrus cloud formation, where such topographical features are likely candidates for the “active sites” that make clay particles effective nucleants for ice in the atmosphere. PMID:27994140

  16. Formation mechanism of the protective layer in a blast furnace hearth

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  17. Observing Physical and Biological Drivers of pH and O2 in a Seasonal Ice Zone in the Ross Sea Using Profiling Float Data

    NASA Astrophysics Data System (ADS)

    Briggs, E.; Martz, T. R.; Talley, L. D.; Mazloff, M. R.

    2015-12-01

    Ice cover has strong influence over gas exchange, vertical stability, and biological production which are critical to understanding the Southern Ocean's central role in oceanic biogeochemical cycling and heat and carbon uptake under a changing climate. However the relative influence of physical versus biological processes in this hard-to-study region is poorly understood due to limited observations. Here we present new findings from a profiling float equipped with biogeochemical sensors in the seasonal ice zone of the Ross Sea capturing, for the first time, under-ice pH profile data over a two year timespan from 2014 to the present. The relative influence of physical (e.g. vertical mixing and air-sea gas exchange) and biological (e.g. production and respiration) drivers of pH and O2 within the mixed layer are explored during the phases of ice formation, ice cover, and ice melt over the two seasonal cycles. During the austral fall just prior to and during ice formation, O2 increases as expected due to surface-layer undersaturation and enhanced gas exchange. A small increase in pH is also observed during this phase, but without a biological signal in accompanying profiling float chlorophyll data, which goes against common reasoning from both a biological and physical standpoint. During the phase of ice cover, gas exchange is inhibited and a clear respiration signal is observed in pH and O2 data from which respiration rates are calculated. In the austral spring, ice melt gives rise to substantial ice edge phytoplankton blooms indicated by O2 supersaturation and corresponding increase in pH and large chlorophyll signal. The influence of the duration of ice cover and mixed layer depth on the magnitude of the ice edge blooms is explored between the two seasonal cycles.

  18. Enhanced Heterogeneous Nitrates Photolysis on Ice and Potential Impacts on NOx Emissions

    NASA Astrophysics Data System (ADS)

    Ayotte, P.; Marcotte, G.; Pronovost, S.; Marchand, P.; Laffon, C.; Parent, P.

    2015-12-01

    Nitrates photolysis plays a key role in the chemistry of the polar boundary layer and of the lower troposphere over snow-covered areas (1). Using a combination of vibrational (2) and photo-absorption spectroscopies (3), we show that nitric acid is mostly dissociated upon its adsorption onto, and its dissolution within ice at temperatures as low 20K. Using amorphous solid water as a model substrate for the disordered surface layer at the interstitial air-ice interface, UV irradiation in the environmentally relevant n-π* transition uncovers the fact that the photolysis rates are significantly higher for surface-bound nitrates compared to those dissolved within the bulk. The complex coupled interfacial transport and reaction kinetics result in the formation of a thin photochemically active layer at the surface of ice which may magnify the impact of surface-enhanced nitrates photolysis rates on ice thereby providing a significant contribution to the intense photochemical NOxfluxes observed to emanate from the sunlit snowpack upon polar sunrise.(4) (1) F. Dominé, P.B. Shepson, Science, 297, 1506-1510 (2002).(2) P. Marchand, G. Marcotte, and P. Ayotte, Spectroscopic Study of HNO3 Dissociation on Ice, J. Phys. Chem. A 116, 12112-12122 (2012).(3) G. Marcotte, P. Ayotte, A. Bendounan, F. Sirotti, C. Laffon and P. Parent, J. Phys. Chem. Lett. 4, 2643-2648 (2013).(4) G. Marcotte, P. Marchand, S. Pronovost, P. Ayotte, C. Laffon and P. Parent, J. Phys. Chem. A 119, 1996-2005 (2015).

  19. Observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-01-01

    Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an

  20. Thermodynamic origin of surface melting on ice crystals

    PubMed Central

    Murata, Ken-ichiro; Asakawa, Harutoshi; Nagashima, Ken; Furukawa, Yoshinori; Sazaki, Gen

    2016-01-01

    Since the pioneering prediction of surface melting by Michael Faraday, it has been widely accepted that thin water layers, called quasi-liquid layers (QLLs), homogeneously and completely wet ice surfaces. Contrary to this conventional wisdom, here we both theoretically and experimentally demonstrate that QLLs have more than two wetting states and that there is a first-order wetting transition between them. Furthermore, we find that QLLs are born not only under supersaturated conditions, as recently reported, but also at undersaturation, but QLLs are absent at equilibrium. This means that QLLs are a metastable transient state formed through vapor growth and sublimation of ice, casting a serious doubt on the conventional understanding presupposing the spontaneous formation of QLLs in ice–vapor equilibrium. We propose a simple but general physical model that consistently explains these aspects of surface melting and QLLs. Our model shows that a unique interfacial potential solely controls both the wetting and thermodynamic behavior of QLLs. PMID:27791107

  1. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  2. Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, Divya; McNamara, Allen

    2017-04-01

    Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a

  3. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  4. Were lakes on early Mars perennially were ice-covered?

    NASA Astrophysics Data System (ADS)

    Sumner, D. Y.; Rivera-Hernandez, F.; Mackey, T. J.

    2016-12-01

    Paleo-lake deposits indicate that Mars once sustained liquid water, supporting the idea of an early "wet and warm" Mars. However, liquid water can be sustained under ice in cold conditions as demonstrated by perennially ice-covered lakes (PICLs) in Antarctica. If martian lakes were ice-covered, the global climate on early Mars could have been much colder and dryer than if the atmosphere was in equilibrium with long-lived open water lakes. Modern PICLs on Earth have diagnostic sedimentary features. Unlike open water lakes that are dominated by mud, and drop stones or tills if icebergs are present, previous studies determined that deposits in PICLs can include coarser grains that are transported onto the ice cover, where they absorb solar radiation, melt through the ice and are deposited with lacustrine muds. In Lake Hoare, Antarctica, these coarse grains form conical sand mounds and ridges. Our observations of ice-covered lakes Joyce, Fryxell, Vanda and Hoare, Antarctica suggest that the distributions of grains depend significantly on ice characteristics. Deposits in these lakes contain moderately well to moderately sorted medium to very coarse sand grains, which preferentially melt through the ice whereas granules and larger grains remain on the ice surface. Similarly, high albedo grains are concentrated on the ice surface, whereas low albedo grains melt deeper into the ice, demonstrating a segregation of grains due to ice-sediment interactions. In addition, ice cover thickness may determine the spatial distribution of sand deposited in PICLs. Localized sand mounds and ridges composed of moderately sorted sand are common in PICLs with rough ice covers greater than 3 m thick. In contrast, lakes with smooth and thinner ice have disseminated sand grains and laterally extensive sand layers but may not have sand mounds. At Gale Crater, Mars, the Murray formation consists of sandy lacustrine mudstones, but the depositional process for the sand is unknown. The presence of

  5. Study of the photon-induced formation and subsequent desorption of CH3OH and H2CO in interstellar ice analogs

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Muñoz Caro, G. M.; Cruz-Díaz, G. A.

    2016-05-01

    Context. Methanol and formaldehyde are two simple organic molecules that are ubiquitously detected in the interstellar medium, in both the solid and gaseous phases. An origin in the solid phase and a subsequent nonthermal desorption into the gas phase is often invoked to explain their abundances in some of the environments where they are found. Experimental simulations under astrophysically relevant conditions have been carried out in the past four decades in order to find a suitable mechanism for that process. Aims: In particular, photodesorption from pure methanol ice (and presumably from pure formaldehyde ice) has been found to be negligible in previous works, probably because both molecules are very readily dissociated by vacuum-UV photons. Therefore, we explore the in situ formation and subsequent photon-induced desorption of these species, studying the UV photoprocessing of pure ethanol ice, and a more realistic binary H2O:CH4 ice analog. Methods: Experimental simulations were performed in an ultra-high vacuum chamber. Pure ethanol and binary H2O:CH4 ice samples deposited onto an infrared transparent window at 8 K were UV-irradiated using a microwave-discharged hydrogen flow lamp. Evidence of photochemical production of these two species and subsequent UV-photon-induced desorption into the gas phase were searched for by means of a Fourier transform infrared spectrometer and a quadrupole mass spectrometer, respectively. After irradiation, ice samples were warmed up to room temperature until complete sublimation was attained for detection of volatile products. Results: Formation of CH3OH was only observed during photoprocessing of the H2O:CH4 ice analog, accounting for ~4% of the initial CH4 ice column density, but no photon-induced desorption was detected. Photochemical production of H2CO was observed in both series of experiments. Formation of formaldehyde accounted for ≤45% conversion of the initial ethanol ice, but it could not be quantified during

  6. Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Cotton, W.; Carrio, G.; Jiang, H.

    2003-04-01

    The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting

  7. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  8. Jet Formation and Penetration Study of Double-Layer Shaped Charge

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Jiang, Jian-Wei; Wang, Shu-You; Liu, Han

    2018-04-01

    A theoretical analysis on detonation wave propagation in a double-layer shaped charge (DLSC) is performed. Numerical simulations using the AUTODYN software are carried out to compare the distinctions between jet formations in DLSC and ordinary shaped charge (OSC), in particular, the OSC made using a higher detonation velocity explosive, which is treated as the outer layer charge in the DLSC. The results show that the improved detonation velocity ratio and radial charge percentage of outer-to-inner layer charge are conducive to the formation of a convergent detonation wave, which contributes to enhancement of jet tip velocity in DLSC. The thickness and mass percentages of liner flowing into jet in DLSC closely follow the exponential distribution along the radial direction, but the percentages in DLSC and the mass of effective jet, which have significant influence on the penetration depth, are lower than those in OSC with the outer layer charge. This implies that the total charge energy is the major factor controlling the effective jet formation, which is confirmed by the verification tests using flash X-ray system and following penetration tests. The numerical simulation and test results compare well, while penetration test results indicate that the performance of DLSC is not better than that of OSC with the outer layer charge, due to the differences in jet formation.

  9. Sea ice melting in the marginal ice zone.

    USGS Publications Warehouse

    Josberger, E.G.

    1983-01-01

    The heat and salt flux boundary conditions together with the freezing curve relationship are a necessary component of any ice- sea water thermodynamic model. A neutral two-layer oceanic planetary boundary layer model that incorporates these boundary conditions is used. The results are discussed. -from Author

  10. Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters

    NASA Astrophysics Data System (ADS)

    Li, L.; Yue, Z.; Zhang, C.; Li, D.

    2018-04-01

    To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.

  11. High-speed imaging of the transient ice accretion process on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Waldman, Rye; Hu, Hui

    2014-11-01

    Ice accretion on aircraft wings poses a performance and safety threat as aircraft encounter supercooled droplets suspended in the cloud layer. The details of the ice accretion depend on the atmospheric conditions and the fight parameters. We present the measurement results of the experiments conducted in the Iowa State icing wind tunnel on a NACA 0012 airfoil to study the transient ice accretion process under varying icing conditions. The icing process on the wing consists of a complex interaction of water deposition, surface water transport, and freezing. The aerodynamics affects the water deposition, the heat and mass transport, and ice accumulation; meanwhile, the accumulating ice also affects the aerodynamics. High-speed video of the unsteady icing accretion process was acquired under controlled environmental conditions to quantitatively measure the transient water run back, rivulet formation, and accumulated ice growth, and the experiments show how varying the environmental conditions modifies the ice accretion process. Funding support from the Iowa Energy Center with Grant No. 14-008-OG and National Science Foundation (NSF) with Grant No. CBET-1064196 and CBET-1438099 is gratefully acknowledged.

  12. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    DOE PAGES

    China, Swarup; Alpert, Peter A.; Zhang, Bo; ...

    2017-02-27

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less

  13. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    China, Swarup; Alpert, Peter A.; Zhang, Bo

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity ( RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less

  14. Aerial Surveys of the Beaufort Sea Seasonal Ice Zone in 2012-2014

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Andersen, R.; Zhang, J.

    2014-12-01

    Seasonal Ice Zone Reconnaissance Surveys (SIZRS) of the Beaufort Sea aboard U.S. Coast Guard Arctic Domain Awareness flights were made monthly from May 2012 to October 2012, June 2013 to August 2013, and June 2014 to October 2014. In 2012 sea ice extent reached a record minimum and the SIZRS sampling ranged from complete ice cover to open water; in addition to its large spatial coverage, the SIZRS program extends temporal coverage of the seasonal ice zone (SIZ) beyond the traditional season for ship-based observations, and is a good set of measurements for model validation and climatological comparison. The SIZ, where ice melts and reforms annually, encompasses the marginal ice zone (MIZ). Thus SIZRS tracks interannual MIZ conditions, providing a regional context for smaller-scale MIZ processes. Observations with Air eXpendable CTDs (AXCTDs) reveal two near-surface warm layers: a locally-formed surface seasonal mixed layer and a layer of Pacific origin at 50-60m. Temperatures in the latter differ from the freezing point by up to 2°C more than climatologies. To distinguish vertical processes of mixed layer formation from Pacific advection, vertical heat and salt fluxes are quantified using a 1-D Price-Weller-Pinkel (PWP) model adapted for ice-covered seas. This PWP simulates mixing processes in the top 100m of the ocean. Surface forcing fluxes are taken from the Marginal Ice Zone Modeling and Assimilation System MIZMAS. Comparison of SIZRS observations with PWP output shows that the ocean behaves one-dimensionally above the Pacific layer of the Beaufort Gyre. Despite agreement with the MIZMAS-forced PWP, SIZRS observations remain fresher to 100m than do outputs from MIZMAS and ECCO.2. The shapes of seasonal cycles in SIZRS salinity and temperature agree with MIZMAS and ECCO.2 model outputs despite differences in the values of each. However, the seasonal change of surface albedo is not high enough resolution to accurately drive the PWP. Use of ice albedo

  15. Numerical modeling the formation of impact craters: Implications for the structure of Europa's ice shell

    NASA Astrophysics Data System (ADS)

    Silber, E. A.; Johnson, B. C.

    2017-12-01

    Craters produced by hypervelocity impacts are an invaluable tool for studying planetary surfaces. The observed impact crater depth-diameter (d-D) on the Galilean moon Europa exhibits three distinct transition regimes, two of which may correspond to the presence of warm convecting ice at depths of 7-8 km and a liquid ocean at 19-25 km, respectively [1]. In our study, we use iSALE2D to model formation of impact craters on Europa to investigate thickness and internal structure of its ice shell. This study is different from previous modeling studies [2,3] in that we consider the both fully conductive ice shell over ocean, as well as conductive lid overlying warm convecting ice, to discern the boundary conditions at the interface between the ice and the underlying ocean. Moreover, our model includes implementation of the full viscoelastic-plastic rheology for ice. Our results suggest that both conductive shell over ocean and conductive lid over warm convective ice are equally probable on Europa. We will discuss the implications and relevance of these results. The plausible scenarios are either a 6 - 7 km thick conductive ice lid overlying warm convecting ice at 265 K, or an 8 km completely conductive ice shell over ocean. Acknowledgements: We gratefully acknowledge the developers of iSALE-2D (www.isale-code.de), the simulation code used in our research, including G. Collins, K. Wünnermann, D. Elbeshausen, B. Ivanov and J. Melosh. References: [1] Schenk P. (2002) Nature, 417, 419-421. [2] Bray V.J. et al. (2014) Icarus, 231, 394-406. [3] Cox R. and Beuer A.W. (2015) JGR - Planets, 120(10), 1708-1719.

  16. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  17. Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa

    2015-04-01

    The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.

  18. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  19. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    PubMed

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  20. Estimation of composite hydraulic resistance in ice-covered alluvial streams

    NASA Astrophysics Data System (ADS)

    Ghareh Aghaji Zare, Soheil; Moore, Stephanie A.; Rennie, Colin D.; Seidou, Ousmane; Ahmari, Habib; Malenchak, Jarrod

    2016-02-01

    Formation, propagation, and recession of ice cover introduce a dynamic boundary layer to the top of rivers during northern winters. Ice cover affects water velocity magnitude and distribution, water level and consequently conveyance capacity of the river. In this research, total resistance, i.e., "composite resistance," is studied for a 4 month period including stable ice cover, breakup, and open water stages in Lower Nelson River (LNR), northern Manitoba, Canada. Flow and ice characteristics such as water velocity and depth and ice thickness and condition were measured continuously using acoustic techniques. An Acoustic Doppler Current Profiler (ADCP) and Shallow Water Ice Profiling Sonar (SWIPS) were installed simultaneously on a bottom mount and deployed for this purpose. Total resistance to the flow and boundary roughness are estimated using measured bulk hydraulic parameters. A novel method is developed to calculate composite resistance directly from measured under ice velocity profiles. The results of this method are compared to the measured total resistance and to the calculated composite resistance using formulae available in literature. The new technique is demonstrated to compare favorably to measured total resistance and to outperform previously available methods.

  1. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.

  2. Insights into the development of drumlin formation using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Woodard, J.; Zoet, L.; Iverson, N. R.; Benediktsson, Í. Ö.; Schomacker, A.; Finlayson, A.

    2016-12-01

    Drumlins form as the result of subglacial slip, but the exact mechanisms responsible for their formation remain enigmatic. Resolution of drumlin internal stratigraphy provides a means for constraining the formation processes of drumlins, and thus the basal mechanics that result in their formation. Traditional litho-stratigraphic techniques have provided great insight into the internal stratigraphy of drumlins but are inherently limited to areas of natural exposure. We report on the application of geophysical methods used to image the internal stratigraphy of drumlins over a much larger area than is possible through litho-stratigraphic logging. Using ground penetrating radar we investigated the internal stratigraphy of seven drumlins from a recently exposed active drumlin field in the forefield of Múlajökull, Iceland. Data were collected using 100 and 200 MHz antennas that had maximum penetration depths of 15 m and 7 m with 0.4 m and 0.2 m resolution, respectively. Echograms demonstrated distinct layering of the diamictites. From the surface to ca. 2 m depth, till layers generally conformed to the longitudinal surface topography of the drumlins. Upper till layers exhibit unconformities on the flanks of the drumlins, except on their distal lee sides where layers were conformable. Till layers at approximately 2 m depth paralleled the drumlin surface and truncated lower layers. Below ca. 2 m depth distinct till layers dipped obliquely to the surface in the down-ice direction. These stratigraphic patterns were apparent in all drumlins measured at Múlajökull. The stratigraphic pattern observed in the drumlins of the Múlajökull forefield indicate a combination of deposition and erosion. Deposition occurred predominantly on the lee side and near the central axis of the drumlin, whereas erosion occurred along the flanks and stoss side. These observations support results from traditional litho-stratigraphic logs recorded on the same drumlins. Our observations suggest

  3. Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.; Baumgarten, G.

    2009-11-01

    Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.

  4. Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.; Baumgarten, G.

    2009-01-01

    Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.

  5. Effects of Burning Conditions to the Formation of Gold Layer Photograph and Gold Layer Hologram

    NASA Astrophysics Data System (ADS)

    Kuge, Ken'ichi; Takahashi, Ataru; Harada, Takahito; Doi, Keiji; Sakai, Tomoko

    Burning stage from gold nanoparticles to gold layer in the formation process of gold-layer photograph using gold deposition development was investigated. The gelatin layer holding gold nanoparticles is carbonized at about 400°C and burned out until about 500°C. Because gold nanoparticles would be compressed only to vertical direction and then melt to form the gold layer, the gold-layer photograph still holds the high resolution. Gold nanoparaticles do not melt completely even at 900°C, and form continuous clusters of several hundred nm.

  6. Ice dynamics of Heinrich events: Insights and implications

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.

    2017-12-01

    Physical understanding of ice flow provides important constraints on Heinrich (H) events, which in turn provide lessons for ice dynamics and future sea-level change. Iceberg-rafted debris (IRD), the defining feature of H events, is a complex indicator; however, in cold climates with extensive marine-ending ice, increased IRD flux records ice-shelf loss. Ice shelves fed primarily by inflow from grounded ice experience net basal melting, giving sub-ice-sedimentation rather than open-ocean IRD. Ice-shelf loss has been observed recently in response to atmospheric warming increasing surface meltwater that wedged open crevasses (Larsen B), but also by break-off following thinning from warming of waters reaching the grounding line (Jakobshavn). The H events consistently occurred during cold times resulting from reduced North Atlantic overturning circulation ("conveyor"), but as argued by Marcott et al. (PNAS 2011), this was accompanied by delayed warming at grounding-line depths of the Hudson Strait ice stream, the source of the Heinrich layers, implicating oceanic control. As shown in a rich literature, additional considerations involving thermal state of the ice-stream bed, isostasy and probably other processes influenced why some reduced-conveyor events triggered H-events while others did not. Ice shelves, including the inferred Hudson Strait ice shelf, typically exist in high-salinity, cold waters produced by brine rejection from sea-ice formation, which are the coldest abundant waters in the world ocean. Thus, almost any change in air or ocean temperature, winds or currents can remove ice shelves, because "replacement" water masses are typically warmer. And, because ice shelves almost invariably slow flow of non-floating ice into the ocean, climatic perturbations to regions with ice shelves typically lead to sea-level rise, with important implications.

  7. Vertical Structure of Ice Cloud Layers From CloudSat and CALIPSO Measurements and Comparison to NICAM Simulations

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki

    2013-01-01

    The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.

  8. (abstract) A Polarimetric Model for Effects of Brine Infiltrated Snow Cover and Frost Flowers on Sea Ice Backscatter

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.

    1995-01-01

    A polarimetric scattering model is developed to study effects of snow cover and frost flowers with brine infiltration on thin sea ice. Leads containing thin sea ice in the Artic icepack are important to heat exchange with the atmosphere and salt flux into the upper ocean. Surface characteristics of thin sea ice in leads are dominated by the formation of frost flowers with high salinity. In many cases, the thin sea ice layer is covered by snow, which wicks up brine from sea ice due to capillary force. Snow and frost flowers have a significant impact on polarimetric signatures of thin ice, which needs to be studied for accessing the retrieval of geophysical parameters such as ice thickness. Frost flowers or snow layer is modeled with a heterogeneous mixture consisting of randomly oriented ellipsoids and brine infiltration in an air background. Ice crystals are characterized with three different axial lengths to depict the nonspherical shape. Under the covering multispecies medium, the columinar sea-ice layer is an inhomogeneous anisotropic medium composed of ellipsoidal brine inclusions preferentially oriented in the vertical direction in an ice background. The underlying medium is homogeneous sea water. This configuration is described with layered inhomogeneous media containing multiple species of scatterers. The species are allowed to have different size, shape, and permittivity. The strong permittivity fluctuation theory is extended to account for the multispecies in the derivation of effective permittivities with distributions of scatterer orientations characterized by Eulerian rotation angles. Polarimetric backscattering coefficients are obtained consistently with the same physical description used in the effective permittivity calculation. The mulitspecies model allows the inclusion of high-permittivity species to study effects of brine infiltrated snow cover and frost flowers on thin ice. The results suggest that the frost cover with a rough interface

  9. Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2016-01-01

    Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.

  10. A Warmer Atmosphere on Mars near the Noachian-Hesperian Boundary: Evidence from Basal Melting of the South Polar Ice Cap (Dorsa Argentea Formation)

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.; Marchant, D. R.; Forget, F.; Madeleine, J.-B.

    2012-05-01

    Eskers in the Dorsa Argentea Formation imply the presence of an ice sheet with a wet bed. With an ice sheet model, we examine a range of geothermal heat fluxes and warmer climates to determine what conditions could produce such an ice sheet.

  11. Reaction Dynamics Following Ionization of Ammonia Dimer Adsorbed on Ice Surface.

    PubMed

    Tachikawa, Hiroto

    2016-09-22

    The ice surface provides an effective two-dimensional reaction field in interstellar space. However, how the ice surface affects the reaction mechanism is still unknown. In the present study, the reaction of an ammonia dimer cation adsorbed both on water ice and cluster surface was theoretically investigated using direct ab initio molecular dynamics (AIMD) combined with our own n-layered integrated molecular orbital and molecular mechanics (ONIOM) method, and the results were compared with reactions in the gas phase and on water clusters. A rapid proton transfer (PT) from NH3(+) to NH3 takes place after the ionization and the formation of intermediate complex NH2(NH4(+)) is found. The reaction rate of PT was significantly affected by the media connecting to the ammonia dimer. The time of PT was calculated to be 50 fs (in the gas phase), 38 fs (on ice), and 28-33 fs (on water clusters). The dissociation of NH2(NH4(+)) occurred on an ice surface. The reason behind the reaction acceleration on an ice surface is discussed.

  12. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.

  13. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  14. Is Ceres' deep interior ice-rich? Constraints from crater morphology

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; Raymond, C. A.; Fu, R.; Marchi, S.; Castillo, J. C.; King, S. D.; Schenk, P.; Preusker, F.; Park, R. S.; Russell, C. T.

    2016-12-01

    Determining the composition and internal structure of Ceres is critical to understanding its origin and evolution. Analysis of the depths of Ceres' largest impact craters [Bland et al. 2016] and global shape [Fu et al. 2016] using data returned by NASA's Dawn spacecraft indicate that the dwarf planet's subsurface contains no more than 30% water ice by volume, with the other 70% consisting of salts (hydrated and/or anhydrous), clathrates, and phyllosilicates. Despite these findings, Ceres is unlikely to be ice-free. The GRaND instrument has detected probable water ice at decimeter depths (with strong latitudinal variations) [Prettyman et al. 2016], water ice has been detected in fresh [Combe et al. 2016] and permanently shadowed craters [Schorghofer et al. 2016], and the simple-complex morphologic transition diameter is consistent with a weak (icy) surface layer [Schenk et al. 2016]. Furthermore, a cryovolcanic origin for Ahuna Mons requires a source of water-rich material [Ruesch et al. 2016]. Here we use numerical simulations of the viscous relaxation of impact craters to provide new constraints on the water ice content of Ceres as a function of depth that enable a more complete understanding of the thickness and composition of its outer layer. These new simulations include three rheological layers: a high-viscosity near-surface layer, a weaker (possibly ice-rich layer), and an essentially immobile rocky layer at depth. Results are latitude (temperature) dependent; however, we generally find that retaining crater topography requires a high-viscosity (ice-poor) layer with a thickness of 50% the crater radius. For example, retaining a 100-km diameter crater at latitudes below 50o requires a high-viscosity (103x water ice) layer at least 30 km thick, if the underlying layer is pure ice. Deep, low-latitude craters 150 km in diameter are observed on Ceres [Bland et al. 2016], so the high-viscosity layer is likely >40 km thick. However, our results do not exclude the

  15. Generating topography through tectonic deformation of ice lithospheres: Simulating the formation of Ganymede's grooves

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.

    2010-12-01

    Ganymede’s iconic topography offers clues to both the satellite’s thermal evolution, and the mechanics of tectonic deformation on icy satellites. Much of Ganymede’s surface consists of bright, young terrain, with a characteristic morphology dubbed “groove terrain”. As reviewed in Pappalardo et al. (2004), in Jupiter - The Planet, Satellites, and Magnetosphere (CUP), grooved terrain consists of sets of quasi-parallel, periodically-spaced, ridges and troughs. Peak-to-trough groove amplitudes are ~500 m, with low topographic slopes (~5°). Groove spacing is strongly periodic within a single groove set, ranging from 3-17 km; shorter wavelength deformation is also apparent in high-resolution images. Grooved terrain likely formed via unstable extension of Ganymede’s ice lithosphere, which was deformed into periodically-spaced pinches and swells, and accommodated by tilt-block normal faulting. Analytical models of unstable extension support this formation mechanism [Dombard and McKinnon 2001, Icarus 154], but initial numerical models of extending ice lithospheres struggled to produce large-amplitude, groove-like deformation [Bland and Showman 2007, Icarus 189]. Here we present simulations that reproduce many of the characteristics of Ganymede’s grooves [Bland et al. 2010, Icarus in press]. By more realistically simulating the decrease in material strength after initial fault development, our model allows strain to become readily localized into discrete zones. Such strain localization leads to the formation of periodic structures with amplitudes of 200-500 m, and wavelengths of 3-20 km. The morphology of the deformation depends on both the lithospheric thermal gradient, and the rate at which material strength decreases with increasing plastic strain. Large-amplitude, graben-like structures form when material weakening occurs rapidly with increasing strain, while lower-amplitude, periodic structures form when the ice retains its strength. Thus, extension can

  16. Large eddy simulation of heat entrainment under Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2017-11-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. To better understand ice loss through bottom melting, we choose to study the Canada Basin of the Arctic Ocean, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) layer trapping heat from solar radiation. The interaction of these warm layers with a moving ice basal surface is investigated using large eddy simulation. We find that the presence of the NSTM enhances heat entrainment from the mixed layer. Another conclusion from our work is that there is no heat entrained from the PSW layer, even at the largest ice-drift velocity of 0.3 m s-1 considered. We propose a scaling law for the heat flux at the ice basal surface which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of `The Great Arctic Cyclone of 2012' gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer. We acknowledge funding from NOAA Grant NA15OAR4310172, the NSF, and the University of Houston start-up fund.

  17. What Lies Below a Martian Ice Cap

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    This image (top) taken by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter reveals the layers of ice, sand and dust that make up the north polar ice cap on Mars. It is the most detailed look to date at the insides of this ice cap. The colored map below the radar picture shows the topography of the corresponding Martian terrain (red and white represent higher ground, and green and yellow lower).

    The radar image reveals four never-before-seen thick layers of ice and dust separated by layers of nearly pure ice. According to scientists, these thick ice-free layers represent approximately one-million-year-long cycles of climate change on Mars caused by variations in the planet's tilted axis and its eccentric orbit around the sun. Adding up the entire stack of ice gives an estimated age for the north polar ice cap of about 4 million years a finding that agrees with previous theoretical estimates. The ice cap is about 2 kilometers (1.2 miles) thick.

    The radar picture also shows that the boundary between the ice layers and the surface of Mars underneath is relatively flat (bottom white line on the right). This implies that the surface of Mars is not sagging, or bending, under the weight of the ice cap and this, in turn, suggests that the planet's lithosphere, a combination of the crust and the strong parts of the upper mantle, is thicker than previously thought.

    A thicker lithosphere on Mars means that temperatures increase more gradually with depth toward the interior. Temperatures warm enough for water to be liquid are therefore deeper than previously thought. Likewise, if liquid water does exist in aquifers below the surface of Mars, and if there are any organisms living in that water, they would have to be located deeper in the planet.

    The topography data are from Mars Orbiter Laser Altimeter, which was flown on NASA's Mars Global

  18. Do Europa's Mountains Have Roots? Erosion of Topography at the Ice-Water Interface via the "Ice Pump"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.

  19. Anchor ice and benthic disturbance in shallow Antarctic waters: interspecific variation in initiation and propagation of ice crystals.

    PubMed

    Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan

    2011-10-01

    Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates.

  20. Dynamic behaviour of ice streams: the North East Greenland Ice Stream

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka

    2017-04-01

    The flow of ice towards the margins of ice sheets is far from homogeneous. Ice streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland Ice Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an ice stream causes marginal shearing and convergent flow, which in turn leads to folding of ice layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland Ice Sheet with no direct connection to the present-day surface velocity field, indicates that ice flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that ice streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the ice. The dynamic nature of ice streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that ice streams can also result from strain localisation induced inside the ice sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications 7

  1. Formation of lacustrine plains in west-central Alaska as a result of permafrost degradation and aggradation

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Jorgenson, M. T.; Shur, Y.; O'Donnell, J.; Harden, J. W.; Fortier, D.

    2012-12-01

    Perennially frozen lacustrine sediments containing a large amount of ground ice comprise a significant part of the upper permafrost of the lowlands of west-central Alaska, including Koyukuk Flats and Innoko Flats. Study sites are located in the discontinuous permafrost zone, where permafrost was encountered mainly within uplifted peat plateaus. The upper part of studied sections is formed by frozen peat up to 3 m thick underlain by lacustrine silt, which is mostly ice-rich. Cryogenic structure of lacustrine sediments at different sites has common features: (1) prevalence of layered, braided, and reticulate cryostructures; (2) high variability in the ice content of sediments; (3) high density and low water content of soil aggregates separated by ice lenses. Volume of visible ice in silt reaches at places 40% and more. The thickness of ice lenses generally varies from 1 to 5 cm and occasionally reaches 10 cm. Remnants of peat plateaus are surrounded by unfrozen bogs and fens, formed as a result of thawing and settling of ice-rich lacustrine silt. Modern thermokarst scars initially form at places where ice-rich silt is not protected by a thick layer of organic material. Further development of thermokarst bogs includes lateral enlargement of thaw bulbs and collapsing of the margins of peat plateaus. Lacustrine silt within taliks is covered by woody peat accumulated under forests during the stage of permafrost plateau formation and then by aquatic sphagnum peat accumulated in taliks after collapse. We relate the formation of ice-rich lacustrine sediments to development of lake thermokarst, which affected ice-rich silty yedoma deposits during the transition from Pleistocene to Holocene. Terrain development in lacustrine lowlands of west-central Alaska includes five stages related to permafrost aggradation and degradation from the late Pleistocene to the present time: 1) formation of the ice-rich syngenetic permafrost (yedoma) during the late Pleistocene; 2) yedoma

  2. Impact crater morphology and the Central Pit/Dome of Occator: Ceres as an Ice-rich Body

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Marchi, S.; O'Brien, D. P.; Platz, T.; Bland, M. T.; Buczkowski, D.; Scully, J. E. C.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Pristine crater morphologies on Ceres (at D <40 km) are astonishingly similar to those on midsize icy bodies (e.g., moons of Saturn) but very different from those on silicate-rich Vesta. All these bodies have similar gravity and broadly similar impact velocities, and these patterns reveal that the upper 10s of km of Ceres are much weaker than on silicate-rich Vesta. This stands in contrast to the lack of viscous relaxation (Bland et al., 2016), which implies an upper layer on Ceres capable of resisting flow despite the relatively high surface temperatures. This can be explained as distinct responses of an outer layer partially composed of weak ices and strong silicates that fail during high-strain impact processes (which are apparently controlled by the weak phase) but does not flow under low-strain creep (which is apparently controlled more by the strong phase). Furthermore, comparison with Martian craters indicates that, in contrast to Ceres, the amount of water ice in the crust of Mars results in hybrid morphologies only midway between silicate and ice worlds, indicating that the upper layers of Ceres must have more ice than does Mars. The presence of apparent impact melt deposits and central pits in larger craters (D>40 km and D>75 km, respectively) on Ceres implies either warmer conditions than at Saturn, or the presence of a deeper layer enriched in (weaker) ice at comparable depths, also consistent with partial relaxation in larger craters. The formation of a fractured dome 3-km-wide and 0.75-km-high within recently formed Occator crater may be due to refreezing of a water zone melted after impact, or mobilization of carbonates or ice in the crater center, possibly from such deeper layers.

  3. Glacier-derived permafrost ground ice, Bylot Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Coulombe, S.; Fortier, D.; Lacelle, D.; Godin, E.; Veillette, A.

    2014-12-01

    Massive icy bodies are important components of permafrost geosystems. In situ freezing of water in the ground by ice-segregation processes forms most of these icy bodies. Other hypotheses for the origin of massive ice include the burial of ice (e.g. glacier, snow, lake, river, sea). The analysis of ground-ice characteristics can give numerous clues about the geomorphologic processes and the thermal conditions at the time when permafrost developed. Massive underground ice therefore shows a great potential as a natural archive of the earth's past climate. Identifying the origin of massive ice is a challenge for permafrost science since the different types of massive ice remain difficult to distinguish on the sole basis of field observations. There is actually no clear method to accurately assess the origin of massive ice and identification criteria need to be defined. The present study uses physico-chemical techniques to characterize buried glacier ice observed on Bylot Island, Nunavut. Combined to the analysis of cryostratigraphy, massive-ice cores crystallography and high-resolution imagery of the internal structure of the ice cores were obtained using micro-computed tomography techniques. These techniques are well suited for detailed descriptions (shape, size, orientation) of crystals, gas inclusions and sediment inclusions. Oxygen and hydrogen isotopes ratios of massive-ice cores were also obtained using common equilibrium technique. Preliminary results suggest the occurrence of two types of buried massive-ice of glacial origin similar to those found on contemporary glaciers: 1) Englacial ice: clear to whitish ice, with large crystals (cm) and abundant gas bubbles at crystal intersections; 2) Basal glacier ice: ice-rich, banded, micro-suspended to suspended cryostructures and ice-rich lenticular to layered cryostructures, with small ice crystals (mm) and a few disseminated gas bubbles. Glacier-derived permafrost contains antegenetic ice, which is ice that

  4. Effects of Intercellular Junction Protein Expression on Intracellular Ice Formation in Mouse Insulinoma Cells

    PubMed Central

    Higgins, Adam Z.; Karlsson, Jens O.M.

    2013-01-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell

  5. The Formation of Organic Compounds of Astrobiological Interest by the Irradiation Processing of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2015-01-01

    Many environments in space contain very low temperature mixed molecular ices that are exposed to ionizing radiation in the form of cosmic rays and high-energy photons. While traditional chemistry would not be expected to occur at the temperatures typical of these ices (T < 50 K), ionizing radiation can break bonds in the original molecules in the ices to form highly reactive ions and radicals. These ions and radicals are subsequently free to react despite the low temperatures of the original ices. Laboratory experiments, many of them carried out at the Astrochemistry Laboratory at NASA-Ames, show that the irradiation of ices made of even simple molecules like H2O, CO, CO2, CH4, NH3, etc. can result in the robust formation of large numbers of far more complex organic compounds. Many of these new products are of direct interest to astrobiology. For example, the irradiation of mixed molecular ices has been shown to produce amino acids, amphiphiles, quinones, sugars, heterocyclic compounds, and nucleobases, all molecular building blocks used by terrestrial life. Insofar as the presence of these materials plays a role in the origin of life on planets, this has profound implications for the potential abundance of life in the universe since these experiments simulate universal conditions that are expected to be found wherever new stars and planets form.

  6. Connecting the dots between bacterial biofilms and ice cream.

    PubMed

    Stanley-Wall, Nicola R; MacPhee, Cait E

    2015-12-18

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  7. Connecting the dots between bacterial biofilms and ice cream

    NASA Astrophysics Data System (ADS)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  8. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel

    2017-11-01

    after their partial degradation makes them better protected than before degradation because the intermediate layer is usually 2 to 3 times thicker on top of stabilized ice wedges than on top of initial ice wedges in undisturbed conditions. As a result, the likelihood of formation of large thaw lakes in the continuous permafrost zone triggered by ice-wedge degradation alone is very low.

  9. Formation of outflow channels on Mars: Testing the origin of Reull Vallis in Hesperia Planum by large-scale lava-ice interactions and top-down melting

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2018-05-01

    The Reull Vallis outflow channel is a segmented system of fluvial valleys which originates from the volcanic plains of the Hesperia Planum region of Mars. Explanation of the formation of the Reull Vallis outflow channel by canonical catastrophic groundwater release models faces difficulties with generating sufficient hydraulic head, requiring unreasonably high aquifer permeability, and from limited recharge sources. Recent work has proposed that large-scale lava-ice interactions could serve as an alternative mechanism for outflow channel formation on the basis of predictions of regional ice sheet formation in areas that also underwent extensive contemporaneous volcanic resurfacing. Here we assess in detail the potential formation of outflow channels by large-scale lava-ice interactions through an applied case study of the Reull Vallis outflow channel system, selected for its close association with the effusive volcanic plains of the Hesperia Planum region. We first review the geomorphology of the Reull Vallis system to outline criteria that must be met by the proposed formation mechanism. We then assess local and regional lava heating and loading conditions and generate model predictions for the formation of Reull Vallis to test against the outlined geomorphic criteria. We find that successive events of large-scale lava-ice interactions that melt ice deposits, which then undergo re-deposition due to climatic mechanisms, best explains the observed geomorphic criteria, offering improvements over previously proposed formation models, particularly in the ability to supply adequate volumes of water.

  10. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples

  11. Possible role of electric forces in bromine activation during polar boundary layer ozone depletion and aerosol formation events

    NASA Astrophysics Data System (ADS)

    Tkachenko, Ekaterina

    2017-11-01

    This work presents a hypothesis about the mechanism of bromine activation during polar boundary layer ozone depletion events (ODEs) as well as the mechanism of aerosol formation from the frost flowers. The author suggests that ODEs may be initiated by the electric-field gradients created at the sharp tips of ice formations as a result of the combined effect of various environmental conditions. According to the author's estimates, these electric-field gradients may be sufficient for the onset of point or corona discharges followed by generation of high local concentrations of the reactive oxygen species and initiation of free-radical and redox reactions. This process may be responsible for the formation of seed bromine which then undergoes further amplification by HOBr-driven bromine explosion. The proposed hypothesis may explain a variety of environmental conditions and substrates as well as poor reproducibility of ODE initiation observed by researchers in the field. According to the author's estimates, high wind can generate sufficient conditions for overcoming the Rayleigh limit and thus can initiate ;spraying; of charged aerosol nanoparticles. These charged aerosol nanoparticles can provoke formation of free radicals, turning the ODE on. One can also envision a possible emission of halogen ion as a result of the ;electrospray; process analogous to that of electrospray ionization mass-spectrometry.

  12. Discharge of water and sediment from ice-streams on the southeastern Laurentide Ice Sheet during Heinrich events: timing and magnitude

    NASA Astrophysics Data System (ADS)

    Rashid, H.; Piper, D.

    2017-12-01

    Several ice-streams on the southeastern sector of the Laurentide Ice Sheet discharged icebergs, meltwater, and fine-grained sediments into the North Atlantic during Heinrich (H) events. The principal contribution was through Hudson Strait, which is the only source clearly identified in H ice-rafted layers in the central North Atlantic. The role of direct supply of meltwater in modifying the Atlantic meridional circulation generally has been regarded as secondary. The relative chronology of discharge in different ice-streams is poorly known. Here, we re-assess these questions using continental margin cores constrained by high-resolution seismic profiles and multibeam bathymetry data. Relative importance of ice streams likely scales with cross-sectional area of their erosional troughs. On that basis, the Hudson Strait ice stream was twice as large as that in the Laurentian Channel and 3-4 times larger than smaller troughs. Several ice streams supplied petrographically and geochemically distinct sediment including black shales from Cumberland Sound, limestone and dolomite in particular proportions from Frobisher Bay and Hudson Strait, and red sandstones and shales ± carbonates from NE Newfoundland and Laurentian Channel. In several cases, detrital carbonate H layers derived predominantly from Hudson Strait are preceded by enhanced IRD deposition from smaller ice streams, e.g. deposits from Cumberland Sound on the Labrador slope, from NE Newfoundland in Orphan Basin, and from Laurentian Channel on the Nova Scotian margin. Gravel petrology indicates that Hudson Strait sources make up >90% of the ice-rafted component of distal H layers. H layers proximal to the Hudson Strait ice-streams are 4 to 12 meters thick compared to a few centimeters thick seaward of the Trinity Trough and Laurentian ice-streams, comparable to the thickness of the North Atlantic. This underscores the great importance of meltwater and suspended sediment close to ice stream outlets. Morphological

  13. Lens and dendrite formation during colloidal solidification

    NASA Astrophysics Data System (ADS)

    Worster, Grae; You, Jiaxue

    2017-11-01

    Colloidal particles in suspension are forced into a variety of morphologies when the suspending fluid medium is frozen: soil is compacted between ice lenses during frost heave; ice templating is a recent and growing technology to produce bio-inspired, micro-porous materials; cells and tissue can be damaged during cryosurgery; and metal-matrix composites with tailored microstructure can be fabricated by controlled casting. Various instabilities that affect the microscopic morphology are controlled by fluid flow through the compacted layer of particles that accumulates ahead of the solidification front. By analysing the flow in connection with equilibrium phase relationships, we develop a theoretical framework that identifies two different mechanisms for ice-lens formation, with and without a frozen fringe, identifies the external parameters that differentiates between them and the possibility of dendritic formations, and unifies a range of apparently disparate conclusions drawn from previous experimental studies. China Scholarship Council and the British Council.

  14. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Repina, I. A.

    2018-01-01

    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  15. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  16. A previously unreported type of seismic source in the firn layer of the East Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Lough, Amanda C.; Barcheck, C. Grace; Wiens, Douglas A.; Nyblade, Andrew; Anandakrishnan, Sridhar

    2015-11-01

    We identify a unique type of seismic source in the uppermost part of the East Antarctic Ice Sheet recorded by temporary broadband seismic arrays in East Antarctica. These sources, termed "firnquakes," are characterized by dispersed surface wave trains with frequencies of 1-10 Hz detectable at distances up to 1000 km. Events show strong dispersed Rayleigh wave trains and an absence of observable body wave arrivals; most events also show weaker Love waves. Initial events were discovered by standard detection schemes; additional events were then detected with a correlation scanner using the initial arrivals as templates. We locate sources by determining the L2 misfit for a grid of potential source locations using Rayleigh wave arrival times and polarization directions. We then perform a multiple-filter analysis to calculate the Rayleigh wave group velocity dispersion and invert the group velocity for shear velocity structure. The resulting velocity structure is used as an input model to calculate synthetic seismograms. Inverting the dispersion curves yields ice velocity structures consistent with a low-velocity firn layer ~100 m thick and show that velocity structure is laterally variable. The absence of observable body wave phases and the relative amplitudes of Rayleigh waves and noise constrain the source depth to be less than 20 m. The presence of Love waves for most events suggests the source is not isotropic. We propose the events are linked to the formation of small crevasses in the firn, and several events correlate with shallow crevasse fields mapped in satellite imagery.

  17. The Photochemistry of Pyrimidine in Pure H2O Ice Subjected to Different Radiation Environments and the Formation of Uracil

    NASA Technical Reports Server (NTRS)

    Nuevo, M.; Chen, Y.-J.; Materese. C. K..; Hu, W.-J.; Qiu, J.-M.; Wu, S.-R.; Fung, H.-S.; Sandford, S. A.; Chu, C.-C.; Yih, T.-S.; hide

    2013-01-01

    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. They include pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in several meteorites, although no Nheterocycles have been observed in space to data. Laboratory experiments showed that the ultraviolet (UV) irradiation of pyrimidine in pure H2O ice at low temperature (<=20 K) leads to the formation of pyrimidine derivatives including the nucleobase uracil and its precursor 4(3H)-pyrimidone. These results were confirmed by quantum chemical calculations. When pyrimidine is mixed with combinations of H2O, NH3, CH3OH, and CH4 ices under similar conditions, uracil and cytosine are formed. In the present work we study the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in H2O ice with high-energy UV photons (Lyman , He I, and He II lines) provided by a synchrotron source. The photo-destruction of pyrimidine in these H2O ices as well as the formation yields for 4(3H)-pyrimidone and uracil are compared with our previous results in order to study the photo-stability of pyrimidine and the production efficiency of uracil as a function of the photon energy.

  18. Ice Surfaces.

    PubMed

    Shultz, Mary Jane

    2017-05-05

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, I h . Despite its prevalence, I h remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  19. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-07-01

    Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0-200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500-1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500-1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated

  20. Greenland Ice Sheet in 3D Cutaway

    NASA Image and Video Library

    2017-12-08

    Peering into the thousands of frozen layers inside Greenland’s ice sheet is like looking back in time. Each layer provides a record of what Earth’s climate was like at the dawn of civilization, or during the last ice age, or during an ancient period of warmth similar to the one we experience today. Scientists using ice-penetrating radar data collected by NASA’s Operation IceBridge and earlier airborne campaigns have built the first-ever comprehensive map of layers deep inside the Greenland Ice Sheet. View the full video: youtu.be/u0VbPE0TOtQ Credit: NASA’s Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea-ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.

    2016-02-01

    In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-ice covered and salinity stratified ocean, and consists of a sea-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea ice.

  2. Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2010-01-01

    Astrochemistry laboratory simulations have shown that complex organic molecules including compounds of astrobiological interest can be formed under interstellarl/circumstellar conditions from the vacuum UV irradiation of astrophysical ice analogs containing H2O, CO, CO2, CH3OH, NH13, etc. Of all prebiotic compounds, the formation of amino acids under such experimental conditions has been the most extensively studied. Although the presence of amino acids in the interstellar medium (ISM) has yet to be confirmed, they have been detected in meteorites, indicating that biomolecules and/or their precursors can be formed under extraterrestrial, abiotic conditions. Nucleobases, the building blocks of DNA and RNA, as well as other 1V-heterocycles, have also been detected in meteorites, but like amino acids, they have yet to be observed in the ISM. In this work, we present an experimental study of the formation of pyrimidine-based compounds from the UV photo-irradiation of pyrimidine in ice mixtures containing H2O, NH3, and/or CH3OH at low temperature and pressure.

  3. Periodic bedforms generated by sublimation on terrestrial and martian ice sheets under the influence of the turbulent atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Bordiec, Maï; Carpy, Sabrina; Perret, Laurent; Bourgeois, Olivier; Massé, Marion

    2017-04-01

    The redistribution of surface ice induced the wind flow may lead to the development and migration of periodic bedforms, or "ice ripples", at the surface of ice sheets. In certain cold and dry environments, this redistribution need not involve solid particle transport but may be dominated by sublimation and condensation, inducing mass transfers between the ice surface and the overlying steady boundary layer turbulent flow. These mass transfers diffuse the water vapour sublimated from the ice into the atmosphere and become responsible for the amplification and propagation of ripples in a direction perpendicular to their crests. Such ice ripples, 24 cm in wavelength, have been described in the so-called Blue Ice Areas of Antarctica. In order to understand the mechanisms that generate and develop these periodic bedforms on terrestrial glaciers and to evaluate the plausibility that similar bedforms may develop on Mars, we performed a linear stability analysis applied to a turbulent boundary layer flow perturbed by a wavy ice surface. The model is developed as follow. We first solve the flow dynamics using numerical methods analogous to those used in sand wave models assuming that the airflow is similar in both problems. We then add the transport/diffusion equation of water vapour following the same scheme. We use the Reynolds-averaged description of the equation with a Prandtl-like closure. We insert a damping term in the exponential formula of the Van Driest mixing length, depending on the pressure gradient felt by the flow and related to the thickness of the viscous sublayer at the ice-atmosphere interface. This formulation is an efficient way to properly represent the transitional regime under which the ripples grow. Once the mass flux of water vapour is solved, the phase shift between the ripples crests and the maximum of the flux can be deduced for different environments. The temporal evolution of the ice surface can be expressed from these quantities to infer the

  4. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    NASA Astrophysics Data System (ADS)

    Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.

    2014-10-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.

  5. Thermodynamic and Dynamic Aspects of Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan

    2018-01-01

    It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.

  6. Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica, and implications for ice density

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.

    2013-11-01

    We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.

  7. Polarimetric scattering from layered media with multiple species of scatterers

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Tassoudji, M. A.; Shin, R. T.

    1995-01-01

    Geophysical media are usually heterogeneous and contain multiple species of scatterers. In this paper a model is presented to calculate effective permittivities and polarimetric backscattering coefficients of multispecies-layered media. The same physical description is consistently used in the derivation of both permittivities and scattering coefficients. The strong permittivity fluctuation theory is extended to account for the multiple species of scatterers with a general ellipsoidal shape whose orientations are randomly distributed. Under the distorted Born approximation, polarimetric scattering coefficients are obtained. These calculations are applicable to the special cases of spheroidal and spherical scatterers. The model is used to study effects of scatterer shapes and multispecies mixtures on polarimetric signatures of heterogeneous media. The multispecies model accounts for moisture content in scattering media such as snowpack in an ice sheet. The results indicate a high sensitivity of backscatter to moisture with a stronger dependence for drier snow and ice grain size is important to the backscatter. For frost-covered saline ice, model results for bare ice are compared with measured data at C band and then the frost flower formation is simulated with a layer of fanlike ice crystals including brine infiltration over a rough interface. The results with the frost cover suggest a significant increase in scattering coefficients and a polarimetric signature closer to isotropic characteristics compared to the thin saline ice case.

  8. Ice Nucleation in the Tropical Tropopause Layer: Implications for Cirrus Occurrence, Cirrus Microphysical Properties, and Dehydration of Air Entering the Stratosphere

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Kaercher, Bernd; Ueyama, Rei; Pfister, Leonhard

    2017-01-01

    Recent laboratory experiments have advanced our understanding of the physical properties and ice nucleating abilities of aerosol particles atlow temperatures. In particular, aerosols containing organics will transition to a glassy state at low temperatures, and these glassy aerosols are moderately effective as ice nuclei. These results have implications for ice nucleation in the cold Tropical Tropopause Layer (TTL; 13-19 km). We have developed a detailed cloud microphysical model that includes heterogeneous nucleation on a variety of aerosol types and homogeneous freezing of aqueous aerosols. This model has been incorporated into one-dimensional simulations of cirrus and water vapor driven by meteorological analysis temperature and wind fields. The model includes scavenging of ice nuclei by sedimenting ice crystals. The model is evaluated by comparing the simulated cloud properties and water vapor concentrations with aircraft and satellite measurements. In this presentation, I will discuss the relative importance of homogeneous and heterogeneous ice nucleation, the impact of ice nuclei scavenging as air slowly ascends through the TTL, and the implications for the final dehydration of air parcels crossing the tropical cold-point tropopause and entering the tropical stratosphere.

  9. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and

  10. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm

    NASA Astrophysics Data System (ADS)

    Geilfus, Nicolas-Xavier; Galley, Ryan J.; Else, Brent G. T.; Campbell, Karley; Papakyriakou, Tim; Crabeck, Odile; Lemes, Marcos; Delille, Bruno; Rysgaard, Søren

    2016-09-01

    The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice-seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmol kg-1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64-66 µmol kg-1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmol kg-1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper

  11. Organic History and Ice-Rock Decoupling on Enceladus

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2007-12-01

    The Cassini detection of methane, propane and acetylene in the Enceladus plume, and condensed organic compounds (OC) on the south polar region imply an organic-bearing interior of the moon. At least a few wt. % of C is expected in rocks from which Enceladus accreted. By analogy with carbonaceous chondrites, the majority of accreted OC was in a polymer in which polyaromatic groups are linked by O-, N-, and S-bearing aliphatic units. If accreted, cometary-type materials also delivered CO2, CO(?), methanol, ethane, ethene, acetylene, and condensed OC. Subsequent water ice melting and hydrothermal processes driven by decay of short-lived radionuclides led to dissolution of CO, CO2 and methanol in water and transformations of the polymer and cometary OC. CO converted to formic acid, carbonate species, methanol and methane. Hydrous pyrolysis and oxidation of the polymer partially liberated aromatic molecules and led to the formation of O-bearing OC (carboxylic and amino acids, alcohols). Increase in temperature favored oxidation of OC to carbonate species and N2, and led to graphitization of the polymer. Despite net oxidation of OC driven by H2 escape, mineral- catalyzed Fisher-Tropsch like synthesis of hydrocarbons and methane occurred in H2-rich niches. As a result, an array of aromatic, aliphatic, and N-, O-, S-bearing OC, and methane was delivered into a primordial water ocean in hydrothermal fluids. Highly soluble OC (acids, alcohols) made multiple passes through hydrothermal systems causing further oxidation of OC in rocks and solutions. In contrast, hydrocarbons exolved from cold oceanic water and formed an organic layer below the ice shell. Subsequent cooling of ocean-entering fluids and ocean freezing from above led to further separation and accumulation of OC. Some OC was trapped in ice, and methane formed clathrates. After freezing of salt eutectic brines, the light oil (a solution/mixture of ethane, propane, butane, ethene, acetylene, methanol, toluene etc

  12. Numerical Simulations of Martian Fog Formation in the Low Latitudes

    NASA Astrophysics Data System (ADS)

    Inada, A.

    2002-09-01

    The formation of Martian surface fog is simulated by a one-dimensional model including the micro-physical processes of heterogeneous nucleation, condensation, and sublimation. The model includes diurnal cycle of water vapor in the 1 km surface layer which is spatially resolved. The results show that the column density of water ice in fog strongly depends on the water vapor density near the surface. If the mixing ratio of water vapor is 300 ppm near the surface, the simulations show that a thin fog layer appears with a maximum column density of 0.145 precipitable microns. If the mixing ratio is 600 ppm, the value measured by the Mars Pathfinder, the column density of water ice reaches 0.75 precipitable microns. It is also found that if the boundary layer is strongly turbulent the total amount of ice formed is small, since the ice particles are transported to the unsaturated higher atmospheric layers and sublimate there. Fog particles, which are large enough to precipitate to the lower atmosphere play a significant role in determining the altitude distribution of water vapor. It is noteworthy that the size distribution of all of the aerosols has two peaks once fog appears. This is because nucleation on large dust particles is so much faster than on the small ones, that the small dust particles are hardly coated by ice. The simulations assume an initial dust distribution with effective radius of 1.6 microns. Once fog forms this peak remains and is populated with particles with little water ice. A secondary peak is formed at about 10 microns corresponding to particles which are mostly water ice. This research was carried out under the partial support of JSPS Postdoctoral Fellowships for Research Abroad.

  13. Hybrid structure of white layer in high carbon steel - Formation mechanism and its properties.

    PubMed

    Hossain, Rumana; Pahlevani, Farshid; Witteveen, Evelien; Banerjee, Amborish; Joe, Bill; Prusty, B Gangadhara; Dippenaar, Rian; Sahajwalla, Veena

    2017-10-16

    This study identifies for the first time, the hybrid structure of the white layer in high carbon steel and describes its formation mechanism and properties. The so-called 'white layer' in steel forms during high strain rate deformation and appears featureless under optical microscopy. While many researchers have investigated the formation of the white layer, there has been no definitive study, nor is there sufficient evidence to fully explain the formation, structure and properties of the layer. In this study, the formation, morphology and mechanical properties of the white layer was determined following impact testing, using a combination of optical and SE- microscopy, HR-EBSD, TKD and TEM as well as nano-indentation hardness measurements and FE modelling. The phase transformation and recrystallization within and near the white layer was also investigated. The microstructure of the steel in the white layer consisted of nano-sized grains of martensite. A very thin layer of austenite with nano sized grains was identified within the white layer by HR-EBSD techniques, the presence of which is attributed to a thermally-induced reverse phase transformation. Overall, the combination of phase transformations, strain hardening and grain refinement led to a hybrid structure and an increase in hardness of the white layer.

  14. Evaporation of ice in planetary atmospheres - Ice-covered rivers on Mars

    NASA Technical Reports Server (NTRS)

    Wallace, D.; Sagan, C.

    1979-01-01

    The existence of ice covered rivers on Mars is considered. It is noted that the evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. It is determined that even with a mean Martian insolation rate above the ice of approximately 10 to the -8th g per sq cm/sec, a flowing channel of liquid water will be covered by ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with modest discharges. Evaporation rates are calculated for a range of frictional velocities, atmospheric pressures, and insolations and it is suggested that some subset of observed Martian channels may have formed as ice-choked rivers. Finally, the exobiological implications of ice covered channels or lakes on Mars are discussed.

  15. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water existsmore » for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.« less

  16. Ice shelf structure and stability: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.

    2017-12-01

    We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C Ice Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the ice shelf, result in the formation of several tens of metres of (relatively dense) subsurface ice within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen ice to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting ice types and associating each with a simple flow-line model of ice motion and accumulation indicates that this area of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' ice bands, widely considered to be composed of marine ice, is contrasted with that of its propagation through meteoric ice.

  17. Characterizing Uranus with an Ice giant Planetary Origins Probe (Ice-POP)

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Fortney, Jonathan; Nettelmann, Nadine; Zahnle, Kevin J.

    2013-01-01

    detected in Neptune but not in Uranus. A measurement of the abundance of either would constrain the source mechanisms for these molecules (exogenic or internal). A major surprise from the Galileo Entry Probe was that the heavier noble gases Ar, Kr, and Xe are enhanced in Jupiter's atmosphere at a level comparable to what was seen for the chemically active volatiles N, C, and S. It had been generally expected that Ar, Kr, and Xe would be present in solar abundances, as all were expected to accrete with hydrogen during the gravitational capture of nebular gases. Enhanced abundances of Ar, Kr, and Xe is equivalent to saying that these noble gases have been separated from hydrogen. There are several mechanisms that could accomplish this but these hypotheses require further testing. Measurement of noble gas abundances in an ice giant would constrain the planetary formation and nebular mechanisms responsible for this enhancement. Standard three-layer models of Uranus find that the outer, predominantly H/He layer of Uranus does not reach pressures high enough (approximately 1 Mbar) for H2 to transition to liquid metallic hydrogen. However, valid models can also be constructed with a smaller intermediate water-rich layer, with hydrogen then reaching the metallic hydrogen phase. If this occurs, He should phase separate from the hydrogen and ``rain out," taking along a substantial abundance of Ne, as suggested for Jupiter (and likely also for Saturn). Hence He and Ne depletions could be probes of the planet's structure in the much deeper interior. A determination of Uranus' atmospheric abundances, particularly of the noble gasses, is thus critical to understanding the formation of Uranus, and giant planets in general. These measurements can only be performed with an entry probe. The second key measurement would be a temperature-pressure sounding to provide ground truth for remote measurements of atmospheric temperature and composition and to constrain the internal heat flow. This

  18. Formation of Methylamine and Ethylamine in Extraterrestrial Ices and Their Role as Fundamental Building Blocks of Proteinogenic α -amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förstel, Marko; Bergantini, Alexandre; Maksyutenko, Pavlo

    The –CH–NH{sub 2} moiety represents the fundamental building block of all proteinogenic amino acids, with the cyclic amino acid proline being a special case (–CH–NH– in proline). Exploiting a chemical retrosynthesis, we reveal that methylamine (CH{sub 3}NH{sub 2}) and/or ethylamine (CH{sub 3}CH{sub 2}NH{sub 2}) are essential precursors in the formation of each proteinogenic amino acid. In the present study we elucidate the abiotic formation of methylamine and ethylamine from ammonia (NH{sub 3}) and methane (CH{sub 4}) ices exposed to secondary electrons generated by energetic cosmic radiation in cometary and interstellar model ices. Our experiments show that methylamine and ethylamine aremore » crucial reaction products in irradiated ices composed of ammonia and methane. Using isotopic substitution studies we further obtain valuable information on the specific reaction pathways toward methylamine. The very recent identification of methylamine and ethylamine together with glycine in the coma of 67P/Churyumov–Gerasimenko underlines their potential to the extraterrestrial formation of amino acids.« less

  19. Reversibility of temperature driven discrete layer-by-layer formation of dioctyl-benzothieno-benzothiophene films.

    PubMed

    Dohr, M; Ehmann, H M A; Jones, A O F; Salzmann, I; Shen, Q; Teichert, C; Ruzié, C; Schweicher, G; Geerts, Y H; Resel, R; Sferrazza, M; Werzer, O

    2017-03-22

    Film forming properties of semiconducting organic molecules comprising alkyl-chains combined with an aromatic unit have a decisive impact on possible applications in organic electronics. In particular, knowledge on the film formation process in terms of wetting or dewetting, and the precise control of these processes, is of high importance. In the present work, the subtle effect of temperature on the morphology and structure of dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films deposited on silica surfaces by spin coating is investigated in situ via X-ray diffraction techniques and atomic force microscopy. Depending on temperature, bulk C8-BTBT exhibits a crystalline, a smectic A and an isotropic phase. Heating of thin C8-BTBT layers at temperatures below the smectic phase transition temperature leads to a strong dewetting of the films. Upon approaching the smectic phase transition, the molecules start to rewet the surface in the form of discrete monolayers with a defined number of monolayers being present at a given temperature. The wetting process and layer formation is well defined and thermally stable at a given temperature. On cooling the reverse effect is observed and dewetting occurs. This demonstrates the full reversibility of the film formation behavior and reveals that the layering process is defined by an equilibrium thermodynamic state, rather than by kinetic effects.

  20. Counterintuitive Constraints on Chaos Formation Set by Heat Flux through Europa's Ocean

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2013-12-01

    Models for the formation of disruptive chaos features on the icy surface of Europa fall into two broad categories: either chaos is formed when basal heating causes localized melting and thinning of the ice shell, or basal heating drives diapiric convection within the ice shell. We argue that in both of these cases, heating of the ice shell from below does not lead to chaos formation at the location of heating. If chaos is formed when a localized oceanic heat source, such as a hydrothermal plume, "melts through" the ice crust, we must consider what happens to the melted liquid. If Europa's ocean is salty, the melt will form a buoyant pool inside the melted cavity, leading to a stable interface between cold fresh meltwater and warm salty seawater. This stable interface acts like an ablative heat shield, protecting the ice from further damage. Some heat can be transferred across the stable layer by double diffusion, but this transfer is very inefficient. We calculate that local ocean heating cannot be balanced by local flux through the stable layer: instead, the warm ocean water must spread laterally until it is delivering heat to the ice base on a regional or global scale (a heating zone hundreds or thousands of km across, for conservative parameters.) If chaos is formed by diapiric solid-state convection within the ice shell, many investigators have assumed that diapirism and chaos should be most prevalent where the basal heat flux is strongest. We argue that this is not the case. In Rayleigh-Benard convection, increasing the heat flux will make convection more vigorous --- if and only if the convecting layer thickness does not change. We argue that increased basal heat flux will thin the ice shell, reducing its Rayleigh number and making convection less likely, not more. This insight allows us to reverse the logic of recent discussions of the relationship between ocean circulation and chaos (for instance, Soderlund et al, 2013 LPSC). We argue that global oceanic

  1. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    PubMed

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  2. Intercellular ice propagation: experimental evidence for ice growth through membrane pores.

    PubMed Central

    Acker, J P; Elliott, J A; McGann, L E

    2001-01-01

    Propagation of intracellular ice between cells significantly increases the prevalence of intracellular ice in confluent monolayers and tissues. It has been proposed that gap junctions facilitate ice propagation between cells. This study develops an equation for capillary freezing-point depression to determine the effect of temperature on the equilibrium radius of an ice crystal sufficiently small to grow through gap junctions. Convection cryomicroscopy and video image analysis were used to examine the incidence and pattern of intracellular ice formation (IIF) in the confluent monolayers of cell lines that do (MDCK) and do not (V-79W) form gap junctions. The effect of gap junctions on intracellular ice propagation was strongly temperature-dependent. For cells with gap junctions, IIF occurred in a directed wave-like pattern in 100% of the cells below -3 degrees C. At temperatures above -3 degrees C, there was a marked drop in the incidence of IIF, with isolated individual cells initially freezing randomly throughout the sample. This random pattern of IIF was also observed in the V-79W monolayers and in MDCK monolayers treated to prevent gap junction formation. The significant change in the low temperature behavior of confluent MDCK monolayers at -3 degrees C is likely the result of the inhibition of gap junction-facilitated ice propagation, and supports the theory that gap junctions facilitate ice nucleation between cells. PMID:11509353

  3. An Expanded Analysis of Nitrogen Ice Convection in Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan M.; Lyra, Wladimir; Wong, Teresa; McKinnon, William B.; Nimmo, Francis; Howard, Alan D.; Moore, Jeffrey M.; Binzel, Richard; White, Oliver; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie; New Horizons Geology and Geophysics Science Team

    2016-10-01

    The New Horizons close-encounter flyby of Pluto revealed 20-35 km scale ovoid patterns on the informally named Sputnik Planum. These features have been recently interpreted and shown to arise from the action of solid-state convection of (predominantly) nitrogen ice driven by Pluto's geothermal gradient. One of the major uncertainties in the convection physics centers on the temperature and grain-size dependency of nitrogen ice rheology, which has strong implications for the overturn times of the convecting ice. Assuming nitrogen ice in Sputnik Planum rests on a passive water ice bedrock that conducts Pluto's interior heat flux, and, given the uncertainty of the grain-size distribution of the nitrogen ice in Sputnik Planum, we examine a suite of two-dimensional convection models that take into account the thermal contact between the nitrogen ice layer and the conducting water-ice bedrock for a given emergent geothermal flux. We find for nitrogen ice layers several km deep, the emerging convection efficiently cools the nitrogen-ice water-ice bedrock interface resulting in temperature differences across the convecting layer of 10-20 K (at most) regardless of layer depth. For grain sizes ranging from 0.01 mm to 5 mm the resulting horizontal size to depth ratios of the emerging convection patterns go from 4:1 up to 6:1, suggesting that the nitrogen ice layer in Sputnik Planum may be anywhere between 3.5 and 8 km deep. Such depths are consistent with Sputnik Planum being a large impact basin (in a relative sense) analogous to Hellas on Mars. In this grain-size range we also find, (i) the calculated cell overturn times are anywhere from 1e4 to 5e5 yrs and, (ii) there is a distinct transition from steady state to time dependent convection.

  4. The association of Antarctic krill Euphausia superba with the under-ice habitat.

    PubMed

    Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan

    2012-01-01

    The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.

  5. The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat

    PubMed Central

    Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan

    2012-01-01

    The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate

  6. Understanding the response of winter cereals to freezing stress through freeze-fixation and 3d reconstruction of ice formation in crowns

    USDA-ARS?s Scientific Manuscript database

    One of the most difficult aspects of understanding mechanisms involved in winterhardiness is knowing where ice is formed and how it interacts with tissues in the frozen state. Many tissues recover and change shape during thawing which prevents a clear picture of ice formation and how individual cel...

  7. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  8. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  9. Contribution of extracellular ice formation and the solution effects to the freezing injury of PC-3 cells suspended in NaCl solutions.

    PubMed

    Takamatsu, Hiroshi; Zawlodzka, Sylwia

    2006-08-01

    The mechanism of cell injury during slow freezing was examined using PC-3 human prostate adenocarcinoma cells suspended in NaCl solutions. The objective was to evaluate contribution of extracellular ice and the 'solution effects' to freezing injury separately. The solution effects that designate the influence of elevated concentration were evaluated from a pseudo-freezing experiment, where cells were subjected to the milieu that simulated a freeze-thaw process by changing the NaCl concentration and the temperature at the same time. The effect of extracellular ice formation on cell injury was then estimated from the difference in cell survival between the pseudo-freezing experiment and a corresponding freezing experiment. When cells were frozen to a relatively higher freezing temperature at -10 degrees C, about 30% of cells were damaged mostly due to extracellular ice formation, because the concentration increase without ice formation to 2.5-M NaCl, i.e., the equilibrium concentration at -10 degrees C, had no effect on cell survival. In contrast, in the case of the lower freezing temperature at -20 degrees C, about 90% of cells were injured by both effects, particularly 60-80% by the solution effects among them. The present results suggested that the solution effects become more crucial to cell damage during slow freezing at lower temperatures, while the effect of ice is limited to some extent.

  10. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  11. A Lower Limit on the Thickness of Europa's Ice Shell from Numerical Simulations of Impact Cratering

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Ivanov, B. A.

    2001-12-01

    If Europa has an ice-covered, liquid water ocean, the thickness of the ice shell can be tested by analyzing the impact crater morphologies revealed by Galileo images. Several of Europa's 28 primary impact structures have morphologies typical of complex impact craters on other planetary bodies: terraced rims, flat floors, and central peaks [1]. To constrain the minimum ice thickness necessary to reproduce the observed complex crater morphologies, we have performed numerical simulations, using the modified SALE-2D code [2], of the formation of impact craters in ice layers with thicknesses ranging from 5 to 11 km overlying liquid water. The target ice has ice strength properties from published laboratory data [3] with a gradual decrease towards the base of the ice as the temperature approaches the melting point. The projectile parameters were chosen to produce a 10 km diameter crater in thick ice. We find that ice layers less than 7 km thick are not sufficient to prevent an outburst of liquid water during collapse of the transient cavity. At thicknesses of 8 and 9 km we observe a boundary regime: crater collapse produces a flat or upward-domed floor, however the water under the crater center does not reach the surface. In ice greater than 10 km thick a normal transient cavity forms. These results indicate that the ice thickness, at the times and locations of complex crater formation, must have been comparable to the diameters of the transient craters, the largest of which was between 11.9 and 18.5 km [1]. Implementation of additional mechanisms such as acoustic fluidization and creep may affect the shape of the final crater produced in our simulations: acoustic fluidization can produce central peak and peak-ring craters [4], and creep may result in a flattened crater. We are currently investigating the influence of these processes on the final crater morphology. References: [1] Moore et al., Icarus 151, 2001. [2] Ivanov et al., GSA Spec. Pap., in press. [3] Beeman et

  12. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers.

    PubMed

    de Jonge, Niels

    2018-04-01

    The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the detection angle, and the sample configuration. It was found that the spatial resolution scales with the electron dose to the -1/4th power. Gold- and carbon nanoparticles were examined in the middle of water layers ranging from 0.01--10 µm thickness representing relevant classes of experiments in both materials science and biology. The optimal microscope settings differ between experimental configurations. STEM performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase-contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration correction for TEM was examined as well. The theory is broadly applicable to other types of materials and sample configurations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-05-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  14. The fast-ice growth and freezing of the bottom in the Braganzavagen Gulf (Van Mijenfjorden, Svalbard)

    NASA Astrophysics Data System (ADS)

    Bogorodsky, Petr; Marchenko, Aleksey; Pnyushkov, Andrey; Filchuk, Kirill; Morozov, Yevgenii; Ryzhov, Ivan

    2017-04-01

    induced by tides, and thus their little effect on the rate of ice formation at seasonal time scales. As expected, substantial water cooling in the under-ice layer leads to freezing of the bottom ground, mostly evident in areas with small depths. For example, during the cold season this freezing may be as large as 1 m at a fjord part with typical depths of 0.5 m. In general, the model shows a relativity good agreement with direct observations of fast ice properties. However, due to uncertainty in the thermodynamic properties of the ground, the quantitative description of the heat transfer processes in this layer is still incomplete and required additional clarification in the specially targeted field experiments.

  15. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.

    PubMed

    Accolla, Mario; Congiu, Emanuele; Dulieu, François; Manicò, Giulio; Chaabouni, Henda; Matar, Elie; Mokrane, Hakima; Lemaire, Jean Louis; Pirronello, Valerio

    2011-05-07

    The morphology of water ice in the interstellar medium is still an open question. Although accretion of gaseous water could not be the only possible origin of the observed icy mantles covering dust grains in cold molecular clouds, it is well known that water accreted from the gas phase on surfaces kept at 10 K forms ice films that exhibit a very high porosity. It is also known that in the dark clouds H(2) formation occurs on the icy surface of dust grains and that part of the energy (4.48 eV) released when adsorbed atoms react to form H(2) is deposited in the ice. The experimental study described in the present work focuses on how relevant changes of the ice morphology result from atomic hydrogen exposure and subsequent recombination. Using the temperature-programmed desorption (TPD) technique and a method of inversion analysis of TPD spectra, we show that there is an exponential decrease in the porosity of the amorphous water ice sample following D-atom irradiation. This decrease is inversely proportional to the thickness of the ice and has a value of ϕ(0) = 2 × 10(16) D-atoms cm(-2) per layer of H(2)O. We also use a model which confirms that the binding sites on the porous ice are destroyed regardless of their energy depth, and that the reduction of the porosity corresponds in fact to a reduction of the effective area. This reduction appears to be compatible with the fraction of D(2) formation energy transferred to the porous ice network. Under interstellar conditions, this effect is likely to be efficient and, together with other compaction processes, provides a good argument to believe that interstellar ice is amorphous and non-porous. This journal is © the Owner Societies 2011

  16. Effects of ice formation on hydrology and water quality in the lower Bradley River, Alaska; implications for salmon incubation habitat

    USGS Publications Warehouse

    Rickman, Ronald L.

    1998-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No

  17. ON THE FORMATION OF AMIDE POLYMERS VIA CARBONYL–AMINO GROUP LINKAGES IN ENERGETICALLY PROCESSED ICES OF ASTROPHYSICAL RELEVANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förstel, Marko; Maksyutenko, Pavlo; Jones, Brant M.

    2016-04-01

    We report on the formation of organic amide polymers via carbonyl–amino group linkages in carbon monoxide and ammonia bearing energetically processed ices of astrophysical relevance. The first group comprises molecules with one carboxyl group and an increasing number of amine moieties starting with formamide (45 u), urea (60 u), and hydrazine carboxamide (75 u). The second group consists of species with two carboxyl (58 u) and up to three amine groups (73 u, 88 u, and 103 u). The formation and polymerization of these linkages from simple inorganic molecules via formamide und urea toward amide polymers is discussed in anmore » astrophysical and astrobiological context. Our results show that long chain molecules, which are closely related to polypeptides, easily form by energetically processing simple, inorganic ices at very low temperatures and can be released into the gas phase by sublimation of the ices in star-forming regions. Our experimental results were obtained by employing reflectron time-of-flight mass spectroscopy, coupled with soft, single photon vacuum ultraviolet photoionization; they are complemented by theoretical calculations.« less

  18. The role of feedbacks in Antarctic sea ice change

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  19. Bacterial Communities of Surface Mixed Layer in the Pacific Sector of the Western Arctic Ocean during Sea-Ice Melting

    PubMed Central

    Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting. PMID:24497990

  20. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    PubMed

    Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  1. Small-scale disturbances in the stratigraphy of the NEEM ice core: observations and numerical model simulations

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Llorens, M.-G.; Westhoff, J.; Steinbach, F.; Kipfstuhl, S.; Bons, P. D.; Griera, A.; Weikusat, I.

    2016-02-01

    Disturbances on the centimetre scale in the stratigraphy of the North Greenland Eemian Ice Drilling (NEEM) ice core (North Greenland) can be mapped by an optical line scanner as long as the ice has visual layering, such as, for example, cloudy bands. Different focal depths allow, to a certain extent, a three-dimensional view of the structures. In this study we present a detailed analysis of the visible folds, discuss their characteristics and frequency, and present examples of typical fold structures. We also analyse the structures with regard to the deformation boundary conditions under which they formed. The structures evolve from gentle waves at about 1500 m to overturned z folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their similar fold shape indicates that they are passive features and are probably not initiated by rheology differences between alternating layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. C axes orientation distributions for the corresponding core sections were analysed, where available, in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c axis orientations that deviate from that of the matrix, which shows a single maximum fabric at the depth where the folding occurs. Numerical modelling of crystal viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures during deformation. The modelling reproduces the development of bands of grains with a tilted-lattice orientation relative to the single maximum fabric of the matrix, and also the associated local deformation. We conclude from these results that the observed folding can be explained by formation of these tilted-lattice bands.

  2. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    NASA Astrophysics Data System (ADS)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  3. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2016-12-01

    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  4. Geochemical and sedimentological properties of Heinrich layers H2 and H1 off the Hudson Strait ice-surging source areas: ice-rafting vs water-laid down depositional mechanisms

    NASA Astrophysics Data System (ADS)

    Nuttin, L.; Hillaire-Marcel, C.

    2012-12-01

    The ~9 m-long core HU08-029-004PC was raised from the lower Labrador Sea slope (2674 m water-depth), approximately 180 km off Hudson Strait shelf edge. It yielded a high resolution record spanning the last 35 ka. The sequence includes layers with abundant detrital carbonates produced by glacial erosion of Paleozoic rocks and released into the Labrador Sea through ice streaming processes in Hudson Strait and Ungava Bay. These layers are assigned to 'Heinrich events' 3 (at core bottom), 2 and 1. Sedimentological properties and U and Th isotope measurements are used to document depositional mechanisms and durations of these layers. Data suggest: i) intense ice-rafting deposition (IRD) due to iceberg calving at the ice-stream edge, as illustrated by the coarse fraction content of the layers, and ii) sub-glacial meltwater flushing over the Hudson Strait sill, carrying fine silt-size, carbonate-rich glacial flour to the shelf-edge. Such suspended sediment pulses led to the spreading of turbidites mostly into the deep Labrador Sea, through the NAMOC system. Others late-glacial events, such as the ~ 8.2 ka final drainage of Lake Agassiz, are also recorded in the study core, whereas the H0 layer, exclusively observed in the western Labrador Sea is missing. CAT-scan images, mineralogical data, carbonate abundance, %>106 μm fraction (mostly IRD here), U-Th isotope data and 14C ages of planktic foraminifera assemblages (Neogloboquadrina pachyderma, l.) are used to further document H2 (760 to 700 cm) and H1 (588 to 488 cm). The H-layers contain up to 60% of fine detrital carbonates (about 2/3 calcite, 1/3 dolomite). Whereas the fine calcitic material points to sediment sources (basal till/water-laid glacial sediments) in the Hudson Strait and Ungava Bay, i.e., originating from the glacial erosion of Paleozoic carbonates from the area, the dolomitic component might have several origins (from Proterozoic and Paleozoic limestones in the Hudson Bay and Strait, to northwestern

  5. "Solid State" Chemistry in Titan Ice Particles

    NASA Image and Video Library

    2016-09-20

    Scientists from NASA's Cassini mission suggested in a 2016 paper that the appearance of a cloud of dicyanoacetylene (C4N2) ice in Titan's stratosphere may be explained by "solid-state" chemistry taking place inside ice particles. The particles have an inner layer of cyanoacetylene (HC3N) ice coated with an outer layer of hydrogen cyanide (HCN) ice. Left: When a photon of light penetrates the outer shell, it can interact with the HC3N, producing C3N and H. Center: The C3N then reacts with HCN to yield C4N2 and H (shown at right). Another reaction that also yields C4N2 ice and H also is possible, but the researchers think it is less likely. http://photojournal.jpl.nasa.gov/catalog/PIA20715

  6. Irradiation of nitrogen-rich ices by swift heavy ions. Clues for the formation of ultracarbonaceous micrometeorites

    NASA Astrophysics Data System (ADS)

    Augé, B.; Dartois, E.; Engrand, C.; Duprat, J.; Godard, M.; Delauche, L.; Bardin, N.; Mejía, C.; Martinez, R.; Muniz, G.; Domaracka, A.; Boduch, P.; Rothard, H.

    2016-08-01

    Context. Extraterrestrial materials, such as meteorites and interplanetary dust particles, provide constraints on the formation and evolution of organic matter in the young solar system. Micrometeorites represent the dominant source of extraterrestrial matter at the Earth's surface, some of them originating from large heliocentric distances. Recent analyses of ultracarbonaceous micrometeorites recovered from Antarctica (UCAMMs) reveal an unusually nitrogen-rich organic matter. Such nitrogen-rich carbonaceous material could be formed in a N2-rich environment, at very low temperature, triggered by energetic processes. Aims: Several formation scenarios have been proposed for the formation of the N-rich organic matter observed in UCAMMs. We experimentally evaluate the scenario involving high energy irradiation of icy bodies subsurface orbiting at large heliocentric distances. Methods: The effect of Galactic cosmic ray (GCR) irradiation of ices containing N2 and CH4 was studied in the laboratory. The N2-CH4 (90:10 and 98:2) ice mixtures were irradiated at 14 K by 44 MeV Ni11+ and 160 MeV Ar15+ swift heavy ion beams. The evolution of the samples was monitored using in-situ Fourier transform infrared spectroscopy. The evolution of the initial ice molecules and new species formed were followed as a function of projectile fluence. After irradiation, the target was annealed to room temperature. The solid residue of the whole process left after ice sublimation was characterized in-situ by infrared spectroscopy, and the elemental composition was measured ex-situ. Results: The infrared bands that appear during irradiation allow us to identify molecules and radicals (HCN, CN-, NH3, ...). The infrared spectra of the solid residues measured at room temperature show similarities with that of UCAMMs. The results point towards the efficient production of a poly-HCN-like residue from the irradiation of N2-CH4 rich surfaces of icy bodies. The room temperature residue provides a viable

  7. Contrail formation in the tropopause region caused by emissions from an Ariane 5 rocket

    NASA Astrophysics Data System (ADS)

    Voigt, Ch.; Schumann, U.; Graf, K.

    2016-07-01

    Rockets directly inject water vapor and aerosol into the atmosphere, which promotes the formation of ice clouds in ice supersaturated layers of the atmosphere. Enhanced mesospheric cloud occurrence has frequently been detected near 80-kilometer altitude a few days after rocket launches. Here, unique evidence for cirrus formation in the tropopause region caused by ice nucleation in the exhaust plume from an Ariane 5-ECA rocket is presented. Meteorological reanalysis data from the European Centre for Medium-Range Weather Forecasts show significant ice supersaturation at the 100-hectopascal level in the American tropical tropopause region on November 26, 2011. Near 17-kilometer altitudes, the temperatures are below the Schmidt-Appleman threshold temperature for rocket condensation trail formation on that day. Immediately after the launch from the Ariane 5-ECA at 18:39 UT (universal time) from Kourou, French Guiana, the formation of a rocket contrail is detected in the high resolution visible channel from the SEVIRI (Spinning Enhanced Visible and InfraRed Imager) on the METEOSAT9 satellite. The rocket contrail is transported to the south and its dispersion is followed in SEVIRI data for almost 2 h. The ice crystals predominantly nucleated on aluminum oxide particles emitted by the Ariane 5-ECA solid booster and further grow by uptake of water vapor emitted from the cryogenic main stage and entrained from the ice supersaturated ambient atmosphere. After rocket launches, the formation of rocket contrails can be a frequent phenomenon under ice supersaturated conditions. However, at present launch rates, the global climate impact from rocket contrail cirrus in the tropopause region is small.

  8. Near-surface ice-rich regolith in mid Utopia Planitia, Mars, and its formation by thaw-freeze cycling

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Conway, S. J.

    2012-12-01

    We have used all relevant HiRISE, MOC, THEMIS and CTX images of mid Utopia Planitia (UP; ~30-600N; ~65-1010E) to identify and then map the spatial association of flat-floored and scalloped depressions, small-sized (~150m) polygonal patterned-ground and polygon-junction/trough pits. In periglacial regions on Earth such as northern Yakutia and Alaska, similar landscape-assemblages comprised of thermokarst lakes or alases, ice-wedge polygons and polygon-junction ponds are markers of ice-rich permafrost (dominated by lens-like segregation ice). The distribution of these Martian putative periglacial-landforms (PPLs) cross cuts geological units that have a wide range of ages and types, i.e. HBU1 (early Hesperian, lava) - AEta (late Hesperian, fluvial) - ABa (late Amazonian, aeolian), and suggests that a previously unidentified periglacial unit (PUPU) exists in the region. Regardless of whether the PPLs form by means of sublimation or thaw, questions concerning the origin of the hypothesised ice-rich permafrost itself have been largely overlooked in the literature. Based on our most recent observations and findings, we propose five things. First, the PUPU is tens of metres deep, regional in spatial extent, shows sub-horizontal banding, and is an ice-enriched loess-like (or fine-grained) unit comprised principally of segregated ice. Second, the PUPU is distinct from and underlies a regional high-albedo mantle that does not show periglacial landscape modification or features. Heretofore, numerous workers have hypothesised that the scalloped depressions, small-sized polygons and polygon-junction/trough pits that are ubiquitous in the region are the product of mantle degradation by sublimation. Third, the fact that the PUPU is overlain by a mantle not modified by periglacial processes leads one to believe that the formation of a periglacial landscape in mid UP is not as recent as some workers have thought. Fourth, the loess-like material could comprise weathered and eroded

  9. Model helicopter performance degradation with simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Korkan, Kenneth D.

    1987-01-01

    An experimental program using a commercially available model helicopter has been conducted in the Texas A&M University Subsonic Wind Tunnel to investigate main rotor performance degradation due to generic ice. The simulated ice, including both primary and secondary formations, was scaled by chord from previously documented artificial ice accretions. Base and iced performance data were gathered as functions of fuselage incidence, blade collective pitch, main rotor rotational velocity, and freestream velocity. It was observed that the presence of simulated ice tends to decrease the lift to equivalent drag ratio, as well as thrust coefficient for the range of velocity ratios tested. Also, increases in torque coefficient due to the generic ice formations were observed. Evaluation of the data has indicated that the addition of roughness due to secondary ice formations is crucial for proper evaluation of the degradation in main rotor performance.

  10. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Jacobs, S. S.; Comiso, J. C.

    1989-12-01

    We have investigated the spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf, in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance heat flux to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical heat flux above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the air temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave sea ice data near continental boundaries.

  11. The Prevention of Ice Formation on Gasoline Tank Vents

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Clay, William C

    1931-01-01

    This investigation was conducted in the refrigerated wind tunnel at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine a suitable method for preventing the formation of ice on the vents of airplane gasoline tanks. Tests were made on a variety of vent forms arranged in a number of different orientations relative to the direction of the air stream. Both the size of the tube and its orientation were found to be of great importance. Small tubes, under equal circumstances, were found to freeze over far more rapidly than large ones. Tubes pointing downstream, or shielded in other ways, appear to be perfectly immune against this hazard. A tube 3/4 inch in diameter with the opening pointing downstream is finally recommended as being the safest choice of gas tank vent.

  12. Laurentide glacial landscapes: the role of ice streams

    USGS Publications Warehouse

    Patterson, C.J.

    1998-01-01

    Glacial landforms of the North American prairie can be divided into two suites that result from different styles of ice flow: 1) a lowland suite of level-to-streamlined till consistent with formation beneath ice streams, and 2) an upland and lobe-margin suite of thick, hummocky till and glacial thrust blocks consistent with formation at ice-stream and ice-lobe margins. Southern Laurentide ice lobes hypothetically functioned as outlets of ice streams. Broad branching lowlands bounded by escarpments mark the stable positions of the ice streams that fed the lobes. If the lobes and ice streams were similar to modern ice streams, their fast flow was facilitated by high subglacial water pressure. Favorable geology and topography in the midcontinent encouraged nonuniform ice flow and controlled the location of ice streams and outlet lobes.

  13. Water-rich planets: How habitable is a water layer deeper than on Earth?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  14. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    (Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant

  15. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    USGS Publications Warehouse

    Major, Jon J.; Newhall, Christopher G.

    1989-01-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  16. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    NASA Astrophysics Data System (ADS)

    Major, Jon J.; Newhall, Christopher G.

    1989-10-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  17. Eroded Scallops with Layers

    NASA Image and Video Library

    2017-01-09

    The western Utopia Planitia in the Northern mid-latitudes of Mars is marked by a peculiar type of depression with scalloped edges and by a network of polygonal fractures. The scalloped depressions are typical features; a smooth layered terrain located between 40 and 60 degrees in both hemispheres. Scalloped depressions probably form by removal of ice-rich subsurface material by sublimation (ice transforming directly from a solid to a gaseous state), a process that may still be active today. Isolated scalloped depressions generally have a steep pole-facing scarp and a gentler equator-facing slope. This asymmetry is interpreted as being the result of difference in solar heating. Scalloped depressions may coalesce, leading to the formation of large areas of pitted terrain. The polygonal pattern of fractures resembles permafrost polygons that form in terrestrial polar and high alpine regions by seasonal-to-annual contraction of the permafrost (permanently frozen ground). On Earth, such polygons indicate the presence of ground ice. These landforms most likely show that sub-surface ice is present or has been present geologically recently at these latitudes, and they may slowly be continuing their development at the present time. http://photojournal.jpl.nasa.gov/catalog/PIA13485

  18. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  19. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  20. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  1. Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity N. C. Dickson, K. Gierens, H. L. Rogers, R. L. Jones

    NASA Astrophysics Data System (ADS)

    Dickson, N.

    2009-12-01

    The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal size of ISSR is 150 km (±250km) although 12-14% of ISS events occur on horizontal scales of less than 5km. The average vertical thickness of ISS layers is 600-800m (±575m) but layers ranging from 25m to 3000m have been observed, with up to one third of ISS layers thought to be less than 100m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50 and 100 hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations

  2. Point defects at the ice (0001) surface

    PubMed Central

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-01-01

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938

  3. Firn structure of Larsen C Ice Shelf, Antarctic Peninsula, from in-situ geophysical surveys

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Brisbourne, A.; Kuipers Munneke, P.; Bevan, S. L.; Luckman, A. J.; Hubbard, B. P.; Ashmore, D.; Holland, P.; Jansen, D.; King, E. C.; O'Leary, M.; McGrath, D.

    2015-12-01

    Rising surface temperatures have been causing firn layers on Antarctic Peninsula ice shelves to compact, a process that is strongly implicated in ice shelf disintegration. Firn compaction is expected to warm the ice column and given sufficiently wet and compacted firn layers, to allow meltwater to penetrate into surface crevasses and thus enhance the potential for hydrofracture. On Larsen C Ice Shelf a compacting firn layer has previously been inferred from airborne radar and satellite data, with strongly reduced air contents in Larsen C's north and north-west. The hydrological processes governing firn compaction, and the detailed firn structures they produce, have so far remained uncertain however. Using integrated seismic refraction, MASW (Multi-Channel Analysis of Surface Waves), seismoelectric and ground-penetrating radar (GPR) data, we reveal vertical and horizontal changes in firn structure across Larsen C Ice Shelf. Particular attention is paid to the spatial prevalence of refrozen meltwaters within firn, such as the massive subsurface ice layer discovered recently by the NERC-funded MIDAS project in Cabinet Inlet in Larsen C's extreme northwest. Such ice layers or lenses are particularly dramatic manifestations of increased ice shelf densities and temperatures, and contrast sharply with the relatively uncompacted firn layers present in the ice shelf's southeast. We consider our observations in the context of a one-dimensional firn model for Larsen C Ice Shelf that includes melt percolation and refreezing, and discuss temporal changes in firn layer structures due to surface melt and ponding.

  4. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design.

    PubMed

    Zhang, Songnan; Huang, Jianying; Cheng, Yan; Yang, Hui; Chen, Zhong; Lai, Yuekun

    2017-12-01

    Ice accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-icing and ice-phobic applications. Here, recently published literature about the mechanism of ice prevention is reviewed, with a focus on the anti-icing and ice-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, ice nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-icing materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-icing and ice-phobic efficiency. Outlooks and the challenges for future development of the anti-icing and ice-phobic technology are presented and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  6. Layering in Spallanzani Crater

    NASA Image and Video Library

    2015-04-22

    In this image from NASA Mars Mars Reconnaissance Orbiter, we can see quite a spectacular layering pattern inside an impact crater called Spallanzani. Seeing layering is always exciting to geologists because it implies that the region has experienced multiple climatic conditions or geologic processes through time. The study of layering is so important in geology that it has its own dedicated branch of study: stratigraphy! Commonly, layering implies different lithologies (i.e., rock types). However, sometimes the layers could be of very similar composition but formed in different periods of time. This could happen for example in the case of annual flood deposits from rivers, multiple volcanic eruptions, or annual or periodic deposition of ice-rich material. We can also see in this image another feature called terracing, which happens when the layers form distinctive planes on top of one another like terraces. This could imply that the layers are being eroded with time but some of the layers are being eroded quicker than others because they are less resistant to erosion. So what is the composition of these layers? Spallanzani Crater lies in the high latitudes of the Southern hemisphere (around 60 degrees in latitude) so there is a good possibility that the deposits are ice-rich. If we look more closely we will notice fractured mounds, which sometimes indicate the presence of subsurface ice. Another interesting observation is the presence of grooves in the shaded slopes of some of the layers. Perhaps these grooves formed because of the sublimation (the direct transfer of solid ice to water vapor) of ice from these slopes since slopes tend to get warmer than the surrounding terrains. A close inspection of this image may help answer this question and investigate the multiple cycles in which these deposits were laid down as well as the duration of these individual cycles. http://photojournal.jpl.nasa.gov/catalog/PIA19367

  7. Tree recovery from ice storm injury

    Treesearch

    Kevin T. Smith

    2015-01-01

    Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...

  8. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  9. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  10. Correlations Among Ice Measurements, Impingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.

    1958-01-01

    An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.

  11. Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.

    2017-12-01

    The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is

  12. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2017-02-01

    Over the decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particle concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system.

  13. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    PubMed Central

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2018-01-01

    Over decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particles concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in-situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system. PMID:29551842

  14. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  15. Slush Fund: Modeling the Multiphase Physics of Oceanic Ices

    NASA Astrophysics Data System (ADS)

    Buffo, J.; Schmidt, B. E.

    2016-12-01

    The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and

  16. A New Discrete Element Sea-Ice Model for Earth System Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Adrian Keith

    Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooledmore » water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).« less

  17. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth.

    PubMed

    Davies, Peter L

    2014-11-01

    Antifreeze proteins (AFPs) were discovered in marine fishes that need protection from freezing. These ice-binding proteins (IBPs) are widespread across biological kingdoms, and their functions include freeze tolerance and ice adhesion. Consistent with recent independent evolution, AFPs have remarkably diverse folds that rely heavily on hydrogen- and disulfide-bonding. AFP ice-binding sites are typically flat, extensive, relatively hydrophobic, and are thought to organize water into an ice-like arrangement that merges and freezes with the quasi-liquid layer next to the ice lattice. In this article, the roles, properties, and structure-function interactions of IBPs are reviewed, and their relationship to ice nucleation proteins, which promote freezing at high subzero temperatures, is explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    DOE PAGES

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...

    2016-08-27

    We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less

  19. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    PubMed Central

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2017-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718

  20. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.