Sample records for ice loading history

  1. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  2. The Last Interglacial History of the Antarctic Ice sheet

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Siddall, Mark; Milne, Glenn A.; Masson-Delmotte, Valerie; Wolff, Eric; Hindmarsh, Richard C. A.

    2014-05-01

    In this paper we present a summary of the work which was conducted as part of the 'PAST4FUTURE -WP4.1: Sea Level and Ice sheets' project. The overall aim of this study was to understand the response of the Antarctic Ice sheet (AIS) to climate forcing during the Last interglacial (LIG) and its contribution to the observed higher than present sea level during this period. The study involved the application and development of a novel technique which combined East Antarctic stable isotope ice core data with the output from a Glacial Isostatic Adjustment (GIA) model [Bradley et al., 2012]. We investigated if the stable isotope ice core data are sensitive to detecting isostatically driven changes in the surface elevation driven by changes in the ice-loading history of the AIS and if so, could we address some key questions relating to the LIG history of the AIS. Although it is believed that the West Antarctic Ice sheet (WAIS) reduced in size during the LIG compared to the Holocene, major uncertainties and unknowns remain unresolved: Did the WAIS collapse? What would the contribution of such a collapse be the higher than present LIG eustatic sea level (ESL)? We will show that a simulated collapse of the WAIS does not generate a significant elevation driven signal at the EAIS LIG ice core sites, and as such, these ice core records cannot be used to assess WAIS stability over this period. However, we will present 'treasure maps' [Bradley et al., 2012] to identify regions of the AIS where results from geological studies and/or new paleoclimate data may be sensitive to detecting a WAIS collapse. These maps can act as a useful tool for the wider science community/field scientists as a guide to highlight sites suitable to constrain the evolution of the WAIS during the LIG. Studies have proposed that the surface temperature across the East Antarctic Ice Sheet (EAIS) was significantly warmer, 2-5°C during the LIG compared to present [Lang and Wolff, 2011]. These higher

  3. Glacio-isostasy and Glacial Ice Load at Law Dome, Wilkes Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Goodwin, Ian D.; Zweck, Christopher

    2000-05-01

    The Holocene sea-level high stand or "marine limit" in Wilkes Land, East Antarctica, reached ˜30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°-160° E) suggests that a similar ice load of up to 1000 m

  4. Reliability of Triaxial Accelerometry for Measuring Load in Men's Collegiate Ice Hockey.

    PubMed

    Van Iterson, Erik H; Fitzgerald, John S; Dietz, Calvin C; Snyder, Eric M; Peterson, Ben J

    2017-05-01

    Van Iterson, EH, Fitzgerald, JS, Dietz, CC, Snyder, EM, and Peterson, BJ. Reliability of triaxial accelerometry for measuring load in men's collegiate ice hockey. J Strength Cond Res 31(5): 1305-1312, 2017-Wearable microsensor technology incorporating triaxial accelerometry is used to quantify an index of mechanical stress associated with sport-specific movements termed PlayerLoad. The test-retest reliability of PlayerLoad in the environmental setting of ice hockey is unknown. The primary aim of this study was to quantify the test-retest reliability of PlayerLoad in ice hockey players during performance of tasks simulating game conditions. Division I collegiate male ice hockey players (N = 8) wore Catapult Optimeye S5 monitors during repeat performance of 9 ice hockey tasks simulating game conditions. Ordered ice hockey tasks during repeated bouts included acceleration (forward or backward), 60% top-speed, top-speed (forward or backward), repeated shift circuit, ice coasting, slap shot, and bench sitting. Coefficient of variation (CV), intraclass correlation coefficient (ICC), and minimum difference (MD) were used to assess PlayerLoad reliability. Test-retest CVs and ICCs of PlayerLoad were as follows: 8.6% and 0.54 for forward acceleration, 13.8% and 0.78 for backward acceleration, 2.2% and 0.96 for 60% top-speed, 7.5% and 0.79 for forward top-speed, 2.8% and 0.96 for backward top-speed, 26.6% and 0.95 for repeated shift test, 3.9% and 0.68 for slap shot, 3.7% and 0.98 for coasting, and 4.1% and 0.98 for bench sitting, respectively. Raw differences between bouts were not significant for ice hockey tasks (p > 0.05). For each task, between-bout raw differences were lower vs. MD: 0.06 vs. 0.35 (forward acceleration), 0.07 vs. 0.36 (backward acceleration), 0.00 vs. 0.06 (60% top-speed), 0.03 vs. 0.20 (forward top-speed), 0.02 vs. 0.09 (backward top-speed), 0.18 vs. 0.64 (repeated shift test), 0.02 vs. 0.10 (slap shot), 0.00 vs. 0.10 (coasting), and 0.01 vs. 0

  5. Human locomotion on ice: the evolution of ice-skating energetics through history.

    PubMed

    Formenti, Federico; Minetti, Alberto E

    2007-05-01

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  6. Branch breakage under snow and ice loads.

    PubMed

    Cannell, M G; Morgan, J

    1989-09-01

    Measurements were made on branches and trunks of Picea sitchensis (Bong.) Carr. to determine the relationship between (i) the bending moment at the bases of branches that cause breakage, and (ii) midpoint diameter cubed. The theory for cantilever beams was then used to calculate the basal bending moments and midpoint diameters of branches with different numbers of laterals and endpoint deflections, given previously measured values of Young's modulus, taper and weights of foliage and wood. Snow and ice loads (equal to 2 and 4 g cm(-1) of shoot, respectively) were then included in the calculation to determine whether the basal bending moments exceeded the breakage values. The likelihood of breakage increased with an increase in (i) number of laterals, and (ii) endpoint deflection under self weight (without snow or ice)-features that had previously been shown to lessen the amount of branch wood required to support a unit of foliage. However, branches which deflected moderately (> 10% of their length) under their own weight deflected greatly under snow or ice loads and might shed powdery snow before breakage occurs.

  7. Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.

    2017-12-01

    The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.

  8. High sensitive FBG load cell for icing of overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Mao, Naiqiang; Ma, Guoming; Li, Chengrong; Li, Yabo; Shi, Cheng; Du, Yue

    2017-04-01

    Heavy ice coating of overhead transmission lines created the serious threat on the safe operation of power grid. The measurement of conductor icing had been an effective and reliable methods to prevent potential risks, such as conductor breakage, insulator flashover and tower collapse. Because of the advantages of immunity to electromagnetic interference and no demand for power supply in site, the optical load cell has been widely applied in monitoring the ice coating of overhead transmission lines. In this paper, we have adopted the shearing structure with additional grooves as elastic element of load cell to detect the eccentric load. Then, two welding package fiber Bragg gratings (FBGs) were mounted onto the grooves of elastic element with a direction deviation of 90° to eliminate temperature effects on strain measurement without extra FBG. After that, to avoid the occurrence of load cell breakage in heavy load measurement, the protection part has been proposed and added to the elastic element. The results of tension experiments indicate that the resolution of the load cell is 7.78 N in the conventional measuring range (0-10 kN). And in addition, the load cell proposed in this paper also has a good performance in actual experiment in which the load and temperature change simultaneously.

  9. Effect of different implementations of the same ice history in GIA modeling

    NASA Astrophysics Data System (ADS)

    Barletta, V. R.; Bordoni, A.

    2013-11-01

    This study shows the effect of changing the way ice histories are implemented in Glacial Isostatic Adjustment (GIA) codes to solve the sea level equation. The ice history models are being constantly improved and are provided in different formats. The overall algorithmic design of the sea-level equation solver often forces to implement the ice model in a representation that differs from the one originally provided. We show that using different representations of the same ice model gives important differences and artificial contributions to the sea level estimates, both at global and at regional scale. This study is not a speculative exercise. The ICE-5G model adopted in this work is widely used in present day sea-level analysis, but discrepancies between the results obtained by different groups for the same ice models still exist, and it was the effort to set a common reference for the sea-level community that inspired this work. Understanding this issue is important to be able to reduce the artefacts introduced by a non-suitable ice model representation. This is especially important when developing new GIA models, since neglecting this problem can easily lead to wrong alignment of the ice and sea-level histories, particularly close to the deglaciation areas, like Antarctica.

  10. Earth's Climate History from Glaciers and Ice Cores

    NASA Astrophysics Data System (ADS)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  11. Holocene history of North Ice Cap, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.

    2013-12-01

    Although much research has focused on the past extents of the Greenland Ice Sheet, less is known about the smaller ice caps on Greenland and how they have evolved over time. These small ice caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland Ice Sheet margins. Here, we investigate the Holocene history of North Ice Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North Ice Cap ~25 m outboard of the present ice margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland Ice Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North Ice Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent ice cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North Ice Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above

  12. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    USGS Publications Warehouse

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  13. Chronicling ice shelf history in the sediments left behind

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Subt, C.; Shevenell, A.; Guitard, M.; Vadman, K. J.; DeCesare, M.; Wellner, J. S.; Bart, P. J.; Lee, J. I.; Domack, E. W.; Yoo, K. C.; Hayes, J. M.

    2017-12-01

    Collapsing and retreating ice shelves leave unmistakable sediment sequences on the Antarctic margin. These sequences tell unequivocal stories of collapse or retreat through a typical progression of sub-ice shelf diamicton (marking the past positions of grounding lines), sequentially overlain by a granulated facies from beneath the ice shelf, ice rafted debris from the calving line, and finally open marine sediment. The timelines to these stories, however, are troublesome. Difficulties in chronicling these stories recorded in sediment have betrayed their importance to our understanding of a warming world in many cases. The difficulties involve the concerted lack of preservation/production of calcium carbonate tests from the water column above and admixture of relict organic material from older sources of carbon. Here, we summarize our advances in the last decade of overcoming difficulties associated with the paucity of carbonate and creating chronologies of ice shelf retreat into the deglacial history of Antarctica by exploiting the range of thermochemical stability in organic matter (Ramped PyrOx) from these sediment sequences. We describe our success in comparing Ramped PyrOx 14C dates with foraminiferal dates, the relationship between sediment facies and radiocarbon age spectrum, and our ability to push limits of dating sediments deposited underneath ice shelves. With attention to the caveats of recent dating developments, we summarize expectations that geologist should have when coring the Antarctic margins to discern deglacial history. Perhaps most important among these expectations is the ability to design coring expeditions without regard to our ability to date calcium carbonate microfossils within the cores, in essence removing suspense of knowing whether cores taken from crucial paleo ice channels and other bathymetric features will ultimately yield a robust chronology for its sedimentary sequence.

  14. Promoting Academic Development: A History of the International Consortium for Educational Development (ICED)

    ERIC Educational Resources Information Center

    Mason O'Connor, Kristine

    2016-01-01

    This essay traces the history of the International Consortium for Educational Development (ICED) through document analysis and email interviews with founding and prominent ICED members. It also provides a summary of the themes and locations of all the ICED conferences.

  15. Ice Load Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Timothy J.; Brown, Thomas; Byrne, Alex

    As interest and investment in offshore wind projects increase worldwide, some turbines will be installed in locations where ice of significant thickness forms on the water surface. This ice moves under the driving forces of wind, current, and thermal effects and may result in substantial forces on bottom-fixed support structures. The North and Baltic Seas in Europe have begun to see significant wind energy development and the Great Lakes of the United States and Canada may host wind energy development in the near future. Design of the support structures for these projects is best performed through the use of anmore » integrated tool that can calculate the cumulative effects of forces due to turbine operations, wind, waves, and floating ice. The dynamic nature of ice forces requires that these forces be included in the design simulations, rather than added as static forces to simulation results. The International Electrotechnical Commission (IEC) standard[2] for offshore wind turbine design and the International Organization for Standardization (ISO) standard[3] for offshore structures provide requirements and algorithms for the calculation of forces induced by surface ice; however, currently none of the major wind turbine dynamic simulation codes provides the ability to model ice loads. The scope of work of the project described in this report includes the development of a suite of subroutines, collectively named IceFloe, that meet the requirements of the IEC and ISO standards and couples with four of the major wind turbine dynamic simulation codes. The mechanisms by which ice forces impinge on offshore structures generally include the forces required for crushing of the ice against vertical-sided structures and the forces required to fracture the ice as it rides up on conical-sided structures. Within these two broad categories, the dynamic character of the forces with respect to time is also dependent on other factors such as the velocity and thickness of the

  16. Nature and History of Cenozoic Polar Ice Covers: The Case of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Spielhagen, R.; Thiede, J.

    2009-04-01

    The nature of the modern climate System is characterized by steep temperature gradients between the tropical and polar climatic zones and finds its most spectacular expression in the formation of ice caps in high Northern and Southern latitudes. While polar regions of Planet Earth have been glaciated repeatedly in the long course of their geological history, the Cenozoic transition from a „greenhouse" to an „icehouse" has in fact produced a unique climatic scenario with bipolar glacation, different from all previous glacial events. The Greenland ice sheet is a remainder of the Northern Hemisphere last glacial maximum ice sheets and represents hence a spectacular anomaly. Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of ice caps and sea ice covers both on the Southern as well on the Northern hemisphere since Eocene times, aqpprox. 45 Mio. years ago. While this was well known in the case of Antarctica already for some time, previous ideas about the origin of Northern hemisphere glaciation during Pliocene times (approx. 2-3 Mio. years ago) have been superceded by the dramatic findings of coarse, terrigenous ice rafted detritus in Eocene sediments from Lomonosov Ridge (close to the North Pole) apparently slightly older than the oldest Antarctic records of ice rafting.The histories of the onset of Cenozoic glaciation in high Northern and Southern latitudes remain enigmatic and are presently subjects of international geological drilling projects, with prospects to reveal some of their secrets over the coming decades. By virtue of the physical porperties of ice and the processes controlling the dynamics of the turn-over of the ice-sheets only young records of glacial ice caps on Antarctica and on Greemnland have been preserved, on Greenland with ice probably not older than a few hundred thousand years, on Antarctica potentially as old as 1.5-2 Mio. years. Deep-sea cores with their records od ice

  17. Propeller torque load and propeller shaft torque response correlation during ice-propeller interaction

    NASA Astrophysics Data System (ADS)

    Polić, Dražen; Ehlers, Sören; Æsøy, Vilmar

    2017-03-01

    Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.

  18. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE PAGES

    Smith, J. A.; Andersen, T. J.; Shortt, M.; ...

    2016-11-23

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  19. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. A.; Andersen, T. J.; Shortt, M.

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  20. Ice-load induced tectonics controlled tunnel valley evolution - instances from the southwestern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Al Hseinat, M.; Hübscher, C.

    2014-08-01

    Advancing ice sheets have a strong impact on the earth's topography. For example, they leave behind an erosional unconformity, bulldozer the underlying strata and form tunnel valleys, primarily by subglacial melt-water erosion and secondarily by direct glacial erosion. The conceptual models of the reactivation of faults within the upper crust, due to the ice sheets' load, are also established. However, this phenomenon is also rather under-explored. Here, we propose a causal link between ice-load induced tectonics, the generation of near-vertical faults in the upper crust above an inherited deep-rooted fault and the evolution of tunnel valleys. The Kossau tunnel valley in the southeastern Bay of Kiel has been surveyed by means of high-resolution multi-channel seismic and echosounder data. It strikes almost south to north and can be mapped over a distance of ca 50 km. It is 1200-8000 m wide with a valley of up to 200 m deep. Quaternary deposits fill the valley and cover the adjacent glaciogenic unconformity. A near-vertical fault system with an apparent dip angle of >80°, which reaches from the top Zechstein upwards into the Quaternary, underlies the valley. The fault partially pierces the seafloor and growth is observed within the uppermost Quaternary strata only. Consequently, the fault evolved in the Late Quaternary. The fault is associated with an anticline that is between 700 and 3000 m wide and about 20-40 m high. The fault-anticline assemblage neither resembles any typical extensional, compressional or strike-slip deformation pattern, nor is it related to salt tectonics. Based on the observed position and deformation pattern of the fault-anticline assemblage, we suggest that these structures formed as a consequence of the differential ice-load induced tectonics above an inherited deep-rooted sub-salt fault related to the Glückstadt Graben. Lateral variations in the ice-load during the ice sheet's advance caused differential subsidence, thus rejuvenating the

  1. Nutritional composition, glycemic index, glycemic load, and organoleptical quality of glucomannan-enriched soy milk ice cream

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Candra, O. M.; Nugrahani, G.; Pramono, A.; Afifah, D. N.

    2018-01-01

    Over the past decades, the number of childhood obesity cases has increased significantly, which led to an increase in the number of adults suffering from degenerative diseases such as diabetes mellitus (DM). Glucomannan-Enriched Soy Milk Ice Cream (GSMIC) may prevent obesity in children. The aim of the study was to test the level of carbohydrates, protein, fat, dietary fiber, glycemic index, glycemic load, and organoleptic quality of GSMIC. This experiment used a completely randomized design to test three formulations of glucomannan flour and soy milk (0.5%, 1.5%, and 2.5%). The products were tested for nutritional composition, and evaluated on glycemic index, glycemic load, and organoleptic quality. GSMIC 2.5% had higher levels of dietary fiber and high carbohydrate, protein, and fat content compared to ice cream (3.99%, 30.7%, 1.50%, 1.33%, respectively). The glycemic index of ice cream and 2.5% GSMIC were 75.83 (75%) and 51.48 (51%), respectively, while the glycemic load of ice cream and 2.5% GSMIC were 9.04 and 11.61, respectively. Based on the organoleptic analysis, formulation preferred by the panellists was 2.5% glucomannan flour. Glucomannan flour affected the level of carbohydrates, protein, fat, dietary fiber, glycemic index, glycemic load, and organoleptic quality in soy milk ice cream.

  2. Optimizing the performance of Ice-storage Systems in Electricity Load Management through a credit mechanism. An analytical work for Jiangsu, China

    DOE PAGES

    Han, Yafeng; Shen, Bo; Hu, Huajin; ...

    2015-01-12

    Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme andmore » the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.« less

  3. Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Camerlenghi, A.; Cooper, A. K.; Davey, F.J.; Domack, E.W.; Escutia, C.; Kristoffersen, Y.; O'Brien, P.E.

    1998-01-01

    The Antarctic Ice Sheet is today an important part of the global climate engine, and probably has been so for most of its long existence. However, the details of its history are poorly known, despite the measurement and use, over two decades, of low-latitude proxies of ice sheet volume. An additional way of determining ice sheet history is now available, based on understanding terrigenous sediment transport and deposition under a glacial regime. It requires direct sampling of the prograded wedge of glacial sediments deposited at the Antarctic continental margin (and of derived sediments on the continental rise) at a small number of key sites, and combines the resulting data using numerical models of ice sheet development. The new phase of sampling is embodied mainly in a suite of proposals to the Ocean Drilling Program, generated by separate regional proponent groups co-ordinated through ANTOSTRAT (the Antarctic Offshore Acoustic Stratigraphy initiative). The first set of margin sites has now been drilled as ODP Leg 178 to the Antarctic Peninsula margin, and a first, short season of inshore drilling at Cape Roberts, Ross Sea, has been completed. Leg 178 and Cape Roberts drilling results are described briefly here, together with an outline of key elements of the overall strategy for determining glacial history, and of the potential contributions of drilling other Antarctic margins investigated by ANTOSTRAT. ODP Leg 178 also recovered continuous ultra-high-resolution Holocene biogenic sections at two sites within a protected, glacially-overdeepened basin (Palmer Deep) on the inner continental shelf of the Antarctic Peninsula. These and similar sites from around the Antarctic margin are a valuable resource when linked with ice cores and equivalent sections at lower latitude sites for studies of decadal and millenial-scale climate variation.

  4. Review of Mariana Gosnell's 'ICE: The Nature, the History, and the Uses of an Astonishing Substance'

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2006-01-01

    ICE: The Nature, the History, and the Uses of an Astonishing Substance is a recently published book by Mariana Gosnell about ice. It covers not just the ice that is readily seen, such as sea ice, lake ice, icebergs, glaciers, ice sheets, and ice cubes, but also ice in the ground, in the atmosphere, inside plants and animals, and in outer space, plus new ice forms being created in scientific laboratories. Gosnell treats the reader to a well-written, easy-going mixture of science, adventure, history, applications, science methods and controversies, and philosophy, all centered in one way or another on ice. The book is 563 pages long and is filled with fascinating anecdotes and details, such as beetles in the Canadian Rockies that can supercool to 60 C below freezing and a lake in Minnesota where each winter typically 65,000 fishing shanties are set up on the lake's ice, many with couches, beds, television sets, and bathrooms. Gosnell also includes many practical suggestions. Among them: When driving on lake ice, keep your windows open, in case your vehicle breaks through the ice and you need to make a rapid exit.

  5. The Impact of Water Loading on Estimates of Postglacial Decay Times in Hudson Bay

    NASA Astrophysics Data System (ADS)

    Han, H. K.; Gomez, N. A.

    2016-12-01

    Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations since the Last Glacial Maximum (LGM) has been contributing to sea level changes globally throughout the Holocene, especially in regions like the Canada that were heavily glaciated during the LGM. The spatial and temporal distribution of GIA and relative sea level change are attributed to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that relative sea level curves in previously glaciated regions follow an exponential-like form, and the post glacial decay times associated with that form have weak sensitivity to the details of the ice loading history (Andrews 1970, Walcott 1980, Mitrovica & Peltier 1995). Post glacial decay time estimates may therefore be used to constrain the Earth's structure and improve GIA predictions. However, estimates of decay times in Hudson Bay in the literature differ significantly due to a number of sources of uncertainty and bias (Mitrovica et al. 2000). Previous decay time analyses have not considered the potential bias that surface loading associated with Holocene sea level changes can introduce in decay time estimates derived from nearby relative sea level observations. We explore the spatial patterns of post glacial decay time predictions in previously glaciated regions, and their sensitivity to ice and water loading history. We compute post glacial sea level changes over the last deglaciation from 21ka to the modern associated with the ICE5G (Peltier, 2004) and ICE6G (Argus et al. 2014, Peltier et al. 2015) ice history models. We fit exponential curves to the modeled relative sea level changes, and compute maps of post glacial decay time predictions across North America and the Arctic. In addition, we decompose the modeled relative sea level changes into contributions from water and ice loading effects, and compute the impact of water loading redistribution since the LGM on

  6. Simulation of flight maneuver-load distributions by utilizing stationary, non-Gaussian random load histories

    NASA Technical Reports Server (NTRS)

    Leybold, H. A.

    1971-01-01

    Random numbers were generated with the aid of a digital computer and transformed such that the probability density function of a discrete random load history composed of these random numbers had one of the following non-Gaussian distributions: Poisson, binomial, log-normal, Weibull, and exponential. The resulting random load histories were analyzed to determine their peak statistics and were compared with cumulative peak maneuver-load distributions for fighter and transport aircraft in flight.

  7. Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies.

    PubMed

    Arndt, Carolin E; Swadling, Kerrie M

    2006-01-01

    This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major differences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice-crystal matrix or inhabiting the ice-water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many differences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice-associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and

  8. Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories

    NASA Astrophysics Data System (ADS)

    Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.

    2014-12-01

    Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly

  9. The contribution of ice cover to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading.

    PubMed

    Niemistö, Juha P; Horppila, Jukka

    2007-01-01

    The effect of ice cover on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during ice-cover and ice-free periods. After ice break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after ice break as well. Under ice cover, resuspension ranged from 50 to 78% of the gross sedimentation while during the ice-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under ice-cover to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of ice cover on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (ice cover reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.

  10. Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Stillman, David E.

    2011-03-01

    Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.

  11. A comparison of measured wind park load histories with the WISPER and WISPERX load spectra

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1995-01-01

    The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.

  12. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    PubMed

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  13. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  14. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A~recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) is generally losing its mass since the last glacial maximum (LGM). In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in future.

  15. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    NASA Technical Reports Server (NTRS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  16. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik; Larour, Eric; Seroussi, Helene; Morlighem, Mathieu; Nowicki, Sophie

    2014-05-01

    A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has been generally losing its mass since the last glacial maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector of WAIS in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm/yr in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in the future.

  17. Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2016-06-01

    Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas

  18. Organic History and Ice-Rock Decoupling on Enceladus

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2007-12-01

    .) remained unfrozen and decoupled the ice shell from underlying salt deposits and rocks. Even after oil solidification, if it occurred, the organic layer had a lower viscosity than salts and ice. An uneven pressure and/or topography at the ice-salt boundary could have led to preferential oil (and salt?) accumulation below the south polar region. Throughout history (and today), the uneven oil-rich layer could have favored tidal motions and heat generation at the bottom of the ice shell.

  19. Fatigue loading history reconstruction based on the rain-flow technique

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.

    1989-01-01

    Methods are considered for reducing a non-random fatigue loading history to a concise description and then for reconstructing a time history similar to the original. In particular, three methods of reconstruction based on a rain-flow cycle counting matrix are presented. A rain-flow matrix consists of the numbers of cycles at various peak and valley combinations. Two methods are based on a two dimensional rain-flow matrix, and the third on a three dimensional rain-flow matrix. Histories reconstructed by any of these methods produce a rain-flow matrix identical to that of the original history, and as a result the resulting time history is expected to produce a fatigue life similar to that for the original. The procedures described allow lengthy loading histories to be stored in compact form.

  20. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar

  1. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH.

    PubMed

    Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The impact of water loading on postglacial decay times in Hudson Bay

    NASA Astrophysics Data System (ADS)

    Han, Holly Kyeore; Gomez, Natalya

    2018-05-01

    Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data

  3. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    NASA Astrophysics Data System (ADS)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  4. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage.

    PubMed

    Tay, Cheryl S; Lee, Jason K W; Teo, Ya S; Foo, Phildia Q Z; Tan, Pearl M S; Kong, Pui W

    2016-01-01

    This study examined (1) if changes in gait characteristics could indicate the exertional heat stress experienced during prolonged load carriage, and (2) if gait characteristics were responsive to a heat mitigation strategy. In an environmental chamber replicating tropical climatic conditions (ambient temperature 32°C, 70% relative humidity), 16 males aged 21.8 (1.2) years performed two trials of a work-rest cycle protocol consisting two bouts of 4-km treadmill walks with 30-kg load at 5.3km/h separated by a 15-min rest period. Ice slurry (ICE) or room temperature water (29°C) as a control (CON) was provided in 200-ml aliquots. The fluids were given 10min before the start, at the 15(th) and 30(th) min of each work cycle, and during each rest period. Spatio-temporal gait characteristics were obtained at the start and end of each work-rest cycle using a floor-based photocell system (OptoGait) and a high-speed video camera at 120Hz. Repeated-measure analysis of variance (trial×time) showed that with time, step width decreased (p=.024) while percent crossover steps increased (p=.008) from the 40(th) min onwards. Reduced stance time variability (-11.1%, p=.029) step width variability (-8.2%, p=.001), and percent crossover step (-18.5%, p=.010) were observed in ICE compared with CON. No differences in step length and most temporal variables were found. In conclusion, changes in frontal plane gait characteristics may indicate exertional heat stress during prolonged load carriage, and some of these changes may be mitigated with ice slurry ingestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.

    PubMed

    Hwang, David; Gabai, Adam S; Yu, Miao; Yew, Alvin G; Hsieh, Adam H

    2012-01-01

    Solid-fluid interactions play an important role in mediating viscoelastic behaviour of biological tissues. In the intervertebral disc, water content is governed by a number of factors, including age, disease and mechanical loads, leading to changes in stiffness characteristics. We hypothesized that zonal stress distributions depend on load history, or the prior stresses experienced by the disc. To investigate these effects, rat caudal motion segments were subjected to compressive creep biomechanical testing in vitro using a protocol that consisted of two phases: a Prestress Phase (varied to represent different histories of load) followed immediately by an Exertion Phase, identical across all Prestress groups. Three analytical models were used to fit the experimental data in order to evaluate load history effects on gross and zonal disc mechanics. Model results indicated that while gross transient response was insensitive to load history, there may be changes in the internal mechanics of the disc. In particular, a fluid transport model suggested that the role of the nucleus pulposus in resisting creep during Exertion depended on Prestress conditions. Separate experiments using similarly defined load history regimens were performed to verify these predictions by measuring intradiscal pressure with a fibre optic sensor. We found that the ability for intradiscal pressure generation was load history-dependent and exhibited even greater sensitivity than predicted by analytical models. A 0.5 MPa Exertion load resulted in 537.2 kPa IDP for low magnitude Prestress compared with 373.7 kPa for high magnitude Prestress. Based on these measurements, we developed a simple model that may describe the pressure-shear environment in the nucleus pulposus. These findings may have important implications on our understanding of how mechanical stress contributes to disc health and disease etiology.

  6. Multivariable Time Series Prediction for the Icing Process on Overhead Power Transmission Line

    PubMed Central

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653

  7. Holocene Accumulation and Ice Flow near the West Antarctic Ice Sheet Divide Ice Core Site

    NASA Technical Reports Server (NTRS)

    Koutnik, Michelle R.; Fudge, T.J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-01-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 thousand years of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 kilometers from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20 percent lower than modern at 9.2 thousand years before present (B.P.), increased by 40 percent from 9.2 to 2.3 thousand years B.P., and decreased by at least 10 percent over the past 2 thousand years B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 kilometers of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  8. Lake Michigan sediment lead storage and history of loads

    EPA Science Inventory

    Dated sediment box cores collected in 1994-1996 from 52 locations in Lake Michigan were analyzed for to access storage, trends, and loading history of lead. The results of this study provide information of historic lead loads to the lake for a time period for which no other info...

  9. Small-Scale Polygons and the History of Ground Ice on Mars

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.

    2000-01-01

    This research has laid a foundation for continued study of permafrost polygons on Mars using the models and understanding discussed here. Further study of polygonal patterns on Mars is proceeding (under new funding) which is expected to reveal more results about the origin of observed martian polygons and what information they contain regarding the recent history of tile martian climate and of water ice on Mars.

  10. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-06

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  11. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  12. Searching for 3D Viscosity Models of Glacial Isostatic Adjustment in Support of the Global ICE-6G_C Ice History Model

    NASA Astrophysics Data System (ADS)

    LI, T., II; Wu, P.; Steffen, H.; Wang, H.

    2017-12-01

    The global ice history model ICE-6G_C was constructed based on the laterally homogeneous earth model VM5a. The combined model of glacial isostatic adjustment (GIA) called ICE-6G_C (VM5a) fits global observations of GIA simultaneously well. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Our aim therefore is to search for the best laterally heterogeneous viscosity models with ICE-6G_C ice history that is able to fit the global relative sea-level (RSL) data, the peak uplift rates (from GNSS) and peak g-dot rates (from the GRACE satellite mission) in Laurentia and Fennoscandia simultaneously. The Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea levels with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. As a start, the VM5a Earth model is used as the radial background viscosity structure but other radial background viscosity models will also be investigated. Lateral mantle viscosity structure is obtained by the superposition of the radial background viscosity and the lateral viscosity perturbations logarithmically. The latter is inferred from a seismic tomography model using a scaling relationship that takes into account the effects of anharmonicity, anelasticity and non-thermal effects. We will show that several laterally heterogeneous mantle viscosity models can fit the global sea level, GPS and GRACE data better than laterally homogeneous models, provided that the scaling relationship for mantle heterogeneity under northern Europe is allowed to be different from that under Laurentia. In addition, the effects of laterally heterogeneous lithosphere, as inferred from seismic tomography, and the lateral changes in sub-lithospheric properties will also be presented.

  13. Reconciling different observations of the CO2 ice mass loading of the Martian north polar cap

    USGS Publications Warehouse

    Haberle, R.M.; Mattingly, B.; Titus, T.N.

    2004-01-01

    The GRS measurements of the peak mass loading of the north polar CO2 ice cap on Mars are about 60% lower than those calculated from MGS TES radiation data and those inferred from the MOLA cap thicknesses. However, the GRS data provide the most accurate measurement of the mass loading. We show that the TES and MOLA data can be reconciled with the GRS data if (1) subsurface heat conduction and atmospheric heat transport are included in the TES mass budget calculations, and (2) the density of the polar deposits is ???600 kg m-3. The latter is much less than that expected for slab ice (???1600 kg m-3) and suggests that processes unique to the north polar region are responsible for the low cap density. Copyright 2004 by the American Geophysical Union.

  14. Water ice is water ice: some applications and limitations of Earth analogues to Mars

    NASA Astrophysics Data System (ADS)

    Koutnik, M.; Pathare, A.; Waddington, E. D.; Winebrenner, D. P.

    2017-12-01

    Quantitative and qualitative analyses of ice on Mars have advanced with the acquisition of abundant topography, imagery, and radar data, which have enabled the planetary-science community to tackle sophisticated questions about the martian cryosphere. Over the past decades, many studies have applied knowledge of terrestrial ice-sheet and glacier flow to improve understanding of ice behavior on Mars. A key question for both planets is how we can robustly interpret past climate from glaciological and glacial geomorphological features. Doing this requires deciphering how the history of accumulation, ablation, dust/debris deposition, and flow led to the shape and internal structure of present-day ice. Terrestrial glaciology and glacial geomorphology provide physical relationships that can be extended across environmental conditions to characterize related processes that may act at different rates or on different timescales. However, there remain fundamental unknowns about martian ice rheology and history that often limit our ability to directly apply understanding of ice dynamics learned from Antarctica, Greenland, terrestrial glaciers, and laboratory ice experiments. But the field is rich with opportunity because the constitutive relationship for water ice depends on quantities that can typically be reasonably estimated; water ice is water ice. We reflect on progress to understand the history of the ice-rich North Polar Layered Deposits (NPLD) and of select mid-latitude Lobate Debris Aprons (LDAs), and the utility of terrestrial ice-sheet and glacier analogues for these problems. Our work on Earth and Mars has focused on constraining surface accumulation/ablation patterns and ice-flow histories from topography and radar observations. We present on the challenge of interpreting internal-layer shapes when both accumulation/ablation and ice-flow histories are unknown, and how this non-uniqueness can be broken only by making assumptions about one or the other. In

  15. History and anatomy of subsurface ice on Mars

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert; Forget, Francois

    2012-08-01

    Ice buried beneath a thin layer of soil has been revealed by neutron spectroscopy and explored by the Phoenix Mars Lander. It has also been exposed by recent impacts. This subsurface ice is thought to lose and gain volume in response to orbital variations (Milankovitch cycles). We use a powerful numerical model to follow the growth and retreat of near-surface ice as a result of regolith-atmosphere exchange continuously over millions of years. If a thick layer of almost pure ice has been deposited recently, it has not yet reached equilibrium with the atmospheric water vapor and may still remain as far equatorward as 43°N, where ice has been revealed by recent impacts. A potentially observable consequence is present-day humidity output from the still retreating ice. We also demonstrate that in a sublimation environment, subsurface pore ice can accumulate in two ways. The first mode, widely known, is the progressive filling of pores by ice over a range of depths. The second mode occurs on top of an already impermeable ice layer; subsequent ice accumulates in the form of pasted on horizontal layers such that beneath the ice table, the pores are completely full with ice. Most or all of the pore ice on Mars today may be of the second type. At the Phoenix landing site, where such a layer is also expected to exist above an underlying ice sheet, it may be extremely thin, due to exceptionally small variations in ice stability over time.

  16. Ice sheet load cycling and fluid underpressures in the Eastern Michigan Basin, Ontario, Canada

    USGS Publications Warehouse

    Neuzil, Christopher E.; Provost, Alden M.

    2014-01-01

    Strong fluid underpressures have been detected in Paleozoic strata in the eastern Michigan Basin, with hydraulic heads reaching ~400 m below land surface (~4 MPa underpressure) and ~200 m below sea level in strata where unusually low permeabilities (~10−20–10−23 m2) were measured in situ. Multiple glaciations, including three with as much as 3 km of ice cover at the site in the last 120 ka, suggest a causal link with the underpressures. We examined this possibility using a one-dimensional groundwater flow model incorporating mechanical loading from both ice weight and lithospheric flexure. Because hydrologic and mechanical changes during glaciation are not well characterized and subsurface properties are imperfectly known, the model was used inversely to estimate flexural loads and loosely constrained permeabilities by matching observed pressures. Acceptable matches were obtained for a surprisingly wide range of scenarios with permeabilities close to measured values and plausible flexural loads. Matches were not obtained when too many parameters were preselected, or when permeabilities were constrained to be significantly larger than measured values. In successful model runs groundwater expulsion under glacial-mechanical loads caused the underpressuring, and flexural loads were important if aquifer and sub-glacial pressures were significantly elevated during glaciation. Simulated fluid pressures in the low-permeability strata fluctuated by 30–40 MPa during glacial cycles but resulted in advective transport of only tens of meters or less. Although other mechanisms cannot be ruled out, we conclude that glacial-mechanical forcing of a water-saturated system can explain the observed underpressures.

  17. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating

    NASA Astrophysics Data System (ADS)

    Bentley, M. J.; Hein, A. S.; Sugden, D. E.; Whitehouse, P. L.; Shanks, R.; Xu, S.; Freeman, S. P. H. T.

    2017-02-01

    The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model.

  18. Reply to Comment by W. R. Peltier, D. F. Argus, and R. Drummond on "An Assessment of the ICE6G_C (VM5a) Glacial Isostatic Adjustment Model"

    NASA Astrophysics Data System (ADS)

    Purcell, A.; Tregoning, P.; Dehecq, A.

    2018-02-01

    The empirical approximation of Purcell et al. (2011, https://doi.org/10.1029/2011GL048624) has been validated by Peltier et al. (2018, https://doi.org/10.1002/2016JB013844). In their Comment they introduced new results derived from the same ice/rheology models of ICE6G_C (VM5a) but using a different model for Antarctic bathymetry. This has greatly reduced the differences in predicted Antarctic uplift rates relative to those of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742). In fact, with a ˜50% reduction in uplift rate in the Weddell Sea, the results of Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) now agree more closely with the predictions of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) than with the original ICE6G_C values. Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) state that the high power in their high-frequency spherical harmonic coefficients remains in their new calculations. They also claim that Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) used an inaccurate loading history in deriving their velocity field. In fact, the ice load history was unchanged; to remove any ambiguity, the ice and water load histories used in the CALSEA calculations are provided in the supporting information.

  19. Using a Glacial Isostatic Adjustment model to investigate the contribution of the Antarctic and Greenland Ice sheet to the Last Interglacial Sea Level.

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Hindmarsh, Richard C. A.

    2014-05-01

    Eustatic Sea Level during the Last interglacial (LIG) is likely to have been 4- 6 m higher than present day, with the observed relative sea level (RSL) at numerous far-field sites even higher [Dutton and Lambeck, 2012]. It has been suggested to generate this higher than present day sea level requires a retreat of both the Antarctic (AIS) and Greenland (GIS) Ice sheets beyond the present day extent, but the exact contribution of these two global ice sheets has yet to be resolved. By combing a Glacial Isostatic Adjustment (GIA) model with a suite of LIG ice-loading histories we will address a number of outstanding issues (i) What was the contribution of the AIS and GIS to ESL, (ii) Was the AIS or the GIS smaller during the LIG than the present interglacial? (iii) Can we generate the observed higher LIG RSL at a range of far-field sites? The suite of AIS and GIS ice-loading histories is constrained using the most recent near-field evidence, LIG stable isotope ice core data [Dahl-Jensen et al., 2013; Masson-Delmotte et al., 2011] and the output from ice sheet and climate models [Helsen et al., 2013; Pollard and DeConto, 2009; Stone et al., 2013]. Comparing the predicted RSL to a recent database of observed LIG far-field sea level [Dutton and Lambeck, 2012] allows for an assessment of the plausibility of the suite of ice loading histories. With this study, we aim to provide insight into the LIG history of the AIS and GIS. Dahl-Jensen, D., et al. (2013), Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493(7433), 489-494. Dutton, A., and K. Lambeck (2012), Ice Volume and Sea Level During the Last Interglacial, Science, 337(6091), 216-219. Helsen, M. M., W. J. van de Berg, R. S. W. van de Wal, M. R. van den Broeke, and J. Oerlemans (2013), Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian, Clim Past, 9(4), 1773-1788. Masson-Delmotte, V., et al. (2011), A comparison of the present and last

  20. Unveiling climate and ice-sheet history from drilling in high-latitude margins and future perspectives

    NASA Astrophysics Data System (ADS)

    Escutia Dotti, Carlota

    2010-05-01

    Polar ice is an important component of the climate system, affecting global sea level, ocean circulation and heat transport, marine productivity, and albedo. During the last decades drilling in the Arctic (IODP ACEX and Bering Expeditions) and in Antarctica (ODP Legs 178, 188, IODP Expedition 318 and ANDRILL) has revealed regional information about sea ice and ice sheets development and evolution. Integration of this data with numerical modeling provide an understanding of the early development of the ice sheets and their variability through the Cenozoic. Much of this work points to atmospheric CO2 and other greenhouse gases concentrations as important triggering mechanism driving the onset of glaciation and subsequent ice volume variability. With current increasing atmospheric greenhouse gases concentrations resulting in rapidly rising global temperatures, studies of polar climates become increasingly prominent on the research agenda. Despite of the relevance of the high-latitudes in the global climate systems, the short- and long-term history of the ice sheets and sea-ice and its relationships with paleoclimatic, paleoceanographic, and sea level changes is still poorly understood. A multinational, multiplatform scientific drilling strategy is being developed to recover key physical evidence from selected high-latitude areas. This strategy is aimed at addressing key knowledge gaps about the role of polar ice in climate change, targeting questions such as timing of events, rates of change, tipping points, regional variations, and northern vs. southern hemispheres (in phase or out-of-phase) variability. This data is critical to provide constrains to sea-ice and ice sheet models, which are the basis for forecasting the future of the cryosphere in a warming world.

  1. Long-term Glacial History of the West Antarctic Ice Sheet from Cosmogenic Nuclides in a Subglacial Bedrock Core

    NASA Astrophysics Data System (ADS)

    Spector, P. E.; Stone, J.; Hillebrand, T.; Gombiner, J. H.

    2017-12-01

    To investigate the response of the West Antarctic Ice Sheet (WAIS) to climatic conditions warmer than present, we are analyzing cosmogenic nuclides in a bedrock core from beneath 150 m of ice at a site near the Pirrit Hills. Our aim is to determine whether the WAIS has thinned in the past, exposing bedrock at this site, and if so, when. This will help to determine the vulnerability of the ice sheet to future warming, and identify climatic thresholds capable of inducing WAIS collapse. We selected a site where the ice-sheet surface lies at 1300 m, approximately halfway from the ice-sheet divide to the grounding line. We expect ice thickness at the site to reflect WAIS dynamics, rather than local meteorology or topography. Ice flow speeds are moderate and ice above the core site is thin enough to remain cold-based, limiting the possibility of subglacial erosion which would compromise the cosmogenic nuclide record. We targeted a subglacial ridge adjacent to an exposed granite nunatak. This lithology provides minerals suitable for analysis of multiple cosmogenic nuclides with different half-lives. Although we aimed to collect two cores from different depths to compare exposure histories, hydrofracture of the basal ice prevented us from reaching the bed at the first drill site. The second hole produced 5.5 m of discontinuous ice core above 8 m of bedrock core. Initial analyses of quartz from the bedrock show low levels of Be-10. Further analyses of Be-10, Al-26, Cl-36 and Ne-21 from the full length of the core will be required to determine whether this is because the surface has never been exposed, or because the cosmogenic nuclide profile has been truncated by glacial erosion. We will present comprehensive cosmogenic nuclide data, and discuss implications for WAIS deglaciation history, at the meeting. Supported by US National Science Foundation awards ANT-1142162 and PLR-1341728.

  2. History of the Greenland Ice Sheet: paleoclimatic insights

    USGS Publications Warehouse

    Alley, Richard B.; Andrews, John T.; Brigham-Grette, J.; Clarke, G.K.C.; Cuffey, Kurt M.; Fitzpatrick, J.J.; Funder, S.; Marshall, S.J.; Miller, G.H.; Mitrovica, J.X.; Muhs, D.R.; Otto-Bliesner, B. L.; Polyak, L.; White, J.W.C.

    2010-01-01

    Paleoclimatic records show that the GreenlandIce Sheet consistently has lost mass in response to warming, and grown in response to cooling. Such changes have occurred even at times of slow or zero sea-level change, so changing sea level cannot have been the cause of at least some of the ice-sheet changes. In contrast, there are no documented major ice-sheet changes that occurred independent of temperature changes. Moreover, snowfall has increased when the climate warmed, but the ice sheet lost mass nonetheless; increased accumulation in the ice sheet's center has not been sufficient to counteract increased melting and flow near the edges. Most documented forcings and ice-sheet responses spanned periods of several thousand years, but limited data also show rapid response to rapid forcings. In particular, regions near the ice margin have responded within decades. However, major changes of central regions of the ice sheet are thought to require centuries to millennia. The paleoclimatic record does not yet strongly constrain how rapidly a major shrinkage or nearly complete loss of the ice sheet could occur. The evidence suggests nearly total ice-sheet loss may result from warming of more than a few degrees above mean 20th century values, but this threshold is poorly defined (perhaps as little as 2 °C or more than 7 °C). Paleoclimatic records are sufficiently sketchy that the ice sheet may have grown temporarily in response to warming, or changes may have been induced by factors other than temperature, without having been recorded.

  3. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice

  4. Late Weichselian ice-sheet dynamics and deglaciation history of the northern Svalbard margin

    NASA Astrophysics Data System (ADS)

    Fransner, O.; Noormets, R. R. N. N.; Flink, A.; Hogan, K.; Dowdeswell, J. A.; O'Regan, M.; Jakobsson, M.

    2016-12-01

    The glacial evolution of the northern Svalbard margin is poorly known compared with the western margin. Gravity cores, swath bathymetric, sub-bottom acoustic and 2D airgun data are used to investigate the Late Weichselian Svalbard-Barents Ice Sheet history on the northern Svalbard margin. Prograding sequences in Kvitøya and Albertini trough mouths (TMs) indicate ice streaming to the shelf edge multiple times during the Quaternary. While Kvitøya Trough has an associated trough-mouth fan (TMF), Albertini TM is cut back into the shelf edge. Down-faulted bedrock below Albertini TM suggests larger sediment accommodation space there, explaining the absence of a TMF. The bathymetry indicates that ice flow in Albertini Trough was sourced from Duvefjorden and Albertinibukta. Exposed crystalline bedrock likely kept the two ice flows separated before merging north of Karl XII-Øya. Subglacial landforms in Rijpfjorden and Duvefjorden indicate that both fjords accommodated northward-flowing ice streams during the LGM. The deeper fjord basin and higher elongation ratios of landforms in Duvefjorden suggest a more focused and/or larger ice flow there. Easily erodible sedimentary rocks are common in Duvefjorden, which may explain different ice flow dynamics in these fjords. Kvitøya TMF is flanked by gullies, probably formed through erosive downslope gravity flows triggered by sediment-laden meltwater during early deglaciation. Glacial landforms in Albertini Trough comprise retreat-related landforms indicating slow deglaciation. Iceberg scours in Albertini Trough suggest the importance of calving for mass-loss. Sets of De Geer moraines in Rijpfjorden imply that slow, grounded retreat continued in <210 m water depth. Lack of retreat-related landforms in deeper areas of Rijpfjorden and in Duvefjorden indicates floating glacier fronts influenced by calving. 14C ages suggest that deglaciation of inner Rijpfjorden and central Duvefjorden were complete before 10,434 cal a BP and 10

  5. Reconstructing the post-LGM decay of the Eurasian Ice Sheets with Ice Sheet Models; data-model comparison and focus on the Storfjorden (Svalbard) ice stream dynamics history

    NASA Astrophysics Data System (ADS)

    Petrini, Michele; Kirchner, Nina; Colleoni, Florence; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G.; Forte, Emanuele; Colucci, Renato R.

    2017-04-01

    The challenge of reconstructing palaeo-ice sheets past growth and decay represent a critical task to better understand mechanisms of present and future global climate change. Last Glacial Maximum (LGM), and the subsequent deglaciation until Pre-Industrial time (PI) represent an excellent testing ground for numerical Ice Sheet Models (ISMs), due to the abundant data available that can be used in an ISM as boundary conditions, forcings or constraints to test the ISMs results. In our study, we simulate with ISMs the post-LGM decay of the Eurasian Ice Sheets, with a focus on the marine-based Svalbard-Barents Sea-Kara Sea Ice Sheet. In particular, we aim to reconstruct the Storfjorden ice stream dynamics history by comparing the model results with the marine geological data (MSGLs, GZWs, sediment cores analysis) available from the area, e.g., Pedrosa et al. 2011, Rebesco et al. 2011, 2013, Lucchi et al. 2013. Two hybrid SIA/SSA ISMs are employed, GRISLI, Ritz et al. 2001, and PSU, Pollard&DeConto 2012. These models differ mainly in the complexity with which grounding line migration is treated. Climate forcing is interpolated by means of climate indexes between LGM and PI climate. Regional climate indexes are constructed based on the non-accelerated deglaciation transient experiment carried out with CCSM3, Liu et al. 2009. Indexes representative of the climate evolution over Siberia, Svalbard and Scandinavia are employed. The impact of such refined representation as opposed to the common use of the NGRIP δ18O index for transient experiments is analysed. In this study, the ice-ocean interaction is crucial to reconstruct the Storfjorden ice stream dynamics history. To investigate the sensitivity of the ice shelf/stream retreat to ocean temperature, we allow for a space-time variation of basal melting under the ice shelves by testing two-equations implementations based on Martin et al. 2011 forced with simulated ocean temperature and salinity from the TraCE-21ka coupled

  6. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading Rate Applications - History and Rationale

    DTIC Science & Technology

    2017-04-20

    Categorization Guide for High -Loading- Rate Applications – History and Rationale by Robert Jensen, David Flanagan, Daniel DeSchepper, and Charles...Adhesives: Test Method, Group Assignment, and Categorization Guide for High -Loading- Rate Applications – History and Rationale by Robert Jensen...Categorization Guide for High - Loading-Rate Applications – History and Rationale 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  7. Dynamic Crush Characterization of Ice

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris

    2006-01-01

    During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter's wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.

  8. Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes

    USGS Publications Warehouse

    Moros, M.; Andrews, John T.; Eberl, D.D.; Jansen, E.

    2006-01-01

    We present new high-resolution proxy data for the Holocene history of drift ice off Iceland based on the mineralogy of the <2-mm sediment fraction using quantitative X-ray diffraction. These new data, bolstered by a comparison with published proxy records, point to a long-term increasing trend in drift ice input into the North Atlantic from 6 to 5 ka toward the present day at sites influenced by the cold east Greenland Current. This feature reflects the late Holocene Neoglacial or cooling period recorded in ice cores and further terrestrial archives on Greenland. In contrast, a decrease in drift ice during the same period is recorded at sites underlying the North Atlantic Drift, which may reflect a warming of this region. The results document that Holocene changes in iceberg rafting and sea ice advection did not occur uniformly across the North Atlantic. Centennial-scale climate variability in the North Atlantic region over the last ???4 kyr is linked to the observed changes in drift ice input. Increased drift ice may have played a role in the increase of cold intervals during the late Holocene, e.g., the Little Ice Age cooling. Copyright 2006 by the American Geophysical Union.

  9. Improved predictions of atmospheric icing in Norway

    NASA Astrophysics Data System (ADS)

    Engdahl, Bjørg Jenny; Nygaard, Bjørn Egil; Thompson, Gregory; Bengtsson, Lisa; Berntsen, Terje

    2017-04-01

    Atmospheric icing of ground structures is a problem in cold climate locations such as Norway. During the 2013/2014 winter season two major power lines in southern Norway suffered severe damage due to ice loads exceeding their design values by two to three times. Better methods are needed to estimate the ice loads that affect various infrastructure, and better models are needed to improve the prediction of severe icing events. The Wind, Ice and Snow loads Impact on Infrastructure and the Natural Environment (WISLINE) project, was initiated to address this problem and to explore how a changing climate may affect the ice loads in Norway. Creating better forecasts of icing requires a proper simulation of supercooled liquid water (SLW). Preliminary results show that the operational numerical weather prediction model (HARMONIE-AROME) at MET-Norway generates considerably lower values of SLW as compared with the WRF model when run with the Thompson microphysics scheme. Therefore, we are piecewise implementing specific processes found in the Thompson scheme into the AROME model and testing the resulting impacts to prediction of SLW and structural icing. Both idealized and real icing cases are carried out to test the newly modified AROME microphysics scheme. Besides conventional observations, a unique set of specialized instrumentation for icing measurements are used for validation. Initial results of this investigation will be presented at the conference.

  10. In search of laterally heterogeneous viscosity models of Glacial Isostatic Adjustment with the ICE-6G_C global ice history model

    NASA Astrophysics Data System (ADS)

    Li, Tanghua; Wu, Patrick; Steffen, Holger; Wang, Hansheng

    2018-05-01

    Most models of Glacial Isostatic Adjustment (GIA) assume that the Earth is laterally homogeneous. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Previous studies of GIA with lateral heterogeneity mostly focused on its effect or sensitivity on GIA predictions, and it is not clear to what extent can lateral heterogeneity solve the misfits between GIA predictions and observations. Our aim is to search for the best 3D viscosity models that can simultaneously fit the global relative sea-level (RSL) data, the peak uplift rates (u-dot from GNSS) and peak gravity-rate-of-change (g-dot from the GRACE satellite mission) in Laurentia and Fennoscandia. However, the search is dependent on the ice and viscosity model inputs - the latter depends on the background viscosity and the seismic tomography models used. In this paper, the ICE-6G_C ice model, with Bunge & Grand's seismic tomography model and background viscosity models close to VM5 will be assumed. A Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea level change with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. Several laterally heterogeneous models are found to fit the global sea level data better than laterally homogeneous models. Two of these laterally heterogeneous models also fit the ICE-6G_C peak g-dot and u-dot rates observed in Laurentia simultaneously. However, even with the introduction of lateral heterogeneity, no model that is able to fit the present-day g-dot and uplift rate data in Fennoscandia has been found. Therefore, either the ice history of ICE-6G_C in Fennoscandia and Barent Sea needs some modifications, or the sub-lithospheric property/non-thermal effect underneath northern Europe must be different from that underneath Laurentia.

  11. The Antarctic Ice.

    ERIC Educational Resources Information Center

    Radok, Uwe

    1985-01-01

    The International Antarctic Glaciological Project has collected information on the East Antarctic ice sheet since 1969. Analysis of ice cores revealed climatic history, and radar soundings helped map bedrock of the continent. Computer models of the ice sheet and its changes over time will aid in predicting the future. (DH)

  12. High glycemic load diet, milk and ice cream consumption are related to acne vulgaris in Malaysian young adults: a case control study.

    PubMed

    Ismail, Noor Hasnani; Manaf, Zahara Abdul; Azizan, Noor Zalmy

    2012-08-16

    The role of dietary factors in the pathophysiology of acne vulgaris is highly controversial. Hence, the aim of this study was to determine the association between dietary factors and acne vulgaris among Malaysian young adults. A case-control study was conducted among 44 acne vulgaris patients and 44 controls aged 18 to 30 years from October 2010 to January 2011. Comprehensive acne severity scale (CASS) was used to determine acne severity. A questionnaire comprising items enquiring into the respondent's family history and dietary patterns was distributed. Subjects were asked to record their food intake on two weekdays and one day on a weekend in a three day food diary. Anthropometric measurements including body weight, height and body fat percentage were taken. Acne severity was assessed by a dermatologist. Cases had a significantly higher dietary glycemic load (175 ± 35) compared to controls (122 ± 28) (p < 0.001). The frequency of milk (p < 0.01) and ice-cream (p < 0.01) consumptions was significantly higher in cases compared to controls. Females in the case group had a higher daily energy intake compared to their counterparts in the control group, 1812 ± 331 and 1590 ± 148 kcal respectively (p < 0.05). No significant difference was found in other nutrient intakes, Body Mass Index, and body fat percentage between case and control groups (p > 0.05). Glycemic load diet and frequencies of milk and ice cream intake were positively associated with acne vulgaris.

  13. Sea-level responses to sediment transport over the last ice age cycle

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2013-12-01

    Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where

  14. A GCM Recent History of Northern Martian Polar Layered Deposits: Contribution from Past Equatorial Ice Reservoirs

    NASA Technical Reports Server (NTRS)

    Levrard, B.; Laskar, J.; Montmessin, F.; Forget, F.

    2005-01-01

    Polar layered deposits are exposed in the walls of the troughs cutting the north polar cap of Mars. They consist of alternating ice and dust layers or layers of an ice-dust mixture with varying proportions and are found throughout the cap. Layers thickness ranges from meters to several tens of meters with an approximately 30 meter dominant wavelength. Although their formation processes is not known, they are presumed to reflect changes in ice and dust stability over orbital and axial variations. Intensive 3-D LMD GCM simulations of the martian water cycle have been thus performed to determine the annual rates of exchange of surface ice between the northern cap and tropical areas for a wide range of obliquity and orbital parameters values.These rates have been employed to reconstruct an history of the northern cap and test simple models of dust-ice layers formation over the last 10 Ma orbital variations. We use the 3-D water cycle model simulated by the 3-D LMD GCM with an intermediate grid resolution (7.5 longitude x 5.625 latitude) and 25 vertical levels. The dust opacity is constant and set to 0,15. No exchange of ice with regolith is allowed. The evolution of the northern cap over obliquity and orbital changes (eccentricity, Longitude of perihelion) has been recently described with this model. High summer insolation favors transfer of ice from the northern pole to the Tharsis and Olympus Montes, while at low obliquity, unstable equatorial ice is redeposited in high-latitude and polar areas of both hemisphere. The disappearance of the equatorial ice reservoir leads to a poleward recession of icy high latitude reservoirs, providing an additional source for the cap accumulation during each obliquity or orbital cycle. Furthering the efforts, a quantitative evolution of ice reservoirs is here investigated for various astronomical conditions.

  15. Yield surface evolution for columnar ice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  16. Glacial isostatic stress shadowing by the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  17. Late Holocene ice wedges near Fairbanks, Alaska, USA: Environmental setting and history of growth

    USGS Publications Warehouse

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The wedges occur in peat that has accumulated since about 3500 yr BP and have grown episodically as the permafrost table fluctuated in response to fires, other local site conditions and perhaps regional climatic changes. Radiocarbon dates suggest one or two episodes of ice-wedge growth between about 3500 and 2000 yr BP as woody peat accumulated at the site. Subsequent wedge truncation evidently followed a fire that charred the peat. Younger peat exhibits facies changes between sedge-rich components that filled troughs over the ice wedges and woody bryophytic deposits that formed beyond the troughs. A final episode of wedge development took place within the past few hundred years. Pollen data from the site indicate that boreal forest was present throughout the past 6000 yr, but that it underwent a gradual transition from a predominantly deciduous to a spruce-dominated assemblage. This change may reflect either local site conditions or a more general climatic shift to cooler, moister summers in late Holocene time. The history of ice-wedge growth shows that wedges can form and grow to more than 1 m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5°C) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8°C in the zone of continuous permafrost is invalid.

  18. Reconstructing the history of major Greenland glaciers since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; van der Veen, C. J.; Stearns, L.; Babonis, G. S.

    2008-12-01

    The Greenland Ice Sheet may have been responsible for rapid sea level rise during the last interglacial period and recent studies indicate that it is likely to make a faster contribution to sea-level rise than previously believed. Rapid thinning and velocity increase has been observed on most major outlet glaciers with terminus retreat that might lead to increased discharge from the interior and consequent further thinning and retreat. Potentially, such behavior could have serious implications for global sea level. However, the current thinning may simply be a manifestation of longer-term behavior of the ice sheet as it responds to the general warming following the Little Ice Age (LIA). Although Greenland outlet glaciers have been comprehensively monitored since the 1980s, studies of long-term changes mostly rely on records of the calving front position. Such records can be misleading because the glacier terminus, particularly if it is afloat, can either advance or retreat as ice further upstream thins and accelerates. To assess whether recent trends deviate from longer-term behavior, we examined three rapidly thinning and retreating outlet glaciers, Jakobshavn Isbrae in west, Kangerdlussuaq Glacier in east and Petermann Glacier in northwest Greenland. Glacier surface and trimline elevations, as well as terminus positions were measured using historical photographs and declassified satellite imagery acquired between the 1940s and 1985. These results were combined with data from historical records, ground surveys, airborne laser altimetry, satellite observations and field mapping of lateral moraines and trimlines, to reconstruct the history of changes since the (LIA) up to the present. We identified several episodes of rapid thinning and ice shelf break-up, including thinning episodes that occurred when the calving front was stationary. Coastal weather station data are used to assess the influence of air temperatures and intensity of surface melting, and to isolate

  19. High glycemic load diet, milk and ice cream consumption are related to acne vulgaris in Malaysian young adults: a case control study

    PubMed Central

    2012-01-01

    Background The role of dietary factors in the pathophysiology of acne vulgaris is highly controversial. Hence, the aim of this study was to determine the association between dietary factors and acne vulgaris among Malaysian young adults. Methods A case–control study was conducted among 44 acne vulgaris patients and 44 controls aged 18 to 30 years from October 2010 to January 2011. Comprehensive acne severity scale (CASS) was used to determine acne severity. A questionnaire comprising items enquiring into the respondent’s family history and dietary patterns was distributed. Subjects were asked to record their food intake on two weekdays and one day on a weekend in a three day food diary. Anthropometric measurements including body weight, height and body fat percentage were taken. Acne severity was assessed by a dermatologist. Results Cases had a significantly higher dietary glycemic load (175 ± 35) compared to controls (122 ± 28) (p < 0.001). The frequency of milk (p < 0.01) and ice-cream (p < 0.01) consumptions was significantly higher in cases compared to controls. Females in the case group had a higher daily energy intake compared to their counterparts in the control group, 1812 ± 331 and 1590 ± 148 kcal respectively (p < 0.05). No significant difference was found in other nutrient intakes, Body Mass Index, and body fat percentage between case and control groups (p > 0.05). Conclusions Glycemic load diet and frequencies of milk and ice cream intake were positively associated with acne vulgaris. PMID:22898209

  20. The genetic history of Ice Age Europe

    PubMed Central

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit; Peltzer, Alexander; Rohland, Nadin; Slon, Viviane; Talamo, Sahra; Lazaridis, Iosif; Lipson, Mark; Mathieson, Iain; Schiffels, Stephan; Skoglund, Pontus; Derevianko, Anatoly P.; Drozdov, Nikolai; Slavinsky, Vyacheslav; Tsybankov, Alexander; Cremonesi, Renata Grifoni; Mallegni, Francesco; Gély, Bernard; Vacca, Eligio; González Morales, Manuel R.; Straus, Lawrence G.; Neugebauer-Maresch, Christine; Teschler-Nicola, Maria; Constantin, Silviu; Moldovan, Oana Teodora; Benazzi, Stefano; Peresani, Marco; Coppola, Donato; Lari, Martina; Ricci, Stefano; Ronchitelli, Annamaria; Valentin, Frédérique; Thevenet, Corinne; Wehrberger, Kurt; Grigorescu, Dan; Rougier, Hélène; Crevecoeur, Isabelle; Flas, Damien; Semal, Patrick; Mannino, Marcello A.; Cupillard, Christophe; Bocherens, Hervé; Conard, Nicholas J.; Harvati, Katerina; Moiseyev, Vyacheslav; Drucker, Dorothée G.; Svoboda, Jiří; Richards, Michael P.; Caramelli, David; Pinhasi, Ron; Kelso, Janet; Patterson, Nick; Krause, Johannes; Pääbo, Svante; Reich, David

    2016-01-01

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history. PMID:27135931

  1. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    NASA Astrophysics Data System (ADS)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  2. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  3. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Cole-Dai, Jihong; Mosley-Thompson, Ellen; Thompson, Lonnie G.

    1997-07-01

    The continuous sulfate analysis of two Antarctic ice cores, one from the Antarctic Peninsula region and one from West Antarctica, provides an annually resolved proxy history of southern semisphere volcanism since early in the 15th century. The dating is accurate within ±3 years due to the high rate of snow accumulation at both core sites and the small sample sizes used for analysis. The two sulfate records are consistent with each other. A systematic and objective method of separating outstanding sulfate events from the background sulfate flux is proposed and used to identify all volcanic signals. The resulting volcanic chronology covering 1417-1989 A.D. resolves temporal ambiguities about several recently discovered events. A number of previously unknown, moderate eruptions during late 1600s are uncovered in this chronology. The eruption of Tambora (1815) and the recently discovered eruption of Kuwae (1453) in the tropical South Pacific injected the greatest amount of sulfur dioxide into the southern hemisphere stratosphere during the last half millennium. A technique for comparing the magnitude of volcanic events preserved within different ice cores is developed using normalized sulfate flux. For the same eruptions the variability of the volcanic sulfate flux between the cores is within ±20% of the sulfate flux from the Tambora eruption.

  4. Atmospheric icing of structures: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Ágústsson, H.; Elíasson, Á. J.; Thorsteins, E.; Rögnvaldsson, Ó.; Ólafsson, H.

    2012-04-01

    This study compares observed icing in a test span in complex orography at Hallormsstaðaháls (575 m) in East-Iceland with parameterized icing based on an icing model and dynamically downscaled weather at high horizontal resolution. Four icing events have been selected from an extensive dataset of observed atmospheric icing in Iceland. A total of 86 test-spans have been erected since 1972 at 56 locations in complex terrain with more than 1000 icing events documented. The events used here have peak observed ice load between 4 and 36 kg/m. Most of the ice accretion is in-cloud icing but it may partly be mixed with freezing drizzle and wet snow icing. The calculation of atmospheric icing is made in two steps. First the atmospheric data is created by dynamically downscaling the ECMWF-analysis to high resolution using the non-hydrostatic mesoscale Advanced Research WRF-model. The horizontal resolution of 9, 3, 1 and 0.33 km is necessary to allow the atmospheric model to reproduce correctly local weather in the complex terrain of Iceland. Secondly, the Makkonen-model is used to calculate the ice accretion rate on the conductors based on the simulated temperature, wind, cloud and precipitation variables from the atmospheric data. In general, the atmospheric model correctly simulates the atmospheric variables and icing calculations based on the atmospheric variables correctly identify the observed icing events, but underestimate the load due to too slow ice accretion. This is most obvious when the temperature is slightly below 0°C and the observed icing is most intense. The model results improve significantly when additional observations of weather from an upstream weather station are used to nudge the atmospheric model. However, the large variability in the simulated atmospheric variables results in high temporal and spatial variability in the calculated ice accretion. Furthermore, there is high sensitivity of the icing model to the droplet size and the possibility that

  5. Verification of rain-flow reconstructions of a variable amplitude load history. M.S. Thesis, 1990 Final Report

    NASA Technical Reports Server (NTRS)

    Clothiaux, John D.; Dowling, Norman E.

    1992-01-01

    The suitability of using rain-flow reconstructions as an alternative to an original loading spectrum for component fatigue life testing is investigated. A modified helicopter maneuver history is used for the rain-flow cycle counting and history regenerations. Experimental testing on a notched test specimen over a wide range of loads produces similar lives for the original history and the reconstructions. The test lives also agree with a simplified local strain analysis performed on the specimen utilizing the rain-flow cycle count. The rain-flow reconstruction technique is shown to be a viable test spectrum alternative to storing the complete original load history, especially in saving computer storage space and processing time. A description of the regeneration method, the simplified life prediction analysis, and the experimental methods are included in the investigation.

  6. Cleaning frequency and the microbial load in ice-cream.

    PubMed

    Holm, Sonya; Toma, Ramses B; Reiboldt, Wendy; Newcomer, Chris; Calicchia, Melissa

    2002-07-01

    This study investigates the efficacy of a 62 h cleaning frequency in the manufacturing of ice-cream. Various product and product contact surfaces were sampled progressively throughout the time period between cleaning cycles, and analyzed for microbial growth. The coliform and standard plate counts (SPC) of these samples did not vary significantly over time after 0, 24, 48, or 62 h from Cleaning in Place (CiP). Data for product contact surfaces were significant for the SPC representing sample locations. Some of the variables in cleaning practices had significant influence on microbial loads. An increase in the number of flavors manufactured caused a decrease in SPC within the 24 h interval, but by the 48 h interval the SPC increased. More washouts within the first 24 h interval were favorable, as indicated by decreased SPC. The more frequently the liquefier was sanitized within the 62 h interval, the lower the SPC. This study indicates that food safety was not compromised and safety practices were effectively implemented throughout the process.

  7. Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness

    NASA Technical Reports Server (NTRS)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.

    2000-01-01

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  8. Proceedings of the Airframe Icing Workshop

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  9. Hip ontogenesis: how evolution, genes, and load history shape hip morphotype and cartilotype.

    PubMed

    Hogervorst, Tom; Eilander, Wouter; Fikkers, Joost T; Meulenbelt, Ingrid

    2012-12-01

    Developmental hip disorders (DHDs), eg, developmental dysplasia of the hip, slipped capitis femoris epiphysis, and femoroacetabular impingement, can be considered morphology variants of the normal hip. The femoroacetabular morphology of DHD is believed to induce osteoarthritis (OA) through local cumulative mechanical overload acting on genetically controlled patterning systems and subsequent damage of joint structures. However, it is unclear why hip morphology differs between individuals with seemingly comparable load histories and why certain hips with DHD progress to symptomatic OA whereas others do not. We asked (1) which mechanical factors influence growth and development of the proximal femur; and (2) which genes or genetic mechanisms are associated with hip ontogenesis. We performed a systematic literature review of mechanical and genetic factors of hip ontogeny. We focused on three fields that in recent years have advanced our knowledge of adult hip morphology: imaging, evolution, and genetics. WHERE ARE WE NOW?: Mechanical factors can be understood in view of human evolutionary peculiarities and may summate to load histories conducive to DHD. Genetic factors most likely act through multiple genes, each with modest effect sizes. Single genes that explain a DHD are therefore unlikely to be found. Apparently, the interplay between genes and load history not only determines hip morphotype, but also joint cartilage robustness ("cartilotype") and resistance to symptomatic OA. WHERE DO WE NEED TO GO?: We need therapies that can improve both morphotype and cartilotype. HOW DO WE GET THERE?: Better phenotyping, improving classification systems of hip morphology, and comparative population studies can be done with existing methods. Quantifying load histories likely requires new tools, but proof of principle of modifying morphotype in treatment of DDH and of cartilotype with exercise is available.

  10. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  11. Effects of Sediment Loading in Northern Europe During the Last Glacial

    NASA Astrophysics Data System (ADS)

    van der Wal, W.; IJpelaar, M.

    2014-12-01

    Over the years the framework of GIA modelling has been subject to continuous improvements, e.g. the addition of time dependent coastal margins and rotational feedback. The latest addition to this framework is the incorporation of sediment as a time-varying surface load while accounting for sea-level variations associated with the sediment transport (Dalca et al., GJI 2013). The effects of sediment loading during a glacial cycle have not been extensively investigated even though it is known that large sediment transport took place, for example in the Barents Sea region and Fennoscandia. This study investigates the effect of sediment transport on relative sea level change and present-day rates of gravity and vertical deformation in those regions. While the ice sheet history during the last glacial period has been modelled extensively there are no full-scale models of paleo-erosion and -deposition rates for regions such as Fennoscandia. Here we create end-member paleo-sedimentary models by combining geological observations of continuous erosion and deposition and large scale failure events. These models, in combination with the ICE-5G ice sheet history, serve as an input for a GIA model for a spherically symmetric incompressible Earth with the full sea-level equation. The results from this model, i.e. (rates of) relative sea level change and crustal deformation, are obtained for different viscosity models fitting best with the local rheology of Fennoscandia. By comparing GPS measurements, GRACE observations and relative sea level records with these modelled predictions the effects of sedimentary isostasy in the Fennoscandian region are studied. The sediment load does not significantly affect the modelled relative sea level curves, nor vertical deformation rates at the location of GPS measurements. However, gravity rates over the Barents Sea region are influenced significantly

  12. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in

  13. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  14. Helicopter rotor noise investigation during ice accretion

    NASA Astrophysics Data System (ADS)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  15. Effect of Mantle Rheology on Viscous Heating induced during Ice Sheet Cycles

    NASA Astrophysics Data System (ADS)

    Huang, Pingping; Wu, Patrick; van der Wal, Wouter

    2017-04-01

    Hanyk et al. (2005) studied the viscous shear heating in the mantle induced by the surface loading and unloading of a parabolic-shaped Laurentide-size ice sheet. They found that for linear rheology, viscous heating is mainly concentrated below the ice sheet. The depth extent of the heating in the mantle is determined by the viscosity distribution. Also, the magnitude of viscous heating is significantly affected by the rate of ice thickness change. However, only one ice sheet has been considered in their work and the interactions between ice sheets and ocean loading have been neglected. Furthermore, only linear rheology has been considered, although they suggested that non-Newtonian rheology may have a stronger effect. Here we follow Hanyk et al. (2005) and computed the viscous dissipation for viscoelastic models using the finite element methodology of Wu (2004) and van der Wal et al. (2010). However, the global ICE6G model (Peltier et al. 2015) with realistic oceans is used here to provide the surface loading. In addition, viscous heating in non-linear rheology, composite rheology, in addition to linear rheology with uniform or VM5a profile are computed and compared. Our results for linear rheology mainly confirm the findings of Hanyk et al. (2005). For both non-linear and composite rheologies, viscous heating is also mainly distributed near and under the ice sheets, but, more concentrated; depending on the horizontal dimension of the ice sheet, it can extend into the lower mantle, but for some of the time, not as deep as that for linear rheology. For composite rheology, the viscous heating is dominated by the effect of non-linear relation between the stress and the strain. The ice history controls the time when the local maximum in viscous heating appears. However, the magnitude of the viscous heating is affected by mantle rheology as well as the ice loading. Due to viscosity stratification, the shape of the region with high viscous heating in model VM5a is a

  16. Reconstructing lake ice cover in subarctic lakes using a diatom-based inference model

    NASA Astrophysics Data System (ADS)

    Weckström, Jan; Hanhijärvi, Sami; Forsström, Laura; Kuusisto, Esko; Korhola, Atte

    2014-03-01

    A new quantitative diatom-based lake ice cover inference model was developed to reconstruct past ice cover histories and applied to four subarctic lakes. The used ice cover model is based on a calculated melting degree day value of +130 and a freezing degree day value of -30 for each lake. The reconstructed Holocene ice cover duration histories show similar trends to the independently reconstructed regional air temperature history. The ice cover duration was around 7 days shorter than the average ice cover duration during the warmer early Holocene (approximately 10 to 6.5 calibrated kyr B.P.) and around 3-5 days longer during the cool Little Ice Age (approximately 500 to 100 calibrated yr B.P.). Although the recent climate warming is represented by only 2-3 samples in the sediment series, these show a rising trend in the prolonged ice-free periods of up to 2 days. Diatom-based ice cover inference models can provide a powerful tool to reconstruct past ice cover histories in remote and sensitive areas where no measured data are available.

  17. Detrital zircon fission track analysis reveals the thermotectonic history of ice-covered rocks of the Chugach-St. Elias orogen, SE-Alaska

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Garver, J. I.; Pavlis, T. L.; Bruhn, R. L.; Chapman, J. B.

    2007-12-01

    Investigating the exhumation history of the Chugach-St. Elias orogen (SE Alaska) using low-temperature thermochronometers is challenged by significant ice cover. Assuming exhumation drove cooling, cooling ages increase with elevation in an orogenic belt, and as such the youngest ages occur in valley bottoms. Cooling and exhumation rates are expected to be very high in the Chugach-St. Elias orogen due to efficient glacial erosion and the most intense erosion occurs under the major ice fields. To study the cooling history of rapidly exhuming rocks underneath this ice cover, we analyzed detrital zircon fission track (DZFT) ages of Recent sand samples from modern rivers that drain the central Bagley Ice field and smaller glaciers draining north (Chitina valley) and south (Pacific) of the mountain range. A distinct advantage of DZFT is that it allows one to sample a landscape regardless of accessibility. The youngest ZFT component populations of samples north and south of the Bagley Ice field record a Late Miocene (5-13 Ma) cooling of the orogen. The pattern of cooling ages shows symmetry across the orogen predates the earliest record of the collision of the Yakutat terrane with Alaska. This result contrasts with the asymmetric cooling pattern displayed by low- temperature thermochronological ages (AFT and AHe) of the exposed bedrock within the range. Apatite FT and U- Th/He ages of bedrock samples south of the Bagley Ice field record the syn-collisional (<5 Ma) fast exhumation whereas apatite ages to the north reveal more heterogeneous exhumation and vary widely from Miocene to Eocene. The bedrock samples from throughout the orogenic belt thus display predominantly the effects of the recent climatic situation of the mountain range with very high precipitation on the south, seaward side versus a more arid north side. Our ZFT results from the northern drainages highlight the relative sense and timing of two important fault zones, both accommodate south-side-up exhumation

  18. POLLiCE (POLLen in the iCE): climate history from Adamello ice cores

    NASA Astrophysics Data System (ADS)

    Cristofori, Antonella; Festi, Daniela; Maggi, Valter; Casarotto, Christian; Bertoni, Elena; Vernesi, Cristiano

    2017-04-01

    Glaciers can be viewed as the most complete and effective past climate and environment archives severely threatened by climate change. These threats are particularly dramatic across European Alps. The Adamello glacier is the largest, 16.4 km2, and deepest, 270 m, Italian glacier. We aim at estimating biodiversity changes over the last centuries in relation to climate and human activities in the Adamello catchment area. We, therefore, recently launched the POLLiCE project (pollice.fmach.it) for specifically targeting the biological component (e.g. pollen, leaves, plant remains) trapped in ice cores. Classical morphological pollen analysis will be accompanied by DNA metabarcoding. This approach has the potential to provide a detailed taxonomical identification - at least genus level- thus circumventing the limitations of microscopic analysis such as time-consuming procedures and shared features of pollen grains among different taxa. Moreover, ice cores are subjected to chemical and physical analyses - stable isotopes, ions, hyperspectral imaging, etc.- for stratigraphic and climatic determination of seasonality. A pilot drilling was conducted on March 2015 and the resulting 5 m core has been analysed in terms of pollen spectrum, stable isotopes and ions in order to demonstrate the feasibility of the study. The first encouraging results showed that even in this superficial core a stratigraphy is evident with indication of seasonality as highlighted by both by pollen taxa and stable isotopes. Finally, DNA has been successfully extracted and amplified with specific DNA barcodes. A medium drilling was performed on April 2016 with the extraction of a 45 m ice core. The analysis of this core constitutes the subject of a specific research project, CALICE*, just funded by Euregio Science Fund (IPN57). The entire depth, 270 m, of the Adamello glacier is scheduled to be drilled in 2018 winter to secure the unique memory archived by the ice. * See EGU2017 poster by Festi et al

  19. Action of a Local Time-Periodic Load on an Ice Sheet with a Crack

    NASA Astrophysics Data System (ADS)

    Tkacheva, L. A.

    2017-11-01

    The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener-Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.

  20. Terrestrial Ice Sheets: Studies of Climate History, Internal Structure, Surface, and Bedrock

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Th.; Kipfstuhl, J.; Nixdorf, U.; Oerter, H.; Miller, H.; Fritsche, D.; Jung-Rothenhaeusler, F.; Mayer, C.; Schwager, M.; Wilhelms, F.; Steinhage, D.; Goektas, F.

    1998-01-01

    Recently drilled deep ice cores from Central Greenland (GRIP and GISP2) provide the most detailed results available on climatic variation in the northern hemisphere during the last 100,000 years, a period that includes the Holocene (0-11.5 ka) and most of the Wisconsin glacial period. Summer-winter variation in various physical and chemical properties of polar ice allows dating of ice cores by annual layer counting. Several such methods are currently being employed on an ice core drilled by the new North Greenland Ice Core Project (NGRIP), which is aimed at extending the Greenland ice palaeoclimatic record through the last interglacial, the Eemian. Two examples will be presented: (1) visual and photographic studies of seasonal variation in stratigraphic layering, crystal size, air bubble and clathrate concentration, and (2) studies of electric stratigraphy, using the method of dielectric profiling (DEP). This method records the AC conductivity of ice cores, which is negatively correlated with the concentration of airborne dust in the ice but positively correlated with volcanic and marine aerosols. Comprehensive surface traverse programs, which include shallow coring and ice velocity measurements, have recently been carried out by the Alfred Wegener Institute in previously little-investigated regions of Greenland and Antarctica. Serving partly as reconnaissance prior to deep drilling projects, such studies also help to reduce considerable uncertainties in the mass balance of the two large polar ice sheets and thus in their estimated response to climate change. Main results of a recent traverse in North Greenland include the following: (1) A new map of the accumulation distribution on the ice sheet indicates a large low-accumulation region in Northeast-Greenland; (2) North Greenland records show significantly greater climatic variability during the last 500 yr than corresponding records from the southern part of the ice sheet; and (3) data on variation in

  1. Impact of aerosols on ice crystal size

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  2. Exploring the effect of East Antarctic ice mass loss on GIA-induced horizontal bedrock motions

    NASA Astrophysics Data System (ADS)

    Konfal, S. A.; Whitehouse, P. L.; Hermans, T.; van der Wal, W.; Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I.; Smalley, R., Jr.

    2017-12-01

    Ice history inputs used in Antarctic models of GIA include major centers of ice mass loss in West Antarctica. In the Transantarctic Mountains (TAM) region spanning the boundary between East and West Antarctica, horizontal crustal motions derived from GPS observations from the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET) are towards these West Antarctic ice mass centers, opposite to the pattern of radial crustal motion expected in an unloading scenario. We investigate alternative ice history and earth structure inputs to GIA models in an attempt to reproduce observed crustal motions in the region. The W12 ice history model is altered to create scenarios including ice unloading in the Wilkes Subglacial Basin based on available glaciological records. These altered ice history models, along with the unmodified W12 ice history model, are coupled with 60 radially varying (1D) earth model combinations, including approximations of optimal earth profiles identified in published GIA models. The resulting model-predicted motions utilizing both the modified and unmodified ice history models fit ANET GPS-derived crustal motions in the northern TAM region for a suite of earth model combinations. Further south, where the influence of simulated Wilkes unloading is weakest and West Antarctic unloading is strongest, observed and predicted motions do not agree. The influence of simulated Wilkes ice unloading coupled with laterally heterogeneous earth models is also investigated. The resulting model-predicted motions do not differ significantly between the original W12 and W12 with simulated Wilkes unloading ice histories.

  3. Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.

    2008-12-01

    Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.

  4. Ice Engineering - study of Related Properties of Floating Sea-Ice Sheets and Summary of Elastic and Viscoelastic Analyses

    DTIC Science & Technology

    1977-12-01

    Ice Plate Example. To demonstrate the capability of the visco- elastic finite-element computer code (5), the structural response of an infinite ... sea -ice plate on a fluid foundation is investigated for a simulated aircraft loading condition and, using relaxation functions, is determined

  5. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2016-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  6. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  7. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa; Bentley, Michael J.; King, Matt

    2014-05-01

    The Holocene deglaciation of West Antarctica resulted in widespread ice surface lowering. While many ice-sheet reconstructions generally assume a monotone Holocene retreat for the West Antarctica Ice sheet (WAIS) [Ivins et al., 2013; Peltier, 2004; Whitehouse et al., 2012], an increasing number of glaciological observations infer it is readvancing, following retreat behind the present-day margin[Siegert et al., 2013]. We will show that a readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice-streams grounded on beds that deepen inland in apparent contradiction to theory [Schoof, 2007]; and (ii) the inability of models of Glacial Isostatic Adjustment (GIA) to match present-day uplift rates [Whitehouse et al., 2012]. Combining a suite of ice loading histories that include a readvance with a model of GIA provides significant improvements to predictions of present-day uplift rates, and we are able to reproduce previously unexplained observations of subsidence in the southern sector of the Weddell Sea. We hypothesize that retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery led to shallowing, ice sheet re-grounding and readvance. We will conclude that some sections of the current WAIS grounding line that are theoretically unstable, may be advancing and that the volume change of the WAIS may have been more complex in the Late Holocene than previously posited. This revised Holocene ice-loading history would have important implications for the GIA correction applied to Gravity Recovery and Climate Experiment (GRACE) data, likely resulting in a reduction in the GIA correction and a smaller estimate of present-day ice mass loss within the Weddell Sea region of the WAIS. Ivins, E. R., T. S. James, J. Wahr, E. J. O. Schrama, F. W. Landerer, and K. M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction

  8. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  9. Test and Analysis Correlation of High Speed Impacts of Ice Cylinders

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris

    2006-01-01

    During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter s wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time-histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.

  10. Late Quaternary sea-ice history of northern Fram Strait/Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kremer, Anne; Stein, Rüdiger; Fahl, Kirsten; Matthießen, Jens; Forwick, Matthias; O'Regan, Matt

    2016-04-01

    One of the main characteristics of the Arctic Ocean is its seasonal to perennial sea-ice cover. Variations of sea-ice conditions affect the Earth's albedo, primary production, rate of deep-water etc.. During the last decades, a drastic decrease in sea ice has been recorded, and the causes of which, i.e., natural vs. anthropogenic forcings, and their relevance within the global climate system, are subject of intense scientific and societal debate. In this context, records of past sea-ice conditions going beyond instrumental records are of major significance. These records may help to better understand the processes controlling natural sea-ice variability and to improve models for forecasts of future climatic conditions. During RV Polarstern Cruise PS92 in summer 2015, a 860 cm long sediment core (PS92/039-2) was recovered from the eastern flank of Yermak Plateau north of the Svalbard archipelago (Peeken, 2015). Based on a preliminary age model, this sediment core probably represents the time interval from MIS 6 to MIS 1. This core, located close to the modern summer ice edge, has been selected for reconstruction of past Arctic sea-ice variability based on specific biomarkers. In this context, we have determined the ice-algae-derived sea-ice proxy IP25 (Belt et al., 2007), in combination with other biomarkers indicative for open-water conditions (cf., Müller et al., 2009, 2011). Furthermore, organic carbon fluxes were differentiated using specific biomarkers indicative for marine primary production (brassicasterol, dinosterol) and terrigenous input (campesterol, β-sitosterol). In this poster, preliminary results of our organic-geochemical and sedimentological investigations are presented. Distinct fluctuations of these biomarkers indicate several major, partly abrupt changes in sea-ice cover in the Yermak Plateau area during the late Quaternary. These changes are probably linked to changes in the inflow of Atlantic Water along the western coastline of Svalbard into

  11. Earth's surface loading study using InSAR

    NASA Astrophysics Data System (ADS)

    Amelung, F.; Zhao, W.; Doin, M. P.

    2014-12-01

    Earth's surface loading/unloading such as glacier retreat, lake water level change, ocean tide, cause measurable (centimeter to millimeter) surface deformation from Synthetic Aperture Radar Interferometry (InSAR). Such seasonal or decadal deformation signals are useful for the estimation of the amount of load and the parameterization of crust and upper mantle - typically under an elastic or a visco-elastic mechanism. Since 2010, we established a study of surface loading using small baseline InSAR time-series analysis. Four sites are included in this study, which are Vatnajokull ice cap, Lake Yamzho Yumco, Petermann glacier, and Barnes ice cap using different satellites such as ERS1/2, Envisat, Radarsat-2, TerraSAR-X. We present results that mainly answer three questions: 1) Is InSAR time-series capable for the detection of millimeter level deformation due to surface loading; 2) When the Earth's rheology is known, how much load change occured; 3) When the surface loading is known, what are the Earth's parameters such as Young's modulus, viscosity. For glacier retreat problem, we introduce a new model for the ice mass loss estimation considering the spatial distribution of ice loss. For lake unloading problem, modeled elastic parameters are useful for the comparison to other 1-D models, e.g. the model based on seismic data.

  12. Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE

    NASA Astrophysics Data System (ADS)

    Bell, R. E.

    2015-12-01

    Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between

  13. A review of the physics of ice surface friction and the development of ice skating.

    PubMed

    Formenti, Federico

    2014-01-01

    Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.

  14. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (<0.3 aerosol optical depth) and decrease with further aerosol increase. For in situ formed ice clouds, however, these cloud properties increase monotonically and more sharply with aerosol loadings. An increase in loading of smoke aerosols generally reduces cloud optical thickness of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution aerosols. These relationships between different cloud/aerosol types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  15. Exploring changes in vertical ice extent along the margin of the East Antarctic Ice Sheet in western Dronning Maud Land - initial results of the MAGIC-DML collaboration

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.

    2017-12-01

    Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.

  16. History of ancient copper smelting pollution during Roman and Medieval times recorded in Greenland ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sungmin; Candelone, J.P.; Patterson, C.C.

    1996-04-12

    Determination of copper concentrations in Greenland ice dated from seven millennia ago to the present showed values exceeding natural levels, beginning about 2500 years ago. This early large-scale pollution of the atmosphere of the Northern Hemisphere is attributed to emissions from the crude, highly polluting smelting technologies used for copper production during Roman and medieval times, especially in Europe and China. This study opens the way to a quantitative assessment of the history of early metal production, which was instrumental in the development of human cultures during ancient eras. 27 refs., 1 fig., 2 tabs.

  17. A review of sea ice proxy information from polar ice cores

    NASA Astrophysics Data System (ADS)

    Abram, Nerilie J.; Wolff, Eric W.; Curran, Mark A. J.

    2013-11-01

    Sea ice plays an important role in Earth's climate system. The lack of direct indications of past sea ice coverage, however, means that there is limited knowledge of the sensitivity and rate at which sea ice dynamics are involved in amplifying climate changes. As such, there is a need to develop new proxy records for reconstructing past sea ice conditions. Here we review the advances that have been made in using chemical tracers preserved in ice cores to determine past changes in sea ice cover around Antarctica. Ice core records of sea salt concentration show promise for revealing patterns of sea ice extent particularly over glacial-interglacial time scales. In the coldest climates, however, the sea salt signal appears to lose sensitivity and further work is required to determine how this proxy can be developed into a quantitative sea ice indicator. Methane sulphonic acid (MSA) in near-coastal ice cores has been used to reconstruct quantified changes and interannual variability in sea ice extent over shorter time scales spanning the last ˜160 years, and has potential to be extended to produce records of Antarctic sea ice changes throughout the Holocene. However the MSA ice core proxy also requires careful site assessment and interpretation alongside other palaeoclimate indicators to ensure reconstructions are not biased by non-sea ice factors, and we summarise some recommended strategies for the further development of sea ice histories from ice core MSA. For both proxies the limited information about the production and transfer of chemical markers from the sea ice zone to the Antarctic ice sheets remains an issue that requires further multidisciplinary study. Despite some exploratory and statistical work, the application of either proxy as an indicator of sea ice change in the Arctic also remains largely unknown. As information about these new ice core proxies builds, so too does the potential to develop a more comprehensive understanding of past changes in sea

  18. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  19. Interactions of frazil and anchor ice with sedimentary particles in a flume

    USGS Publications Warehouse

    Kempema, E.W.; Reimnitz, E.; Clayton, J.R.; Payne, J.R.

    1993-01-01

    Frazil and anchor ice forming in turbulent, supercooled water have been studied extensively because of problems posed to man-made hydraulic structures. In spite of many incidental observations of interactions of these ice forms with sediment, their geologic effects remain unknown. The present flume study was designed to learn about the effects of salinity, current speed, and sediment type on sediment dynamics in supercooled water. In fresh-water, frazil ice formed flocs as large as 8 cm in diameter that tended to roll along a sandy bottom and collect material from the bed. The heavy flocs often came to rest in the shelter of ripples, forming anchor ice that subsequently was buried by migrating ripples. Burial compressed porous anchor ice into ice-bonded, sediment-rich masses. This process disrupts normal ripple cross-bedding and may produce unique sedimentary structures. Salt-water flocs were smaller, incorporated less bed load, and formed less anchor ice than their fresh-water counterparts. In four experiments, frazil carried a high sediment load only for a short period in supercooled salt water, but released it with slight warming. This suggests that salt-water frazil is either sticky or traps particles only while surrounded by supercooled water (0.05 to 0.1 ??C supercooling), a short-lived phase in simple, small tanks. Salt water anchor ice formed readily on blocks of ice-bonded sediment, which may be common in nature. The theoretical maximum sediment load in neutrally-buoyant ice/sediment mixture is 122 g/l, never reported in nature so far. The maximum sediment load measured in this laboratory study was 88 g/l. Such high theoretical and measured sediment concentrations suggest that frazil and anchor ice are important sediment transport agents in rivers and oceans. ?? 1993.

  20. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.

    2016-02-01

    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  1. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  2. Micromechanics of ice friction

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.

    2015-12-01

    Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.

  3. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold E. Jr.; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two new scaling methods based on Weber number were compared against a method based on Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel where the three methods of scaling were also tested and compared along with reference (altitude) icing conditions. In those tests, the Weber number-based scaling methods yielded results much closer to those observed at the reference icing conditions than the Reynolds number-based icing conditions. The test in the NASA IRT used a much larger, asymmetric airfoil with an ice protection system that more closely resembled designs used in commercial aircraft. Following the trends observed during the AIWT tests, the Weber number based scaling methods resulted in smaller runback ice than the Reynolds number based scaling, and the ice formed farther upstream. The results show that the new Weber number based scaling methods, particularly the Weber number with water loading scaling, continue to show promise for ice protection system development and evaluation in atmospheric icing tunnels.

  4. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-07-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.

  5. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  6. Gradual demise of a thin southern Laurentide ice sheet recorded by Mississippi drainage.

    PubMed

    Wickert, Andrew D; Mitrovica, Jerry X; Williams, Carlie; Anderson, Robert S

    2013-10-31

    At the Last Glacial Maximum (LGM), about 21,000 years before present, land-based ice sheets held enough water to reduce global mean sea level by 130 metres. Yet after decades of study, major uncertainties remain as to the distribution of that ice. Here we test four reconstructions of North American deglacial ice-sheet history by quantitatively connecting them to high-resolution oxygen isotope (δ(18)O) records from the Gulf of Mexico using a water mixing model. For each reconstruction, we route meltwater and seasonal runoff through the time-evolving Mississippi drainage basin, which co-evolves with ice geometry and changing topography as ice loads deform the solid Earth and produce spatially variable sea level in a process known as glacial isostatic adjustment. The δ(18)O records show that the Mississippi-drained southern Laurentide ice sheet contributed only 5.4 ± 2.1 metres to global sea level rise, of which 0.66 ± 0.07 metres were released during the meltwater pulse 1A event 14,650-14,310 years before present, far less water than previously thought. In contrast, the three reconstructions based on glacial isostatic adjustment overpredict the δ(18)O-based post-LGM meltwater volume by a factor of 1.6 to 3.6. The fourth reconstruction, which is based on ice physics, has a low enough Mississippi-routed meltwater discharge to be consistent with δ(18)O constraints, but also contains the largest LGM North American ice volume. This suggests that modelling based on ice physics may be the best way of matching isotopic records while also sequestering enough water in the North American ice sheets to match the observed LGM sea level fall.

  7. Ice detection systems : experimental feature : final report.

    DOT National Transportation Integrated Search

    1986-01-01

    In the fall of 1980, an experimental ice detection system was installed on the Fremont Bridge in Portland, Oregon. this bridge, which caries I-405 over the Willamette River, has a history of icing problem when the deck is wet and the temperature hove...

  8. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the Heavily Instrumented ALF503R-5 Engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory will be discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This model engine, serial number LF01, was used during the inaugural icing test in the PSL facility. The reduction of thrust (rollback) events experienced by this engine in flight were replicated in the facility. Limited instrumentation was used to detect icing. Metal temperature on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect characterize ice accretion, and visualize the ice accretion in the region of interest.

  9. Pedogenesis on ice (Invited)

    NASA Astrophysics Data System (ADS)

    Hodson, A. J.

    2010-12-01

    It is well known from ice cores that organic and mineral debris accumulates within glacier ice following atmospheric deposition. However, the concentrations of such debris are usually greatest upon the ice surface, especially at the margins of continental glaciers and ice sheets, where it forms mm-scale aggregate particles called “cryoconite”. According to the literature, cryoconite covers about 2 % of the ablation areas of glaciers outside Greenland and Antarctica, equivalent to a mass loading of ca. 25 g/m2. Of the great ice sheets not included in this figure, Greenland is the easiest to estimate, and new observations from the NE and SW sectors indicate mass loadings in the range 17 - 440 g/m2. Studies of cryoconite often report the presence of a significant biomass (usually 10^4 - 10^7 cells/g) that is capable of a wide range of biogeochemical functions. The first part of this presentation will therefore explore the contention that the formation of cryoconite represents the first stages of pedogenesis, resulting in the production of soil-type aggregates that inoculate glacial forefields following glacier retreat. Emphasis will be given to the relevant processes that result in aggregate formation, including rapid cell-mineral attachment within melting snowpacks and the slower, biological processes of cementation within thermodynamically stable habitats such as cryoconite holes. The second part of the presentation will use examples from Svalbard, Greenland and Antarctica to consider the carbon balance of the cryoconite during the longest phase of its life cycle: upon the ice. It will be demonstrated how the efficacy of photosynthesis is strongly influenced by thermodynamic conditions at or near this surface. Data from the Greenland and Antarctic ice sheets will show how thermal equilibration decouples variations in photosynthesis from variations in incident radiation over timescales > 1 d, resulting in an equitable, low-carbon economy for aggregates within

  10. Bearing Capacity of Floating Ice Sheets under Short-Term Loads: Over-Sea-Ice Traverse from McMurdo Station to Marble Point

    DTIC Science & Technology

    2015-01-01

    crafts on floating ice sheets near McMurdo, Antarctica (Katona and Vaudrey 1973; Katona 1974; Vaudrey 1977). To comply with the first criterion, one...Nomographs for operating wheeled aircraft on sea- ice runways: McMurdo Station, Antarctica . In Proceedings of the Offshore Mechanics and Arctic Engineering... Ice Thickness Requirements for Vehicles and Heavy Equipment at McMurdo Station, Antarctica . CRREL Project Report 04- 09, “Safe Sea Ice for Vehicle

  11. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    PubMed

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  12. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  13. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  14. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  15. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  16. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  17. Thermal load histories for North American roof assembles using various cladding materials including wood-thermoplastic composite shingles

    Treesearch

    J. E. Winandy

    2006-01-01

    Since 1991, thermal load histories for various roof cladding types have been monitored in outdoor attic structures that simulate classic North American light-framed construction. In this paper, the 2005 thermal loads for wood-based composite roof sheathing, wood rafters, and attics under wood-plastic composite shingles are compared to common North American roof...

  18. Small Scale Polygons and the History of Ground Ice on Mars

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.

    2003-01-01

    Recent progress on polygon modeling has focused on the diameter and surface relief that we expect of thermal-contraction polygons in martian permafrost. With this in mind, we developed a finite-element model of thermal-contraction-crack behavior in permafrost in a martian climate. This model was generated from a finite element code by Jay Melosh (called TECTON) originally developed for terrestrial and planetary crustal-deformation studies. We adapted this model to martian permafrost by including time (and temperature) dependent rheologies, boundary conditions, and isotropic thermal-contraction, as well as several small adaptations to a martian environment. We tested our model extensively, including comparison to an analytic solution of pre-fracture stress. We recently published an analysis of two potential sources of water for forming the recent gullies. In this work we first evaluated the potential for near-surface ground ice (in the top meter or so of soil) to melt under conditions of solar heating on sloped surfaces at high obliquity, utilizing both thermal and diffusion-based ground-ice-stability models; our results suggested that the ground ice will sublimate, and the ice table will recede to greater depths before the melting temperature can be reached. An exception can occur only for extremely salt-rich ice, depressing the freezing point.

  19. 1. Ice Plant, south facade, two central bays. On the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Ice Plant, south facade, two central bays. On the right, the Creamery; to the left, loading dock of Hay and Grain Warehouse. - Curtis Wharf, Ice Plant, O & Second Streets, Anacortes, Skagit County, WA

  20. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2011-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  1. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  2. Modeling Europa's Ice-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  3. Cyclically modulated dissipation and friction in ice and ice mixtures: how tidal forcing influences the mechanical properties in an icy shell

    NASA Astrophysics Data System (ADS)

    McCarthy, C.; Savage, H. M.; Cooper, R. F.; Kaczynski, T.; Nielson, M.; Domingos, A.

    2017-12-01

    Measuring the response of ice to dynamic, time-varying stress at appropriate planetary conditions is important to improving estimates of long-term heat flux and satellite evolution. The viscoelastic and frictional responses of ice may play important roles in tidal heating and convection, but at different time and lengthscales. We will share results from two different types of laboratory experiments on polycrystalline ice samples that reproduce tidally modulated behavior: (1) forced oscillation compression experiments that measure attenuation; and (2) periodic velocity biaxial experiments that measure friction. The former inform us about the influences of frequency, temperature, grain size, and strain history on mechanical dissipation of tidal energy in the deep interiors of icy crusts. In particular, we examine the combination of low amplitude tidal forcing with a relentless (steady-state) background stress, such as that from convection. The beauty of attenuation is that it can potentially be used as mechanical spectroscopy to identify structure and mechanisms that are otherwise shrouded by steady-state behavior. Friction experiments were conducted in a biaxial apparatus in which a central ice piece is forced between two stationary pieces at constant velocity with a sinusoidal oscillation super-imposed. The rig is fitted with a new, low-temperature cryostat ( 100 - 200 K) that also employs a vacuum. These experiments explore the dependence of frictional stability on the amplitude and frequency of the oscillating load. Additionally, small quantities of impurities that are thought to be important in icy satellites: sulfuric acid and ammonia (systems with deep eutectics with ice) are added to polycrystalline ice samples and tested at subsolidus conditions to discern when/if frictional heating can cause melting at icy satellite surface temperatures. The combination of the two types of experiments will provide valuable parameters for modeling of tidal response of

  4. Ice core based Pb pollution from gasoline in South America in the context of a 2000 year metallurgical history

    NASA Astrophysics Data System (ADS)

    Eichler, Anja; Gramlich, Gabriela; Kellerhals, Thomas; Tobler, Leonhard; Schwikowski, Margit

    2015-04-01

    Lead (Pb) is highly neurotoxic and, in contrast to many other heavy metals including cobalt, copper, and zinc, it has no beneficial effects to humans even at low concentrations. The introduction of leaded gasoline in the 1920s initiated a period of unabated growth in the global emissions of Pb. Prior to the onset of leaded gasoline phase-out in the 1970s, atmospheric Pb levels increased dramatically. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that emissions from leaded gasoline within the Northern Hemisphere are dominant compared to that from metallurgy and coal combustion during the second half of the 20th century. However, there is no equivalent data for Southern America. Although exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since pre-colonial times has caused substantial emissions of neurotoxic Pb into the atmosphere, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on ice core records of Pb concentrations, Pb enrichment factors (EFs), and Pb isotope ratios from Illimani glacier in Bolivia. Complementary to local air pollution recorded in lake sediments, ice cores from mid latitude glaciers provide information about more extended source areas. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The ice core Pb deposition history revealed enhanced Pb EFs due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450-950), the Inca empires (AD 1450-1532), colonial times (AD 1532-1900), and tin production at the beginning of the 20th century. After the 1960s 208Pb/207Pb ratios decreased significantly, whereas Pb EFs increased by a factor of three compared to the emission level

  5. A review of ice accretion data from a model rotor icing test and comparison with theory

    NASA Technical Reports Server (NTRS)

    Britton, Randall K.; Bond, Thomas H.

    1991-01-01

    An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are drawn as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential future work.

  6. Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring

    NASA Astrophysics Data System (ADS)

    Wadhams, P.; Tucker, W. B.; Krabill, W. B.; Swift, R. N.; Comiso, J. C.; Davis, N. R.

    1992-12-01

    We have confirmed our earlier finding that the probability density function (pdf) of ice freeboard in the Arctic Ocean can be converted to a pdf of ice draft by applying a simple coordinate transformation based on the measured mean draft and mean elevation. This applies in each of six 50-km sections (north of Greenland) of joint airborne laser and submarine sonar profile obtained along nearly coincident tracks from the Arctic Basin north of Greenland and tested for this study. Detailed differences in the shape of the pdf can be explained on the basis of snow load and can, in principle, be compensated by the use of a more sophisticated freeboard-dependent transformation. The measured "density ratio" R (actually mean draft/mean elevation ratio) for each section was found to be consistent over all sections tested, despite differences in the ice regime, indicating that a single value of R might be used for measurements done in this season of the year. The mean value from all six sections is 7.89; on the assumption that all six values are drawn from the same population, the standard deviation is 0.55 for a single 50-km section, and thus 0.22 for 300 km of track. In attempting to infer ice draft from laser-measured freeboard, we would therefore expect an accuracy of about ±28 cm in 50 km of track (if mean draft is about 4 m) and about ±11 cm in 300 km of track; these accuracies are compatible with the resolution of predictions from numerical models. A simple model for the variability of R with season and with mean ice thickness gives results in reasonable agreement with observations. They show that although there is a large seasonal variability due to snow load, there is a stable period from November to April when the variability is chiefly dependent on the mean ice thickness alone. Thus, in principle, R can be mapped over the Arctic Ocean as a basis for interpreting survey data. Better field data are needed on the seasonal and spatial variability of three key

  7. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    NASA Astrophysics Data System (ADS)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  8. Constraints of GRACE on the Ice Model and Mantle Rheology in Glacial Isostatic Adjustment Modeling in North-America

    NASA Astrophysics Data System (ADS)

    van der Wal, W.; Wu, P.; Sideris, M.; Wang, H.

    2009-05-01

    GRACE satellite data offer homogeneous coverage of the area covered by the former Laurentide ice sheet. The secular gravity rate estimated from the GRACE data can therefore be used to constrain the ice loading history in Laurentide and, to a lesser extent, the mantle rheology in a GIA model. The objective of this presentation is to find a best fitting global ice model and use it to study how the ice model can be modified to fit a composite rheology, in which creep rates from a linear and non-linear rheology are added. This is useful because all the ice models constructed from GIA assume that mantle rheology is linear, but creep experiments on rocks show that nonlinear rheology may be the dominant mechanism in some parts of the mantle. We use CSR release 4 solutions from August 2002 to October 2008 with continental water storage effects removed by the GLDAS model and filtering with a destriping and Gaussian filter. The GIA model is a radially symmetric incompressible Maxwell Earth, with varying upper and lower mantle viscosity. Gravity rate misfit values are computed for with a range of viscosity values with the ICE-3G, ICE-4G and ICE-5G models. The best fit is shown for models with ICE-3G and ICE-4G, and the ICE-4G model is selected for computations with a so-called composite rheology. For the composite rheology, the Coupled Laplace Finite-Element Method is used to compute the GIA response of a spherical self-gravitating incompressible Maxwell Earth. The pre-stress exponent (A) derived from a uni- axial stress experiment is varied between 3.3 x 10-34/10-35/10-36 Pa-3s-1, the Newtonian viscosity η is varied between 1 and 3 x 1021 Pa-s, and the stress exponent is taken to be 3. Composite rheology in general results in geoid rates that are too small compared to GRACE observations. Therefore, simple modifications of the ICE-4G history are investigated by scaling ice heights or delaying glaciation. It is found that a delay in glaciation is a better way to adjust ice

  9. Design and Construction of an Ice-in-Tank Diurnal Ice Storage for the PX Building at Fort Stewart, GA

    DTIC Science & Technology

    1988-07-01

    of a Eutectic Salt System 16 0 11 Energy Characteristics of Fort Stewart PX on a Hot Day 21 12 Peak Day Load Profile for Fort Stewart 21 13 Chiller...at Yuma Proving Ground, AZ in FY 88. An ice-shucking and a eutectic salt DIS cooling system are scheduled to be installed in the coming years. The...water, ice, or freezing eutectic salt . Ice and salt systems can be grouped • together as phase-change systems. In a recent survey of over a hundred

  10. IceAge: Chemical Evolution of Ices during Star Formation

    NASA Astrophysics Data System (ADS)

    McClure, Melissa; Bailey, J.; Beck, T.; Boogert, A.; Brown, W.; Caselli, P.; Chiar, J.; Egami, E.; Fraser, H.; Garrod, R.; Gordon, K.; Ioppolo, S.; Jimenez-Serra, I.; Jorgensen, J.; Kristensen, L.; Linnartz, H.; McCoustra, M.; Murillo, N.; Noble, J.; Oberg, K.; Palumbo, M.; Pendleton, Y.; Pontoppidan, K.; Van Dishoeck, E.; Viti, S.

    2017-11-01

    Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. We propose to trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R 1500-3000) and sensitivity (S/N 100-300) observations from 3 to 15 um to template spectra, we will map the spatial distribution of ices down to 20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies,thermal histories, and mixing environments. The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.

  11. Time histories of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber airplane during abrupt pitching maneuvers at approximately 20,000 feet

    NASA Technical Reports Server (NTRS)

    Wiener, Bernard; Harris, Agnes E

    1950-01-01

    Time histories are presented of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber during abrupt pitching maneuvers at a pressure altitude of approximately 20,000 feet. The normal and pitching accelerations measured varied from -0.90b to 3.41g and from -0.73 to 0.80 radian per second per second (sic), respectively, with a Mach number variation of from 0.40 to o.75. The maximum horizontal-tail load measured was 17,250 pounds down. The maximum elevator load was 1900 pounds up. The stabilizer twisted a maximum of 0.76 degrees leading edge down at the tip. The greatest fuselage deflection at the tail was about 1.7 inches down.

  12. Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere.

    PubMed

    Morris, Cindy E; Conen, Franz; Alex Huffman, J; Phillips, Vaughan; Pöschl, Ulrich; Sands, David C

    2014-02-01

    Landscapes influence precipitation via the water vapor and energy fluxes they generate. Biologically active landscapes also generate aerosols containing microorganisms, some being capable of catalyzing ice formation and crystal growth in clouds at temperatures near 0 °C. The resulting precipitation is beneficial for the growth of plants and microorganisms. Mounting evidence from observations and numerical simulations support the plausibility of a bioprecipitation feedback cycle involving vegetated landscapes and the microorganisms they host. Furthermore, the evolutionary history of ice nucleation-active bacteria such as Pseudomonas syringae supports that they have been part of this process on geological time scales since the emergence of land plants. Elucidation of bioprecipitation feedbacks involving landscapes and their microflora could contribute to appraising the impact that modified landscapes have on regional weather and biodiversity, and to avoiding inadvertent, negative consequences of landscape management. © 2013 John Wiley & Sons Ltd.

  13. Two-stage growth of the Late Miocene Minna Bluff Volcanic Complex, Ross Embayment, Antarctica: implications for ice-sheet and volcanic histories

    NASA Astrophysics Data System (ADS)

    Wilch, T. I.; McIntosh, W. C.; Panter, K. S.; Dunbar, N. W.; Smellie, J.; Fargo, A. J.; Ross, J. I.; Antibus, J. V.; Scanlan, M. K.

    2011-12-01

    Minna Bluff, a 45km long, 5km wide Late Miocene alkaline volcanic peninsula that extends SE into the Ross Ice Shelf, is a major obstruction to ice flow from the south into the McMurdo Sound region. Interpretations of the abundant paleoclimate and glacial history archives, including the ANDRILL records, need to account for the effects of paleogeography on past ice-flow configurations and sediment transport. Mapping and 40Ar/39Ar dating of volcanic sequences indicate that Minna Bluff was constructed between 12 and 4 Ma. The volcanic complex first emerged as an isolated island in the Ross Sea at about 12 Ma. The edifice, here named Minna Hook Island, was constructed between 12 and 8 Ma. During this first stage of growth, regional ice was able to flow through a ~40 km gap between the island and mainland. The second stage of volcanism built the main arm of Minna Bluff, now called McIntosh Cliffs, between 8 and 4 Ma. The second stage resulted in the eruption of exclusively subaerial cinder cones and lava flows. By approximately 5 Ma the peninsula had fully emerged above sea level, fully obstructing ice flow. Evidence for volcano-ice interaction is common in Minna Hook stratigraphic sequences. Well exposed cliff sections exhibit alternations between rocks erupted in subaerial and subaqueous conditions; these sequences are interpreted to represent syneruptive interactions between lava flows and glacial ice and provide evidence for periodic glaciations between 12 and 8 Ma. The lack of coherent horizontal passage zones between subglacial and subaerial lithofacies and the alternating nature of the deposits suggest that the eruptions did not occur in a large stable ice sheet but instead occurred in a more ephemeral local ice cap or rapidly drained ice sheet. At least two widespread, undulating glacial unconformities mantled by glacial and fluvial sediments are exposed near the base of the Minna Hook sequences. These unconformities record broad scale Antarctic Ice Sheet events

  14. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.

    PubMed

    Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J

    2009-01-01

    A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.

  15. Poro-elastic Properties of Whillan's Ice Stream Till: Implications for Basal Stick-Slip

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Valdez, R. D.; Alley, R. B.; Anandakrishnan, S.; Saffer, D. M.

    2016-12-01

    Whillans ice stream, West Antarctica, flows rapidly from the West Antarctic ice sheet into the Ross Ice Shelf. Regions of highly compacted till, termed sticky-spots, pin the ice in place. Upstream ice flow increases driving stress, until minor changes in buttressing stresses from tides affecting the ice shelf cause the main sticky-spot to fail, triggering diurnal or semidiurnal stick-slip events. The mechanical and hydrological properties of the till partially control the basal conditions, generation and persistence of the sticky spots, and thus the dynamics of the rupture and healing processes. Here we present laboratory tests on core samples of the till beneath Whillan's Ice Stream collected in the 1989-1993 field seasons. Two types of tests were performed on till cores: stepped loading and cyclic loading. In the stepped loading test, the effective stress was increased from 0.1 to 10 MPa in a series of steps, and the permeability measured at each step. Cyclic loading tests consisted of a series of effective stress oscillations with 24 h period lasting 5-10 d each, increasing in amplitude from 20-150 kPa. The permeability was measured after each set of oscillations to investigate the role of cyclic loading in driving enhanced compaction. Compressional wave velocity (Vp) was also measured during both test sequences. We observe sample initial porosities of 30% and permeabilities of 3x10-17 m2. During stepped loading tests, porosity is reduced to 20% and permeability to 8x10-18 m2. Vp ranged from 2.2-2.95 km s-1 and was well fit by an effective medium model. Application of this model to Vp obtained by field seismic surveys is consistent with low ( 50 kPa) effective vertical stresses in the uppermost till. Cyclic loading sequences reduced porosity by 4% and permeability by an order of magnitude. A transient numerical model based on our data shows that over the tidal timescale, a layer of stiffened till 10 cm thick should develop. We suggest that this provides one

  16. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.

    PubMed

    Arp, Zane A; Cremers, David A; Wiens, Roger C; Wayne, David M; Sallé, Béatrice; Maurice, Sylvestre

    2004-08-01

    Recently, laser-induced breakdown spectroscopy (LIBS) has been developed for the elemental analysis of geological samples for application to space exploration. There is also interest in using the technique for the analysis of water ice and ice/dust mixtures located at the Mars polar regions. The application is a compact instrument for a lander or rover to the Martian poles to interrogate stratified layers of ice and dusts that contain a record of past geologic history, believed to date back several million years. Here we present results of a study of the use of LIBS for the analysis of water ice and ice/dust mixtures in situ and at short stand-off distances (< 6.5 m) using experimental parameters appropriate for a compact instrument. Characteristics of LIBS spectra of water ice, ice/soil mixtures, element detection limits, and the ability to ablate through ice samples to monitor subsurface dust deposits are discussed.

  17. Holocene thinning of the Greenland ice sheet.

    PubMed

    Vinther, B M; Buchardt, S L; Clausen, H B; Dahl-Jensen, D; Johnsen, S J; Fisher, D A; Koerner, R M; Raynaud, D; Lipenkov, V; Andersen, K K; Blunier, T; Rasmussen, S O; Steffensen, J P; Svensson, A M

    2009-09-17

    On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.

  18. Glaciological constraints on current ice mass changes from modelling the ice sheets over the glacial cycles

    NASA Astrophysics Data System (ADS)

    Huybrechts, P.

    2003-04-01

    The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.

  19. Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps

    NASA Astrophysics Data System (ADS)

    Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan

    2017-04-01

    The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley

  20. NASA Airframe Icing Research Overview Past and Current

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    This slide presentation reviews the past and current research that NASA has done in the area of airframe icing. Both the history experimental efforts and model development to understand the process and problem of ice formation are reviewed. This has resulted in the development of new experimental methods, advanced icing simulation software, flight dynamics and experimental databases that have an impact on design, testing, construction and certification and qualification of the aircraft and its sub-systems.

  1. The Great Ice Age

    USGS Publications Warehouse

    Ray, Louis L.

    1992-01-01

    The Great Ice Age, a recent chapter in the Earth's history, was a period of recurring widespread glaciations. During the Pleistocene Epoch of the geologic time scale, which began about a million or more years ago, mountain glaciers formed on all continents, the icecaps of Antarctica and Greenland were more extensive and thicker than today, and vast glaciers, in places as much as several thousand feet thick, spread across northern North America and Eurasia. So extensive were these glaciers that almost a third of the present land surface of the Earth was intermittently covered by ice. Even today remnants of the great glaciers cover almost a tenth of the land, indicating that conditions somewhat similar to those which produced the Great Ice Age are still operating in polar and subpolar climates.

  2. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  3. Photolysis of aromatic pollutants in clean and dirty ice

    NASA Astrophysics Data System (ADS)

    Kahan, T.; Malley, P.; Stathis, A.

    2015-12-01

    Anthropogenic aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and substituted benzenes often become more toxic following atmospheric oxidation. Photolysis of these pollutants in ice can be much faster than that in aqueous solution, which might lead to higher carcinogenic loadings in snow-covered regions. In this work we investigate two things. First, we investigate whether toluene, which has been detected at very elevated concentrations near hydraulic fracturing operations, can undergo photolysis at ice surfaces. Toluene in aqueous solution does not absorb sunlight, so photolysis has not been considered a potential atmospheric fate. However, benzene was recently demonstrated to undergo a significant red shift in its absorbance at ice surfaces, leading to photolysis under environmentally-relevant conditions. Here we show that toluene also undergoes photolysis at ice surfaces. In a second set of experiments, we have investigated the effects of organic matter on the photolysis kinetics ofPAHs in ice and at ice surfaces. We found that very small loadings of hydrophobic organics such as octanol can significantly suppress PAH photolysis kinetics in ice, but that the primary effect of the more soluble fulvic acid is competitive photon absorption. Our results show that photochemistry of anthropogenic pollutants can follow very different mechanisms and kinetics in ice than in aqueous solution, and that the photochemical fate of these pollutants depends strongly on the composition of the snow. These results have implications for pollutant fate and human health in a wide range of snow-covered environments including remote areas, cities, and regions near gas and oil extraction operations.

  4. Could a new ice core offer an insight into the stability of the West Antarctic Ice Sheet during the last interglacial?

    NASA Astrophysics Data System (ADS)

    Mulvaney, R.; Hindmarsh, R. C.

    2013-12-01

    Vaughan et al., in their 2011 paper 'Potential Seaways across West Antarctica' (Geochem. Geophys. Geosyst., 12, Q10004, doi:10.1029/2011GC003688), offer the intriguing prospect that substantial ice loss from the West Antarctic Ice Sheet during the previous interglacial period might have resulted in the opening of a seaway between the Weddell Sea and the Amundsen Sea. One of their potential seaways passes between the south western corner of the present Ronne Ice Shelf and the Pine Island Bay, through what is currently the course of the Rutford Ice Stream, between the Ellsworth Mountains and the Fletcher Promontory. To investigate whether this seaway could have existed (and to recover a paleoclimate and ice sheet history from the Weddell Sea), a team from the British Antarctic Survey and the Laboratoire de Glaciologie et Géophysique de l'Environnement drilled an ice core from a close to a topographic dome in the ice surface on the Fletcher Promontory in January 2012, reaching the bedrock at 654.3m depth from the surface. The site was selected to penetrate directly through the centre of a Raymond cupola observed in internal radar reflections from the ice sheet, with the intention that this would ensure we obtained the oldest ice available from the Fletcher Promontory. The basal ice sheet temperature measured was -18°C, implying the oldest ice would not have melted away from the base, while the configuration of the Raymond cupola in the radar horizons suggested stability in the ice dome topography during the majority of the Holocene. Our hypothesis is that chemical analysis of the ice core will reveal whether the site was ever relatively close to open sea water or ice shelf in the Rutford channel 20 km distant, rather than the current 700 km distance to sea ice/open water in either the Weddell Sea or the Amundsen Sea. While we do not yet have the chemistry data to test this hypothesis, in this poster we will discuss whether there is in reality any potential local

  5. Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.

    2011-12-01

    Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.

  6. Longwave radiative effects of Saharan dust during the ICE-D campaign

    NASA Astrophysics Data System (ADS)

    Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie

    2017-04-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2

  7. Plastic Faulting in Ice: Shear Localization under Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Golding, N.; Durham, W. B.

    2013-12-01

    Ice exhibits, at least, two distinct kinds of shear faults when loaded triaxially under compression. Under moderate levels of confinement, brittle failure follows crack growth, crack coalescence and the development of a fault oriented about 30 degrees from the direction of maximum compression. The mechanism governing this mode of failure, termed frictional or Coulombic faulting, has previously been discussed for ice and rocks in connection with the comb-crack model. Under higher levels of confinement, where frictional sliding is suppressed by confining pressure, failure is characterized by sudden brittle-like loss in load bearing capacity and the development of a narrow shear band, comprised of recrystallized grains, oriented about 45 degrees from the direction of maximum compression, i.e. along the direction of maximum shear. This mode of failure, referred to here as plastic faulting, has previously been discussed for warm ice, T = 233 - 263 K, in connection with adiabatic shear heating and has been discussed for cold ice, T = 77 - 163 K, in connection with phase transformation. Here, new results are presented that examine the mechanical behavior and microstructural properties of plastic faulting in polycrystalline ice loaded at temperatures from T = 175 - 210 K and confining pressures up to P = 200 MPa. The results are reviewed in context of previous work and possible mechanisms to account for shear localization in ice under high pressure, including 1) adiabatic shear heating, 2) grain refinement and 3) phase transformation, are discussed. The present observations highlight the similarities in the behavior of plastic faulting under both warm and cold conditions and suggest adiabatic shear heating as a possible mechanism to account for shear instability and plastic faulting at temperatures ranging from T = 77 - 263 K.

  8. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    , controlled by the sub-ice-shelf melting which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcings, with a uniform response in all simulations controlled by the surface air temperature, derived from ice cores.

  9. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (< 30 m in places) to allow observable viscoelastic responses to relatively small loads, and it is close to a center of logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  10. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-28R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-28R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-28R is documented along with their overall effect on the Space Shuttle Program.

  11. The last deglacial retreat history of the East Antarctic Ice Sheet recorded in sediments from off the Wilkes Land Coast

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Yamane, M.; Miyairi, Y.; Suga, H.; Dunbar, R. B.; Ohkouchi, N.

    2017-12-01

    Timing of past ice sheet retreat of Antarctic continent has been debated with regards to the global sea level changes since the Last Glacial Maximum (LGM) centered at around 20 ka. Exposure dating using cosmogenic radio nuclide (CRN) for glacial deposits have been widely used to reconstruct the last deglacial history though this cannot apply where no-ice free coasts are existed. One such location is the Wilkes Land where the East Antarctic Ice Sheet (EAIS) is situated directory on seafloor. Sediment cores obtained off the Wilkes Land coast successfully retrieved cores during the Intergrated Ocean Drilling Program (IODP) Expedition 318 (Escuita et al., 2011). Major obstacle to obtain reliable chronology for marine cores around Antarctica is sparsity of carbonate materials such as foraminifera. Thus compound-specific radiocarbon analysis (CSRA) has been used and we applied CSRA to the sediments obtained off the Wilkes land coast. The CSRA targeted C16 and C16:1 fatty acid due to their high degradation rate. Hence low concentrations of these compounds are expected. We found major sedimentation occurred since the beginning of Holocene. The result is then compared to the previously reported dates from the land based CRN dates (eg., Mckintosh et al., 2013; Yamane et al., 2011) to discuss the timing of retreat of EAIS.

  12. Compression experiments on artificial, alpine and marine ice: implications for ice-shelf/continental interactions

    NASA Astrophysics Data System (ADS)

    Dierckx, Marie; Goossens, Thomas; Samyn, Denis; Tison, Jean-Louis

    2010-05-01

    Antarctic ice shelves are important components of continental ice dynamics, in that they control grounded ice flow towards the ocean. As such, Antarctic ice shelves are a key parameter to the stability of the Antarctic ice sheet in the context of global change. Marine ice, formed by sea water accretion beneath some ice shelves, displays distinct physical (grain textures, bubble content, ...) and chemical (salinity, isotopic composition, ...) characteristics as compared to glacier ice and sea ice. The aim is to refine Glen's flow relation (generally used for ice behaviour in deformation) under various parameters (temperature, salinity, debris, grain size ...) to improve deformation laws used in dynamic ice shelf models, which would then give more accurate and / or realistic predictions on ice shelf stability. To better understand the mechanical properties of natural ice, deformation experiments were performed on ice samples in laboratory, using a pneumatic compression device. To do so, we developed a custom built compression rig operated by pneumatic drives. It has been designed for performing uniaxial compression tests at constant load and under unconfined conditions. The operating pressure ranges from about 0.5 to 10 Bars. This allows modifying the experimental conditions to match the conditions found at the grounding zone (in the 1 Bar range). To maintain the ice at low temperature, the samples are immersed in a Silicone oil bath connected to an external refrigeration system. During the experiments, the vertical displacement of the piston and the applied force is measured by sensors which are connected to a digital acquisition system. We started our experiments with artificial ice and went on with continental ice samples from glaciers in the Alps. The first results allowed us to acquire realistic mechanical data for natural ice. Ice viscosity was calculated for different types of artificial ice, using Glen's flow law, and showed the importance of impurities

  13. Ice Loads and Ship Response to Ice. Summer 1982/Winter 1983 Test Program

    DTIC Science & Technology

    1984-12-01

    approximately 100 ft2 (9.2 M 2) was instrumented to measure ice pressures by measuring compressive strains in the webs of transverse frames. The panel...compressive strains in the webs of transverse frames. The panel was divided into 60 sub-panel areas, six rows of,-ten frames, over which uniform pressures...the Web and the Selection of Gage Spacing . . .............. 18 4.3 Across the Frame Influence on Strain .......... 20 4.4 Construction of the Data

  14. Deglaciation of the Eurasian ice sheet complex

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of

  15. The role of ice shelves in the Holocene evolution of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Rogozhina, Irina; Thomas, Maik

    2014-05-01

    Using the continental-scale ice sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]), we assess the influence of ice shelves on the Holocene evolution and present-day geometry of the Antarctic ice sheet. We have designed a series of paleoclimate simulations driven by a time-evolved climate forcing that couples the surface temperature record from the Vostok ice core with precipitation pattern using an empirical relation of Dahl-Jensen et al., (1998) [3]. Our numerical experiments show that the geometry of ice shelves is determined by the evolution of climate and ocean conditions over time scales of 15 to 25 kyr. This implies that the initial configuration of ice shelves at the Last Glacial Maximum (LGM, about 21 kyr before present) has a significant effect on the modelled Early Holocene volume of ice shelves (up to 20%) that gradually diminishes to a negligible level for the present-day ice shelf configuration. Thus, the present-day geometry of the Antarctic ice shelves can be attained even if an ice-shelf-free initial condition is chosen at the LGM. However, the grounded ice volume, thickness and dynamic states are found to be sensitive to the ice shelf dynamics over a longer history spanning several tens of thousands of years. A presence of extensive marine ice at the LGM, supported by sediment core reconstructions (e.g. Naish et al., 2009 [4]), has a clear buttressing effect on the grounded ice that remains significant over a period of 30 to 50 kyr. If ice-shelf-free conditions are prescribed at the LGM, the modelled Early Holocene and present-day grounded ice volumes are underestimated by up to 10%, as opposed to simulations incorporating ice shelf dynamics over longer periods. The use of ice-shelf-free LGM conditions thus results in 50 to over 200 meters thinner ice sheet across much of East Antarctica. References [1] Greve, R. (1997). Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to

  16. Geomorphic evidence for the distribution of ground ice on Mars

    USGS Publications Warehouse

    Squyres, S. W.; Carr, M.H.

    1986-01-01

    High-resolution Viking orbiter images show evidence for quasi-viscous relaxation of topography. The relaxation is believed to be due to creep deformation of ice in near-surface materials. The global distribution of the inferred ground ice shows a pronounced latitudinal dependence. The equatorial regions of Mars appear to be ice-poor, while the heavily cratered terrain poleward of ??30?? latitude appears to be ice-rich. The style of creep poleward of ??30?? varies with latitude, possibly due to variations in ice rheology with temperature. The distribution suggests that ice at low latitudes, which is not in equilibrium with the present atmosphere, has been lost via sublimation and diffusion through the regolith, thereby causing a net poleward transport of ice over martian history.

  17. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  18. Ion Irradiation of H2-Laden Porous Water-ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, U.; Mitchell, E. H.; Baragiola, R. A.

    2015-10-01

    To understand the effects of cosmic-ray (CR) impacts on interstellar icy grains immersed in H2 gas, we have irradiated porous water-ice films loaded with H2 with 100 keV H+. The ice films were exposed to H2 gas at different pressures following deposition and during irradiation. A net H2 loss is observed during irradiation due to competition between ion-induced sputtering and gas adsorption. The initial H2 loss cross-section, 4(1) × 10-14 cm2, was independent of film thickness, H2, and proton fluxes. In addition to sputtering, irradiation also closes nanopores, trapping H2 in the film with binding that exceeds physical absorption energies. As a result, 2%-7% H2 is retained in the ice following irradiation to high fluences. We find that the trapped H2 concentration increases with decreasing Φ, the ratio of ion to H2 fluxes, suggesting that as high as 8% solid H2 can be trapped in interstellar ice by CR or stellar wind impacts.

  19. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier Ice.

    PubMed

    Pavlova, Pavlina Aneva; Jenk, Theo Manuel; Schmid, Peter; Bogdal, Christian; Steinlin, Christine; Schwikowski, Margit

    2015-12-15

    In Alpine regions, glaciers act as environmental archives and can accumulate significant amounts of atmospherically derived pollutants. Due to the current climate-warming-induced accelerated melting, these pollutants are being released at correspondingly higher rates. To examine the effect of melting on the redistribution of legacy pollutants in Alpine glaciers, we analyzed polychlorinated biphenyls in an ice core from the temperate Silvretta glacier, located in eastern Switzerland. This glacier is affected by surface melting in summer. As a result, liquid water percolates down and particles are enriched in the current annual surface layer. Dating the ice core was a challenge because meltwater percolation also affects the traditionally used parameters. Instead, we counted annual layers of particulate black carbon in the ice core, adding the years with negative glacier mass balance, that is, years with melting and subsequent loss of the entire annual snow accumulation. The analyzed samples cover the time period 1930-2011. The concentration of indicator PCBs (iPCBs) in the Silvretta ice core follows the emission history, peaking in the 1970s (2.5 ng/L). High PCB values in the 1990s and 1930s are attributed to meltwater-induced relocation within the glacier. The total iPCB load at the Silvretta ice core site is 5 ng/cm(2). A significant amount of the total PCB burden in the Silvretta glacier has been released to the environment.

  20. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.

    NASA Astrophysics Data System (ADS)

    Straka, Jerry M.; Mansell, Edward R.

    2005-04-01

    A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

  1. Satellite Data Analysis of Impact of Anthropogenic Air Pollution on Ice Clouds

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K. N.; Zhao, B.; Jiang, J. H.; Su, H.

    2017-12-01

    Despite numerous studies about the impact of aerosols on ice clouds, the role of anthropogenic aerosols in ice processes, especially over pollution regions, remains unclear and controversial, and has not been considered in a regional model. The objective of this study is to improve our understanding of the ice process associated with anthropogenic aerosols, and provide a comprehensive assessment of the contribution of anthropogenic aerosols to ice nucleation, ice cloud properties, and the consequent regional radiative forcing. As the first attempt, we evaluate the effects of different aerosol types (mineral dust, air pollution, polluted dust, and smoke) on ice cloud micro- and macro-physical properties using satellite data. We identify cases with collocated CloudSat, CALIPSO, and Aqua observations of vertically resolved aerosol and cloud properties, and process these observations into the same spatial resolution. The CALIPSO's aerosol classification algorithm determines aerosol layers as one of six defined aerosol types by taking into account the lidar depolarization ratio, integrated attenuated backscattering, surface type, and layer elevation. We categorize the cases identified above according to aerosol types, collect relevant aerosol and ice cloud variables, and determine the correlation between column/layer AOD and ice cloud properties for each aerosol type. Specifically, we investigate the correlation between aerosol loading (indicated by the column AOD and layer AOD) and ice cloud microphysical properties (ice water content, ice crystal number concentration, and ice crystal effective radius) and macro-physical properties (ice water path, ice cloud fraction, cloud top temperature, and cloud thickness). By comparing the responses of ice cloud properties to aerosol loadings for different aerosol types, we infer the role of different aerosol types in ice nucleation and the evolution of ice clouds. Our preliminary study shows that changes in the ice crystal

  2. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  3. Ice/frost/debris assessment for space shuttle mission STS-26R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1988-01-01

    An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.

  4. Effect of Loading History on Airway Smooth Muscle Cell-Matrix Adhesions.

    PubMed

    Irons, Linda; Owen, Markus R; O'Dea, Reuben D; Brook, Bindi S

    2018-06-05

    Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects. Copyright © 2018 Biophysical

  5. Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport

    NASA Astrophysics Data System (ADS)

    Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi

    2017-04-01

    Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of

  6. Water vapor, water-ice clouds, and dust in the North Polar Region

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Michael D.; Bass, Deborah S.; Hale, Amy S.

    2006-01-01

    The behavior of water vapor, water-ice and dust in the Martian atmosphere is important for understanding the overall Martian climate system, which is characterized by three main cycles: water, including water-ice, dust, and CO2. Understanding these cycles will lend insight into the behavior of the atmospheric dynamics, the atmosphere's ability to transport dust, water-ice, and vapor to different parts of the planet, and how that ability changes as a function of dust and water-ice loading.

  7. Medical ice slurry production device

    DOEpatents

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  8. The 1500m South Pole Ice Core: Recovering a 40 Ka Environmental Record

    NASA Technical Reports Server (NTRS)

    Casey, Kimberly Ann; Neumann, Thomas Allen; Fudge, T. J.; Neumann, T. A.; Steig, E. J.; Cavitte, M. G. P.; Blankenship, D. D.

    2014-01-01

    Supported by the US National Science Foundation, a new 1500 m, approximately 40 ka old ice core will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US Intermediate Depth Drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of ice chemistry and trace atmospheric gases. The South Pole ice core will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic ice sheet. The ice at South Pole flows at approximately 10m a(exp-1) and the South Pole ice-core site is a significant distance from an ice divide. Therefore, ice recovered at depth originated progressively farther upstream of the coring site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past approximately 50 years or upper 15 m. Depth-age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500m near the ice-core drill site.

  9. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM

    NASA Astrophysics Data System (ADS)

    Anderson, John B.; Conway, Howard; Bart, Philip J.; Witus, Alexandra E.; Greenwood, Sarah L.; McKay, Robert M.; Hall, Brenda L.; Ackert, Robert P.; Licht, Kathy; Jakobsson, Martin; Stone, John O.

    2014-09-01

    Onshore and offshore studies show that an expanded, grounded ice sheet occupied the Ross Sea Embayment during the Last Glacial Maximum (LGM). Results from studies of till provenance and the orientation of geomorphic features on the continental shelf show that more than half of the grounded ice sheet consisted of East Antarctic ice flowing through Transantarctic Mountain (TAM) outlet glaciers; the remainder came from West Antarctica. Terrestrial data indicate little or no thickening in the upper catchment regions in both West and East Antarctica during the LGM. In contrast, evidence from the mouths of the southern and central TAM outlet glaciers indicate surface elevations between 1000 m and 1100 m (above present-day sea level). Farther north along the western margin of the Ross Ice Sheet, surface elevations reached 720 m on Ross Island, and 400 m at Terra Nova Bay. Evidence from Marie Byrd Land at the eastern margin of the ice sheet indicates that the elevation near the present-day grounding line was more than 800 m asl, while at Siple Dome in the central Ross Embayment, the surface elevation was about 950 m asl. Farther north, evidence that the ice sheet was grounded on the middle and the outer continental shelf during the LGM implies that surface elevations had to be at least 100 m above the LGM sea level. The apparent low surface profile and implied low basal shear stress in the central and eastern embayment suggests that although the ice streams may have slowed during the LGM, they remained active. Ice-sheet retreat from the western Ross Embayment during the Holocene is constrained by marine and terrestrial data. Ages from marine sediments suggest that the grounding line had retreated from its LGM outer shelf location only a few tens of kilometer to a location south of Coulman Island by ˜13 ka BP. The ice sheet margin was located in the vicinity of the Drygalski Ice Tongue by ˜11 ka BP, just north of Ross Island by ˜7.8 ka BP, and near Hatherton Glacier by

  10. Development and test of a Microwave Ice Accretion Measurement Instrument (MIAMI)

    NASA Technical Reports Server (NTRS)

    Magenheim, B.; Rocks, J. K.

    1982-01-01

    The development of an ice accretion measurement instrument that is a highly sensitive, accurate, rugged and reliable microprocessor controlled device using low level microwave energy for non-instrusive real time measurement and recording of ice growth history, including ice thickness and accretion rate is discussed. Data is displayed and recorded digitally. New experimental data is presented, obtained with the instrument, which demonstrates its ability to measure ice growth on a two-dimensional airfoil. The device is suitable for aircraft icing protection. It may be mounted flush, non-intrusively, on any part of an aircraft skin including rotor blades and engine inlets.

  11. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    NASA Astrophysics Data System (ADS)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  12. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  13. Heat transport in the high-pressure ice mantle of large icy moons

    NASA Astrophysics Data System (ADS)

    Choblet, Gael; Tobie, Gabriel; Sotin, Christophe; Kalousova, Klara; Grasset, Olivier

    2017-04-01

    While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (˜ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to

  14. Heat transport in the high-pressure ice mantle of large icy moons

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Tobie, G.; Sotin, C.; Kalousová, K.; Grasset, O.

    2017-03-01

    While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (∼ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to

  15. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  16. Artificial ice using superconducting vortices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Trastoy Quintela, Juan; Malnou, Maxime; Ulysse, Christian; Bernard, Rozenn; Bergeal, Nicolas; Faini, Giancarlo; Lesueur, Jerome; Briatico, Javier; Villegas, Javier E.

    2016-10-01

    We use magnetic flux quanta (superconducting vortices) on artificial energy landscapes (pinning arrays) to create a new type of artificial ice. This vortex ice shows unusual temperature effects that offer new possibilities in the study of ice systems. We have investigated the matching of the flux lattice to pinning arrays that present geometrical frustration. The pinning arrays are fabricated on YBCO films using masked O+ ion irradiation. The details of the magneto-resistance imply that the flux lattice organizes into a vortex ice. The absence of history-dependent effects suggests that the vortex ice is highly ordered. Due to the technique used for the artificial energy landscape fabrication, we have the ability to change the pinning array geometry using temperature as a control knob. In particular we can switch the geometrical frustration on and off, which opens the door to performing a new type of annealing absent in other artificial ice systems. * Work supported by the French ANR "MASTHER", and the Fundación Barrié (Galicia, Spain)

  17. Vernal Crater, SW Arabia Terra: MSL Candidate with Extensively Layered Sediments, Possible Lake Deposits, and a Long History of Subsurface Ice

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2007-01-01

    Vernal Crater is a Mars Science Laboratory (MSL) landing site candidate providing relatively easy access to extensively layered sediments as well as potential lake deposits. Sediments of Vernal Crater are 400-1200 m below those being investigated by Opportunity in Meridiani Planum, and as such would allow study of significantly older geologic units, if Vernal Crater were selected for MSL. The location of Vernal Crater in SW Arabia Terra provides exceptional scientific interest, as rampart craters and gamma-ray spectrometer (GRS) data from the region suggest a long history of ice/fluids in the subsurface. The potential value of this MSL candidate is further enhanced by reports of atmospheric methane over Arabia, as any insight into the source of that methane would significantly increase our understanding of Mars. Finally, should MSL survive beyond its prime mission, the gentle slope within Vernal Crater would provide a route out of the crater for study of the once ice/fluid-rich plains.

  18. In Situ Quantification of Experimental Ice Accretion on Tree Crowns Using Terrestrial Laser Scanning

    PubMed Central

    Nock, Charles A.; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian

    2013-01-01

    In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409

  19. The influence of ice on southern Lake Michigan coastal erosion

    USGS Publications Warehouse

    Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M.

    1994-01-01

    Coastal ice does not protect the coast but enhances erosion by displacing severe winter wave energy from the beach to the shoreface and by entraining and transporting sediment alongshore and offshore. Three aspects of winter ice in Lake Michigan were studied over a 3-year period and found to have an important influence on coastal sediment dynamics and the coastal sediment budget: (1) the influence of coastal ice on shoreface morphology, (2) the transport of littoral sediments by ice, and (3) the formation of anchor and underwater ice as a frequent and important event entraining and transporting sediment. The nearshore ice complex contains a sediment load (0.2 - 1.2 t/m of coast) that is roughly equivalent to the average amount of sand eroded from the coastal bluffs and to the amount of sand ice- rafted offshore to the deep lake basin each year. -from Authors

  20. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  1. Modelling the effects of ice-sheet activity on CO2 outgassing by Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Armitage, J. J.; Ferguson, D.; Petersen, K. D.; Creyts, T. T.

    2017-12-01

    Glacial cycles may play a significant role in mediating the flux of magmatic CO2 between the Earth's mantle and atmosphere. In Iceland, it is thought that late-Pleistocene deglaciation led to a significant volcanic pulse, evidenced by increased post-glacial lava volumes and changes in melt chemistry consistent with depressurization. Investigating the extent to which glacial activity may have affected volcanic CO2 emissions from Iceland, and crucially over what timescale, requires detailed knowledge of how the magma system responded to the growth and collapse of the ice-sheet before and after the LGM. To investigate this, we coupled a model of magma generation and transport with a history of ice-sheet activity. Our results show that the emplacement and removal of the LGM ice-sheet likely led to two significant pulses of magmatic CO2. The first, and most significant of these, is associated with ice-sheet growth and occurs as the magma system recovers from glacial loading. This recovery happens from the base of the melting region upwards, producing a pulse of CO2 rich magma that is predicted to reach the surface around 20 ka after the loading event, close in time to the LGM. The second peak in CO2 output occurs abruptly following deglaciation as a consequence of increased rates of melt generation and transport in the shallow mantle. Although these post-glacial melts are relatively depleted in CO2, the increase in magma flux leads to a short-lived period of elevated CO2 emissions. Our results therefore suggest a negative feedback, whereby ice-sheet growth produces a delayed pulse of magmatic CO2, which, in addition to increased geothermal heat flux, may contribute towards driving deglaciation, which itself then causes further magmatism and CO2 outgassing. This model is consistent with the seismic structure of the asthenosphere below Iceland, and the established compositional and volumetric trends for sub- and post-glacial volcanism in Iceland. These trends show that

  2. A model of the Greenland ice sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Lecavalier, Benoit

    The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.

  3. GIA Modeling with 3D Rheology and Recent Ice Thickness Changes in Polar Regions

    NASA Astrophysics Data System (ADS)

    Van Der Wal, W.; Wu, P. P.

    2012-12-01

    Models for Glacial Isostatic Adjustment (GIA) mainly focus on the response of the solid Earth to ice thickness changes on the scale of thousands of years. However, some of the fastest vertical movement in former glaciated regions is due to changes in ice thickness that occurred within the last 1,000 years. Similar studies for the polar regions are limited, possibly due to a lack of knowledge on past ice sheet thicknesses there. Still, predictions of uplift rate and mass change due to recent ice thickness changes need to improve in order to provide accurate estimates of current mass loss. In order to obtain a measurable response to variations in ice thickness in the last 1,000 years, viscosity in the lithosphere or top of the upper mantle needs to be lower than the mantle viscosity values in conventional GIA models. In the absence of reliable models for recent ice thickness changes we aim to bracket the predicted uplift rates and gravity rates for such changes by assuming simplified past ice growth and melt patterns. Instead of adding a low-viscous layer in the mantle a priori, creep parameters are based on information from experimental constraints, seismology and heatflow measurements. Thus the model includes viscosity varying in space and time. The simulations are performed on a finite element model of a spherical, self-gravitating, incompressible Earth using the commercial software Abaqus. 3D composite rheology is implemented based on temperature fields from heatflow measurements or seismic velocity anomalies. The lithospheric thickness does not need to be specified as the effective elastic thickness is determined by the local effective viscosity. ICE-5G is used as ice loading history while ice changes during and around the Little Ice Age in Greenland are assumed to take place near the coast. A 3D composite rheology has been shown to match historic sea levels well, but uplift rates are somewhat underestimated. With the GIA models that best match uplift rates in

  4. Greenland was nearly ice-free for extended periods during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Schaefer, Joerg M.; Finkel, Robert C.; Balco, Greg; Alley, Richard B.; Caffee, Marc W.; Briner, Jason P.; Young, Nicolas E.; Gow, Anthony J.; Schwartz, Roseanne

    2016-12-01

    The Greenland Ice Sheet (GIS) contains the equivalent of 7.4 metres of global sea-level rise. Its stability in our warming climate is therefore a pressing concern. However, the sparse proxy evidence of the palaeo-stability of the GIS means that its history is controversial (compare refs 2 and 3 to ref. 4). Here we show that Greenland was deglaciated for extended periods during the Pleistocene epoch (from 2.6 million years ago to 11,700 years ago), based on new measurements of cosmic-ray-produced beryllium and aluminium isotopes (10Be and 26Al) in a bedrock core from beneath an ice core near the GIS summit. Models indicate that when this bedrock site is ice-free, any remaining ice is concentrated in the eastern Greenland highlands and the GIS is reduced to less than ten per cent of its current volume. Our results narrow the spectrum of possible GIS histories: the longest period of stability of the present ice sheet that is consistent with the measurements is 1.1 million years, assuming that this was preceded by more than 280,000 years of ice-free conditions. Other scenarios, in which Greenland was ice-free during any or all Pleistocene interglacials, may be more realistic. Our observations are incompatible with most existing model simulations that present a continuously existing Pleistocene GIS. Future simulations of the GIS should take into account that Greenland was nearly ice-free for extended periods under Pleistocene climate forcing.

  5. Atmospheric Ice-Nucleating Particles in the Dusty Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Price, H. C.; Baustian, K. J.; McQuaid, J. B.; Blyth, A.; Bower, K. N.; Choularton, T.; Cotton, R. J.; Cui, Z.; Field, P. R.; Gallagher, M.; Hawker, R.; Merrington, A.; Miltenberger, A.; Neely, R. R., III; Parker, S. T.; Rosenberg, P. D.; Taylor, J. W.; Trembath, J.; Vergara-Temprado, J.; Whale, T. F.; Wilson, T. W.; Young, G.; Murray, B. J.

    2018-02-01

    Desert dust is one of the most important atmospheric ice-nucleating aerosol species around the globe. However, there have been very few measurements of ice-nucleating particle (INP) concentrations in dusty air close to desert sources. In this study we report the concentration of INPs in dust laden air over the tropical Atlantic within a few days' transport of one of the world's most important atmospheric sources of desert dust, the Sahara. These measurements were performed as part of the Ice in Clouds Experiment-Dust campaign based in Cape Verde, during August 2015. INP concentrations active in the immersion mode, determined using a droplet-on-filter technique, ranged from around 102 m-3 at -12°C to around 105 m-3 at -23°C. There is about 2 orders of magnitude variability in INP concentration for a particular temperature, which is determined largely by the variability in atmospheric dust loading. These measurements were made at altitudes from 30 to 3,500 m in air containing a range of dust loadings. The ice active site density (ns) for desert dust dominated aerosol derived from our measurements agrees with several laboratory-based parameterizations for ice nucleation by desert dust within 1 to 2 orders of magnitude. The small variability in ns values determined from our measurements (within about 1 order of magnitude) is striking given that the back trajectory analysis suggests that the sources of dust were geographically diverse. This is consistent with previous work, which indicates that desert dust's ice-nucleating activity is only weakly dependent on source.

  6. Explicit simulation of ice particle habits in a Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Hashino, Tempei

    2007-05-01

    This study developed a scheme for explicit simulation of ice particle habits in Numerical Weather Prediction (NWP) Models. The scheme is called Spectral Ice Habit Prediction System (SHIPS), and the goal is to retain growth history of ice particles in the Eulerian dynamics framework. It diagnoses characteristics of ice particles based on a series of particle property variables (PPVs) that reflect history of microphysieal processes and the transport between mass bins and air parcels in space. Therefore, categorization of ice particles typically used in bulk microphysical parameterization and traditional bin models is not necessary, so that errors that stem from the categorization can be avoided. SHIPS predicts polycrystals as well as hexagonal monocrystals based on empirically derived habit frequency and growth rate, and simulates the habit-dependent aggregation and riming processes by use of the stochastic collection equation with predicted PPVs. Idealized two dimensional simulations were performed with SHIPS in a NWP model. The predicted spatial distribution of ice particle habits and types, and evolution of particle size distributions showed good quantitative agreement with observation This comprehensive model of ice particle properties, distributions, and evolution in clouds can be used to better understand problems facing wide range of research disciplines, including microphysics processes, radiative transfer in a cloudy atmosphere, data assimilation, and weather modification.

  7. Characterization of the mechanical behavior of sea ice as a frictional material

    NASA Astrophysics Data System (ADS)

    Lade, Poul V.

    2002-12-01

    The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.

  8. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} is the dominant gas in the dense clouds of the interstellar medium (ISM). At densities of 10 (5) cm (-3) , an H _{2} molecule arrives at the surface of a 0.1 mum-sized, ice-covered dust grain once every few seconds [1]. At 10 K, H _{2} can diffuse into the pores of the ice mantle and adsorb at high-energy binding sites, loading the ice with hydrogen over the lifetime of the cloud. These icy grains are also impacted by galactic cosmic rays and stellar winds (in clouds with embedded protostar). Based on the available cosmic proton flux spectrum [2], we estimate a small impact rate of nearly 1 hit per year on a 0.1 μm sized grain, or 10 (-7) times the impact frequency of the neutral H _{2}. The energy deposited by such impacts can release the adsorbed H _{2} into the gas phase (impact desorption or sputtering). Recently, we have reported on a new process of ion-induced enhanced adsorption, where molecules from the gas phase are incorporated into the film when irradiation is performed in the presence of ambient gas [3]. The interplay between ion-induced ejection and adsorption can be important in determining the gas-solid balance in the ISM. To understand the effects of cosmic rays/stellar winds impacts on interstellar ice immersed in H _{2} gas, we have performed irradiation of porous amorphous ice films loaded with H _{2} through co-deposition or adsorption following growth. The irradiations were performed with 100 keV H (+) using fluxes of 10 (10) -10 (12) H (+) cm (-2) s (-1) at 7 K, in presence of ambient H _{2} at pressures ranging from 10 (-5) to 10 (-8) Torr. Our initial results show a net loss in adsorbed H _{2} during irradiation, from competing ion-induced ejection and adsorption. The H _{2} loss per ion decreases exponentially with fluence, with a cross-section of 10 (-13) cm (2) . In addition to hydrogen removal, irradiation also leads to trapping of H _{2} in the ice film, from closing of the pores during irradiation [4]. As a result, 2.6 percent

  9. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  10. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an "ice-sealed" east Antarctic lake.

    PubMed

    Doran, Peter T; Fritsen, Christian H; McKay, Christopher P; Priscu, John C; Adams, Edward E

    2003-01-07

    Lake Vida, one of the largest lakes in the McMurdo Dry Valleys of Antarctica, was previously believed to be shallow (<10 m) and frozen to its bed year-round. New ice-core analysis and temperature data show that beneath 19 m of ice is a water column composed of a NaCl brine with a salinity seven times that of seawater that remains liquid below -10 degrees C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice cover is stabilized by a negative feedback between ice growth and the freezing-point depression of the brine. The ice cover contains frozen microbial mats throughout that are viable after thawing and has a history that extends to at least 2,800 (14)C years B.P., suggesting that the brine has been isolated from the atmosphere for as long. To our knowledge, Lake Vida has the thickest subaerial lake ice cover recorded and may represent a previously undiscovered end-member lacustrine ecosystem on Earth.

  11. The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations

    NASA Technical Reports Server (NTRS)

    Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim

    2003-01-01

    The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.

  12. Ice/frost/debris assessment for space shuttle Mission STS-32 (61-C)

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Speece, Robert F.

    1986-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-32 (61-C). This assessment begins with debris inspections of the flight elements and launch facilities before and after launch. Ice/Frost formations are calculated during cryogenic loading of the external tank followed by an on-pad assessment of the Shuttle vehicle and pad at T-3 hours in the countdown. High speed films are reviewed after launch to identify Ice/Frost/Debris sources and investigate potential vehicle damage. The Ice/Frost/Debris conditions and their effects on the Space Shuttle are documented.

  13. Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: Implications for flow emplacement and cooling histories

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as

  14. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  15. Oceanographic Influences on Ice Shelves and Drainage in the Amundsen Sea

    NASA Astrophysics Data System (ADS)

    Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.

    2016-12-01

    Marine sediment cores collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove Ice Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of cores, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten Core-15 suggests an episode of enhanced circulation beneath a large ice shelf that covered the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and ice mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove Ice Shelf in Ferrero Bay, despite regional warming evident from ice core data and ice shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove Ice Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove Ice Shelf was a mechanism for under-melting the ice shelf and destabilizing the grounding line. Major ice shelf recession may also entail continental ice mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic Ice Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on ice shelves and outlet glaciers

  16. Local processes and regional patterns - Interpreting a multi-decadal altimetry record of Greenland Ice Sheet changes

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.

    2016-12-01

    This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal

  17. Ice loading model for Glacial Isostatic Adjustment in the Barents Sea constrained by GRACE gravity observations

    NASA Astrophysics Data System (ADS)

    Root, Bart; Tarasov, Lev; van der Wal, Wouter

    2014-05-01

    The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.

  18. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  19. Environmental controls on micro fracture processes in shelf ice

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  20. Case histories of building material problems caused by condensation at an enclosed swimming pool and an enclosed ice rink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanGeem, M.G.; Farahmandpour, K.; Gajda, J.

    1999-07-01

    Enclosed swimming pools and ice rinks in winter climates have the potential for high indoor relative humidities and cold building materials. These elements can contribute to condensation and premature deterioration of building materials. Case histories are provided for an enclosed swimming pool and an enclosed ice rink with condensation problems. An evaluation was performed after roof leaks were reported at a recently constructed indoor swimming pool in a Chicago suburb. After a preliminary inspection, it was evident that the reported leaks were related to building moisture problems rather than a roof leak. Exterior brick masonry exhibited heavy efflorescence in themore » area of the swimming pools, and water streaks were visible on the exterior walls below the eaves. The evaluation included laboratory testing, a visual inspection, field tests and measurements, and analyses for condensation potential. Results of the evaluation indicated the presence of condensed moisture as a direct cause of the observed water stains, and masonry efflorescence. Recommended corrective actions developed. A 54-year-old enclosed ice rink in New England was under investigation to determine the cause of a deteriorated wood deck roof. The building did not have dehumidification or air handling systems, and was heated only when occupied. The evaluation included visual inspection and analyses for condensation potential. Results of the evaluation indicated condensation within the wood decking and insulation during winter months, and high relative humidities that prohibited drying during the spring, summer, and fall. These conditions, over an extended number of years, resulted in decay of the wood decking.« less

  1. The relationship between loading history and proximal femoral diaphysis cross-sectional geometry.

    PubMed

    Niinimäki, Sirpa; Narra, Nathaniel; Härkönen, Laura; Abe, Shinya; Nikander, Riku; Hyttinen, Jari; Knüsel, Christopher; Sievänen, Harri

    2017-07-08

    We investigated the relationship between loading history and bone biomechanical properties used in physical activity reconstructions. These bone properties included bone bending and torsional strength (J), cortical area (CA), the direction of the major axis (theta angle), and element shape ratios determined from cross sections of standardized bone length. In addition, we explored the applicability of anatomically determined cross sections. Our material consisted of hip and proximal thigh magnetic resonance images of Finnish female athletes (N = 91) engaged in high-jump, triple-jump, endurance running, swimming, power-lifting, soccer and squash; along with a group of active non-athlete individuals (N = 20). We used regression analysis for size-adjustment, and the extracted residuals were then used to compare differences in the bone properties between groups. We found that triple-jumpers, soccer players, and squash players had the greatest values in CA and J, swimmers and non-athletes had the smallest, whereas high-jumpers, power-lifters, and endurance runners exhibited interim values. No between-the-group differences in element shape ratios or theta angles were found. We found that influences of activity were similar regardless of whether standardized length or anatomically determined cross sections were used. Extreme (triple-jump) and directionally inconsistent loading (soccer and squash) necessitate a more robust skeleton compared to directionally consistent loading (high-jump, power-lifting, and endurance running) or non-impact loading (swimming and non-athletes). However, not all of these relationships were statistically significant. Thus, information gained about physical activity using bone properties is informative but limited. Accounting for the limitations, the method is applicable on fragmented skeletal material as anatomically determined cross sections can be used. © 2017 Wiley Periodicals, Inc.

  2. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  3. Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples

    NASA Astrophysics Data System (ADS)

    Lange, M. A.; Rückamp, M.; Kleiner, T.

    2013-12-01

    The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields

  4. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  5. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake

    PubMed Central

    Doran, Peter T.; Fritsen, Christian H.; McKay, Christopher P.; Priscu, John C.; Adams, Edward E.

    2003-01-01

    Lake Vida, one of the largest lakes in the McMurdo Dry Valleys of Antarctica, was previously believed to be shallow (<10 m) and frozen to its bed year-round. New ice-core analysis and temperature data show that beneath 19 m of ice is a water column composed of a NaCl brine with a salinity seven times that of seawater that remains liquid below −10°C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice cover is stabilized by a negative feedback between ice growth and the freezing-point depression of the brine. The ice cover contains frozen microbial mats throughout that are viable after thawing and has a history that extends to at least 2,800 14C years B.P., suggesting that the brine has been isolated from the atmosphere for as long. To our knowledge, Lake Vida has the thickest subaerial lake ice cover recorded and may represent a previously undiscovered end-member lacustrine ecosystem on Earth. PMID:12518052

  6. ICE AND DEBRIS IN THE FRETTED TERRAIN, MARS.

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1984-01-01

    Viking moderate- and high-resolution images along the northern highland margin were studied monoscopically and stereoscopically to contribute to an understanding of the development of fretted terrain. Results support the hypothesis that the fretting process involved flow facilitated by interstitial ice. The process apparently continued for a long period of time, and debris-apron formation shaped the fretted terrain in the past as well as the present. Interstitial ice in debris aprons is most likely derived from ground ice obtained by sapping or scarp collapse. Debris aprons could have been removed by sublimation if they consisted mostly of ice, or by deflation if they consisted mostly of debris. To remove the debris, wind erosion was either very intense early in martian history, or was intermittent, perhaps owing to climatic cycles.

  7. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/ characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  8. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  9. Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathues, A.; Platz, T.; Hoffmann, M.

    Dwarf planet Ceres (∅ ∼ 940 km) is the largest object in the main asteroid belt. Investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body that was never completely molten, but one that possibly partially differentiated into a rocky core and an ice-rich mantle, and may contain remnant internal liquid water. Thermal alteration and the infall of exogenic material contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of data on the bright Oxo crater derived from the Framing Camera and the Visible andmore » Infrared Spectrometer on board the Dawn spacecraft. We confirm that the transitional complex crater Oxo (∅ ∼ 9 km) exhibits exposed surface water-ice. We show that this water-ice-rich material is associated exclusively with two lobate deposits at pole-facing scarps, deposits that also contain carbonates and admixed phyllosilicates. Due to Oxo’s location at −4802 m below the cerean reference ellipsoid and its very young age of only 190 ka (1 σ : +100 ka, −70 ka), Oxo is predestined for ongoing water-ice sublimation.« less

  10. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  11. Determination of Ice Crust Thickness from Flanking Cracks Along Ridges on Europa

    NASA Technical Reports Server (NTRS)

    Billings, S. E.; Kattenhorn, S. A.

    2002-01-01

    We use equations describing the deflection of an elastic plate below a line load to estimate ice crust thickness below ridges on Europa. Using a range of elastic parameters, ice thickness is calculated to fall in the range 0.2 2.6 km. Additional information is contained in the original extended abstract.

  12. A surface ice module for wind turbine dynamic response simulation using FAST

    DOE PAGES

    Yu, Bingbin; Karr, Dale G.; Song, Huimin; ...

    2016-06-03

    It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind

  13. Sediment entrainment into sea ice and transport in the Transpolar Drift: A case study from the Laptev Sea in winter 2011/2012

    NASA Astrophysics Data System (ADS)

    Wegner, C.; Wittbrodt, K.; Hölemann, J. A.; Janout, M. A.; Krumpen, T.; Selyuzhenok, V.; Novikhin, A.; Polyakova, Ye.; Krykova, I.; Kassens, H.; Timokhov, L.

    2017-06-01

    Sea ice is an important vehicle for sediment transport in the Arctic Ocean. On the Laptev Sea shelf (Siberian Arctic) large volumes of sediment-laden sea ice are formed during freeze-up in autumn, then exported and transported across the Arctic Ocean into Fram Strait where it partly melts. The incorporated sediments are released, settle on the sea floor, and serve as a proxy for ice-transport in the Arctic Ocean on geological time scales. However, the formation process of sediment-laden ice in the source area has been scarcely observed. Sediment-laden ice was sampled during a helicopter-based expedition to the Laptev Sea in March/April 2012. Sedimentological, biogeochemical and biological studies on the ice core as well as in the water column give insights into the formation process and, in combination with oceanographic process studies, on matter fluxes beneath the sea ice. Based on satellite images and ice drift back-trajectories the sediments were likely incorporated into the sea ice during a mid-winter coastal polynya near one of the main outlets of the Lena River, which is supported by the presence of abundant freshwater diatoms typical for the Lena River phytoplankton, and subsequently transported about 80 km northwards onto the shelf. Assuming ice growth of 12-19 cm during this period and mean suspended matter content in the newly formed ice of 91.9 mg l-1 suggests that a minimum sediment load of 8.4×104 t might have been incorporated into sea ice. Extrapolating these sediment loads for the entire Lena Delta region suggests that at least 65% of the estimated sediment loads which are incorporated during freeze-up, and up to 10% of the annually exported sediment load may be incorporated during an event such as described in this paper.

  14. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  15. KSC ice/frost/debris assessment for space shuttle mission STS-29R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.

  16. KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.

  17. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-39

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS (thermal protection system) assessment and photographic analysis was conducted for Space Shuttle Mission STS-39. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-39, and their overall effect on the Space Shuttle Program are documented.

  18. Particulate matter in pack ice of the Beaufort Gyre

    USGS Publications Warehouse

    Reimnitz, E.; Barnes, P.W.; Weber, W.S.

    1993-01-01

    Fine sediment occurred in very small patches of turbid ice, as thin spotty surface layers, in mud pellets or in old snowdrifts. The latter were widespread south of 74??N, containing an estimated 22 tonnes of silt and clay km-2. Average particle concentration in sea ice (40 mg1-1) was much higher than in sea water (0.8 mg 1 -1) or in new snow. Assuming one-third of the load is released each year, the estimated deposition rate would equal the measured Holocene rate (~2cm 1000 year-1). Therefore, modern sea-ice rafting represents a substantial fraction of the total Arctic Ocean sediment budget. -from Authors

  19. Comment on "An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et al.

    NASA Astrophysics Data System (ADS)

    Richard Peltier, W.; Argus, Donald F.; Drummond, Rosemarie

    2018-02-01

    The most recently published model of the glacial isostatic adjustment process in the ICE-NG (VMX) sequence from the University of Toronto, denoted ICE-6G_C (VM5a), was originally developed to degree and order 256 in spherical harmonics and has been shown to provide accurate fits to a voluminous database of GPS observations from North America, Eurasia, and Antarctica, to time dependent gravity data being provided by the GRACE satellites, and to radiocarbon-dated relative sea level histories through the Holocene epoch. The authors of the Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) paper have suggested this model to be flawed. We have produced a further version of our model, denoted ICE-6G_D (VM5a), by employing the same BEDMAP2 bathymetry for the Southern Ocean as employed in their analysis which has somewhat reduced the differences between our results. However, significant physically important differences remain, including the magnitude of present-day vertical crustal motion in the embayments and in the spectrum of Stokes coefficients for present-day geoid height time dependence which continues to "flatten" at high spherical harmonic degree. We explore the reasons for these differences and trace them to the use by Purcell et al. of a loading history for the embayments that differs significantly from that tabulated for both the original and modified versions of our model.

  20. Comparison of icing cloud instruments for 1982-1983 icing season flight program

    NASA Technical Reports Server (NTRS)

    Ide, R. F.; Richter, G. P.

    1984-01-01

    A number of modern and old style liquid water content (LWC) and droplet sizing instruments were mounted on a DeHavilland DHC-6 Twin Otter and operated in natural icing clouds in order to determine their comparative operating characteristics and their limitations over a broad range of conditions. The evaluation period occurred during the 1982-1983 icing season from January to March 1983. Time histories of all instrument outputs were plotted and analyzed to assess instrument repeatability and reliability. Scatter plots were also generated for comparison of instruments. The measured LWC from four instruments differed by as much as 20 percent. The measured droplet size from two instruments differed by an average of three microns. The overall effort demonstrated the need for additional data, and for some means of calibrating these instruments to known standards.

  1. Advances in Understanding the Role of Aerosols on Ice Clouds from the Fifth International Ice Nucleation (FIN) Workshops

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Moehler, O.; DeMott, P. J.

    2015-12-01

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding climate. This is due to several poorly understood processes including the microphysics of how particles nucleate ice, the number of effective heterogeneous ice nuclei and their atmospheric distribution, the role of anthropogenic activities in producing or changing the behavior of ice forming particles and the interplay between effective heterogeneous ice nuclei and homogeneous ice formation. Our team recently completed a three-part international workshop to improve our understanding of atmospheric ice formation. Termed the Fifth International Ice Nucleation (FIN) Workshops, our motivation was the limited number of measurements and a lack of understanding of how to compare data acquired by different groups. The first activity, termed FIN1, addressed the characterization of ice nucleating particle size, number and chemical composition. FIN2 addressed the determination of ice nucleating particle number density. Groups modeling ice nucleation joined FIN2 to provide insight on measurements critically needed to model atmospheric ice nucleation and to understand the performance of ice chambers. FIN1 and FIN2 took place at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A particular emphasis of FIN1 and FIN2 was the use of 'blind' intercomparisons using a highly characterized, but unknown to the instrument operators, aerosol sample. The third activity, FIN3, took place at the Desert Research Institute's Storm Peak Laboratory (SPL). A high elevation site not subject to local emissions, SPL allowed for a comparison of ice chambers and subsequent analysis of the ice residuals under the challenging conditions of low particle loading, temperature and pressure found in the atmosphere. The presentation focuses on the improvement in understanding how mass spectra from different

  2. The global signature of post-1900 land ice wastage on vertical land motion

    NASA Astrophysics Data System (ADS)

    Riva, Riccardo; Frederikse, Thomas; King, Matt; Marzeion, Ben; van den Broeke, Michiel

    2017-04-01

    The amount of ice stored on land has strongly declined during the 20th century, and melt rates showed a significant acceleration over the last two decades. Land ice wastage is well known to be one of the main drivers of global mean sea-level rise, as widely discussed in the literature and reflected in the last assessment report of the IPCC. A less obvious effect of melting land ice is the response of the solid earth to mass redistribution on its surface, which, in the first approximation, results in land uplift where the load reduces (e.g., close to the meltwater sources) and land subsidence where the load increases (e.g., under the rising oceans). This effect is nowadays well known within the cryospheric and sea level communities. However, what is often not realized is that the solid earth response is a truly global effect: a localized mass change does cause a large deformation signal in its proximity, but also causes a change of the position of every other point on the Earth's surface. The theory of the Earth's elastic response to changing surface loads forms the basis of the 'sea-level equation', which allows sea-level fingerprints of continental mass change to be computed. In this paper, we provide the first dedicated analysis of global vertical land motion driven by land ice wastage. By means of established techniques to compute the solid earth elastic response to surface load changes and the most recent datasets of glacier and ice sheet mass change, we show that land ice loss currently leads to vertical deformation rates of several tenths of mm per year at mid-latitudes, especially over the Northern Hemisphere where most sources are located. In combination with the improved accuracy of space geodetic techniques (e.g., Global Navigation Satellite Systems), this means that the effect of ice melt is non-negligible over a large part of the continents. In particular, we show how deformation rates have been strongly varying through the last century, which implies

  3. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  4. Neogene ice sheet, paleoclimatic and geological history of the McMurdo Sound region, Victoria Land Basin, Antarctica: overview of ANDRILL's first two drilling projects

    NASA Astrophysics Data System (ADS)

    Powell, R.; Naish, T.; Harwood, D.; Florindo, F.; Levy, R.; Teams, M. S.

    2008-12-01

    the Mid-Pleistocene Climate Transition to establish the present WAIS mode. The AND-2A drillcore recovered several distinct intervals separated by disconformities: (1) a lower Miocene interval (1138.54-c. 800mbsf); (2) a 600m-thick early and middle Miocene interval (800-223mbsf), including an expanded section through two Miocene climatic optima, is truncated by a disconformity that spans c. 7m.y.; and (3) an upper Miocene-Recent interval (223-0mbsf) that is thinner but correlative to parts of the AND-1B drillcore. Shallow marine deposits dominate the lower AND-2A section until c.1.5Ma when the basin deepened rapidly from volcanic loading by Mt Erebus. Lower and middle Miocene strata record repeating lithological changes reflecting variation in sea level, glacial proximity, and climate fluctuations on the shallow marine coast of the Transantarctic Mountains. Sediments deposited close to or beneath grounded glaciers (likely flowing from East Antarctica) alternate with fine-grained marine sediments, providing clear evidence for cycles of ice advance then substantial retreat during climate transitions to warmer conditions. Fossils suggest non-polar climate conditions similar to southern New Zealand today, influenced by high sediment discharge from river run-off, and high coastal turbidity.

  5. The Role of Basal Channels in Ice Shelf Calving.

    NASA Astrophysics Data System (ADS)

    Dow, C. F.; Lee, W. S.; Greenbaum, J. S.; Greene, C. A.; Blankenship, D. D.; Poinar, K.; Forrest, A.; Young, D. A.; Zappa, C. J.

    2017-12-01

    Increased rates of ice shelf break-up drives acceleration of grounded glacial ice into the ocean, resulting in sea-level rise. Ice shelves are vulnerable to thinning, which make them more susceptible to calving. Here, we examine basal channels under three ice shelves that locally thin the ice and drive formation of transverse ice shelf fractures. The basal channels also cause surface depressions due to hydrostatic buoyancy effects and can draw in surface water to form rivers. These rivers exacerbate thinning by surface melting and hydraulic loading, and can accelerate rifting when they flow into the transverse fractures. Our investigation focuses on Nansen Ice Shelf in the Ross Sea Embayment, East Antarctica. We use ice-sounding radar and single-beam laser altimeter data from two aerogeophysical campaigns conducted in 2011 and 2014, ice surface DEM reconstruction, and satellite imagery analysis, to examine the role of a substantial basal channel in the stability of this ice shelf. Nansen Ice Shelf calved two large icebergs totaling 214 km2 in area in April 2016. The transverse fracture that eventually rifted to form these icebergs initiated directly over the basal channel in 1987. In years when surface water formed on Nansen Ice Shelf, a river flowed into the transverse fracture. In November 2016, we identified a new fracture over the basal channel during in-situ data collection. We compare the Nansen Ice Shelf fractures with those at other vulnerable ice-shelf systems, including Petermann Glacier in Greenland and Totten Glacier in East Antarctica, to evaluate the role that basal channels may play in simultaneous basal and surface weakening and their consequent effect on ice-shelf rifting and stability.

  6. The geomorphic impact of catastrophic glacier ice loss in mountain regions

    NASA Astrophysics Data System (ADS)

    Evans, S. G.

    2006-12-01

    Perhaps the most dramatic manifestation of global warming is catastrophic glacier ice loss in mountain regions. The geomorphic impact of this process was first outlined by Evans and Clague in 1994 and includes mountain slope instability, glacier avalanching, the formation and failure of moraine dammed lakes, and the formation and failure of ice dammed lakes. The present paper is an update of the 1994 publication and has three components. First, a global review of recent glacier-related geomorphic events is undertaken. Second, an analysis of two cases from the Coast Mountains of British Columbia - the 1975 Devastation Glacier landslide and the 1983 Nostetuko Lake outburst resulting from the failure of a moraine dam illustrates the interaction of glacier ice loss and related geomorphic events. At Devastation Glacier, approximately 13 M m3 of altered Quaternary volcanic rock and glacier ice was lost from the west flank of Pylon Peak in the Mount Meager volcanic complex. The events were initiated by a catastrophic rockslide, involving altered Quaternary pyroclastic rocks, which continued down Devastation Creek valley as a high velocity debris avalanche. The overall length of the slide path was 7 km and the vertical height of the path was 1220 m yielding a fahrboschung of 10°. Other large landslides occurred in Devastation Creek valley in 1931 and 1947. Stability analysis of the initial failure shows that the 1975 rockslide was the result of a complex history of glacial erosion, loading and unloading of the toe of the slide mass caused by the Little Ice Age advance and subsequent retreat of Devastation Glacier. The shearing resistance along the base of the rockslide mass was reduced prior to 1975 by substantial previous slope displacements related to glacial ice loss. Some of this displacement is likely to have occurred as subglacial slope deformation since ice fall and crevasse patterns suggest the presence of slide like shearing displacements below the base of

  7. Evidence for stabilization of the ice-cemented cryosphere in earlier martian history: Implications for the current abundance of groundwater at depth on Mars

    NASA Astrophysics Data System (ADS)

    Weiss, David K.; Head, James W.

    2017-05-01

    , atmospheric pressure, obliquity, and surface heat flux conditions under which the downward-propagating cryosphere freezing front matches the inferred ice-cemented cryosphere. The thermal models which can best reproduce the inferred ice-cemented cryosphere occur for obliquities between 25° and 45° and CO2 atmospheric pressures ≤600 mbar, but require increased heat fluxes and surface temperatures/pressures relative to the Amazonian period. Because the inferred ice-cemented cryosphere is much thinner compared with Amazonian-aged cryosphere thermal models, we suggest that the ice-cemented cryosphere ceased growing when it exhausted the underlying groundwater supply (i.e., ICC stabilization) in a more ancient period in Mars geologic history. Our thermal analysis suggests that this ICC stabilization likely occurred sometime before or at ∼3.0-3.3 Ga (during or before the Late Hesperian or Early Amazonian period). If groundwater remained below the ICC during the earlier Late Noachian period, our models predict that mean annual surface temperatures during this time were ≥212-227 K. If the Late Noachian had a pure CO2 atmosphere, this places a minimum bound on the Late Noachian atmospheric pressure of ≥390-850 mbar. These models suggest that deep groundwater is not abundant or does not persist in the subsurface of Mars today, and that diffusive loss of ice from the subsurface has been minimal.

  8. "Just not all ice users do that": investigating perceptions and potential harms of Australia's Ice Destroys Lives campaign in two studies.

    PubMed

    Douglass, Caitlin H; Early, Elizabeth C; Wright, Cassandra J C; Palmer, Anna; Higgs, Peter; Quinn, Brendan; Dietze, Paul M; Lim, Megan S C

    2017-07-14

    In 2015, the Australian government launched the media campaign Ice Destroys Lives targeting crystal methamphetamine use. Previous research indicates mass media campaigns may have harmful effects for people engaged in drug use. This study investigated perceptions and harms of Ice Destroys Lives among adults with a history of injecting drugs and young people. This analysis includes data from two studies: an online questionnaire with young people and in-depth interviews with adults who use crystal methamphetamine. Young people from Victoria, Australia, were recruited through Facebook. We collected data on drug use, campaign recognition and behaviours. Participants who recognised the campaign indicated whether they agreed with five statements related to Ice Destroys Lives. We compared campaign perceptions between young people who reported ever using crystal methamphetamine and those who did not. Adults who use crystal methamphetamine were sampled from the Melbourne injecting drug user cohort study. We asked participants if they recognised the campaign and whether it represented their experiences. One thousand twenty-nine young people completed the questionnaire; 71% were female, 4% had used crystal methamphetamine and 69% recognised Ice Destroys Lives. Three quarters agreed the campaign made them not want to use ice. Ever using crystal methamphetamine was associated with disagreeing with three statements including this campaign makes you not want to use ice (adjusted odds ratio (AOR) = 4.3, confidence interval (CI) = 1.8-10.0), this campaign accurately portrays the risks of ice use (AOR = 3.2, CI = 1.4-7.6) and this campaign makes you think that people who use ice are dangerous (AOR = 6.6, CI = 2.2-19.8). We interviewed 14 people who used crystal methamphetamine; most were male, aged 29-39 years, and most recognised the campaign. Participants believed Ice Destroys Lives misrepresented their experiences and exaggerated "the nasty side" of drug

  9. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    PubMed

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  10. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  11. Effects of Orbital Evolution on Lunar Ice Stability

    NASA Astrophysics Data System (ADS)

    Siegler, M. A.; Bills, B. G.; Paige, D. A.

    2010-12-01

    Permanently shadowed regions of the Moon have complex thermal histories that influence their ability to act as traps for water ice. Though many areas are now cold enough that surface water ice would be stable from sublimation losses for billions of years, this has not always been the case. Here we examine the effects of the long term orbital and rotational evolution of the Moon on polar thermal history, volatile stability and mobility. Using data from the Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, we validate models of the current temperature in the lunar polar region. This model includes the effects of topography, scattering, re-radiation, and regolith thermal properties. Then, integrating the effects of tidal torques backward from the present, we reconstruct past orbital and rotational states and use them as input to the thermal model to estimate the thermal environment of the distant lunar past. The rate of tidal evolution of the lunar orbit is quite uncertain, thus use orbital semimajor axis as independent variable, rather than time, in the reconstruction. The orbital integration results in a high obliquity period which occurred when the Moon was at about half its present distance from the Earth. This period, which caused half a year of direct sunlight on the polar region, is due to a transition between two Cassini States, spin-orbit configurations resulting from internal dissipation within the Moon. Since this event, the tilt of the Moon (with respect to the ecliptic) has slowly decreased to the current 1.54 degree. Prior to this transition, due to the relatively small Earth-Moon distance, large amplitude variations in the inclination of the orbital plain were also important. We examine the stability of polar volatiles in response to the evolving lunar orbit, and apply simple models to describe when in the Moon’s history supplied volatiles would have been most likely to be buried by thermal diffusion. When temperatures are much below

  12. 76 FR 7238 - Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... been related to either the stress of snow and ice or the malfunction of pressure control equipment due... to have been related to either the stress of snow and ice or malfunction of pressure control... from the stresses imposed by the additional loading of the snow or ice. Damage to facilities may also...

  13. Modeling the fracture of ice sheets on parallel computers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waisman, Haim; Bell, Robin; Keyes, David

    2010-03-01

    The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves inmore » Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.« less

  14. Ice swimming - 'Ice Mile' and '1 km Ice event'.

    PubMed

    Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A

    2015-01-01

    Ice swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('Ice Mile') and 1 km ('1 km Ice event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one 'Ice Mile' and 26 men and 13 completed one '1 km Ice event' in water colder than +5 °C following the rules of International Ice Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For 'Ice Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For 'Ice Mile' and '1 km Ice event', the best men were faster than the best women. In 'Ice Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both 'Ice Mile' and '1 km Ice event'. In water colder than 5 °C, men were faster than women in 'Ice Mile' and '1 km Ice event'. Water temperature showed no correlation to swimming speed.

  15. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-38

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A debris/ice/TPS assessment and photographic analysis was conducted for the Space Shuttle Mission STS-38. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-38, and their overall effect on the Space Shuttle Program are documented.

  16. Debris/ice/TPS assessment and photographic analysis of shuttle mission STS-48

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-48. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-48 are documented, along with their overall effect on the Space Shuttle Program.

  17. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-37

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-37. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-37 are documented, along with their overall effect on the Space Shuttle Program.

  18. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-36

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1990-01-01

    A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Space Shuttle Mission STS-36. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-36, and their overall effect on the Space Shuttle Program are documented.

  19. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-42

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Shuttle Mission STS-42. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flighr anomalies. The debris/ice/TPS conditions are documented along with photographic analysis of Mission STS-42, and their overall effect on the Space Shuttle Program.

  20. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-34

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-34. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-34, and their overall effect on the Space Shuttle Program are documented.

  1. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  2. Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.

  3. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley Paul; Dunham, Eric M.

    2017-04-01

    The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.

  4. A comparison of selected models for estimating cable icing

    NASA Astrophysics Data System (ADS)

    McComber, Pierre; Druez, Jacques; Laflamme, Jean

    In many cold climate countries, it is becoming increasingly important to monitor transmission line icing. Indeed, by knowing in advance of localized danger for icing overloads, electric utilities can take measures in time to prevent generalized failure of the power transmission network. Recently in Canada, a study was made to compare the estimation of a few icing models working from meteorological data in estimating ice loads for freezing rain events. The models tested were using only standard meteorological parameters, i.e. wind speed and direction, temperature and precipitation rate. This study has shown that standard meteorological parameters can only achieve very limited accuracy, especially for longer icing events. However, with the help of an additional instrument monitoring the icing rate intensity, a significant improvement in model prediction might be achieved. The icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe can be used to estimate the icing intensity. A cable icing estimation is then made by taking into consideration the accretion size, temperature, wind speed and direction, and precipitation rate. In this paper, a comparison is made between the predictions of two previously tested models (one obtained and the other reconstructed from their description in the public literature) and of a model based on the icing rate meter readings. The models are tested against nineteen events recorded on an icing test line at Mt. Valin, Canada, during the winter season 1991-1992. These events are mostly rime resulting from in-cloud icing. However, freezing rain and wet snow events were also recorded. Results indicate that a significant improvement in the estimation is attained by using the icing rate meter data together with the other standard meteorological parameters.

  5. Radon and radium in the ice-covered Arctic Ocean, and what they reveal about gas exchange in the sea ice zone.

    NASA Astrophysics Data System (ADS)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Moran, S. B.

    2014-12-01

    The polar sea ice zones are regions of high primary productivity and interior water mass formation. Consequently, the seasonal sea ice cycle appears important to both the solubility and biological carbon pumps. To estimate net CO2 transfer in the sea ice zone, we require accurate estimates of the air-sea gas transfer velocity. In the open ocean, the gas transfer velocity is driven by wind, waves and bubbles - all of which are strongly altered by the presence of sea ice, making it difficult to translate open ocean estimates of gas transfer to the ice zone. In this study, we present profiles of 222Rn and 226Ra throughout the mixed-layer and euphotic zone. Profiles were collected spanning a range of sea ice cover conditions from 40 to 100%. The profiles of Rn/Ra can be used to estimate the gas transfer velocity, but the 3.8 day half-life of 222Rn implies that mixed layer radon will have a memory of the past ~20 days of gas exchange forcing, which may include a range of sea ice cover conditions. Here, we compare individual estimates of the gas transfer velocity to the turbulent forcing conditions constrained from shipboard and regional reanalysis data to more appropriately capture the time history upper ocean Rn/Ra.

  6. Energy conservation in ice skating rinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, B.K.; McAvoy, T.J.

    1980-01-01

    An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors andmore » pumps off at night, and reducing ventilation.« less

  7. Constraining proposed combinations of ice history and Earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories, these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the VLBI observations.

  8. Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.

  9. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  10. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  11. Ice nucleation by particles immersed in supercooled cloud droplets.

    PubMed

    Murray, B J; O'Sullivan, D; Atkinson, J D; Webb, M E

    2012-10-07

    The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.

  12. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-43

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley

    1991-01-01

    A debris/ice Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Station Mission STS-43. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank (ET) were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.

  13. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-40

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A debris, ice, Thermal Protection System (TPS) assessment and photographic analysis for Space Shuttle Mission STS-40 was conducted. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice and frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice and debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.

  14. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  15. The effects of load history and design variables on performance limit states of circular bridge columns - volume 3 : analysis methods.

    DOT National Transportation Integrated Search

    2015-01-01

    This report is the third of three volumes and presents the numerical portion of the research project on the impacts of loading history on : the behavior of reinforced concrete bridge columns. Two independent finite element methods were utilized to ac...

  16. Glaciological reconstruction of Holocene ice margins in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Birkel, S. D.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2014-12-01

    The past few decades of climate warming have brought overall margin retreat to the Greenland Ice Sheet. In order to place recent and projected changes in context, we are undertaking a collaborative field-modeling study that aims to reconstruct the Holocene history of ice-margin fluctuation near Thule (~76.5°N, 68.7°W), and also along the North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W). Fieldwork reported by Kelly et al. (2013) reveals that ice in the study areas was less extensive than at present ca. 4700 (GIS) and ca. 880 (NIC) cal. years BP, presumably in response to a warmer climate. We are now exploring Holocene ice-climate coupling using the University of Maine Ice Sheet Model (UMISM). Our approach is to first test what imposed climate anomalies can afford steady state ice margins in accord with field data. A second test encompasses transient simulation of the Holocene, with climate boundary conditions supplied by existing paleo runs of the Community Climate System Model version 4 (CCSM4), and a climate forcing signal derived from Greenland ice cores. In both cases, the full ice sheet is simulated at 10 km resolution with nested domains at 0.5 km for the study areas. UMISM experiments are underway, and results will be reported at the meeting.

  17. Dynamic Tensile Strength of Low Temperature Ice and Kuiper Belt Size Distributions

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.; Fat'yanov, O. V.; Engelhardt, H.; Fraser, W. C.

    2009-09-01

    We model mutual gravitationally driven impact interactions in a nearly gas-free environment of the Kuiper belt (KB) and use low-temperature (< 100 K) ice dynamic strength dependent collisional out-come (accretion vs. erosion and fragmentation) models. These lead to theoretically predictable distributions of object number density, vs. mass distributions. These derived mass distributions are comparable to the now rapidly growing KB survey data. Tensional failure of single and polycrystalline ice in the temperature range from 263 to 128 K was measured for high strain rate, c.a. 104 s-1, dynamic loading conditions. Experiments, similar to Lange and Ahrens(1991)(LA), were conducted using a gas gun launched Lexan projectile. The liquid nitrogen cooled ice target approaching KB-like temperatures was partially confined, rather than using the LA confined geometry. Another set of experiments used a drop tube projectile launcher within the 263 K Caltech Ice Laboratory and at 163 K in a liquid nitrogen cooled chamber. New experiments give tensile strengths of 7.6±1.5 MPa at 263 K and 9.1±1.5 MPa at 163 K for unconfined, free of visual initial defects and measurable imperfections ice samples. The new strengths are lower than the earlier LA data ( 17 MPa). The major differences arise from ice target assembly. LA used polycrystalline ice samples confined in annular stainless steel target rings. New measurements were partially confined, in not initially contacting concentric target rings. Later shots used unconfined configurations with ice pellets affixed to aluminum foil. Circumferential confinement is known to increase the material damage threshold upon both compression and tensile loading. Previous confinement in LA is the main cause of the above discrepancy. Present tensile strengths are only a few times higher than 0.7 - 3.0 MPa summarized in Petrovic (2003) for quasistatic tension at 10-7 to 10-3 s-1 strain rate.

  18. Ice-sheet dynamics through the Quaternary on the mid-Norwegian continental margin inferred from 3D seismic data.

    PubMed

    Montelli, A; Dowdeswell, J A; Ottesen, D; Johansen, S E

    2017-02-01

    Reconstructing the evolution of ice sheets is critical to our understanding of the global environmental system, but most detailed palaeo-glaciological reconstructions have hitherto focused on the very recent history of ice sheets. Here, we present a three-dimensional (3D) reconstruction of the changing nature of ice-sheet derived sedimentary architecture through the Quaternary Ice Age of almost 3 Ma. An extensive geophysical record documents a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the mid-Norwegian shelf since the beginning of the Quaternary. Spatial and temporal variability of the FIS is illustrated by the gradual development of fast-flowing ice streams and associated intensification of focused glacial erosion and sedimentation since that time. Buried subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and basal thermal regime. Lack of major subglacial meltwater channels suggests a largely distributed drainage system beneath the marine-terminating part of the FIS. This palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  19. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  20. Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-35

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley

    1991-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-35. Debris inspections of the flight elements and launch pad were performed before and after the launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-35, and the overall effect of these conditions on the Space Shuttle Program.

  1. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-41

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley

    1990-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-41. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-41, and their overall effect on the Space Shuttle Program.

  2. Permafrost and Subsurface Ice in the Solar System

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.

    1985-01-01

    The properties and behavior of planetary permafrost are discussed with reference to the ability of such surfaces to sustain loads characteristics of spacecraft landing and planetary bases. In most occurrences, water ice is in close proximity to, or in contact with, finely divided silicate mineral matter. When ice contacts silicate mineral surfaces, a liquid-like, transition zone is created. Its thickness ranges from several hundred Angstron units at temperatures near 0 degrees C to about three Angstrom units at -150 degrees C. When soluble substances are present, the resulting brine enlarges the interfacial zone. When clays are involved, although the interfacial zone may be small, its extent is large. The unfrozen, interfacial water may amount to 100% or more weight at a temperature of -5 degrees C. The presence of this interfacial unfrozen water acts to confer plasticity to permafrost, enabling it to exhibit creep at all imposed levels of stress. Nucleation processes and load-bearing capacity are examined.

  3. Modeling Relevant to Safe Operations of U.S. Navy Vessels in Arctic Conditions: Physical Modeling of Ice Loads

    DTIC Science & Technology

    2016-06-01

    zones with ice concentrations up to 40%. To achieve this goal, the Navy must determine safe operational speeds as a function of ice concen- tration...and full-scale experience with ice-capable hull forms that have shallow entry angles to promote flexural ice failure preferentially over crushing...plan view) of the proposed large-scale ice–hull impact experiment to be conducted in CRREL’s refrigerated towing basin. Shown here is a side-panel

  4. Design, Construction, Testing and Evaluation of a Residential Ice Storage Air Conditioning System.

    DTIC Science & Technology

    1982-11-01

    handler and chilled water coil from previous research. This was a necessity because of the financial constraints of ] the project. 2. The trailer was...Load lbs ice/12 hr Calculation Btuh req’d @ 8 FLEOB 1. NFPA 501 BM 25,043 1391 2. ACCA Manual J 27,571 1537 using manufacturer’sdata 3. ACCA Manual J...kilowatt hrf - ~0.197 (N da• y The equivalent ice requirement was estimated using the above data and 144 Btu/pound of ice. This does not account for any

  5. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-55

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1993-01-01

    A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle mission STS-55. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-55, and the resulting effect on the Space Shuttle Program.

  6. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-53

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1993-01-01

    A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-53. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-53, and the resulting effect on the Space Shuttle Program.

  7. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-54

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1993-01-01

    A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-54. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-54, and the resulting effect on the Space Shuttle Program.

  8. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-47

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A debris/ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-47, and the resulting effect on the Space Shuttle Program.

  9. Arctic sea ice is an important temporal sink and means of transport for microplastic.

    PubMed

    Peeken, Ilka; Primpke, Sebastian; Beyer, Birte; Gütermann, Julia; Katlein, Christian; Krumpen, Thomas; Bergmann, Melanie; Hehemann, Laura; Gerdts, Gunnar

    2018-04-24

    Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.

  10. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2009-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation.

  11. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  12. Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet.

    PubMed

    Khan, Shfaqat A; Sasgen, Ingo; Bevis, Michael; van Dam, Tonie; Bamber, Jonathan L; Wahr, John; Willis, Michael; Kjær, Kurt H; Wouters, Bert; Helm, Veit; Csatho, Beata; Fleming, Kevin; Bjørk, Anders A; Aschwanden, Andy; Knudsen, Per; Munneke, Peter Kuipers

    2016-09-01

    Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.

  13. Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet

    PubMed Central

    Khan, Shfaqat A.; Sasgen, Ingo; Bevis, Michael; van Dam, Tonie; Bamber, Jonathan L.; Wahr, John; Willis, Michael; Kjær, Kurt H.; Wouters, Bert; Helm, Veit; Csatho, Beata; Fleming, Kevin; Bjørk, Anders A.; Aschwanden, Andy; Knudsen, Per; Munneke, Peter Kuipers

    2016-01-01

    Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year. PMID:27679819

  14. An Ice Track Equipped with Optical Sensors for Determining the Influence of Experimental Conditions on the Sliding Velocity

    NASA Astrophysics Data System (ADS)

    Lungevics, J.; Jansons, E.; Gross, K. A.

    2018-02-01

    The ability to slide on ice has previously focused on the measurement of friction coefficient rather than the actual sliding velocity that is affected by it. The performance can only be directly measured by the sliding velocity, and therefore the objective was to design and setup a facility to measure velo-city, and determine how experimental conditions affect it. Optical sensors were placed on an angled ice track to provide sliding velocity measurements along three sections and the velocity for the total sliding distance. Experimental conditions included the surface roughness, ambient temperature and load. The effect of roughness was best reported with a Criterion of Contact that showed a similar sliding velocity for metal blocks abraded with sand paper smoother than 600 grit. Searching for the effect of temperature, the highest sliding velocity coincided with the previously reported lowest coefficient of ice friction. Load showed the greatest velocity increase at temperatures closer to the ice melting point suggesting that in such conditions metal block overcame friction forces more easily than in solid friction. Further research needs to be conducted on a longer ice track, with larger metal surfaces, heavier loads and higher velocities to determine how laboratory experiments can predict real-life situations.

  15. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  16. Radiostratigraphy and age structure of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu

    2015-01-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664

  17. Identification of water ice on the Centaur 1997 CU26.

    PubMed

    Brown, R H; Cruikshank, D P; Pendleton, Y; Veeder, G J

    1998-05-29

    Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.

  18. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  19. Deglacial temperature history of West Antarctica.

    PubMed

    Cuffey, Kurt M; Clow, Gary D; Steig, Eric J; Buizert, Christo; Fudge, T J; Koutnik, Michelle; Waddington, Edwin D; Alley, Richard B; Severinghaus, Jeffrey P

    2016-12-13

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth's climate responds to various forcings, including a rise in atmospheric CO 2 This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes' sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was [Formula: see text]C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  20. Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More

    NASA Astrophysics Data System (ADS)

    Alley, Richard B.; Anandakrishnan, Sridhar; Christianson, Knut; Horgan, Huw J.; Muto, Atsu; Parizek, Byron R.; Pollard, David; Walker, Ryan T.

    2015-05-01

    Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.

  1. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity

    USGS Publications Warehouse

    Jakosky, B.M.; Carr, M.H.

    1985-01-01

    Most of the old cratered highlands of Mars are dissected by branching river valleys that appear to have been cut by running water1,2 yet liquid water is unstable everywhere on the martian surface. In the equatorial region, where most of the valleys are observed, even ice is unstable3,4. It has been suggested, therefore, that Mars had an early denser atmosphere with sufficient greenhouse warming to allow the existence of liquid water 5. Here, we suggest instead that during periods of very high obliquities, ice could accumulate at low latitudes as a result of sustained sublimation of ice from the poles and transport of the water vapour equatorwards. At low latitudes, the water vapour would saturate the atmosphere and condense onto the surface where it would accumulate until lower obliquities prevailed. The mechanism is efficient only at the very high obliquities that occurred before formation of Tharsis very early in the planet's history, but limited equatorial ice accumulation could also have occurred at the highest obliquities during the rest of the planet's history. Partial melting of the ice could have provided runoff to form the channels or replenish the groundwater system. ?? 1985 Nature Publishing Group.

  2. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Carr, M. H.

    1985-01-01

    Most of the old cratered highlands of Mars are dissected by branching river valleys that appear to have been cut by running water, yet liquid water is unstable everywhere on the Martian surface. In the equatorial region, where most of the valleys are observed, even ice is unstable. It has been suggested, therefore, that Mars had an early denser atmosphere with sufficient greenhouse warming to allow the existence of liquid water. Here, it is suggested instead that during periods of very high obliquities, ice could accumulate at low latitudes as a result of sustained sublimation of ice from the poles and transport of the water vapor equatorwards. At low latitudes, the water vapor would saturate the atmosphere and condense onto the surface, where it would accumulate until lower obliquities prevailed. The mechanism is efficient only at the very high obliquities that occurred before formation of Tharsis very early in the planet's history, but limited equatorial ice accumulation could also have occurred at the highest obliquities during the rest of the planet's history. Partial melting of the ice could have provided runoff to form the channels or replenish the groundwater system.

  3. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  4. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  5. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  6. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  7. 1500 Years of Annual Climate and Environmental Variability as Recorded in Bona-Churchill (Alaska) Ice Cores

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E. S.; Zagorodnov, V.; Davis, M. E.; Mashiotta, T. A.; Lin, P.

    2004-12-01

    In 2003, six ice cores measuring 10.5, 11.5, 11.8, 12.4, 114 and 460 meters were recovered from the col between Mount Bona and Mount Churchill (61° 24'N; 141° 42'W; 4420 m asl). These cores have been analyzed for stable isotopic ratios, insoluble dust content and concentrations of major chemical species. Total Beta radioactivity was measured in the upper sections. The 460-meter core, extending to bedrock, captured the entire depositional record at this site where ice temperatures ranged from -24° C at 10 meters to -19.8° C at the ice/bedrock contact. The shallow cores allow assessment of surface processes under modern meteorological conditions while the deep core offers a ˜1500-year climate and environmental perspective. The average annual net balance is ˜~1000 mm of water equivalent and distinct annual signals in dust and calcium concentrations along with δ 18O allow annual resolution over most of the core. The excess sulfate record reflects many known large volcanic eruptions such as Katmai, Krakatau, Tambora, and Laki which allow validation of the time scale in the upper part of the core. The lower part of the core yields a history of earlier volcanic events. The 460-m Bona-Churchill ice core provides a detailed history of the `Little Ice Age' and medieval warm periods for southeastern Alaska. The source of the White River Ash will be discussed in light of the evidence from this core. The 460-m core also provides a long-term history of the dust fall that originates in north-central China. The annual ice core-derived climate records from southeastern Alaska will facilitate an investigation of the likelihood that the high resolution 1500-year record from the tropical Quelccaya Ice Cap (Peru) preserves a history of the variability of both the PDO and the Aleutian Low.

  8. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  9. "We Freeze to Please": A History of NASA's Icing Research Tunnel and the Quest for Flight Safety

    NASA Technical Reports Server (NTRS)

    Leary, William M.

    2002-01-01

    The formation of ice on wings and other control surfaces of airplanes is one of the oldest and most vexing problems that aircraft engineers and scientists continue to face. While no easy, comprehensive answers exist, the staff at NASAs Icing Research Tunnel (IRT) at the Glenn Research Center in Cleveland has done pioneering work to make flight safer for experimental, commercial, and military customers. The National Advisory Committee for Aeronautics (NACA) initiated government research on aircraft icing in the 1930s at its Langley facility in Virginia. Icing research shifted to the NACA's Cleveland facility in the 1940s. Initially there was little focus on icing at either location, as these facilities were more concerned with aerodynamics and engine development. With several high-profile fatal crashes of air mail carriers, however, the NACA soon realized the need for a leading research facility devoted to icing prevention and removal. The IRT began operation in 1944 and, despite renovations and periodic attempts to shut it down, has continued to function productively for almost 60 years. In part because icing has proved so problematic over time, IRT researchers have been unusually open-minded in experimenting with a wide variety of substances, devices, and techniques. Early icing prevention experiments involved grease, pumping hot engine exhaust onto the wings, glycerin soap, mechanical and inflatable "boots," and even corn syrup. The IRT staff also looked abroad for ideas and later tried a German and Soviet technique of electromagnetism, to no avail. More recently, European polymer fluids have been more promising. The IRT even periodically had "amateur nights" in which a dentist's coating for children's teeth proved unequal to the demands of super-cooled water droplets blown at 100 miles per hour. Despite many research dead-ends, IRT researchers have achieved great success over the years. They have developed important computer models, such as the LEWICE software

  10. Ice cream structure modification by ice-binding proteins.

    PubMed

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mining Existing Radar Altimetry for Sea Ice Freeboard and Thickness Estimates

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Brozena, J. M.

    2007-12-01

    Although satellites can easily monitor ice extent and a variety of ice attributes, they cannot directly measure ice thickness. As a result, very few ice thickness measurements exist to constrain models of Arctic climate change. We estimated sea ice freeboard and thickness from X-band radar altimeter measurements collected over seven field seasons between 1992 and 1999 as part of a Naval Research Lab (NRL)-sponsored airborne geophysical survey of gravity and magnetics over the Arctic Ocean. These freeboard and thickness estimates were compared with the SCICEX ice draft record and the observed thinning of the Arctic Ocean ice cover during the 1990's. Our initial calculations (shown here) suggest that retrieved profiles from this radar altimeter (with uncertainty of about 5 cm) are sensitive to openings in the ice cover. Thus, conversion of these profiles to ice thickness adds an invaluable dataset for assessment of recent and future changes of Arctic climate. And, snow loading is a minor issue here as all the airborne surveys were conducted during mid- to late-summer when the ice cover is mostly bare. The strengths of this dataset are its small antenna footprint of ~50 m and density of spatial coverage allows for detailed characterization of the field of ice thickness, and it provides surveys of regions not covered by SCICEX cruises. The entire survey covers more than half the Arctic Ocean. We find that the Canadian Basin sea ice behavior differs from that in the Eurasian Basin and ultimately affects mean sea ice thickness for each basin.

  12. Transport of contaminants by Arctic sea ice and surface ocean currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfirman, S.

    1995-12-31

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brinemore » drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins.« less

  13. Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-33R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-33R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and photographic analysis of Mission STS-33R, and their overall effect on the Space Shuttle Program.

  14. Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-31R

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1990-01-01

    A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-31R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-31R, is presented along with their overall effect on the Space Shuttle Program.

  15. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-81

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-81. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-81 and the resulting effect on the Space Shuttle Program.

  16. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-83

    NASA Technical Reports Server (NTRS)

    Lin, Jill D.; Katnik, Gregory N.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-83. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-83 and the resulting effect on the Space Shuttle Program.

  17. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-103

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-103. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-103 and the resulting effect on the Space Shuttle Program.

  18. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-91

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-91. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-91 and the resulting effect on the Space Shuttle Program.

  19. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-93

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-93. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis findings of Space Shuttle mission STS-93 and the resulting effect on the Space Shuttle Program.

  20. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-95

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-95. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-95 and the resulting effect on the Space Shuttle Program.

  1. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-90

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-90. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system-conditions and integrated photographic analysis of Space Shuttle mission STS-90 and the resulting effect on the Space Shuttle Program.

  2. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.

  3. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-89

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-89. Debris inspections of the flight element and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection systems conditions and integrated photographic analysis of Space Shuttle mission STS-89 and the resulting effect on the Space Shuttle Program.

  4. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-71

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-71. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-71 and the resulting effect on the Space Shuttle Program.

  5. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Kelly, J. David (Technical Monitor)

    2001-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.

  6. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-94

    NASA Technical Reports Server (NTRS)

    Bowen, Barry C.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-94. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-94 and the resulting effect on the Space Shuttle Program.

  7. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-79

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-79. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-79 and the resulting effect on the Space Shuttle Program.

  8. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-112

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2002-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-112. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-112 and the resulting effect of the Space Shuttle Program.

  9. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-74

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-74. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-74 and the resulting effect on the Space Shuttle Program.

  10. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-87

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1998-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-87. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the-use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-87 and the resulting effect on the Space Shuttle Program.

  11. Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-96

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-96. Debris inspections of the flight elements and launch pad were performed before and after launch. icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-96 and the resulting effect on the Space Shuttle Program.

  12. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-101

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-101. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-101 and the resulting effect on the Space Shuttle Program.

  13. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-73

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-73. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle Mission STS-73 and the resulting effect on the Space Shuttle Program.

  14. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-88

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    1999-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-88. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-88 and the resulting effect on the Space Shuttle Program.

  15. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-68

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Bowen, Barry C.; Davis, J. Bradley; Speece, Robert F.

    1994-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-68. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report-documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-68, and the resulting effect on the Space Shuttle Program.

  16. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-111

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-111. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-111 and the resulting effect of the Space Shuttle Program.

  17. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-99

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-99. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-99 and the resulting effect on the Space Shuttle Program.

  18. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-98

    NASA Technical Reports Server (NTRS)

    Speece, Robert F.

    2004-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.

  19. Debris/ice/TPS assessment and integrated photographic analysis of shuttle mission STS-63

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-63. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-63, and the resulting effect on the space shuttle program.

  20. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-66

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-66. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer program nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-66, and the resulting effect on the Space Shuttle Program.

  1. Debris/Ice/TPS Assessment and Integrated Photographic Analysis for Shuttle Mission STS-49

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-49. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-49, and the resulting effect on the Space Shuttle Program are discussed.

  2. Debris/Ice/TPS assessment and integrated photographic analysis of shuttle mission STS-76

    NASA Technical Reports Server (NTRS)

    Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-76. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-76 and the resulting effect on the Space Shuttle Program.

  3. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-97

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E.; Kelly, J. David (Technical Monitor)

    2001-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-97. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris /ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-97 and the resulting effect on the Space Shuttle Program.

  4. Debris/Ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-77

    NASA Technical Reports Server (NTRS)

    Katnik, GregoryN.; Lin, Jill D. (Compiler)

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-77. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-77 and the resulting effect on the Space Shuttle Program.

  5. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-86

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Lin, Jill D.

    1997-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-86. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-86 and the resulting affect on the Space Shuttle Program.

  6. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-70

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-70. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-70 and the resulting effect on the Space Shuttle Program.

  7. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-51

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1993-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-51. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-51 and the resulting effect on the Space Shuttle Program.

  8. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-100

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2004-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.

  9. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-92

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-92. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-92 and the resulting effect, if any, on the Space Shuttle Program.

  10. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-69

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1995-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-69. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system condition and integrated photographic analysis of Shuttle Mission STS-69 and the resulting effect on the Space Shuttle Program.

  11. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-52

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1992-01-01

    A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-52, and the resulting effect on the Space Shuttle Program.

  12. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-65

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1994-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-65. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-65, and the resulting effect on the Space Shuttle Program.

  13. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-106

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Kelley, J. David (Technical Monitor)

    2000-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-106. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-106 and the resulting effect on the Space Shuttle Program.

  14. Debris/Ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-61

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley

    1994-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-61. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/TPS conditions and integrated photographic analysis of shuttle mission STS-61, and the resulting effect on the space shuttle program.

  15. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-72

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.

    1996-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-72. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-72 and the resulting effect on the Space Shuttle Program.

  16. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-58

    NASA Technical Reports Server (NTRS)

    Davis, J. Bradley; Rivera, Jorge E.; Katnik, Gregory N.; Bowen, Barry C.; Speece, Robert F.; Rosado, Pedro J.

    1994-01-01

    A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-58. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The ice/debris/TPS conditions and integrated photographic analysis of Shuttle mission STS-58, and the resulting effect on the Space Shuttle Program are documented.

  17. Impact of aerosol emission controls on future Arctic sea ice cover

    NASA Astrophysics Data System (ADS)

    Gagné, M.-Ã..; Gillett, N. P.; Fyfe, J. C.

    2015-10-01

    We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emission changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become ice-free during summertime in 2045, but it does not become ice-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.

  18. Measurements of Ice Nuclei properties at the Jungfraujoch using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, Cédric

    2010-05-01

    Ice clouds and mixed-phase clouds have different microphysical properties. Both affect the climate in various ways. Ice phase present in these clouds have the ability to scatter the incoming solar radiation and absorb terrestrial radiation differently from water droplets. Ice is also responsible for most of the precipitation in the mid-latitudes. Ice crystals can be formed via two main processes: homogeneous and heterogeneous ice nucleation. Investigation of thermodynamic conditions at which ice nuclei (IN) trigger nucleation and their number concentrations is necessary in order to understand the formation of the ice phase in the atmosphere. In order to investigate the presence of IN in the free troposphere, the Institute for Atmospheric and Climate Sciences of the ETH Zurich has recently designed a new chamber: the Portable Ice Nucleation Chamber (PINC), which is the field version of the Zurich Ice Nucleation Chamber (Stetzer et al., 2008). Both chambers follow the principle of a "continuous flow diffusion chamber" (Rogers, 1988) and can measure the number concentration of IN at different temperatures and relative humidities. Aerosols are collected through an inlet where an impactor removes larger particles that could be counted as ice crystals. The aerosol load is layered between two dry sheath air flows as it enters the main chamber. Both walls of the chamber are covered with a thin layer of ice and maintained at two different temperatures in order to create supersaturation with respect to ice (and with respect to water in case of a larger temperature difference between the walls). At the exit of the main chamber, the sample goes throught the evaporation part that is kept saturated with respect to ice. There, water droplets evaporate and only ice crystals and smaller aerosol particles are counted by the Optical Particle Counter (OPC) at the bottom of the chamber. The high alpine research station Jungfraujoch is located at 3580 m a.s.l. It is mainly in

  19. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

    NASA Astrophysics Data System (ADS)

    Riva, Riccardo E. M.; Frederikse, Thomas; King, Matt A.; Marzeion, Ben; van den Broeke, Michiel R.

    2017-06-01

    Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.

  20. Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.

    2013-12-01

    -5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.

  1. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    PubMed

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  2. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Simmons, G. M. Jr; McKay, C. P.; Wharton RA, J. r. (Principal Investigator)

    1989-01-01

    Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is a perennially ice-covered lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice cover (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 years ago. The time constants for turnover of the water column and lake ice are 50 and 10 years, respectively. The turnover time for atmospheric gases in the lake is 30-60 years. Therefore, the lake environment responds to changes on a 10-100 year timescale. Because the ice cover has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the lake environment and biota.

  3. Initial Insights into the Quaternary Evolution of the Laurentide Ice Sheet on Southeastern Baffin Island

    NASA Astrophysics Data System (ADS)

    Pendleton, S.; Anderson, R. S.; Miller, G. H.; Refsnider, K. A.

    2015-12-01

    Increasing Arctic summer temperatures in recent decades and shrinking cold-based ice caps on Cumberland Peninsula, Baffin Island, are exposing ancient landscapes complete with uneroded bedrock surfaces. Previous work has indicated that these upland surfaces covered with cold-based ice experience negligible erosion compared with the valleys and fjords systems that contain fast-flowing ice. Given the appearance of highly weathered bedrock, it is argued that these landscapes have remained largely unchanged since at least the last interglaciation (~120 ka), and have likely experienced multiple cycles of ice expansion and retraction with little erosion throughout the Quaternary. To explore this hypothesis, we use multiple cosmogenic radionuclides (26Al and 10Be) to investigate and provide insight into longer-term cryosphere activity and landscape evolution. 26Al/10Be in surfaces recently exposed exhibit a wide range of exposure-burial histories. Total exposure-burial times range from ~0.3 - 1.5 My and estimated erosion rates from 0.5 - 6.2 m Ma-1. The upland surfaces of the Penny Ice cap generally experienced higher erosion rates (~0.45 cm ka-1) than those covered by smaller ice caps (~0.2 cm ka-1). The cumulative burial/exposure histories in high, fjord-edge locations indicate that significant erosion north of the Penny Ice Cap ceased between ~600 and 800 ka, suggesting that Laurentide Ice Sheet (LIS) organization and fjord inception was underway by at least this time. Additionally, 26Al/10Be ratios near production values despite high inventories from a coastal summit 50 km east of the Penny Ice Cape suggest that that area has not experienced appreciable burial by ice, suggesting that it was never inundated by the LIS. Moreover, these initial data suggest a variable and dynamic cryosphere in the region and provide insight into how large ice sheets evolved and organized themselves during the Quaternary.

  4. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  5. Physical properties of the WAIS Divide ice core

    USGS Publications Warehouse

    Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.

    2014-01-01

    The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.

  6. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  8. Ice Processes and Growth History on Arctic and Sub-Arctic Lakes Using ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Morris, K.; Jeffries, M. O.; Weeks, W. F.

    1995-01-01

    A survey of ice growth and decay processes on a selection of shallow and deep sub-Arctic and Arctic lakes was conducted using radiometrically calibrated ERS-1 SAR images. Time series of radar backscatter data were compiled for selected sites on the lakes during the period ot ice cover (September to June) for the years 1991-1992 and 1992-1993. A variety of lake-ice processes could be observed, and significant changes in backscatter occurred from the time of initial ice formation in autumn until the onset of the spring thaw. Backscatter also varied according to the location and depth of the lakes. The spatial and temporal changes in backscatter were most constant and predictable at the shallow lakes on the North Slope of Alaska. As a consequence, they represent the most promising sites for long-term monitoring and the detection of changes related to global warming and its effects on the polar regions.

  9. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  10. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  11. Rearing history and allostatic load in adult western lowland gorillas (Gorilla gorilla gorilla) in human care.

    PubMed

    Edes, Ashley N; Wolfe, Barbara A; Crews, Douglas E

    2016-01-01

    Disrupted rearing history is a psychological and physical stressor for nonhuman primates, potentially resulting in multiple behavioral and physiological changes. As a chronic, soma-wide stressor, altered rearing may be best assessed using a holistic tool such as allostatic load (AL). In humans, AL estimates outcomes of lifetime stress-induced damage. We predicted mother-reared gorillas would have lower AL than nursery-reared and wild-caught conspecifics. We estimated AL for 27 gorillas housed at the Columbus Zoo and Aquarium between 1956 and 2014. AL estimates were calculated using biomarkers obtained during previous anesthetic events. Biomarkers in the high-risk quartile were counted toward a gorilla's AL. Rearing history was categorized as mother-reared, nursery-reared, and wild-caught. Using ANCOVA, rearing history and AL are significantly associated when age and sex are entered as covariates. Wild-caught gorillas have significantly higher AL than mother-reared gorillas. Neither wild-caught nor mother-reared gorillas are significantly different from nursery-reared gorillas. When examined by sex, males of all rearing histories have significantly lower AL than females. We suggest males face few stressors in human care and ill effects of rearing history do not follow. Wild-caught females have significantly higher AL than mother-reared females, but neither is significantly different from nursery-reared females. Combined with our previous work on AL in this group, wherein females had twofold higher AL than males, we suggest females in human care face more stressors than males. Disrupted rearing history may exacerbate effects of these stressors. Providing opportunities for females to choose their distance from males may help reduce their AL. © 2016 Wiley Periodicals, Inc.

  12. The study of fresh-water lake ice using multiplexed imaging radar

    USGS Publications Warehouse

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this ice is somewhat transparent to the energy used by the imaging SLAR system. The ice types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  13. New insights into West Greenland ice sheet/stream dynamics during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Roberts, David; Lane, Tim; Rea, Brice; Cofaigh, Colm O.; Jamieson, Stewart; Vieli, Andreas; Rodes, Angel

    2015-04-01

    Onshore and offshore geomorphological mapping and deglacial chronologies from West Greenland constrain the nature and magnitude of ice advance and decay of the Greenland Ice Sheet (GrIS) during the last glacial cycle. Several ice stream troughs are known to have fed ice to the shelf edge during the last glacial cycle. Their offshore expression suggests that many were coalescent systems fed by smaller outlet glaciers and ice streams onshore but their central flow pathways were also controlled by geology and preglacial topography. The bed morphology of these large ice streams shows they operated over soft, deforming beds with drumlins, mega-scale glacial lineations and grounding zone wedges marking an offshore transition from predominant areal scour onshore. Records of offshore deglacial chronology remain sparse but the Uummannaq and Disko Bugt ice stream corridors are now well constrained. The Uummannaq ice stream (UIS) completely deglaciated from the continental shelf between 14.8 ka and 11.0 ka in response to rising air temperatures, increasing JJA solar radiation and sea-level rise, but temporary standstills and the asynchronous retreat history of its feeder zones suggest that topography/bathymetry strongly modulated retreat rates as ice became 'locked' back into the coastal fjord system. Initial reconstructions of behaviour UIS discounted an oceanic role in early deglaciation and favoured retreat from the mid-shelf and inner-shelf prior to the Younger Dryas but both these concepts remain under investigation. In Disko Bugt, Jakobshavn Isbrae deglaciated later than the UIS and remained on the outer shelf during the Younger Dyras stadial (12.8 - 11.7 cal. kyrs BP) only reaching in the inner coast fjords at approximately 10.0 ka. The later deglaciation of the Disko system (despite similar external forcing mechanisms) was controlled by regional topographic/bathymetric contrasts in their respective trough morphologies. This hypothesis is supported by recent model

  14. Deglacial temperature history of West Antarctica

    USGS Publications Warehouse

    Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T.J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P.

    2016-01-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.8∘">11.3±1.8∘11.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  15. Deglacial temperature history of West Antarctica

    PubMed Central

    Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.

    2016-01-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted. PMID:27911783

  16. Design and Experiment of FBG-Based Icing Monitoring on Overhead Transmission Lines with an Improvement Trial for Windy Weather

    PubMed Central

    Zhang, Min; Xing, Yimeng; Zhang, Zhiguo; Chen, Qiguan

    2014-01-01

    A scheme for monitoring icing on overhead transmission lines with fiber Bragg grating (FBG) strain sensors is designed and evaluated both theoretically and experimentally. The influences of temperature and wind are considered. The results of field experiments using simulated ice loading on windless days indicate that the scheme is capable of monitoring the icing thickness within 0–30 mm with an accuracy of ±1 mm, a load cell error of 0.0308v, a repeatability error of 0.3328v and a hysteresis error is 0.026%. To improve the measurement during windy weather, a correction factor is added to the effective gravity acceleration, and the absolute FBG strain is replaced by its statistical average. PMID:25615733

  17. Design and experiment of FBG-based icing monitoring on overhead transmission lines with an improvement trial for windy weather.

    PubMed

    Zhang, Min; Xing, Yimeng; Zhang, Zhiguo; Chen, Qiguan

    2014-12-12

    A scheme for monitoring icing on overhead transmission lines with fiber Bragg grating (FBG) strain sensors is designed and evaluated both theoretically and experimentally. The influences of temperature and wind are considered. The results of field experiments using simulated ice loading on windless days indicate that the scheme is capable of monitoring the icing thickness within 0-30 mm with an accuracy of ±1 mm, a load cell error of 0.0308v, a repeatability error of 0.3328v and a hysteresis error is 0.026%. To improve the measurement during windy weather, a correction factor is added to the effective gravity acceleration, and the absolute FBG strain is replaced by its statistical average.

  18. Development of an Algorithm for Satellite Remote Sensing of Sea and Lake Ice

    NASA Astrophysics Data System (ADS)

    Dorofy, Peter T.

    Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures.

  19. Ice stream reorganization and glacial retreat on the northwest Greenland shelf

    NASA Astrophysics Data System (ADS)

    Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.

    2017-08-01

    Understanding conditions at the grounding-line of marine-based ice sheets is essential for understanding ice sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) ice sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear margin moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM ice sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the margin stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The ice sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.

  20. Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history

    USGS Publications Warehouse

    Corbett, Lee B.; Bierman, Paul R.; Stone, Byron D.; Caffee, Marc W.; Larsen, Patrick L.

    2017-01-01

    The time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.

  1. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE PAGES

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; ...

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  2. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Fresneau, A.; Abou Mrad, N.; d'Hendecourt, L. LS; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G.

    2017-03-01

    We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.

  3. Pluto followed its heart: reorientation and faulting of Pluto due to volatile loading in Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Tuttle Keane, James; Matsuyama, Isamu; Kamata, Shunichi; Steckloff, Jordan

    2016-10-01

    The New Horizons flyby of Pluto revealed the dwarf planet to be a strikingly diverse, geologically active world. Perhaps the most intriguing feature on the New Horizons encounter hemisphere is Sputnik Planum—a 1000 km diameter, probable impact basin, filled with several kilometers of actively convecting volatile ices (N2, CH4, CO). One salient characteristic of Sputnik Planum is its curious alignment with the Pluto-Charon tidal axis. The alignment of large geologic features with principal axis of inertia (such as the tidal axis) is the hallmark of global reorientation, i.e. true polar wander. Here we show that the present location of Sputnik Planum is a natural consequence of loading of 1-2 km of volatile ices within the Sputnik Planum basin. Larger volatile ice thicknesses (like those inferred from studies of ice convection within Sputnik Planum) betray an underlying negative gravity anomaly associated with the basin. As Pluto reoriented in response to the loading of volatile ices within Sputnik Planum, stresses accumulated within the lithosphere (as each geographic location experiences a change in tidal/rotational potential). These reorientation stresses, coupled with loading stresses, and stresses from the freezing of a subsurface ocean resulted in the fracturing of Pluto's lithosphere in a characteristic, global pattern of extensional faults. Our predicted pattern of extensional faults due to this reorientation closely replicates the observed distribution of faults on Pluto (more so than global expansion, orbit migration, de-spinning, or loading alone). Sputnik Planum likely formed ~60° northwest of its present location, and was loaded with volatile ices over millions of years due to seasonal volatile transport cycles. This result places Pluto in a truly unique category of planetary bodies where volatiles are not only controlling surface geology and atmospheric processes, but they are also directly controlling the orientation of the entire dwarf planet

  4. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  5. Analysis of scale effect in compressive ice failure and implications for design

    NASA Astrophysics Data System (ADS)

    Taylor, Rocky Scott

    The main focus of the study was the analysis of scale effect in local ice pressure resulting from probabilistic (spalling) fracture and the relationship between local and global loads due to the averaging of pressures across the width of a structure. A review of fundamental theory, relevant ice mechanics and a critical analysis of data and theory related to the scale dependent pressure behavior of ice were completed. To study high pressure zones (hpzs), data from small-scale indentation tests carried out at the NRC-IOT were analyzed, including small-scale ice block and ice sheet tests. Finite element analysis was used to model a sample ice block indentation event using a damaging, viscoelastic material model and element removal techniques (for spalling). Medium scale tactile sensor data from the Japan Ocean Industries Association (JOIA) program were analyzed to study details of hpz behavior. The averaging of non-simultaneous hpz loads during an ice-structure interaction was examined using local panel pressure data. Probabilistic averaging methodology for extrapolating full-scale pressures from local panel pressures was studied and an improved correlation model was formulated. Panel correlations for high speed events were observed to be lower than panel correlations for low speed events. Global pressure estimates based on probabilistic averaging were found to give substantially lower average errors in estimation of load compared with methods based on linear extrapolation (no averaging). Panel correlations were analyzed for Molikpaq and compared with JOIA results. From this analysis, it was shown that averaging does result in decreasing pressure for increasing structure width. The relationship between local pressure and ice thickness for a panel of unit width was studied in detail using full-scale data from the STRICE, Molikpaq, Cook Inlet and Japan Ocean Industries Association (JOIA) data sets. A distinct trend of decreasing pressure with increasing ice thickness

  6. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    PubMed

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  8. Physical analysis of an Antarctic ice core-towards an integration of micro- and macrodynamics of polar ice*

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H.; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas

    2017-02-01

    Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are

  9. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-02-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps) are here revisited in view to reconstruct past aerosol load of the free European troposphere from prior World War II to present. The extended array of inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, HUmic LIke Substances, dissolved organic carbon, water insoluble organic carbon, and black carbon) compounds and fractions already investigated permit to examine the overall aerosol composition and its change over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). It is shown that not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarii dealing with climate forcing by atmospheric aerosol.

  10. Greenland deep boreholes inform on sliding and deformation of the basal ice

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  11. Constraining Quaternary ice covers and erosion rates using cosmogenic 26Al/10Be nuclide concentrations

    NASA Astrophysics Data System (ADS)

    Knudsen, Mads Faurschou; Egholm, David Lundbek

    2018-02-01

    Paired cosmogenic nuclides are often used to constrain the exposure/burial history of landforms repeatedly covered by ice during the Quaternary, including tors, high-elevation surfaces, and steep alpine summits in the circum-Arctic regions. The approach generally exploits the different production rates and half-lives of 10Be and 26Al to infer past exposure/burial histories. However, the two-stage minimum-limiting exposure and burial model regularly used to interpret the nuclides ignores the effect of variable erosion rates, which potentially may bias the interpretation. In this study, we use a Monte Carlo model approach to investigate systematically how the exposure/burial and erosion history, including variable erosion and the timing of erosion events, influence concentrations of 10Be and 26Al. The results show that low 26Al/10Be ratios are not uniquely associated with prolonged burial under ice, but may as well reflect ice covers that were limited to the coldest part of the late Pleistocene combined with recent exhumation of the sample, e.g. due to glacial plucking during the last glacial period. As an example, we simulate published 26Al/10Be data from Svalbard and show that it is possible that the steep alpine summits experienced ice-free conditions during large parts of the late Pleistocene and varying amounts of glacial erosion. This scenario, which contrasts with the original interpretation of more-or-less continuous burial under non-erosive ice over the last ∼1 Myr, thus challenge the conventional interpretation of such data. On the other hand, high 26Al/10Be ratios do not necessarily reflect limited burial under ice, which is the common interpretation of high ratios. In fact, high 26Al/10Be ratios may also reflect extensive burial under ice, combined with a change from burial under erosive ice, which brought the sample close to the surface, to burial under non-erosive ice at some point during the mid-Pleistocene. Importantly, by allowing for variable

  12. The extent and timing of the last British-Irish Ice Sheet offshore of west Ireland-preliminary findings

    NASA Astrophysics Data System (ADS)

    Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.

    2014-05-01

    Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.

  13. The genetic history of Ice Age Europe.

    PubMed

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit; Peltzer, Alexander; Rohland, Nadin; Slon, Viviane; Talamo, Sahra; Lazaridis, Iosif; Lipson, Mark; Mathieson, Iain; Schiffels, Stephan; Skoglund, Pontus; Derevianko, Anatoly P; Drozdov, Nikolai; Slavinsky, Vyacheslav; Tsybankov, Alexander; Cremonesi, Renata Grifoni; Mallegni, Francesco; Gély, Bernard; Vacca, Eligio; Morales, Manuel R González; Straus, Lawrence G; Neugebauer-Maresch, Christine; Teschler-Nicola, Maria; Constantin, Silviu; Moldovan, Oana Teodora; Benazzi, Stefano; Peresani, Marco; Coppola, Donato; Lari, Martina; Ricci, Stefano; Ronchitelli, Annamaria; Valentin, Frédérique; Thevenet, Corinne; Wehrberger, Kurt; Grigorescu, Dan; Rougier, Hélène; Crevecoeur, Isabelle; Flas, Damien; Semal, Patrick; Mannino, Marcello A; Cupillard, Christophe; Bocherens, Hervé; Conard, Nicholas J; Harvati, Katerina; Moiseyev, Vyacheslav; Drucker, Dorothée G; Svoboda, Jiří; Richards, Michael P; Caramelli, David; Pinhasi, Ron; Kelso, Janet; Patterson, Nick; Krause, Johannes; Pääbo, Svante; Reich, David

    2016-06-09

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

  14. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  15. Impact of Ice Ages on the genetic structure of trees and shrubs.

    PubMed Central

    Lascoux, Martin; Palmé, Anna E; Cheddadi, Rachid; Latta, Robert G

    2004-01-01

    Data on the genetic structure of tree and shrub populations on the continental scale have accumulated dramatically over the past decade. However, our ability to make inferences on the impact of the last ice age still depends crucially on the availability of informative palaeoecological data. This is well illustrated by the results from a recent project, during which new pollen fossil maps were established and the variation in chloroplast DNA was studied in 22 European species of trees and shrubs. Species exhibit very different levels of genetic variation between and within populations, and obviously went through very different histories after Ice Ages. However, when palaeoecological data are non-informative, inferences on past history are difficult to draw from entirely genetic data. On the other hand, as illustrated by a study in ponderosa pine, when we can infer the species' history with some certainty, coalescent simulations can be used and new hypotheses can be tested. PMID:15101576

  16. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  17. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  18. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  19. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  20. Effects of recent decreases in arctic sea ice on an ice-associated marine bird

    NASA Astrophysics Data System (ADS)

    Divoky, George J.; Lukacs, Paul M.; Druckenmiller, Matthew L.

    2015-08-01

    Recent major reductions in summer arctic sea ice extent could be expected to be affecting the distributions and life histories of arctic marine biota adapted to living adjacent to sea ice. Of major concern are the effects of ice reductions, and associated increasing SST, on the most abundant forage fish in the Arctic, Arctic cod (Boreogadus saida), the primary prey for the region's upper trophic level marine predators. The black guillemot (Cepphus grylle mandtii) is an ice-obligate diving seabird specializing in feeding on Arctic cod and has been studied annually since 1975 at a breeding colony in the western Beaufort Sea. The data set is one of the few allowing assessment of the response of an upper trophic marine predator to recent decadal changes in the region's cryosphere. Analysis of oceanographic conditions north of the colony from 1975 to 2012 for the annual period when parents provision young (mid-July to early September), found no major regime shifts in ice extent or SST until the late 1990s with major decreases in ice and increases in SST in the first decade of the 21st Century. We examined decadal variation in late summer oceanographic conditions, nestling diet and success, and overwinter adult survival, comparing a historical period (1975-1984) with a recent (2003-2012) one. In the historical period sea ice retreated an average of 1.8 km per day from 15 July to 1 September to an average distance of 95.8 km from the colony, while in the recent period ice retreat averaged 9.8 km per day to an average distance of 506.9 km for the same time period. SST adjacent to the island increased an average of 2.9 °C between the two periods. While Arctic cod comprised over 95% of the prey provided to nestlings in the historical period, in the recent period 80% of the years had seasonal decreases, with Arctic cod decreasing to <5% of the nestling diet, and nearshore demersals, primarily sculpin (Cottidae), comprising the majority of the diet. A five-fold increase in

  1. Beach profile modification and sediment transport by ice: an overlooked process on Lake Michigan

    USGS Publications Warehouse

    Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M.; Weber, W.S.; Hayden, E.C.

    1993-01-01

    Coastal lake ice includes a belt of mobile crash and slush ice and a stable nearshore-ice complex (NIC). Sediment concentrations indicate that the NIC and the belt of brash and slush contains 180 to 280 t (113 to 175m3) of sand per kilometer of coast. This static sediment load is roughly equivalent to the average amount of sand eroded from the bluffs and to the amount accumulating in the deep lake basin each year. Sediment is being rafted alongshore in the mobile brash and slush at rates of 10 to 30 cm/sec. -from Authors

  2. Underground Martian Ice Deposit Exposed at Scarp

    NASA Image and Video Library

    2018-01-11

    Click on the image for larger version A cross-section of a thick sheet of underground ice is exposed at the steep slope (or scarp) that appears bright blue in this enhanced-color view from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The view covers an area about 550 yards (500 meters) wide. Figure 1 includes a 100-meter (109-yard) scale bar. North is toward the top. The upper third of the image shows level ground that is about 140 yards (130 meters) higher in elevation than the ground in the bottom third. In between, the scarp descends sharply, exposing about 260 vertical feet (80 vertical meters) of water ice. Color is exaggerated to make differences in surface materials easier to see. The presence of exposed water ice at this site was confirmed by observation with the same orbiter's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In January 2018, in the journal Science, researchers reported finding and studying eight such ice-exposing scarps in the middle latitudes of Mars. The presence of vast underground ice deposits in Mars' middle latitudes was known previously. The report of unusual sites where they are exposed provides new information about their depth and layering. It also identifies potential water resources for future Mars missions and possibilities for studying Martian climate history by examining the ice layers holding a record of past climate cycles. The ice may have been deposited as snow when the tilt of Mars' rotation axis was greater than it is now. HiRISE observation ESP_022389_1230 was made on May 7, 2011, at 56.6 degrees south latitude, 114.1 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA22077

  3. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  4. Behavior of a semi-infinite ice cover under periodic dynamic impact

    NASA Astrophysics Data System (ADS)

    Tkacheva, L. A.

    2017-07-01

    Oscillations of a semi-infinite ice cover in an ideal incompressible liquid of finite depth under local time-periodic axisymmetric load are considered. The ice cover is simulated by a thin elastic plate of constant thickness. An analytical solution of the problem is obtained using the Wiener-Hopf method. The asymptotic behavior of the amplitudes of oscillations of the plate and the liquid in the far field is studied. It is shown that the propagation of waves in the far field is uneven: in some directions, the waves propagate with a significantly greater amplitude.

  5. Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-50

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.; Davis, J. Bradley; Katnik, Gregory N.

    1992-01-01

    Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-50. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-50, and the resulting effect on the Space Shuttle Program are documented.

  6. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  7. Differences in ice retreat across Pine Island Bay, West Antarctica, since the Last Glacial Maximum: Indications from multichannel seismic reflection data

    USGS Publications Warehouse

    Uenzelmann-Neben, G.; Gohl, K.; Larter, R.D.; Schlüter, P.

    2007-01-01

    An understanding of the glacial history of Pine Island Bay (PIB) is essential for refining models of the future stability of the West Antarctic Ice Sheet (WAIS). New multichannel seismic reflection data from inner PIB are interpreted in context of previously published reconstructions for the retreat history in this area since the Last Glacial Maximum. Differences in the behavior of the ice sheet during deglaciation are shown to exist for the western and eastern parts of PIB. While we can identify only a thin veneer of sedimentary deposits in western PIB, eastern PIB shows sedimentary layers ≤ 400 msTWT. This is interpreted as a result of differences in ice retreat: a fast ice retreat in western PIB accompanied by rapid basal melting led to production of large meltwater streams, a slower ice retreat in eastern PIB is most probably the result of smaller drainage basins resulting in less meltwater production.

  8. Experiments on planetary ices at UCL

    NASA Astrophysics Data System (ADS)

    Grindrod, P. M.; Fortes, A. D.; Wood, I. G.; Dobson, D.; Sammonds, P. R.; Stone-Drake, L.; Vocadlo, L.

    2007-08-01

    Using a suite of techniques and equipment, we conduct several different types of experiments on planetary ices at UCL. Samples are prepared in the Ice Physics Laboratory, which consists of a 5 chamber complex of inter-connected cold rooms, controllable from +30 to -30 deg C. Within this laboratory we have a functioning triaxial deformation cell operating at low temperature (down to -90 deg C) and high pressures (300 MPa), an Automatic Ice Fabric Analyser (AIFA) and a low-temperature microscope with CCD output. Polycrystalline samples, 40mm diameter by 100mm long, are compressed in the triaxial rig with a confining pressure; single crystal specimens are compressed in a separate uniaxial creep rig which operates at zero confining pressure for surface studies. A cold stage is also available for study of ice microstructural studies on our new Jeol JSM-6480LV SEM, which also allows tensile, compression and/or bending tests, with load ranges from less than 2N to 5000N. Finally, we also use a cold stage on a new PANalytical, X'pert PRO MPD, high resolution powder diffractometer to study the structure and phase behaviour of icy materials. Recent highlights of our work include: (1) derivation of a manufacturing process for methane clathrate at low temperatures, analysed in the X-Ray Diffraction Laboratory, for future rheological experiments, (2) analysed the growth behaviour of MS11, (3) refurbished and commenced calibration tests on the triaxial deformation cell using ice Ih, and (4) performed creep tests on gypsum and epsomite using the single crystal deformation cell. Further experiments will build on these preliminary results.

  9. Integrating Teaching about the Little Ice Age with History, Art, and Literature.

    ERIC Educational Resources Information Center

    Glenn, William Harold

    1996-01-01

    Discusses climate change during the Little Ice Age as experienced during several historical events, including the settlement and demise of the Norse Greenland colonies, the landing of the Pilgrims at Plymouth, and both the Battle of Trenton and Washington's encampment at Valley Forge during the American Revolution. Associated artistic and literary…

  10. Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica

    USGS Publications Warehouse

    Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.

    1997-01-01

    Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process

  11. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  12. A coupled ice-ocean model of ice breakup and banding in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Smedstad, O. M.; Roed, L. P.

    1985-01-01

    A coupled ice-ocean numerical model for the marginal ice zone is considered. The model consists of a nonlinear sea ice model and a two-layer (reduced gravity) ocean model. The dependence of the upwelling response on wind stress direction is discussed. The results confirm earlier analytical work. It is shown that there exist directions for which there is no upwelling, while other directions give maximum upwelling in terms of the volume of uplifted water. The ice and ocean is coupled directly through the stress at the ice-ocean interface. An interesting consequence of the coupling is found in cases when the ice edge is almost stationary. In these cases the ice tends to break up a few tenths of kilometers inside of the ice edge.

  13. Life Beneath Glacial Ice - Earth(!) Mars(?) Europa(?)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Grasby, Stephen E.; Longazo, Teresa G.; Lisle, John T.; Beauchamp, Benoit

    2002-01-01

    We are investigating a set of cold springs that deposit sulfur and carbonate minerals on the surface of a Canadian arctic glacier. The spring waters and mineral deposits contain microorganisms, as well as clear evidence that biological processes mediate subglacial chemistry, mineralogy, and isotope fractionation . The formation of native sulphur and associated deposits are related to bacterially mediated reduction and oxidation of sulphur below the glacier. A non-volcanic, topography driven geothermal system, harboring a microbiological community, operates in an extremely cold environment and discharges through solid ice. Microbial life can thus exist in isolated geothermal refuges despite long-term subfreezing surface conditions. Earth history includes several periods of essentially total glaciation. lee in the near subsurface of Mars may have discharged liquid water in the recent past Cracks in the ice crust of Europa have apparently allowed the release of water to the surface. Chemolithotrophic bacteria, such as those in the Canadian springs, could have survived beneath the ice of "Snowball Earth", and life forms with similar characteristics might exist beneath the ice of Mars or Europa. Discharges of water from such refuges may have brought to the surface living microbes, as well as longlasting chemical, mineralogical, and isotopic indications of subsurface life.

  14. Ice nucleation efficiency of AgI: review and new insights

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia; Nagare, Baban; Welti, André; Lohmann, Ulrike

    2016-07-01

    AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  15. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  16. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  17. Remote Sensing of Crystal Shapes in Ice Clouds

    NASA Technical Reports Server (NTRS)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  18. Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor.

    PubMed

    Amann-Winkel, Katrin; Löw, Florian; Handle, Philip H; Knoll, Wiebke; Peters, Judith; Geil, Burkhard; Fujara, Franz; Loerting, Thomas

    2012-12-21

    Recently, it became clear that relaxation effects in amorphous ices play a very important role that has previously been overlooked. The thermodynamic history of amorphous samples strongly affects their transition behavior. In particular, well-relaxed samples show higher thermal stability, thereby providing a larger window to investigate their glass transitions. We here present neutron scattering experiments using fixed elastic window scans on relaxed forms of amorphous ice, namely expanded high density amorphous ice (eHDA), a variant of low density amorphous ice (LDA-II) and hyperquenched glassy water (HGW). These amorphous ices are expected to be true glassy counterparts of deeply supercooled liquid water, therefore fast precursor dynamics of structural relaxation are expected to appear below the calorimetric glass transition temperature. The Debye-Waller factor shows a very weak sub-T(g) anomaly in some of the samples, which might be the signature of such fast precursor dynamics. However, we cannot find this behavior consistently in all samples at all reciprocal length scales of momentum transfer.

  19. Volcano-ice interaction as a microbial habitat on Earth and Mars.

    PubMed

    Cousins, Claire R; Crawford, Ian A

    2011-09-01

    Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.

  20. A Historical Search for the Occurrence of Habitable Ground Ice at the Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.

    2006-01-01

    A numerical model of the thermal history of Martian ground ice at the approximate location of the planned Phoenix landing site has been developed and used to identify instances of relatively warm ground ice over the last 10 Ma. Many terrestrial organisms are adapted to life at or below the freezing temperature of water, and we will use the approximate doubling time of terrestrial microbial populations as a function of temperature, is used as a metric against which to assess the "habitability" of Martian ground ice.

  1. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt.

    PubMed

    Bizzotto, E C; Villa, S; Vaj, C; Vighi, M

    2009-02-01

    The release of persistent organic pollutants (PCBs, HCB, HCHs and DDTs) accumulated in Alpine glaciers, was studied during spring-summer 2006 on the Frodolfo glacial-fed stream (Italian Alps). Samples were also taken on a non-glacial stream in the same valley, to compare POP contribution from different water sources (glacier ice, recent snow and spring). In late spring and early summer (May, June) recent snow melting is the most important process. POP contamination is more affected by local emissions and transport, and comparable levels have been measured in both streams for all studied compounds. In late summer and autumn (July-October), the contribution of ice melting strongly increases. In the glacial-fed stream the concentration of chlorinated pesticides (HCHs and DDTs) is about one order of magnitude higher than in the non-glacial-fed. A different behaviour was observed for PCBs, characterised by a peak in June showing, in both streams, concentrations three orders of magnitude higher than the background levels measured in May and in October. This result should be attributed to local emissions rather than long range atmospheric transport (LRAT). This hypothesis is supported by the PCB congener profile in June strictly comparable to the most commonly used Aroclor technical mixtures. The different seasonal behaviour observed for the different groups of chemicals indicates the POP loading in glacial streams is a combined role of long range atmospheric transport and local emission.

  2. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  3. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  4. Effects of working memory load, a history of conduct disorder, and sex on decision making in substance dependent individuals.

    PubMed

    Fridberg, Daniel J; Gerst, Kyle R; Finn, Peter R

    2013-12-01

    Substance dependence and antisocial psychopathology, such as a history of childhood conduct disorder (HCCD), are associated with impulsive or disadvantageous decision making and reduced working memory capacity (WMC). Reducing WMC via a working memory load increases disadvantageous decision making in healthy adults, but no previous studies have examined this effect in young adults with substance dependence and HCCD. Young adults with substance dependence (SubDep; n=158, 71 female), substance dependence and HCCD (SubDep+HCCD; n=72, 24 female), and control participants (n=152, 84 female) completed a test of decision making (the Iowa Gambling Task; IGT) with or without a concurrent working memory load intended to tax WMC. Outcomes were (i) net advantageous decisions on the IGT, and (ii) preferences for infrequent- versus frequent-punishment decks. SubDep+HCCD men made fewer advantageous decisions on the IGT than control men without a load, but there were no group differences among women in that condition. Load was associated with fewer advantageous decisions for SubDep+HCCD women and control men, but not for men or women in the other groups. Participants showed greater preference for infrequent-punishment, advantageous decks under load as well. There are gender differences in the effects of substance dependence, HCCD, and working memory load on decision making on the IGT. Decision making by control men and SubDep+HCCD women suffered the most under load. Load increases preferences for less-frequent punishments, similar to a delay discounting effect. Future research should clarify the cognitive and neural mechanisms underlying these effects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Integrating terrestrial and marine records of the LGM in McMurdo Sound, Antarctica: implications for grounded ice expansion, ice flow, and deglaciation of the Ross Sea Embayment

    NASA Astrophysics Data System (ADS)

    Christ, A. J.; Marchant, D. R.

    2017-12-01

    During the LGM, grounded glacier ice filled the Ross Embayment and deposited glacial drift on volcanic islands and peninsulas in McMurdo Sound, as well as along coastal regions of the Transantarctic Mountains (TAM), including the McMurdo Dry Valleys and Royal Society Range. The flow geometry and retreat history of this ice remains debated, with contrasting views yielding divergent implications for both the fundamental cause of Antarctic ice expansion as well as the interaction and behavior of ice derived from East and West Antarctica during late Quaternary time. We present terrestrial geomorphologic evidence that enables the reconstruction of former ice elevations, ice-flow paths, and ice-marginal environments in McMurdo Sound. Radiocarbon dates of fossil algae interbedded with ice-marginal sediments provide a coherent timeline for local ice retreat. These data are integrated with marine-sediment records and multi-beam data to reconstruct late glacial dynamics of grounded ice in McMurdo Sound and the western Ross Sea. The combined dataset suggest a dominance of ice flow toward the TAM in McMurdo Sound during all phases of glaciation, with thick, grounded ice at or near its maximum extent between 19.6 and 12.3 calibrated thousands of years before present (cal. ka). Our data show no significant advance of locally derived ice from the TAM into McMurdo Sound, consistent with the assertion that Late Pleistocene expansion of grounded ice in McMurdo Sound, and throughout the wider Ross Embayment, occurs in response to lower eustatic sea level and the resulting advance of marine-based outlet glaciers and ice streams (and perhaps also reduced oceanic heat flux), rather than local increases in precipitation and ice accumulation. Finally, when combined with allied data across the wider Ross Embayment, which show that widespread deglaciation outside McMurdo Sound did not commence until 13.1 ka, the implication is that retreat of grounded glacier ice in the Ross Embayment did

  6. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities

    NASA Astrophysics Data System (ADS)

    Kingslake, Jonathan; Martín, Carlos; Arthern, Robert J.; Corr, Hugh F. J.; King, Edward C.

    2016-09-01

    We date a recent ice-flow reorganization of an ice divide in the Weddell Sea Sector, West Antarctica, using a novel combination of inverse methods and ice-penetrating radars. We invert for two-dimensional ice flow within an ice divide from data collected with a phase-sensitive ice-penetrating radar while accounting for the effect of firn on radar propagation and ice flow. By comparing isochronal layers simulated using radar-derived flow velocities with internal layers observed with an impulse radar, we show that the divide's internal structure is not in a steady state but underwent a disturbance, potentially implying a regional ice-flow reorganization, 2.5 (1.8-2.9) kyr B.P. Our data are consistent with slow ice flow in this location before the reorganization and the ice divide subsequently remaining stationary. These findings increase our knowledge of the glacial history of a region that lacks dated constraints on late-Holocene ice-sheet retreat and provides a key target for models that reconstruct and predict ice-sheet behavior.

  7. GenIce: Hydrogen-Disordered Ice Generator.

    PubMed

    Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2018-01-05

    GenIce is an efficient and user-friendly tool to generate hydrogen-disordered ice structures. It makes ice and clathrate hydrate structures in various file formats. More than 100 kinds of structures are preset. Users can install their own crystal structures, guest molecules, and file formats as plugins. The algorithm certifies that the generated structures are completely randomized hydrogen-disordered networks obeying the ice rule with zero net polarization. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  8. Raman spectroscopy on ice cores from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Weikusat, C.; Kipfstuhl, S.

    2012-04-01

    Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.

  9. Coupled energy-balance/ice-sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust

    NASA Astrophysics Data System (ADS)

    Peltier, W. Richard; Marshall, Shawn

    1995-07-01

    We apply a coupled energy-balance/ice-sheet climate model in an investigation of northern hemisphere ice-sheet advance and retreat over the last glacial cycle. When driven only by orbital insolation variations, the model predicts ice-sheet advances over the continents of North America and Eurasia that are in good agreement with geological reconstructions in terms of the timescale of advance and the spatial positioning of the main ice masses. The orbital forcing alone, however, is unable to induce the observed rapid ice-sheet retreat, and we conclude that additional climatic feedbacks not explicitly included in the basic model must be acting. In the analyses presented here we have parameterized a number of potentially important effects in order to test their relative influence on the process of glacial termination. These include marine instability, thermohaline circulation effects, carbon dioxide variations, and snow albedo changes caused by dust loading during periods of high atmospheric aerosol concentration. For the purpose of these analyses the temporal changes in the latter two variables were inferred from ice core records. Of these various influences, our analyses suggest that the albedo variations in the ice-sheet ablation zone caused by dust loading may represent an extremely important ablation mechanism. Using our parameterization of "dirty" snow in the ablation zone we find glacial retreat to be strongly accelerated, such that complete collapse of the otherwise stable Laurentide ice sheet ensues. The last glacial maximum configurations of the Laurentide and Fennoscandian complexes are also brought into much closer accord with the ICE-3G reconstruction of Tushingham and Peltier (1991,1992) and the ICE-4G reconstruction of Peltier (1994) when this effect is reasonably introduced.

  10. Quasi-isentropic compression of materials using the magnetic loading technique

    NASA Astrophysics Data System (ADS)

    Ao, Tommy

    2009-06-01

    The Isentropic Compression Experiment (ICE) technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. The magnetic loading technique using pulsed power generators was first developed about a decade ago on the Z Accelerator, and has matured significantly. The recent development of small pulsed power generators have enabled several key issues in ICE, such as panel & sample preparation, uniformity of loading, and edge effects to be studied. Veloce is a medium-voltage, high-current, compact pulsed power generator developed for cost effective isentropic experiments. The machine delivers up to 3 MA of current rapidly (˜ 440-530 ns) into an inductive load where significant magnetic pressures are produced. Examples of recent material strength measurements from quasi-isentropic loading and unloading of materials will be presented. In particular, the influence that the strength of interferometer windows has on wave profile analyses and thus the inferred strength of materials is examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  11. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  12. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  13. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún; van Dam, Tonie; Bordoni, Andrea; Barletta, Valentina; Spada, Giorgio

    2017-06-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to-peak vertical amplitudes over 20 mm for those sites in the Central Highlands. Here for the first time for Iceland, we demonstrate the utility of these cGPS-measured displacements for estimating seasonal and shorter-term ice cap mass changes. We calculate unit responses to each of the five largest ice caps in central Iceland at each of the 62 cGPS locations using an elastic half-space model and estimate ice mass variations from the cGPS time series using a simple least squares inversion scheme. We utilize all three components of motion, taking advantage of the seasonal motion recorded in the horizontal. We remove secular velocities and accelerations and explore the impact that seasonal motions due to atmospheric, hydrologic, and nontidal ocean loading have on our inversion results. Our results match available summer and winter mass balance measurements well, and we reproduce the seasonal stake-based observations of loading and melting within the 1σ confidence bounds of the inversion. We identify nonperiodic ice mass changes associated with interannual variability in precipitation and other processes such as increased melting due to reduced ice surface albedo or decreased melting due to ice cap insulation in response to tephra deposition following volcanic eruptions, processes that are not resolved with once or twice-yearly stake measurements.

  14. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating

  15. Sensitivity of Pliocene ice sheets to orbital forcing

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Hill, D.J.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J.

    2011-01-01

    The stability of the Earth's major ice sheets is a critical uncertainty in predictions of future climate and sea level change. One method of investigating the behaviour of the Greenland and the Antarctic ice sheets in a warmer-than-modern climate is to look back at past warm periods of Earth history, for example the Pliocene. This paper presents climate and ice sheet modelling results for the mid-Pliocene warm period (mPWP; 3.3 to 3.0 million years ago), which has been identified as a key interval for understanding warmer-than-modern climates (Jansen et al., 2007). Using boundary conditions supplied by the United States Geological Survey PRISM Group (Pliocene Research, Interpretation and Synoptic Mapping), the Hadley Centre coupled ocean–atmosphere climate model (HadCM3) and the British Antarctic Survey Ice Sheet Model (BASISM), we show large reductions in the Greenland and East Antarctic Ice Sheets (GrIS and EAIS) compared to modern in standard mPWP experiments. We also present the first results illustrating the variability of the ice sheets due to realistic orbital forcing during the mid-Pliocene. While GrIS volumes are lower than modern under even the most extreme (cold) mid-Pliocene orbit (losing at least 35% of its ice mass), the EAIS can both grow and shrink, losing up to 20% or gaining up to 10% of its present-day volume. The changes in ice sheet volume incurred by altering orbital forcing alone means that global sea level can vary by more than 25 m during the mid-Pliocene. However, we have also shown that the response of the ice sheets to mPWP orbital hemispheric forcing can be in anti-phase, whereby the greatest reductions in EAIS volume are concurrent with the smallest reductions of the GrIS. If this anti-phase relationship is in operation throughout the mPWP, then the total eustatic sea level response would be dampened compared to the ice sheet fluctuations that are theoretically possible. This suggests that maximum eustatic sea level rise does not

  16. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  17. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  18. Environmental Effects on Volcanic Eruptions:From Deep Ocean to Deep Space. Chapter 3. Volcanism and Ice Interactions on Earth and Mars. Chapter 3

    NASA Technical Reports Server (NTRS)

    Chapman, Mary G.; Allen, Carlton C.; Gudmundsson, Magnus T.; Gulick, Virginia C.; Jakobsson, Sveinn P.; Lucchitta, Baerbel K.; Skilling, Ian P.; Waitt, Richard B.

    2000-01-01

    CONCLUSION Volcano/ice interactions produce meltwater. Meltwater can enter the groundwater cycle and under the influence of hydrothermal systems, it can be later discharged to form channels and valleys or cycled upward to melt permafrost. Water or ice-saturated ground can erupt into phreatic craters when covered by lava. Violent mixing of meltwater and volcanic material and rapid release can generate lahars or jokulhlaups, that have the ability to freight coarse material, great distances downslope from the vent. Eruption into meltwater generate unique appearing edifices, that are definitive indicators of volcano/ice interaction. These features are hyaloclastic ridges or mounds and if capped by lava, tuyas. On Earth, volcano/ice interactions are limited to alpine regions and ice-capped polar and temperate regions. On Mars, where precipitation may be an ancient phenomenon, these interactions may be limited to areas of ground ice accumulation or the northern lowlands where water may have ponded fairly late in martian history. The recognition of features caused by volcano/ice interactions could provide strong constraints for the history of volatiles on Mars.

  19. Crack Growth Analysis for Arbitrary Spectrum Loading. Volume 1. Results and Discussion

    DTIC Science & Technology

    1974-10-01

    amplitude growth without previous load history effects) the crack growth increments were increased. Many of the specimens were fitted with the Amsler...absolute magnitude of the maximum load.) Further, if S is defined as a function of the previous load history , then c h9 Equation (19) will predict...crack growth interaction effects. It remains then, to define S as a function of stress ratio and previous load history , and anyc other pertinent

  20. Ice friction of flared ice hockey skate blades.

    PubMed

    Federolf, Peter A; Mills, Robert; Nigg, Benno

    2008-09-01

    In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.

  1. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.

    2007-09-01

    While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound

  2. Operationally Monitoring Sea Ice at the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.

    2004-05-01

    The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.

  3. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  4. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  5. Whillans Ice Stream Subglacial Access Research Drilling (WISSARD): Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.

    2009-12-01

    The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for

  6. Physical analysis of an Antarctic ice core-towards an integration of micro- and macrodynamics of polar ice.

    PubMed

    Weikusat, Ilka; Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas

    2017-02-13

    Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450-1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700-2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030-2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural

  7. Students' Conceptions of Glaciers and Ice Ages: Applying the Model of Educational Reconstruction to Improve Learning

    ERIC Educational Resources Information Center

    Felzmann, Dirk

    2017-01-01

    Glaciers and ice ages are important topics in teaching geomorphology, earth history, and climate change. As with many geoscience topics, glacier formation, glacier movement, glacial morphology, and ice ages consist of a wide variety of processes and phenomena. Accordingly, it must be decided which of those processes and phenomena should be part of…

  8. Two Modes of Appearance of the Odden Ice Tongue in the Greenland Sea

    NASA Technical Reports Server (NTRS)

    Wadhams, Peter; Comiso, Josefino C.

    1998-01-01

    The Odden Ice tongue of the Greenland Sea normally forms locally In winter as frazfl-pancake ice, allowing high positive salt fluxes during freezing that leads to open ocean convection. We report observations from satellites, aircraft, ships and submarines which show that in two recent years (1987 and 1996) a late-season Odden developed composed of old ice advected by the East Greenland Current. The Impact of such Odden is different in that it is in a state of melt and serves to stabilize the surface water in the region. The history of Oddens since 1978 is reviewed to examine the frequency of both modes.

  9. Validation and Interpretation of a new sea ice GlobIce dataset using buoys and the CICE sea ice model

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.

    2012-04-01

    The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.

  10. Characterization of Ice Roughness From Simulated Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Shin, Jaiwon

    1997-01-01

    Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.

  11. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  12. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  13. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2

  14. Heating the Ice-Covered Lakes of the McMurdo Dry Valleys, Antarctica - Decadal Trends in Heat Content, Ice Thickness, and Heat Exchange

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.

    2014-12-01

    Lakes integrate landscape processes and climate conditions. Most of the permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of ice covers (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, ice covers were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and ice covers have thinned (1.5 m on average). Analyses of lake ice thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when ice-covers form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.

  15. Fire and Ice: Thermoluminescent Temperature Sensing in High-Explosive Detonations and Optical Characterization Methods for Glacier Ice Boreholes

    NASA Astrophysics Data System (ADS)

    Mah, Merlin Lyn

    The environment around a detonating high explosive is incredibly energetic and dynamic, generating shock waves, turbulent mixing, chemical reactions, and temperature excursions of thousands of Kelvin. Probing this violent but short-lived phenomena requires durable sensors with fast response times. By contrast, the glacier ice sheets of Antarctica and Greenland change on geologic time scales; the accumulation and compression of snow into ice preserves samples of atmospheric gas, dust, and volcanic ash, while the crystal orientations of the ice reflect its conditions and movement over hundreds of thousands of years. Here, difficulty of characterization stems primarily from the location, scale, and depth of the ice sheet. This work describes new sensing technologies for both of these environments. Microparticles of thermoluminescent materials are proposed as high-survivability, bulk-deployable temperature sensors for applications such as assessing bioagent inactivation. A technique to reconstruct thermal history from subsequent thermoluminescence observations is described. MEMS devices were designed and fabricated to assist in non-detonation testing: large-area electrostatic membrane actuators were used to apply mechanical stress to thermoluminescent Y2O3 :Tb thin film, and microheaters impose rapid temperature excursions upon particles of Mg2SiO4:Tb,Co to demonstrate predictable thermoluminescent response. Closed- and open-chamber explosive detonation tests using dosimetric LiF:Mg,Ti and two experimental thermometry materials were performed to test survivability and attempt thermal event reconstruction. Two borehole logging devices are described for optical characterization of glacier ice. For detecting and recording layers of volcanic ash in glacier ice, we developed a lightweight, compact probe which uses optical fibers and purely passive downhole components to detect single-scattered long-wavelength light. To characterize ice fabric orientation, we propose a

  16. Interactions of ice sheet evolution, sea level and GIA in a region of complex Earth structure

    NASA Astrophysics Data System (ADS)

    Gomez, N. A.; Chan, N. H.; Latychev, K.; Pollard, D.; Powell, E. M.

    2017-12-01

    Constraining glacial isostatic adjustment (GIA) is challenging in Antarctica, where the solid Earth deformation, sea level changes and ice dynamics are strongly linked on all timescales. Furthermore, Earth structure beneath the Antarctic Ice Sheet is characterized by significant lateral variability. A stable, thick craton exists in the east, while the west is underlain by a large continental rift system, with a relatively thin lithosphere and hot, low viscosity asthenosphere, as indicated by high resolution seismic tomography. This implies that in parts of the West Antarctic, the Earth's mantle may respond to surface loading on shorter than average (centennial, or even decadal) timescales. Accounting for lateral variations in viscoelastic Earth structure alters the timing and geometry of load-induced Earth deformation, which in turn impacts the timing and extent of the ice-sheet retreat via a sea-level feedback, as well as predictions of relative sea-level change and GIA. We explore the impact of laterally varying Earth structure on ice-sheet evolution, sea level change and Earth deformation in the Antarctic region since the Last Glacial Maximum using a newly developed coupled ice sheet - sea level model that incorporates 3-D variations in lithospheric thickness and mantle viscosity derived from recent seismic tomographic datasets. Our results focus on identifying the regions and time periods in which the incorporation of 3-D Earth structure is critical for accurate predictions of ice sheet evolution and interpretation of geological and geodetic observations. We also investigate the sensitivity to the regional Earth structure of the relative contributions to modern GIA predictions of Last Deglacial and more recent Holocene ice cover changes.

  17. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  18. Ice flow in the Weddell Sea sector of West Antarctica as elucidated by radar-imaged internal layering

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.

    2012-12-01

    Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial

  19. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 2. Observed and Modeled Ice Flow

    NASA Technical Reports Server (NTRS)

    Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed

    2012-01-01

    Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.

  20. Data assimilation of surface altimetry on the North-Easter Ice Stream using the Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Larour, Eric; Utke, Jean; Morlighem, Mathieu; Seroussi, Helene; Csatho, Beata; Schenk, Anton; Rignot, Eric; Khazendar, Ala

    2014-05-01

    Extensive surface altimetry data has been collected on polar ice sheets over the past decades, following missions such as Envisat and IceSat. This data record will further increase in size with the new CryoSat mission, the ongoing Operation IceBridge Mission and the soon to launch IceSat-2 mission. In order to make the best use of these dataset, ice flow models need to improve on the way they ingest surface altimetry to infer: 1) parameterizations of poorly known physical processes such as basal friction; 2) boundary conditions such as Surface Mass Balance (SMB). Ad-hoc sensitivity studies and adjoint-based inversions have so far been the way ice sheet models have attempted to resolve the impact of 1) on their results. As for boundary conditions or the lack thereof, most studies assume that they are a fixed quantity, which, though prone to large errors from the measurement itself, is not varied according to the simulated results. Here, we propose a method based on automatic differentiation to improve boundary conditions at the base and surface of the ice sheet during a short-term transient run for which surface altimetry observations are available. The method relies on minimizing a cost-function, the best fit between modeled surface evolution and surface altimetry observations, using gradients that are computed for each time step from automatic differentiation of the ISSM (Ice Sheet System Model) code. The approach relies on overloaded operators using the ADOLC (Automatic Differentiation by OverLoading in C++) package. It is applied to the 79 North Glacier, Greenland, for a short term transient spanning a couple of decades before the start of the retreat of the Zachariae Isstrom outlet glacier. Our results show adjustments required on the basal friction and the SMB of the whole basin to best fit surface altimetry observations, along with sensitivities each one of these parameters has on the overall cost function. Our approach presents a pathway towards assimilating

  1. Potassium alum and aluminum sulfate micro-inclusions in polar ice from Dome Fuji, East Antarctica

    NASA Astrophysics Data System (ADS)

    Ohno, Hiroshi; Iizuka, Yoshinori; Horikawa, Shinichiro; Sakurai, Toshimitsu; Hondoh, Takeo; Motoyama, Hideaki

    2014-03-01

    Water-soluble trace constituents affect the physicochemical properties of polar ice. Their structural distribution provides important insights into the formation history of ice and inclusions. We report the first finding of KAl(SO4)2·12H2O (potassium alum) and Al2(SO4)3·nH2O (aluminum sulfate) micro-inclusions in the Dome Fuji ice core, East Antartica, using a micro-Raman technique. Eutectic temperatures of these water-soluble species determined using thermal analysis were -0.4 °C for potassium alum and -8.0 °C for aluminum sulfate. Although the formation process of the aluminum-bearing sulfates remains unclear, the occurrence of these salts largely depends on ice depth.

  2. Microbiological quality of ice and ice machines used in food establishments.

    PubMed

    Hampikyan, Hamparsun; Bingol, Enver Baris; Cetin, Omer; Colak, Hilal

    2017-06-01

    The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. Escherichia coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas E. coli was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

  3. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  4. The Glacial and Relative Sea Level History of Southern Banks Island, NT, Canada

    NASA Astrophysics Data System (ADS)

    Vaughan, Jessica Megan

    The mapping and dating of surficial glacial landforms and sediments across southern Banks Island document glaciation by the northwest Laurentide Ice Sheet (LIS) during the last glacial maximum. Geomorphic landforms confirm the operation of an ice stream at least 1000 m thick in Amundsen Gulf that was coalescent with thin, cold-based ice crossing the island's interior, both advancing offshore onto the polar continental shelf. Raised marine shorelines across western and southern Banks Island are barren, recording early withdrawal of the Amundsen Gulf Ice Stream prior to the resubmergence of Bering Strait and the re-entry of Pacific molluscs ~13,750 cal yr BP. This withdrawal resulted in a loss of ~60,000 km2 of ice --triggering drawdown from the primary northwest LIS divide and instigating changes in subsequent ice flow. The Jesse moraine belt on eastern Banks Island records a lateglacial stillstand and/or readvance of Laurentide ice in Prince of Wales Strait (13,750 -- 12,750 cal yr BP). Fossiliferous raised marine sediments that onlap the Jesse moraine belt constrain final deglaciation to ~12,600 cal yr BP, a minimum age for the breakup of the Amundsen Gulf Ice Stream. The investigation of a 30 m thick and 6 km wide stratigraphic sequence at Worth Point, southwest Banks Island, identifies an advance of the ancestral LIS during the Mid-Pleistocene (sensu lato), substantially diversifying the glacial record on Banks Island. Glacial ice emplaced during this advance has persisted through at least two glacial-interglacial cycles, demonstrating the resilience of circumpolar permafrost. Pervasive deformation of the stratigraphic sequence also records a detailed history of glaciotectonism in proglacial and subglacial settings that can result from interactions between cold-based ice and permafrost terrain. This newly recognized history rejects the long-established paleoenvironmental model of Worth Point that assumed a simple 'layer-cake' stratigraphy.

  5. Deglacial temperature history of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P.

    2016-12-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.811.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  6. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  7. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  8. Physical State of Ices in the Outer Solar System. Revised

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comparison of the identity and abundances of ices observed around protostars and those associated with comets clearly suggests that comets preserve the heritage of the interstellar materials that aggregated to form them. However, the ability to identify these same species on icy satellites in the outer solar system is a complex function of the composition of the original ices, their subsequent thermal histories, and their exposure to various radiation environments. Our ability to identify the ices currently present on objects in the outer solar system relies upon observational and laboratory, and theoretical efforts. To date there is ample observational evidence for crystalline water ice throughout the outer solar system. In addition, there is growing evidence that amorphous ice may be present on some bodies. More volatile ices, e.g. N2, CH4. CO, and other species, e.g. ammonia hydrate, are identified on objects lying at and beyond Uranus. Both photolysis and radiolysis play important roles in altering the original surfaces due to chemical reactions and erosion of the surface. Ultraviolet photolysis appears to dominate alteration of the upper few hundred Angstroms, although sputtering the surface can sometimes be a significantly competitative process; dominating on icy surfaces embedded in a strong planetary magnetospheric field. There is growing observational evidence that the by-products of photolysis and radiolysis, suggested on a theoretical basis, are present on icy surfaces.

  9. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  10. Patterns of variability in steady- and non steady-state Ross Ice Shelf flow

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Hulbe, C. L.; Scambos, T. A.; Klinger, M. J.; Lee, C. K.

    2016-12-01

    Ice shelves are gateways through which climate change can be transmitted from the ocean or atmosphere to a grounded ice sheet. It is thus important to separate patterns of ice shelf change driven internally (from the ice sheet) and patterns driven externally (by the ocean or atmosphere) so that modern observations can be viewed in an appropriate context. Here, we focus on the Ross Ice Shelf (RIS), a major component of the West Antarctic Ice Sheet system and a feature known to experience variable ice flux from tributary ice streams and glaciers, for example, ice stream stagnation and glacier surges. We perturb a model of the Ross Ice Shelf with periodic influx variations, ice rise and ice plain grounding events, and iceberg calving in order to generate transients in the ice shelf flow and thickness. Characteristic patterns associated with those perturbations are identified using empirical orthogonal functions (EOFs). The leading EOFs reveal shelf-wide pattern of response to local perturbations that can be interpreted in terms of coupled mass and momentum balance. For example, speed changes on Byrd Glacier cause both thinning and thickening in a broad region that extends to Roosevelt Island. We calculate decay times at various locations for various perturbations and find that mutli-decadal to century time scales are typical. Unique identification of responses to particular forcings may thus be difficlult to achieve and flow divergence cannot be assumed to be constant when interpreting observed changes in ice thickness. In reality, perturbations to the ice shelf do not occur individually, rather the ice shelf contains a history of boundary perturbations. To explore the degree individual perturbations are seperable from their ensemble, EOFs from individual events are combined in pairs and compared against experiments with the same periodic perturbations pairs. Residuals between these EOFs reveal the degree interaction between between disctinct perturbations.

  11. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Seguinot, Julien; Rogozhina, Irina; Stroeven, Arjen P.; Margold, Martin; Kleman, Johan

    2016-03-01

    After more than a century of geological research, the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the ice sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that ice-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2-56.9 ka) and 2 (23.2-16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.7 ka).

  12. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  13. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  14. Dust Records in Ice Cores from the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, N.; Yao, T.; Thompson, L. G.

    2014-12-01

    Dust plays an important role in the Earth system, and it usually displays largely spatial and temporal variations. It is necessary for us to reconstruct the past variations of dust in different regions to better understand the interactions between dust and environments. Ice core records can reveal the history of dust variations. In this paper, we used the Guliya, Dunde, Malan and Dasuopu ice cores from the Tibetan Plateau to study the spatial distribution, the seasonal variations and the secular trends of dust. It was found that the mean dust concentration was higher by one or two order of magnitudes in the Guliya and Dunde ice cores from the northern Tibetan Plateau than in the Dasuopu ice core from the southern Tibetan Plateau. During the year, the highest dust concentration occurs in the springtime in the northern Tibetan Plateau while in the non-monsoon season in the southern Tibetan Plateau. Over the last millennium, the Dasuopu ice core record shows that the 1270s~1380s and 1870s~1990s were the two epochs with high dust concentration. However, the Malan ice core from the northern Tibetan Plateau indicates that high dust concentration occurred in the 1130s~1550s and 1770s~1940s. Interestingly, climatic and environmental records of the ice cores from the Tibetan Plateau reflected that the correlation between dust concentration and air temperature was strongly positive in the southern Plateau while negative in the northern Plateau over the last millennium. This implies that climatic and environmental changes existed considerable differences in the different parts of the Plateau. Moreover, four Asian megadroughts occurred in 1638~1641, 1756~1758, 1790~1796 and 1876~1878, which caused more than tens millions people died, were revealed clearly by dust record in the Dasuopu ice core.

  15. Estimating Viscoelastic Deformation Due to Seasonal Loading

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne

    2015-01-01

    Scientists have been making summer-­-time geodetic measurements in south central Alaska for decades to estimate the rate at which a continental-­-ocean terrane is accreting to the North American continent. Southern Alaska has big earthquakes every century and large, rapidly changing glaciers. In the last decade, primarily as part of the EarthScope Plate Boundary Observatory project, continuous GPS measurements have recorded the response of sites such as the near-­-coastal geodetic site, AB35 to competing processes: uplift and movement to the northwest due to tectonic forces and the response of the solid Earth to seasonal and longer-­-term changes in the cryosphere (snow and ice) surrounding the site. Which process causes the largest displacements of the site? Figure 1 (Blewitt, Nevada Geodetic Lab, 2015) shows the Northward, Eastward, and Upward motion of AB35 between 2007 and 2015. The site is moving rapidly to the north and west reflecting the tectonic convergence of site toward interior Alaska but there is small wiggle on the North component reflecting seasonal displacements of the site associated with snow loading and unloading. However, the Up component, shows a large seasonal signal due to snow loading in the winter (down) and ice and snow melting in the warmer months (site goes up). Between 2007 and the present, the site position is slowly moving upward, due to tectonic forcing but probably associated with longer-­- term ice melting as well. We are using the CIG finite element modeling (FEM) program Pylith to estimate the surface displacements and stresses associated with seasonal loading changes (top figure and Figure 2 far right) for water year 2012, 2011.8 - 2012.8) and the longer-­-term retreat of the surrounding glaciers.

  16. GAMBIT--Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets During IPY

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Finn, C. A.; Bell, R. E.; Gogineni, S.; Hayden, L.; Braaten, D.

    2004-12-01

    Antarctica is a key element in Earth's climatic and geodynamic systems, yet on the eve of the 50th anniversary of the International Geophysical Year, we lack fundamental geologic and geophysical data from the deep interior of this vast continent. Despite the central role that Antarctica has played in shaping the present global environment, fundamental, first-order parameters such as ice volume and stratigraphy, bedrock elevation, lithology, structure, age, and tectonic history remain poorly known over large portions of the continent, including the Gamburtsev Subglacial Mountains. Given the extensive ice cover, airborne geophysical data is the best and most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of Antarctica. Under a program entitled, GAMBIT--Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets, we propose to conduct airborne gravity, magnetic and radar surveys over the Gamburtsev Subglacial Mountains, a priority for geophysical and drilling studies by the solid Earth and glaciology communities for many years. This proposal will help develop long-range aerogeophysical capabilities and provide data to the Antarctic community within a year after collection to help answer fundamental science questions of global significance. By integrating these with international efforts during the IPY, we can maximize and broaden the use of all data sets. Specifically, we propose to image the East Antarctic ice sheet and bedrock with airborne geophysical surveys through the GAMBIT project in order to: 1) determine ice volume for mass balance calculations and identify internal layers reflecting the accumulation history of the East Antarctic ice sheet in the Gamburtsev Subglacial Mountains region; 2) characterize the gravity, magnetic, and elevation signatures of the East Antarctic crustal basement of the Gamburtsev Subglacial Mountains; 3) integrate these data with existing and new data collected during IPY over

  17. Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape

    NASA Astrophysics Data System (ADS)

    Dammann, Dyre Oliver

    substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiagvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice.

  18. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  19. Gender in ice hockey: women in a male territory.

    PubMed

    Gilenstam, K; Karp, S; Henriksson-Larsén, K

    2008-04-01

    This study investigates how female ice hockey players describe and explain their situation within as well as outside their sport. Information was obtained by semi-structured interviews with female ice hockey players. The results were analyzed in a gender perspective where the main starting point was the concepts of different levels of power relations in society developed by Harding and applied to sports by Kolnes (the symbolic, structural, and individual level). The study shows that the players appeared to share the traditional views of men and women. They also described gender differences in terms of financial and structural conditions as well as differences in ice hockey history. Even though the players described structural inequalities, they were quite content with their situation and the differences in conditions were not considered when they explained the gender differences in ice hockey performance. At the individual level, the players considered themselves different from other women and appeared to share the traditional views of femininity and masculinity. It has been suggested that performance of a sport traditionally associated with the other sex might alter the traditional view of men and women; however, our results lend little support to this suggestion.

  20. Mechanical sea-ice strength parameterized as a function of ice temperature

    NASA Astrophysics Data System (ADS)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  1. Solving the riddle of interglacial temperatures over the last 1.5 million years with a future IPICS "Oldest Ice" ice core

    NASA Astrophysics Data System (ADS)

    Fischer, Hubertus

    2014-05-01

    The sequence of the last 8 glacial cycles is characterized by irregular 100,000 year cycles in temperature and sea level. In contrast, the time period between 1.5-1.2 million years ago is characterized by more regular cycles with an obliquity periodicity of 41,000 years. Based on a deconvolution of deep ocean temperature and ice volume contributions to benthic δ18O (Elderfield et al., Science, 2012), it is suggested that glacial sea level became progressively lower over the last 1.5 Myr, while glacial deep ocean temperatures were very similar. At the same time many interglacials prior to the Mid Brunhes event showed significantly cooler deep ocean temperatures than the Holocene, while at the same time interglacial ice volume remained essentially the same. In contrast, interglacial sea surface temperatures in the tropics changed little (Herbert et al., Science,2010) and proxy reconstructions of atmospheric CO2 using δ11B in planktic foraminifera (Hönisch et al., Science, 2009) suggest that prior to 900,000 yr before present interglacial CO2 levels did not differ substantially from those over the last 450,000 years. Accordingly, the conundrum arises how interglacials can differ in deep ocean temperature without any obvious change in ice volume or greenhouse gas forcing and what caused the change in cyclicity of glacial interglacial cycles over the Mid Pleistocene Transition. Probably the most important contribution to solve this riddle is the recovery of a 1.5 Myr old ice core from Antarctica, which among others would provide an unambiguous, high-resolution record of the greenhouse gas history over this time period. Accordingly, the international ice core community, as represented by the International Partnership for Ice Core Science (IPICS), has identified such an 'Oldest Ice' ice core as one of the most important scientific targets for the future (http://www.pages.unibe.ch/ipics/white-papers). However, finding stratigraphically undisturbed ice, which covers this

  2. Friis Hills glacial history: an international collaboration to examine Miocene climate in Antarctica

    NASA Astrophysics Data System (ADS)

    Halberstadt, A. R. W.; Kowalewski, D. E.

    2016-12-01

    The Friis Hills, Antarctica (western McMurdo Dry Valleys) contain unique, well-preserved records of Miocene climate. These terrestrial deposits hold geomorphic clues for deciphering the glacial history in a region directly adjacent to the East Antarctic Ice Sheet. Stacked till sheets, interbedded with lake sediments and non-glacial deposits, reveal a complex history of ice flow and erosion throughout multiple glacial-interglacial cycles (Lewis and Ashworth, 2015). Fossiliferous beds containing Nothofagus, diatoms, algal cells, pollen, insects, and mosses provide past climatological constraints. The Friis Hills sustained multiple alpine glaciations as well as full ice-sheet development, recording glacial drainage reorganization and evidence of previous ice configurations that possibly overrode the Transantarctic Mountains (Lewis and Ashworth, 2015) exposing only scattered nunataks (i.e. a portion of Friis Hills). Lack of chronological control has previously hindered efforts to link the Friis Hills glacial history with regional context; a tephra deposit at the base of the glacial drifts currently provides a single age constraint within the drift deposits. To build upon previous studies, an international collaboration between the USAP, Antarctic New Zealand, and the Italian Antarctic community proposes to core a paleo-lake in the center of the Friis Hills in November 2016, thereby acquiring one of the oldest continuous sedimentological records within the McMurdo Dry Valleys. Here we report discoveries from this year's fieldwork, and reconstruct paleoenvironment at the periphery of the East Antarctic Ice Sheet for the mid-early Miocene, a critical time when marine isotopic records indicate dramatic ice fluctuations. Ash within the sediment core stratigraphy will provide a more robust chronology for the region, and will also suggest possible outcrop locations of corresponding ash deposits to pursue while in the field. We anticipate that the Friis Hills stratigraphy will

  3. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  4. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  5. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  6. Present-day Antarctic ice mass changes and crustal motion

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Ivins, Erik R.

    1995-01-01

    The peak vertical velocities predicted by three realistic, but contrasting, present-day scenarios of Antarctic ice sheet mass balance are found to be of the order of several mm/a. One scenario predicts local uplift rates in excess of 5 mm/a. These rates are small compared to the peak Antarctic vertical velocities of the ICE-3G glacial rebound model, which are in excess of 20 mm/a. If the Holocene Antarctic deglaciation history protrayed in ICE-3G is realistic, and if regional upper mantle viscosity is not an order of magnitude below 10(exp 21) Pa(dot)s, then a vast geographical region in West Antarctica is uplifting at a rate that could be detected by a future Global Positioning System (GPS) campaign. While present-day scenarios predict small vertical crustal velocities, their overall continent-ocean mass exchange is large enough to account for a substantial portion of the observed secular polar motion (omega m(arrow dot)) and time-varying zonal gravity field.

  7. Present-day Antarctic Ice Mass Changes and Crustal Motion

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Ivins, Erik R.

    1995-01-01

    The peak vertical velocities predicted by three realistic, but contrasting, present-day scenarios of Antarctic ice sheet mass balance are found to be of the order of several mm/a. One scenario predicts local uplift rates in excess of 5 mm/a. These rates are small compared to the peak Antarctic vertical velocities of the ICE-3G glacial rebound model, which are in excess of 20 mm/a. If the Holocene Antarctic deglaciation history portrayed in ICE-3G is realistic, and if regional upper mantle viscosity is not an order of magnitude below 10(exp 21) pa s, then a vast geographical region in West Antarctica is uplifting at a rate that could be detected by a future Global Positioning System (GPS) campaign. While present-day scenarios predict small vertical crustal velocities, their overall continent-ocean mass exchange is large enough to account for a substantial portion of the observed secular polar motion ((Omega)m(bar)) and time-varying zonal gravity field J(sub 1).

  8. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands

    NASA Astrophysics Data System (ADS)

    Dutton, Andrea; Webster, Jody M.; Zwartz, Dan; Lambeck, Kurt; Wohlfarth, Barbara

    2015-01-01

    In the search for a record of eustatic sea level change on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its location with respect to the former margins of Northern Hemisphere ice sheets that wax and wane on orbital cycles, the local-or relative-sea level history is predicted to lie within a few meters of the globally averaged eustatic signal during the Last Interglacial period. We have surveyed and dated Last Interglacial fossil corals to ascertain peak sea level and hence infer maximum retreat of polar ice sheets during this time interval. We observe a pattern of gradually rising sea level in the Seychelles between ˜129 and 125 thousand years ago (ka), with peak eustatic sea level attained after 125 ka at 7.6 ± 1.7 m higher than present. After accounting for thermal expansion and loss of mountain glaciers, this sea-level budget would require ˜5-8 m of polar ice sheet contribution, relative to today's volume, of which only ˜2 m came from the Greenland ice sheet. This result clearly identifies the Antarctic ice sheet as a significant source of melt water, most likely derived from one of the unstable, marine-based sectors in the West and/or East Antarctic ice sheet. Furthermore, the establishment of a +5.9 ± 1.7 m eustatic sea level position by 128.6 ± 0.8 ka would require that partial AIS collapse was coincident with the onset of the sea level highstand.

  9. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    NASA Astrophysics Data System (ADS)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  10. Dissected Mantle Terrain on Mars: Formation Mechanisms and the Implications for Mid- latitude Near-surface Ground Ice

    NASA Astrophysics Data System (ADS)

    Searls, M. L.; Mellon, M. T.

    2008-12-01

    Determining the present and past distribution of surface and subsurface ice on Mars is critical for understanding the volatile inventory and climatic history of the planet. An analysis of a latitude-dependent layer of surface material known as the dissected mantle terrain can provide valuable insight into the distribution of ice in the recent past. The dissected mantle terrain is a surface unit that occurs globally in the mid-latitude of Mars. This unit is characterized by a smooth mantle of uniform thickness and albedo that is draped over the existing topography. This smooth mantle is disaggregated and dissected in places resulting in a hummocky pitted appearance. We propose that the mid-latitude dissected terrain results from collapse of a dusty mantle into the void left from desiccation of an underlying ice-rich (pure or dirty ice) layer. During period(s) of high obliquity, it is possible for ice to become stable at lower latitudes. Due to lack of direct solar insolation, surface ice deposits will preferentially accumulate on pole-ward facing slopes first. A mantle of dust and dirt is then deposited on top of these ice-rich deposits. As the climate changes, desiccation of the now buried ice leads to collapse of the overlying dusty layer resulting in a hummocky pitted appearance. This theory is supported by the pole-ward preference for the dissection pits as well an increase in dissection with increasing latitude. A study of the global distribution of the mid-latitude dissected terrain can provide invaluable clues towards unlocking the distribution of ice in the recent past. An analysis of HiRISE images and MOLA data indicate that the distribution of dissection pits varies from one region to the next. Knowing the distribution of ice in conjunction with ice stability modeling can provide a global view of the climate and orbital history of Mars at the time these features formed.

  11. Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-64 on 9 August 1994

    NASA Technical Reports Server (NTRS)

    Davis, J. Bradley; Bowen, Barry C.; Rivera, Jorge E.; Speece, Robert F.; Katnik, Gregory N.

    1994-01-01

    A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-64. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-64, and the resulting effect on the Space Shuttle Program.

  12. Sensing the bed-rock movement due to ice unloading from space using InSAR time-series

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.

    2014-12-01

    Ice-sheets in the Arctic region are retreating rapidly since late 1990s. Typical ice loss rates are 0.5 - 1 m/yr at the Canadian Arctic Archipelago, ~ 1 m/yr at the Icelandic ice sheets, and several meters per year at the edge of Greenland ice sheet. Such load decreasing causes measurable (several millimeter per year) deformation of the Earth's crust from Synthetic Aperture Radar Interferometry (InSAR). Using small baseline time-series analysis, this signal is retrieved after noises such as orbit error, atmospheric delay and DEM error being removed. We present results from Vatnajokull ice cap, Petermann glacier and Barnes ice cap using ERS, Envisat and TerraSAR-X data. Up to 2 cm/yr relative radar line-of-sight displacement is detected. The pattern of deformation matches the shape of ice sheet very well. The result in Iceland was used to develop a new model for the ice mass balance estimation from 1995 to 2010. Other applications of this kind of technique include validation of ICESat or GRACE based ice sheet model, Earth's rheology (Young's modulus, viscosity and so on). Moreover, we find a narrow (~ 1km) uplift zone close to the periglacial area of Petermann glacier which may due to a special rheology under the ice stream.

  13. What Governs Ice-Sticking in Planetary Science Experiments?

    NASA Astrophysics Data System (ADS)

    Gaertner, Sabrina; Gundlach, B.; Blum, J.; Fraser, H. J.

    2018-06-01

    Water ice plays an important role, alongside dust, in current theories of planet formation. Decades of laboratory experiments have proven that water ice is far stickier in particle collisions than dust. However, water ice is known to be a metastable material. Its physical properties strongly depend on its environmental parameters, the foremost being temperature and pressure. As a result, the properties of ice change not only with the environment it is observed in, but also with its thermal history.The abundance of ice structures that can be created by different environments likely explains the discrepancies observed across the multitude of collisional laboratory studies in the past [1-16]; unless the ices for such experiments have been prepared in the same way and are collided under the same environmental conditions, these experiments simply do not collide the same ices.This raises several questions:1. Which conditions and ice properties are most favourable for ice sticking?2. Which conditions and ice properties are closest to the ones observed in protoplanetary disks?3. To what extent do these two regimes overlap?4. Consequently, which collisional studies are most relevant to planetary science and therefore best suited to inform models of planet formation?In this presentation, I will give a non-exhaustive overview of what we already know about the properties of ice particles, covering those used in planetary science experiments and those observed in planet forming regions. I will discuss to what extent we can already answer questions 1-3, and what information we still need to obtain from observations, laboratory experiments, and modelling to be able to answer question 4.References:1. Bridges et al. 1984 Natur 309.2. Bridges et al. 1996 Icar 123.3. Deckers & Teiser 2016 MNRAS 456.4. Dilley & Crawford 1996 JGRE 101.5. Gundlach & Blum 2015 ApJ 798.6. Hatzes et al. 1991 Icar 89.7. Hatzes et al. 1988 MNRAS 231.8. Heißelmann et al. 2010 Icar 206.9. Higa et al. 1996 P

  14. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  15. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  16. Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Philippe, Morgane; Tison, Jean-Louis; Fjøsne, Karen; Hubbard, Bryn; Kjær, Helle A.; Lenaerts, Jan T. M.; Drews, Reinhard; Sheldon, Simon G.; De Bondt, Kevin; Claeys, Philippe; Pattyn, Frank

    2016-10-01

    Ice cores provide temporal records of surface mass balance (SMB). Coastal areas of Antarctica have relatively high and variable SMB, but are under-represented in records spanning more than 100 years. Here we present SMB reconstruction from a 120 m-long ice core drilled in 2012 on the Derwael Ice Rise, coastal Dronning Maud Land, East Antarctica. Water stable isotope (δ18O and δD) stratigraphy is supplemented by discontinuous major ion profiles and continuous electrical conductivity measurements. The base of the ice core is dated to AD 1759 ± 16, providing a climate proxy for the past ˜ 250 years. The core's annual layer thickness history is combined with its gravimetric density profile to reconstruct the site's SMB history, corrected for the influence of ice deformation. The mean SMB for the core's entire history is 0.47 ± 0.02 m water equivalent (w.e.) a-1. The time series of reconstructed annual SMB shows high variability, but a general increase beginning in the 20th century. This increase is particularly marked during the last 50 years (1962-2011), which yields mean SMB of 0.61 ± 0.01 m w.e. a-1. This trend is compared with other reported SMB data in Antarctica, generally showing a high spatial variability. Output of the fully coupled Community Earth System Model (CESM) suggests that, although atmospheric circulation is the main factor influencing SMB, variability in sea surface temperatures and sea ice cover in the precipitation source region also explain part of the variability in SMB. Local snow redistribution can also influence interannual variability but is unlikely to influence long-term trends significantly. This is the first record from a coastal ice core in East Antarctica to show an increase in SMB beginning in the early 20th century and particularly marked during the last 50 years.

  17. Physical analysis of an Antarctic ice core—towards an integration of micro- and macrodynamics of polar ice*

    PubMed Central

    Jansen, Daniela; Binder, Tobias; Eichler, Jan; Faria, Sérgio H.; Wilhelms, Frank; Kipfstuhl, Sepp; Sheldon, Simon; Miller, Heinrich; Dahl-Jensen, Dorthe; Kleiner, Thomas

    2017-01-01

    Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450–1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700–2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030–2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural

  18. Ross Sea Till Properties: Implications for Ice Sheet Bed Interaction

    NASA Astrophysics Data System (ADS)

    Halberstadt, A. R.; Anderson, J. B.; Simkins, L.; Prothro, L. O.; Bart, P. J.

    2015-12-01

    Since the discovery of a pervasive shearing till layer underlying Ice Stream B, the scientific community has categorized subglacial diamictons as either deformation till or lodgement till primarily based on shear strength. Deformation till is associated with streaming ice, formed through subglacial deformation of unconsolidated sediments. Lodgement till is believed to be deposited by the plastering of sediment entrained at the base of slow-flowing ice onto a rigid bed. Unfortunately, there has been a paucity of quantitative data on the spatial distribution of shear strength across the continental shelf. Cores collected from the Ross Sea on cruises NBP1502 and NBP9902 provide a rich dataset that can be used to interpret till shear strength variability. Till strengths are analyzed within the context of: (1) geologic substrate; (2) water content and other geotechnical properties; (3) ice sheet retreat history; and (4) geomorphic framework. Tills display a continuum of shear strengths rather than a bimodal distribution, suggesting that shear strength cannot be used to distinguish between lodgement and deformation till. Where the substrate below the LGM unconformity is comprised of older lithified deposits, till shear strengths are both highly variable within the till unit, as well as highly variable between cores. Conversely, where ice streams flowed across unconsolidated Plio-Pleistocene deposits, shear strengths are low and less variable within the unit and between cores. This suggests greater homogenization of cannibalized tills, and possibly a deeper pervasive shear layer. Coarser-grained tills are observed on banks and bank slopes, with finer tills in troughs. Highly variable and more poorly sorted tills are found in close proximity to sediment-based subglacial meltwater channels, attesting to a change in ice-bed interaction as subglacial water increases. Pellets (rounded sedimentary clasts of till matrix) are observed in Ross Sea cores, suggesting a history of

  19. Monitoring Subsurface Ice-Ocean Processes Using Underwater Acoustics in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lee, W. S.; Yun, S.

    2016-12-01

    The Ross Sea is a dynamic area of ice-ocean interaction, where a large component of the Southern Ocean's sea ice formation occurs within regional polynyas in addition to the destructive processes happening at the seaward boundary of the Ross Ice Shelf. Recent studies show the sea-ice season has been lengthening and the sea ice extent has been growing with more persistent and larger regional polynyas. These trends have important implications for the Ross Sea ecosystem with polynyas supporting high rates of primary productivity in the area. Monitoring trends in sea ice and ice shelf dynamics in the Southern Ocean has relied heavily on satellite imagery and remote sensing methods despite a significant portion of these physical processes occurring beneath the ocean surface. In January 2014, an ocean bottom hydrophone (OBH) was moored on the seafloor in the polynya area of Terra Nova Bay in the northwest region of the Ross Sea, north of the Drygalski Ice Tongue. The OBH recorded a year long record of the underwater low frequency acoustic spectrum up to 500 Hz from January 29 until it was recovered the following December 17, 2014. The acoustic records reveal a complex annual history of ice generated signals with over 50,000 detected events. These ice generated events related to collisions and cracking provide important insight for the timing and intensity of the ice-ocean dynamics happening below the sea surface as the polynya grows and expands and the nearby Drygalski ice tongue flows into Terra Nova Bay. Additionally, high concentrations of baleen whale vocalizations in frequencies ranging from 200-400 Hz from September - December suggest a strong seasonal presence of whales in this ecologically important polynya region.

  20. Icing Cloud Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.; Oldenburg, John R.

    2001-01-01

    The icing research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the icing clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and compared to the FAA icing certification criteria. The capabilities of the IRT to produce large droplet icing clouds is also detailed.